WorldWideScience

Sample records for superficial gas flow

  1. Effects of superficial gas velocity on process dynamics in bioreactors

    Science.gov (United States)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  2. Superficial microcirculation flow measurement using polarized light

    Science.gov (United States)

    Wu, Jiwei; Morgan, S. P.; Xiao, Yunshi

    2008-12-01

    Depth discrimination of polarized light is used in investigating laser Doppler measurement of the superficial microcirculation in tissue. Using polarization Monte Carlo simulation, temporal point spread function and power spectral distribution of backscattered polarization remaining light firstly are used to prove polarized light to be valid in measuring moving blood cell perfusion and mean flow velocity. Then simulation of layered medium model demonstrate that relationships between blood flow perfusion and mean frequency shift are linear to medium flowing velocity, and the Doppler shift information in polarization remaining light mainly comes from lower layer medium up to about 14 times of mean free path (MFP) of medium investigated and can be considered that Doppler effects come only from lower layer of the medium. Simulations in three-layer tissue model show that moving blood cell perfusion and mean blood cell moving velocity calculated from polarization remaining are much more sensitive to lower layer flow velocity variation, and more irrelevant to deeper layer flow rate fluctuations, that further confirms Doppler measurement from polarization remaining light to be effective for superficial microcirculation in tissue. Factors affecting Laser Doppler measurement like medium absorption, percentage of moving particles in blood detector size are discussed.

  3. The effect of superficial gas velocity on wavy films and its use in enhancing the performance of falling film reactors

    Energy Technology Data Exchange (ETDEWEB)

    Talens-Alesson, F.I. [TALENCO Chemical Engineering Consulting, Hospitalet de Llobregat (Spain)

    2000-07-01

    Mass transfer in co-current downward annular flow depends on the amount of liquid carried by the waves. The thickness of the wavy portion of the liquid film increases with the superficial gas velocity. By calculating superficial friction factors from simple pressure drop experiments, an estimate of the velocity at which the maximum development of waviness is achieved can be obtained, and optimized performance conditions can be found. (orig.)

  4. Numerical simulation of flow patterns in dense pneumatic conveying at different superficial gas velocities%表观气速对密相气力输送流型影响的模拟

    Institute of Scientific and Technical Information of China (English)

    朱立平; 彭小敏; 黄飞; 袁竹林; 闫亚明; 罗登山; 王宏生; 李斌

    2012-01-01

    Due to the problem in available numerical simulations of flow patterns in dense pneumatic conveying, a new mathematical model, which uses solid-phase volume concentration of local space and kinematic characteristics of clusters to describe the interactions between particles, was proposed in this paper. This model was first used to numerically simulate the dense pneumatic conveying (even for the packing of particles), and then used to numerically study the flow behavior of dense phase pneumatic conveying in horizontal pipe at high pressures, in which the separation and sedimentation between gas phase and solid phase in the conveying process were investigated. The simulation results also illustrated the evolving characteristics of flow patterns such as dune flow and plug flow, which are consistent with the experimental phenomena. Moreover, some rules of flow patterns were revealed by qualitatively analyzing the distribution of solid-phase flow patterns at different superficial gas velocities. The results show that the new model is appropriate and can be used to study the dense pneumatic conveying.%针对目前密相气力输送数值模拟关于流型演变方面所存在的问题,提出了一种基于颗粒所在局部空间的固相浓度及颗粒群运动特征来描述颗粒间相互作用的数学模型.该模型能够对气力输送,甚至是颗粒发生大量堆积情况下的密相输送进行数值模拟,使得长期以来缺乏有效模型对密相输送流型进行数值模拟研究的问题得到一定解决.利用该模型,对水平管中煤粉高压密相气力输送的颗粒流动过程进行了数值模拟,获得了输送过程中管道内所发生的气固两相之间的分离、沉积现象,展现了沙丘流及栓寒流等流型的演变特征,模拟结果与实验观察到的现象吻合较好,从而进一步验证了新数学模型的有效性.此外,通过对不同表观气速下固相流态分布的定量分析,揭示了输送流型变化的一些内在规律.

  5. EXPERIMENTAL AND NUMERICAL INVESTIGATIONS ON HORIZONTAL OIL-GAS FLOW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experiments were carried out to investigate the characteristics of oil-gas flow in a horizontal pipe on a large scale (with the inner diameter D = 125 mm). With the experimental data, the flow patterns were presented. Through the analyses for the flow regime transition, it was found that there was a critical superficial velocity of liquid phase for the flow regime transiting from stratified flow to slug flow. The slug flow could not occur until the superficial velocity of liquid phase was higher than the critical velocity. For the flow pattern transiting from stratified to slug flow, the transmitting velocity of gas phase decreases with the augmentation of superficial velocity of liquid phase. On the basis of the experiments, numerical simulations of different flow patterns and their transitions were performed with the use of the Volume Of Fluid (VOF) technique. The results of the computations are shown to match well with the measured data in the experiments.

  6. INFLUENCE OF SODIUM GLUTAMATE, BUBBLING N2- GAS AND SUPERFICIAL AERATION ON TETANUS TOXIN PRODUCTION IN Clostridium tetani CULTURES

    Directory of Open Access Journals (Sweden)

    I. Gutiérrez

    2005-12-01

    Full Text Available The influence of sodium glutamate as a supplement to Latham Mueller medium, while using bubbling nitrogen flow as an anaerobic agent and superficial aeration as an inducer of cell lysis and as a mechanism for the haulage of gases in the fermentation processes was evaluated. Using the Clostridium tetani Massachusetts’s strain, several five (5 liter batch fermentations were carried out for tetanus toxin production under the following conditions: Latham Mueller medium, with or without sodium glutamate, nitrogen flow and superficial aeration. The results demonstrated that the addition of sodium glutamate (2.5 g/l, combined with a bubbling nitrogen flow (0.33 l/min and superficial aeration (0.33 l/min, produced a significant increase in cell concentrations, repressing the tetanus toxin formation; while the gas flow (nitrogen and superficial aeration without sodium glutamate improved the toxin production by approximately 49%, providing conditions for the following outcomes: a maximum toxin level of 73 Lf/ml; a toxin formation rate of 1844.0 Lf/l.h; and, an over-all productivity of 833.5 Lf/l.h.

  7. Gas speed flow transducer

    Directory of Open Access Journals (Sweden)

    Godovaniouk V. N.

    2011-08-01

    Full Text Available The design of a gas speed flow transducer using the coupling of gas speed and heat streams within the transducer itself is proposed. To maintain the heat balance between two thermoresistors under gas stream at different temperatures, it provides energy consumption monitoring. The detailed combined planar technology for the transducer production is presented. The worked-out measurement procedure allows to make measurements in the temperature range. Information enough to organize production of cheap, reliable and precise gas speed flow transducers is given.

  8. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  9. Removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows

    Directory of Open Access Journals (Sweden)

    Ruth M. Agudelo C

    2010-04-01

    Full Text Available Objective: to compare removal of dissolved organic carbon (d o c obtained with pilot wetlands of subsuperficial flow (p h s s and superficial flow (p h s, with Phragmites australis as treatment alternatives for domestic residual waters of small communities and rural areas. Methodology: an exploratory and experimental study was carried out adding 100,12 mg/L of dissolved organic carbon to synthetic water contaminated with Chlorpyrifos in order to feed the wetlands. A total amount of 20 samples were done, 16 of them in four experiments and the other ones in the intervals with no use of pesticides. Samples were taken on days 1, 4, 8, and 11 in the six wetlands, three of them subsuperficial, and three of them superficial. The main variable answer was dissolved organic carbon, measured in the organic carbon analyzer. Results: a high efficiency in the removal of d o c was obtained with the two types of wetlands: 92,3% with subsuperficial flow and 95,6% with superficial flow. Such a high removal was due to the interaction between plants, gravel and microorganisms. Conclusion: although in both types of wetlands the removal was high and similar, it is recommended to use those of subsuperficial flow because in the superficial ones algae and gelatinous bio-films are developed, which becomes favorable to the development of important epidemiologic vectors in terms of public health.

  10. Gas flow measurement using laminar flow elements

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, J. [Meriam Instrument, Cleveland, OH (United States)

    1994-12-31

    An instrument that measures gas volumetric flow rate using a capillary tube laminar-flow principle is described. Irs construction, operation, accuracy, and rangeability are presented. Discussion includes integrating the differential-pressure-producing flowmeter with appropriate temperature find pressure devices to produce a digital flowmeter system capable of measuring volumetric and mass flow rates. Typical applications are described.

  11. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  12. Gas-Liquid Slug Flow in Microchannels

    Science.gov (United States)

    Guenther, Axel; de Mas, Nuria; Jhunjhunwala, Manish; Schmidt, Martin A.; Jensen, Klavs F.

    2003-11-01

    Slug flow is not only an attractive regime for conducting gas-liquid reactions in microchemical systems. It also provides a normal velocity that enhances liquid mixing for high Peclet number flows, e.g. for particle synthesis. We previously extended the flow regime diagrams initially obtained for micro heat-exchangers to the liquid deficient conditions relevant to microreactors. We use silicon-based single microchannels with rectangular and triangular cross-section and hydraulic diameters of 40-400 microns that are capped with Pyrex to provide for optical access. Ethanol, water, toluene, and nitrogen are the working fluids. Superficial velocities are varied between 0.01 and 10 m/s for the gas and 0.001 and 1 m/s for the liquid with corresponding Capillary and Bond numbers between 0.001 and 0.01. We complement pulsed-laser fluorescence microscopy and confocal scanning microscopy with a non-intrusive optical sensor to monitor the transient flow at sampling rates of 10 kHz. Interfacial area, void fraction, slug velocity U_s, and the transversal velocity component introduced by internal circulation in the liquid are determined. For comparable Peclet numbers, the transverse velocity between channel wall and center is lO0.1 U_s and allows for shorter mixing lengths than reported for micromixers with patterned walls. Gas and liquid are completely separated on-chip subsequent to the mixing step.

  13. Characterization of the flow pattern of a gas/solids flow in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Wirth, K.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Mechanische Verfahrenstechnik

    1999-07-01

    The downer reactor is discussed in literature as a new type of gas/solids reactor. Due to the cocurrent movement of gas and solids in direction of gravity, it is expected that a narrow residence time distribution and a flow regime close to plug flow can be established in this reactor. Recent studies show, that the gas/solids distributor on the top of the downer mainly influences the flow conditions. However, the influence of the physical properties of the solids and the plant setup on the flow behavior is still ambiguous. Therefore, experimental investigations concerning the local and cross-sectional solids distribution have been carried out under different operating conditions (variation of superficial gas velocity and solids circulation rate) and with different solids (glass beads, d{sub p}=60 {mu}m and d{sub p}=130 {mu}m). An X-ray computed tomography system has been used to obtain the solids concentration distribution in the entire cross-section at different axial positions of the downer. Pressure profiles can provide additional information about the overall behavior of the gas/solids flow. Results show a significant influence of the entrance conditions of the gas/solids flow on the flow pattern in the region below the gas/solids distributor. After a significant length, depending on solids properties and superficial gas velocity, similar flow behavior can be noticed for different entrance conditions. Superficial gas velocity not only influences the entrance length, but also the solids distribution in the entire cross-section of the downer. (orig.)

  14. GAS-SOLIDS FLOW BEHAVIOR WITH A GAS VELOCITY CLOSE TO ZERO

    Institute of Scientific and Technical Information of China (English)

    H.; Zhang; J.-X.; Zhu

    2006-01-01

    In a 9.3 m high and 0.10 m i.d. gas-solids downflow fluidized bed (downer), the radial and axial distributions of the local solids holdups and particle velocities along the downer column were measured with the superficial gas velocity set to zero. A unique gas-solids flow structure was found in the downer system with zero gas velocity, which is completely different from that under conditions with higher gas velocities, in terms of its radial and axial flow structures as well as its micro flow structure. The gas-solids flow pattern under zero gas velocity conditions, together with that under low gas velocity conditions, can be considered as a special regime which differs from that under higher gas velocity conditions. According to the hydrodynamic properties of the two regimes, they can be named the "dense annulus" regime for the flow pattern under zero or low gas velocity conditions and the "dense core" regime for that under higher gas velocity conditions.

  15. Prediction on Droplet Sauter Mean Diameter in Gas-Liquid Mist Flow Based on Droplet Fractal Theory

    OpenAIRE

    Jian-Yi Liu; Xiao-Hua Tan; Zhou Fan; Xu-Tao You; Zhou Li; Jia-Hui Zhao

    2015-01-01

    We present a fractal model for droplet Sauter mean diameter in gas-liquid mist flow, based on the droplet fractal theory and the balance relationship between total droplet surface energy and total gas turbulent kinetic energy. The present model is expressed as functions of the droplet fractal dimension, gas superficial velocity, liquid superficial velocity, and other fluid characteristics. Agreement between the present model predictions and experimental measurements is obtained. Results verif...

  16. Prediction on Droplet Sauter Mean Diameter in Gas-Liquid Mist Flow Based on Droplet Fractal Theory

    Directory of Open Access Journals (Sweden)

    Jian-Yi Liu

    2015-01-01

    Full Text Available We present a fractal model for droplet Sauter mean diameter in gas-liquid mist flow, based on the droplet fractal theory and the balance relationship between total droplet surface energy and total gas turbulent kinetic energy. The present model is expressed as functions of the droplet fractal dimension, gas superficial velocity, liquid superficial velocity, and other fluid characteristics. Agreement between the present model predictions and experimental measurements is obtained. Results verify the reliability of the present model.

  17. Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia.

    Science.gov (United States)

    Birkelund, Yngve; Jacobsen, Svein; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R

    2009-07-07

    This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 x 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.

  18. A novel duplex finding of superficial epigastric vein flow reversal to diagnose iliocaval occlusion.

    Science.gov (United States)

    Kolluri, Raghu; Fowler, Brian; Ansel, Gary; Silver, Mitchell

    2017-05-01

    Although duplex ultrasound (DUS) imaging is the current gold standard in the diagnosis of femoropopliteal deep venous thrombosis, it is not an optimal diagnostic modality to diagnose iliocaval occlusion. Screening for iliocaval occlusion thus remains a challenge for clinicians because of the lack of a reliable noninvasive technique. This challenge results in most patients undergoing computed tomography venography or magnetic resonance venography or invasive venography and intravascular ultrasound imaging. This study reports a novel, yet simple, reproducible and intuitive, surface DUS finding of physiologic flow reversal within the superficial epigastric vein (SEV) as a sign of proximal iliocaval occlusion (ICO). This was a retrospective study of 15 patients who were diagnosed with ICO based on the finding of SEV flow reversal on DUS imaging. Patient demographics, presenting CEAP C scores, ICO characteristics, correlation with advanced imaging, and short-term follow-up findings are reported. Physiologic reversal of the SEV resulted in confirmation of ICO in all patients who underwent advanced imaging, including computed tomography venography or traditional venogram along with intravascular ultrasound imaging. All patients who underwent follow-up DUS scans demonstrated normalization of the SEV flow after ICO recanalization. ICO can result in deep venous thrombosis, post-thrombotic syndrome, and chronic venous insufficiency. Physiologic flow reversal in SEV is diagnostic of ICO. To the best of our knowledge, this is the first report of this novel DUS finding. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor

    Institute of Scientific and Technical Information of China (English)

    FaChun Liang; Jing Chen; JinLong Wang; Hao Yu

    2014-01-01

    In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section, a gas extraction line, a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2�50 mm and three gas orifices with different size ( dG = 2�65, 5�00, 10�00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6�0 to 20�0 m/s and the liquid superficial velocity was in the range of 0�02-0�18 m/s. Flow patterns such as wave flow, slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity, flow patterns and extraction flux.

  20. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.

    Science.gov (United States)

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang-Joon

    2012-01-01

    This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle image velocimetry (PIV) algorithm was applied to two B-mode images that were captured consecutively. The echo speckles of red blood cells (RBCs) were used as flow tracers. In the vicinity of the venous valve, the opening and closing motions of valve cusps were simultaneously visualized with the phasic variation of velocity fields. Large-scale vortices were observed behind the sinus pockets while the main bloodstream was directed proximally. This measurement technique combining PIV algorithm and HFUS B-mode imaging was found to be unique and useful for investigating the hemodynamic characteristics of blood flow in the perivalvular area and for diagnosing venous insufficiency and valve abnormality in superficial blood vessels.

  1. Gas flow path for a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.; Pankey, William W.; Mayer, Clinton A.; Hettinger, Benjamin G.

    2017-03-14

    A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline that is misaligned with a centerline of the combustor.

  2. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    Science.gov (United States)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  3. Gas Flow Distribution in Pelletizing Shaft Furnace

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; DONG Hui; WANG Guo-sheng; YANG Jun

    2006-01-01

    Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends; among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC; the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone h3 are the main factors affecting flow distribution. In case the ratio of b2/b1, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.

  4. Caracterización superficial en fase gas y líquida de carbones activados

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo Gutierréz

    2008-05-01

    Full Text Available Se determinó el área superficial de carbones activados obtenidos a partir de cascarilla de café y cáscara de coco, mediante isotermas de adsorción de N2 a 77K. Se compararon los resultados con aquellos obtenidos con un método comúnmente utilizado, el índice de azul de metileno, y se encontró una buena correlación entre las dos áreas determinadas por éste método. Se muestra que los dos métodos permiten realizar un análisis complementario de una superficie porosa./ The superficial area of an activated carbon obtained from coffee husk and coconut shell was determined, by means of isotherms of adsorption of N2 to 77K and the results they area compared with the method of index blue of methylene, finding an good correlation between the two areas determined by this method. This research shows that both methods allow making a complementary analysis of a porous surface.

  5. PIV MEASUREMENT OF THE GAS-SOLID FLOW PATTERN IN A CFB RISER

    Institute of Scientific and Technical Information of China (English)

    Shi Hui-xian; Wang Qin-hui; Wang Can-xing; Luo Zhong-yang; Cen Ke-fa

    2003-01-01

    Particle Imaging Velocimetry (PIV) is a valuable measuring tool for studying multiphase flows, such as liquid-gas and gas-solid flow. It can be used to carry out many hydrodynamic studies, in particular, to determine accurately the gas-solid flow structure in CFB (Circulating Fluidized Beds). In this paper, the technique characteristics was described in applying the PIV to measure the gas-solid flow in circulating fluidized beds. A primary experiment was completed on a CFB unit with the PIV, yielding the velocity vector fields of high-density particles for different gas-solid superficial velocities and solid recycle rates. Velocities of the transported particles were calculated with cross-correlation method. The major factors influencing the successful measurement of particle velocity with the PIV technique were also described.

  6. Single Chip Sensing of Multiple Gas Flows

    CERN Document Server

    Bruschi, P; Piotto, M

    2008-01-01

    The fabrication and experimental characterization of a thermal flow meter, capable of detecting and measuring two independent gas flows with a single chip, is described. The device is based on a 4 x 4 mm2 silicon chip, where a series of differential micro-anemometers have been integrated together with standard electronic components by means of postprocessing techniques. The innovative aspect of the sensor is the use of a plastic adapter, thermally bonded to the chip, to convey the gas flow only to the areas where the sensors are located. The use of this inexpensive packaging procedure to include different sensing structures in distinct flow channels is demonstrated.

  7. A method of determining combustion gas flow

    Science.gov (United States)

    Bon Tempi, P. J.

    1968-01-01

    Zirconium oxide coating enables the determination of hot gas flow patterns on liquid rocket injector face and baffle surfaces to indicate modifications that will increase performance and improve combustion stability. The coating withstands combustion temperatures and due to the coarse surface and coloring of the coating, shows the hot gas patterns.

  8. Warm Absorbing Gas in Cooling Flows

    OpenAIRE

    Buote, David A.

    2000-01-01

    We summarize the discovery of oxygen absorption and warm (10^5-10^6 K) gas in cooling flows. Special attention is given to new results for M87 for which we find the strongest evidence to date for ionized oxygen absorption in these systems. We briefly discuss implications for observations of cooling flows with Chandra and XMM.

  9. Argon gas flow through glass nanopipette

    Science.gov (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji

    2016-12-01

    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  10. Thermographic study of gas flows

    Directory of Open Access Journals (Sweden)

    Elistratov S.L.

    2015-01-01

    Full Text Available To visualize the temperature field, thin threads and nets with different heat conductivity were located directly at the outlet or at some distance from the channel. This method allows to investigate fields of temperatures for diagnostics of streams of gas in channels of the modern heat exchangers and reactors.

  11. 21 CFR 868.2885 - Gas flow transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas flow...

  12. Rotationally symmetric viscous gas flows

    Science.gov (United States)

    Weigant, W.; Plotnikov, P. I.

    2017-03-01

    The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.

  13. Gas flow characteristics in straight silicon microchannels

    Institute of Scientific and Technical Information of China (English)

    丁英涛; 姚朝晖; 沈孟育

    2002-01-01

    Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal sili-con microchannels with different hydraulic diameters. The volume flow rate and pressure ratio are measured in theexperiments. It is found that the friction coefficient is no longer a constant, which is different from the conventionaltheory. The characteristics are first explained by the theoretical analysis. A simplified rectangular model (rectangularstraight channel model) is then proposed. The experimental results are compared with the theoretical predictions basedon the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usuallyuse The difference between the experimental data and the theoretical predictions is found in the high-pressure ratiocasesx. The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studiedto interpret the discrepancy. We discuss two important factors affecting the application extent of different predictionmodels.

  14. Characterizing gas flow from aerosol particle injectors

    CERN Document Server

    Horke, Daniel; Worbs, Lena; Küpper, Jochen

    2016-01-01

    A novel methodology for measuring gas flow from small orifices or nozzles into vacuum is presented. It utilizes a high-intensity femtosecond laser pulse to create a plasma within the gas plume produced by the nozzle, which is imaged by a microscope. Calibration of the imaging system at known chamber pressures allows for the extraction of absolute number densities, and we show detection down to helium densities of $4\\times10^{16}$~cm$^{-3}$ with a spatial resolution of a few micrometer. The technique is used to characterize the gas flow from a convergent-nozzle aerosol injector as used in single-particle diffractive imaging experiments at free-electron laser sources. Based on the measured gas-density profile we estimate the scattering background signal under typical operating conditions of single-particle imaging experiments and estimate that fewer than 50 photons per shot can be expected on the typical detector of such an experiment.

  15. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  16. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  17. Dry calibration of ultrasonic gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, G.; Lansing, J.

    1997-07-01

    At present in most European countries it is customary that turbine meters, or the newer ultrasonic gas flow meters, when used in fiscal metering or custody transfer metering applications, are calibrated in a test facility by comparison to standards or reference devices. For reason of practical and operational drawbacks, costs involved and availability of only a limited number of calibration facilities, another way of meter verification is advantageous. For orifice metering the practice of dry calibration is well established; that is, meter verification is based upon examination of the geometry and installation of the orifice plate and a function check of the read out devices. Although for turbine meters a flow (wet) calibration may be a necessity, it will be shown that ultrasonic gas flow meters can be dry calibrated in the same way as orifice meters. As a basis for the acceptance of a dry calibration procedure for ultrasonic gas flow meters, a sensitivity analysis of the relevant variables with respect to the meter's accuracy is presented. Further test results are presented that demonstrate the feasibility of the concept of dry calibration applied to ultrasonic gas flow meters. (author)

  18. "Redistribution" Effect of Lumpy Zone for Gas Flow in BF

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping,cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.

  19. Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.

  20. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  1. Continuous-Flow Gas-Phase Bioreactors

    Science.gov (United States)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  2. Natural gas use in treatment of steel surfaces; Utilizacao de gas natural em tratamento de superficies de aco

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Andre Dias; Machado, Antonio Rogerio; Rocha, Ivan; Azevedo, Jorge; Oshiro, Hugo K.; Konishi, Ricardo; Lehmkuhl, Willian [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Piazza, Walter [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2011-12-21

    The surface treatments of metals, such as carburizing, rely on processing under high temperature in carbon rich atmospheres. The atmosphere is industrially generated using the partial oxidation of a carbon rich fuel, such as propane, butane or methanol. This article reports a study of the production of a carburizing atmosphere for surface treatment of steel from the partial oxidation of natural gas in a catalytic reactor. The reactor studied was a production size reactor with 300 mm of diameter and 1500 mm of length, packed with alumina supported nickel catalyst. The quality of the carburizing gas was evaluated from its carbon potential of the carburizing gas that was calculated from the concentrations of carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxygen (O{sub 2}) and methane (CH{sub 4}) measured at the reactor's exit. The results indicate that CO concentration is very close to equilibrium, while CO{sub 2} is higher and CH{sub 4} is lower. Examining the reactor, the conclusion was that there was an axial temperature gradient, resulting in lower residence time under the required processing temperature. This resulted in smaller decomposition of CH{sub 4} and smaller production of CO{sub 2}. An equilibrium calculation of carbon potential, expressed as weight percent of carbon in iron, was developed to predict the possible optimizations of mixture composition and reactor temperature for a given required carbon potential. Conclusion: it is possible to generate a carburizing atmosphere under well controlled and repeatable conditions for the carbon potentials required for surface carburizing of steels in industrial processing using natural gas and air mixtures. (author)

  3. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    Science.gov (United States)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  4. Modelling of gas flow through metallic foams

    Energy Technology Data Exchange (ETDEWEB)

    Crosnier, S. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France); Riva, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Bador, B.; Blet, V.

    2003-09-01

    The transport and distribution of gases (hydrogen at the anode and air at the cathode) and water over the front surfaces of the electrodes in contact with electrolyte membrane are of great importance for the enhancement of efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC). The use of metallic foam as a flow distributor in comparison with grooved plate (formed by parallel channels) commonly used in commercial fuel cells may be advantageous since this porous material has a porosity close to unity and then high specific surface area. In fact, the potentially active surface area is generally considered to be almost equal to the front surface area of the electrodes. In order to ensure a homogeneous flow distribution all over the active surface of such devices, a good understanding of gas flow through these particular porous media is necessary. For that purpose, studying of two-phase flow (oxygen, hydrogen and water) through metallic foams must be undertaken. This is carried out in the present work but, in a first step, only for single-phase flow, since the behaviour of two-phase flow derives from the first one. Novels hydraulic models have then been developed in the literature these last years. However, these models do not take into account the viscous dissipation of the flow along the walls bordering the porous media. Unfortunately, metallic foam used as distributors in fuel cell have thigh thickness (of the order of the millimeter), that shedding a doubt on the validity of the latter assumption. In this paper, we review the different hydraulic models in order to discuss the relevance and the limits of each to describe single-phase flow through foams which could be used as distributor in a fuel cell. For that purpose, numerical solutions obtained using modified MC3D-REPO package originally developed for the modelling of multicomponent two-phase flows in granular porous media have been compared to experimental data measured on a dedicated hydraulic device

  5. Flows of gas through a protoplanetary gap

    Science.gov (United States)

    Casassus, Simon; van der Plas, Gerrit; M, Sebastian Perez; Dent, William R. F.; Fomalont, Ed; Hagelberg, Janis; Hales, Antonio; Jordán, Andrés; Mawet, Dimitri; Ménard, Francois; Wootten, Al; Wilner, David; Hughes, A. Meredith; Schreiber, Matthias R.; Girard, Julien H.; Ercolano, Barbara; Canovas, Hector; Román, Pablo E.; Salinas, Vachail

    2013-01-01

    The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (AU) in radius (1 AU is the Earth-Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 AU. This disruption is indicative of a perturbing planetary-mass body at about 90 AU. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10-9 to 2 × 10-7 solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.

  6. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  7. Flow of gas-liquid-solid system and its application in packed flotation column

    Institute of Scientific and Technical Information of China (English)

    丁一刚; 吴元欣; 李定或

    2002-01-01

    A packed flotation column, which is packed with multiple board ripple packings, was described. Based on comprehensive steady state models, chemical reactor developed previously in chemical engineering subjects, have been extended to packed flotation column for mineral separation. The experimental results verify that tanks in series model is better than axially-dispersed plug flow model to describe flow pattern in the collection zone of column by RTD (residence time distribution), and the error of experimental data and calculated data of both models are 0.07%~0.1% and 0.18%~0.45% respectively. And, RTD of gas phase was also considered, results also show that gas in the whole column appears plug flow. The cleaning process through adding wash water in froth zone of column was described, and the effect of superficial air velocity and superficial wash water velocity on the cleaning action of froth zone were discussed. Flotation experiment for single column was conducted for phosphate ores. The recovery for P2O5 was 85.8%, and the grade was 26.8%.

  8. Testing for Nonlinearity in Dynamic Characteristics of Vertical Upward Oil-Gas-Water Three-phase Bubble and Slug Flows

    Institute of Scientific and Technical Information of China (English)

    朱雷; 金宁德; 高忠科; 杜萌; 王振亚

    2012-01-01

    Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.

  9. Burnett simulations of gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    Fubing BAO; Jianzhong LIN

    2009-01-01

    In micro- and nanoscale gas flows, the flow falls into the transition flow regime. There are not enough molecule collisions and the gas deviates from the equilibrium. The Navier-Stokes equations fail to describe the gas flow in this regime. The direct simulation Monte Carlo method converges slowly and requires lots of computational time. As a result, the high-order Burnett equations are used to study the gas flow and heat transfer characteristics in micro- and nanoscale gas flows in this paper. The Burnett equations are first reviewed, and the augmented Burnett equations with high-order slip bound-ary conditions are then used to model the gas flow and heat transfer in Couette and Poiseuille flows in the transition regime.

  10. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  11. FINITE DIFFERENCE METHOD FOR CALCULATING OF THE GAS FLOW IN A SUBSONIC GAS EJECTOR

    Directory of Open Access Journals (Sweden)

    Kostjantin Kapitanchuk

    2015-12-01

    Full Text Available Describe analysis of eddy viscosity actual mathematical models for numerical simulation a reversal gas flow in subsonic gas ejector. Considered advantages and disadvantages each of it. Proposed use method of finite elements for provides viscous gas flow calculation of gas ejectors.

  12. A microfluidic chip for generating reactive plasma at gas-gas interface formed in laminar flow

    Science.gov (United States)

    Hashimoto, Masahiro; Tsukasaki, Katsuki; Kumagai, Shinya; Sasaki, Minoru

    2015-01-01

    A gas-gas interface is used for generating a localized reactive plasma flow at an atmospheric pressure. A microfluidic chip is fabricated as the reactor integrating a small plasma source located upstream. Within a Y-shaped microchannel, a discharging gas flows with a chemical gas. Owing to the small width of the microchannel, the gas flow is stabilized in a laminar flow. The resultant gas-gas interface is formed in the area where two gases flow facing each other activating the chemical gas through the energetic species in the discharging gas. A characteristic stream pattern is observed as the etching profile of a carbon film with a sub-µm sharp step change that can be explained by the spatial distribution of the reactive oxygen. This etching profile is different from that obtained when plasma discharging occurs near the channel exit being affected by the turbulent flow.

  13. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack

    Science.gov (United States)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.

  14. Gas-liquid two-phase flow across a bank of micropillars

    Science.gov (United States)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  15. Discharge effects on gas flow dynamics in a plasma jet

    Science.gov (United States)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  16. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  17. Axial gas flow in irradiated PWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Dagbjartsson, S.J.; Murdock, B.A.; Owen, D.E.; MacDonald, P.E.

    1977-09-01

    Transient and steady state axial gas flow experiments were performed on six irradiated, commercial pressurized water reactor fuel rods at ambient temperature and 533 K. Laminar flow equations, as used in the FRAP-T2 and SSYST fuel behavior codes, were used with the gas flow results to calculate effective fuel rod radial gaps. The results of these analyses were compared with measured gap sizes obtained from metallographic examination of one fuel rod. Using measured gap sizes as input, the SSYST code was used to calculate pressure drops and mass fluxes and the results were compared with the experimental gas flow data.

  18. Gas-Flow Switch Recovery Experiments

    Science.gov (United States)

    1983-06-01

    of laminated Plexiglas. The upper wall of the spark gap flow channel could be pivoted to adjust the minimum separation of the nozzle, which will... flow channel. PiVOT " Fig. 3. Fig. 4. Cross section of spark gap flow channel showing location of electrodes and pressure orifices. r-------~5~cm...flow in the spark gap . Flow conditions were essentially determined by the choice of air supply pressure in the wind tunnel plenum which was located

  19. Three-phase flow of submarine gas hydrate pipe transport

    Institute of Scientific and Technical Information of China (English)

    李立; 徐海良; 杨放琼

    2015-01-01

    In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature−pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid−liquid two-phase flow (hydrate and water) transforms into gas−solid−liquid three-phase flow (methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas−solid−liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.

  20. Similarity of ideal gas flow at different scales

    Institute of Scientific and Technical Information of China (English)

    王沫然; 李志信

    2003-01-01

    The similarity of ideal gas flow at different scales is investigated analytically and numerically. With the compressible and rarefied effects considered, two dimensionless parameters, Mach number and Knudsen number, are proposed as the similarity criterions, because the Reynolds number can be expressed by the Mach number and the Knudsen number of ideal gases. A DSMC method is used to simulate flows at different scales with the same Ma and Kn, including subsonic channel flows and the supersonic flows over a hot plate. Comparisons between the results of different scales show that the normalized fields of macroscopic quantities are the same. This confirms the similarity. Especially, the results indicate that the micro flow are similar to the rarefied flow of ideal gas, which suggests that many transformations are available from the existing rarefied flow results to the micro flow.

  1. Rare gas flow structuration in plasma jet experiments

    Science.gov (United States)

    Robert, E.; Sarron, V.; Darny, T.; Riès, D.; Dozias, S.; Fontane, J.; Joly, L.; Pouvesle, J.-M.

    2014-02-01

    Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min-1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species.

  2. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.;

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme to ...

  3. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  4. Entrance Effects in Microchannel Gas Flow

    Institute of Scientific and Technical Information of China (English)

    T. Lewandowski; S. Jebauer; J. Czerwinska; P. Doerffer

    2009-01-01

    Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For that purpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions which rise in such configuration are related to the existence of optimal size of the holes and the influence of microscale phenomena on the global flow patterns. This paper concentrates on the issue of the entrance effects on the micro-channel flow. It is shown that mass flow rate is only insignificantly influenced by slip effects. Global parameters such as pressure difference and geometrical shape in more pronounced way alter flow behavior. In this paper we concentrate on the numerical investigation of the microchannel flow for Kn < 0.01 and Re < 500. The channel length is finite. Hence, entrance and outlet effects on microchannel flow can be studied.

  5. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme to ......-Robinson equations of state, to determine the density of the real gas mixture along with an empirically extended ideal gas equation. A real behavior of mixture is accounted by using energy and distance parameters.......In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...

  6. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  7. Flammable gas interlock spoolpiece flow response test plan and procedure

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  8. Reactive Gas Solids Flow in Circulating Fluidised Beds

    DEFF Research Database (Denmark)

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly

    2005-01-01

    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas/pa...

  9. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Science.gov (United States)

    Masson, R.; Trenty, L.; Zhang, Y.

    2016-09-01

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov-Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  10. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  11. Numerical modeling of microchannel gas flows in the transition flow regime via cascaded lattice Boltzmann method

    CERN Document Server

    Liu, Qing

    2016-01-01

    As a numerically accurate and computationally efficient mesoscopic numerical method, the lattice Boltzmann (LB) method has achieved great success in simulating microscale rarefied gas flows. In this paper, an LB method based on the cascaded collision operator is presented to simulate microchannel gas flows in the transition flow regime. The Bosanquet-type effective viscosity is incorporated into the cascaded lattice Boltzmann (CLB) method to account for the rarefaction effects. In order to gain accurate simulations and match the Bosanquet-type effective viscosity, the combined bounce-back/specular-reflection scheme with a modified second-order slip boundary condition is employed in the CLB method. The present method is applied to study gas flow in a microchannel with periodic boundary condition and gas flow in a long microchannel with pressure boundary condition over a wide range of Knudsen numbers. The predicted results, including the velocity profile, the mass flow rate, and the non-linear pressure deviatio...

  12. A COUPLING MODEL OF WATER FLOWS AND GAS FLOWS IN EXHAUSTED GAS BUBBLE ON MISSILE LAUNCHED UNDERWATER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gas and water flows during an underwater missile launch are numerically studied. For the gas flow, the explicit difference scheme of Non-oscillation and Non-free-parameter Dissipation (NND) is utilized to solve the Euler equations for compressible fluids in the body-fitted coordinates. For the water flow, the Hess-Smith method is employed to solve the Laplace equation for the velocity potential of irrotational water flows based on the potential theory and the boundary element method. The hybrid Eulerian-Lagrangian formulation for the free boundary conditions is used to compute the changes of the free surface of the exhausted gas bubble in time stepping. On the free surface of the exhausted gas bubble, the matched conditions of both the normal velocities and pressures are satisfied. From the numerical simulation, it is found that the exhausted gas bubble grows more rapidly in the axial direction than in the radial direction and the bubble will shrink at its "neck" finally. Numerical results of the movement of the shock wave and the distribution of the Mach number and the gas pressure within the bubble were presented, which reveals that at some time, the gas flow in the Laval nozzle is subsonic and the gas pressure in the nozzle is very high. Influences of various initial missile velocities and chamber total pressures and water depths on both the time interval when the gas flow in the nozzle is subsonic and the peak of the gas pressure at the nozzle end were discussed. It was suggested that a reasonable adjustment of the chamber total pressure can improve the performance of the engine during the underwater launch of missiles.

  13. Driver gas flow with fluctuations. [shock tube turbulent bursts

    Science.gov (United States)

    Johnson, J. A., III; Jones, W. R.; Santiago, J.

    1980-01-01

    A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.

  14. Ways of intensifying liquid dispersion in gas flow

    Science.gov (United States)

    Bazarov, V. G.

    Ways of intensifying liquid dispersion in gas flow are examined with a view to increasing the efficiency of the existing atomizing nozzles. It is noted that the most economical method of dispersion intensification, without using any additional power, is the excitation of auto-oscillations in liquid and gas flows. Several methods of generating auto-oscillations in commonly used centrifugal nozzles are discussed. Other developments include the spraying of viscous and contaminated fluids in a field of forced pressure, velocity, and vorticity fluctuations, and also gas saturation of liquids prior to spraying in nozzles with porous elements.

  15. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  16. Real gas flows with high velocities

    CERN Document Server

    Lunev, Vladimir V

    2009-01-01

    Gasdynamic Model and Equations Outline of the Gasdynamic Model Basic Equations and Postulates Equations of State Kinetic Theory Second Law of Thermodynamics Speed of Sound Integral Equations of Motion Kinematics of Fluid Media Differential Equations of Gasdynamics Rheological Model Initial and Boundary Conditions Similarity and Modeling in Gasdynamics Euler Equations Navier-Stokes Equations Turbulent Flows Viscous and Inviscid Flow Models Inviscid Gasdynamics Stream Function, Potential,

  17. Equations and simulations for multiphase compressible gas-dust flows

    Science.gov (United States)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  18. Vacuum rated flow controllers for inert gas ion engines

    Science.gov (United States)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  19. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  20. Optimal Control of Transient Flow in Natural Gas Networks

    CERN Document Server

    Zlotnik, Anatoly; Backhaus, Scott

    2015-01-01

    We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call the reduced network flow (RNF) model, is a consistent discretization of the PDE equations for gas flow. The RNF forms the dynamic constraints for optimal control problems for pipeline systems with known time-varying withdrawals and injections and gas pressure limits throughout the network. The objectives include economic transient compression (ETC) and minimum load shedding (MLS), which involve minimizing compression costs or, if that is infeasible, minimizing the unfulfilled deliveries, respectively. These continuous functional optimiza...

  1. An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels

    Science.gov (United States)

    Xiong, Renqiang; Chung, J. N.

    2007-03-01

    Adiabatic gas-liquid flow patterns and void fractions in microchannels were experimentally investigated. Using nitrogen and water, experiments were conducted in rectangular microchannels with hydraulic diameters of 0.209mm, 0.412mm and 0.622mm, respectively. Gas and liquid superficial velocities were varied from 0.06-72.3m/s and 0.02-7.13m/s, respectively. The main objective is focused on the effects of microscale channel sizes on the flow regime map and void fraction. The instability of flow patterns was observed. Four groups of flow patterns including bubbly slug flow, slug-ring flow, dispersed-churn flow, and annular flow were observed in microchannels of 0.412mm and, 0.622mm. In the microchannel of 0.209mm, the bubbly slug flow became the slug flow and the dispersed-churn flow disappeared. The current flow regime maps showed the transition lines shifted to higher gas superficial velocity due to a dominant surface tension effect as the channel size was reduced. The regime maps presented by other authors for minichannels were found to not be applicable for microchannels. Time-averaged void fractions were measured by analyzing 8000 high speed video images for each flow condition. The void fractions hold a nonlinear relationship with the homogeneous void fraction as opposed to the relatively linear trend for the minichannels. A new correlation was developed to predict the nonlinear relationship that fits most of the current experimental data and those of the 0.1mm diameter tube reported by Kawahara et al. [Int. J. Multiphase Flow 28, 1411 (2002)] within ±15%.

  2. Intercooler flow path for gas turbines: CFD design and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1995-10-01

    The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (BP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path. The thermodynamic analyses of gas turbine cycles with modifications such as intercooling, recuperating, and reheating have shown that intercooling is important to achieving high efficiency gas turbines. The gas turbine industry has considerable interest in adopting intercooling to advanced gas turbines of different capacities. This observation is reinforced by the US Navys Intercooled-Recuperative (ICR) gas turbine development program to power the surface ships. In an intercooler system, the air exiting the LP compressor must be decelerated to provide the necessary residence time in the heat exchanger. The cooler air must subsequently be accelerated towards the inlet of the HP compressor. The circumferential flow nonuniformities inevitably introduced by the heat exchanger, if not isolated, could lead to rotating stall in the compressors, and reduce the overall system performance and efficiency. Also, the pressure losses in the intercooler flow path adversely affect the system efficiency and hence, must be minimized. Thus, implementing intercooling requires fluid dynamically efficient flow path with minimum flow nonuniformities and consequent pressure losses.

  3. THEORY OF NONFLUIDIZED GAS SOLIDS FLOW AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Hongzhong Li

    2005-01-01

    A theory of nonfluidized gas-solids flow, which combines the theory of multiphase flow with the mechanics of particulate media, was proposed on the basis of understanding that the particles contact each other, solids and gas are in movement, and the drag force on the particles caused by interstitial gas flow is similar to gravity force having the property of mass force. Then this theory was verified by experiments on vertical and inclined moving beds, and was applied to calculation and design of equipment and devices with moving beds, such as pneumatic moving bed transport,dipleg, V-value, L-valve, orifice flow, and arching prevention. It can be used to guide the design and operation of moving beds and fixed beds.

  4. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  5. Gas-Liquid Flows and Phase Separation

    Science.gov (United States)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  6. An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周芳德; 胡明胜

    2001-01-01

    In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.

  7. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  8. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  9. About the statistical description of gas-liquid flows

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, D.; Guido-Lavalle, G.; Carrica, P. [Centro Atomico Bariloche and Instituto Balseiro (Argentina)] [and others

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  10. Conical flow near singular rays. [shock generation in ideal gas

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  11. Axial flow positive displacement worm gas generator

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  12. Rarefied gas flow in a cylindrical annulus

    Science.gov (United States)

    Lo, S. S.; Loyalka, S. K.; Storvick, T. S.

    1983-09-01

    The Hansen-Morse model of the linearized Wang Chang-Uhlenbeck equation is used to study the thermal transpiration and mechanocaloric effects for rarefied polyatomic gases in a cylindrical annulus, where boundary conditions are characterized by diffuse reflection. Phenomenological coefficients at all degrees of rarefaction are reported for physical parameters that represent helium, hydrogen, carbon dioxide, and air. Comparisons with isothermal flow data are given.

  13. Flow of gas-particle mixtures

    Science.gov (United States)

    Branch, M. C.

    1982-11-01

    Two-phase supersonic flows dominate the structure of exhaust plumes of rocket engines with metallized propellants. Recent study has focused on the prediction of the characteristics of these exhaust plumes in order to evaluate plume visibility, radiation signatures and impingement effects. The objective of this study is to provide new experimental data on particle concentration, size distribution, transport effects, and particle interactions with shock waves in two phase jets. Progress in these measurements is decided in this annual scientific report.

  14. Numerical Recovery of Gas Flows in Pipeline Systems

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2012-01-01

    Full Text Available Optimal control, prevention and investigation of accidents, and detection of discrepancies in estimated gas supply and distribution volumes are relevant problems of trunkline operation. Efficient dealing with these production tasks is based on the numerical recovery of spacetime distribution of nonisothermal transient flow parameters of transmitted gas mixtures based on full-scale measurements in a substantially limited number of localities spaced considerable distances apart along the gas pipelines. The paper describes a practical method of such recovery by defining and solving a special identification problem. Simulations of product flow parameters in extended branched pipelines, involving calculations of the target function and constraint function for the identification problem of interest, are done in the 1D statement. In conclusion, results of practical application of the method in the gas industry are briefly discussed.

  15. Gas well flowline measurement by ultrasonic flow meter

    Energy Technology Data Exchange (ETDEWEB)

    Agricola, J.B.

    1997-07-01

    In Underground Gas Storage plants the gas in the well flowlines flows bidirectional: from the well in production mode; to the well in injection mode. Ultrasonic flow meters (UFM), bidirectional from origin, were therefore considered for this application. However, no UFM had ever been designed for use in well gas flowlines. This article emphasizes the design of an UFM for use in well gas flowlines and the starting problems that occurred during tests aimed at proving the reliability of the UFM. Some preliminary measurement results are given. The prototype UFM has been installed and tested at NAM's Munnekezijl location and performs well. A comprehensive report of field test results will be issued by NAM, Assen, The Netherlands, and Shell Exploration and Production Technology (EPT-OM), Rijswijk,The Netherlands. Conclusions will be drawn and recommendations given. (author)

  16. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    Science.gov (United States)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  17. Efectos de la instalación de un gasoducto sobre algunas propiedades del suelo superficial y la cobertura vegetal en el NE de Chubut Gas-pipeline installation effects on superficial soil properties and vegetation cover in Northeastern Chubut

    Directory of Open Access Journals (Sweden)

    Esteban Kowaljow

    2008-07-01

    Full Text Available En este trabajo describimos el impacto del tendido de un gasoducto y de la reposición parcial del material removido, sobre algunas propiedades físicas y químicas del suelo y sobre la cobertura vegetal en tres sitios ecológicos del nordeste de Chubut. En cada sitio se identificaron 4 zonas diferentes: zona 1, faja desmontada y compactada por el tránsito de maquinaria pesada; zona 2, faja desmontada, con posterior reposición del suelo y la vegetación removidos; y otras dos zonas correspondientes a la estepa adyacente no disturbada: montículos asociados a arbustos y espacios entre montículos. Los mayores valores de densidad aparente se encontraron en los suelos de la zona 1 y en los del entremontículo (1,43 Mg m-3. La resistencia a la penetración fue significativamente mayor en las zonas 1 y 2, ambas zonas presentaron valores de resistencia a la penetración superiores a 1 MPa. La tasa de infiltración fue mucho mayor en el montículo (261 mm h-1 que en el resto de las zonas. La velocidad de infiltración de la zona 2 (85 mm h-1 fue mayor a la de la zona 1 (35 mm h-1 y el entremontículo (50 mm h-1. Los contenidos de carbono orgánico y nitrógeno de los suelos de las zonas 1 y 2 fueron similares a los del entremontículo y significativamente inferiores a los del montículo, excepto en la zona 2 de uno de los sitios ecológicos. La remoción de la vegetación y el suelo superficial, y el posterior tránsito de maquinaria pesada durante la instalación del gasoducto produjeron un fuerte impacto sobre las propiedades físicas del suelo. La mayor limitación de los suelos disturbados fue su baja capacidad para incorporar agua, derivada principalmente de su elevada compactación y baja porosidad, lo que explicaría en parte la lenta recuperación de la cobertura vegetal en la zona 1. En ninguno de los tres sitios estudiados, la reposición del material removido por la actividad del desmonte significó una medida de recuperación eficaz

  18. Structural support bracket for gas flow path

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-02

    A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.

  19. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow.

    Science.gov (United States)

    Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui

    2011-06-01

    This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.

  20. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    Science.gov (United States)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  1. Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the nozzle axis. Numerical results agree well with the theoretical and experimental results available. Numerical results indicate that the resonance mode of the resonance tube will switch by means of removing or adding the actuator. The gas flow in the ultrasonic gas atomization (USGA) nozzle is also studied by the same numerical methods. Oscillation caused by the Hartmann resonance tube structure, coupled with a secondary resonator, in the USGA nozzle isinvestigated. Effects of the variation of parameters on the iscillation are studied. The mechanism of the transition of subsonic flow to supersonic flow in the USGA nozzle is also discussed based on numerical results.

  2. Filter-matrix lattice Boltzmann model for microchannel gas flows.

    Science.gov (United States)

    Zhuo, Congshan; Zhong, Chengwen

    2013-11-01

    The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.

  3. Numerical model of compressible gas flow in soil pollution control

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor ex.action system in soil pollution control.

  4. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  5. A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects

    Science.gov (United States)

    Liu, Qingquan; Cheng, Yuanping; Zhou, Hongxing; Guo, Pinkun; An, Fenghua; Chen, Haidong

    2015-05-01

    The influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated in this paper. Coalbed methane (CBM) reservoirs differ from conventional porous media and fractured gas reservoirs due to certain unique features, which lead to two distinct gas pressures: one in fractures and the other in the coal matrix. The latter pressure, also known as the sorption pressure, will be used in calculating sorption-based volume changes. The effective stress laws for single-porosity media is not suitable for CBM reservoirs, and the effective stress laws for multi-porosity media need to be applied. The realization of the above two points is based on the study of the two-phase state of gas migration (involving Fickian diffusion and Darcy flow) in a coal seam. Then, a general porosity and permeability model based on the P-M model is proposed to fit this phenomenon. Moreover, the Klinkenberg effect has been taken into account and set as a reference object. Finally, a coupled gas flow and coal deformation model is proposed and solved by using a finite element method. The numerical results indicate that the effects of gas diffusion behavior and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and permeability evolution during the entire methane degasification period, and the impacts of the two effects are of the same order of magnitude. Without considering the gas diffusion effect, the gas pressure and residual gas content will be underestimated, and the permeability will be overestimated.

  6. Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javdani, K; Schwalbe, S; Fishcher, J

    1977-01-01

    This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.

  7. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    Science.gov (United States)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  8. Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi

    2014-01-01

    A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.

  9. Influence of gas pressure state on the motion parameters of coal-gas flow in the outburst hole

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-ling; LIANG Yun-pei; MIAO Fa-tian

    2007-01-01

    Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.

  10. Review of coaxial flow gas core nuclear rocket fluid mechanics

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  11. Droplet entrainment rate in gas-liquid annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, P. [Energy Research Inc., Rockville, Maryland (United States); Liu, Y.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States); Mori, M. [Tokyo Electric Power Co., Inc., Yokohama (Japan); Chen, S. [Purdue Univ., West Lafayette, Indiana (United States)

    2011-07-01

    Droplet entrainment and deposition are the two most important physical phenomena in the gas-liquid annular two-phase flow. Modeling of these phenomena is essential for the estimation of dryout margins in the Light Water Reactors (LWRs) and the boilers. In this study, gas-liquid annular two-phase flow experiments are performed in a vertical round tube test section under adiabatic conditions. Air-water and organic fluid Freon-113 are used as the test fluids. The experiments covered a wide range of pressure and flow conditions. Liquid film extraction technique was used for the measurement of droplet entrainment and deposition rates. Additionally, the thickness of liquid film was measured in the air-water experiments using the ring type conductance probes. In this paper, the experimental data on entrainment rate is used to analyze the currently available correlations in the literature. The analysis showed that the existing correlations failed to predict the data at high gas velocity conditions. At high gas velocity, the experimental entrainment rate approaches a maximum limiting value; however, the correlations predicted continuously increasing entrainment rate as the gas velocity increases. (author)

  12. Effects of argon gas flow rate on laser-welding.

    Science.gov (United States)

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  13. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature...

  14. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  15. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical simulat

  16. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  17. Empirical slip and viscosity model performance for microscale gas flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Boyd, Iain D. (University of Michigan, Ann Arbor, MI); McNenly, Matthew J. (University of Michigan, Ann Arbor, MI)

    2004-07-01

    For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.

  18. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  19. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    Science.gov (United States)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  20. Isothermal gas-liquid flow at reduced gravity

    Science.gov (United States)

    Dukler, A. E.

    1990-01-01

    Research on adiabatic gas-liquid flows under reduced gravity condition is presented together with experimental data obtained using a NASA-Lewis RC 100-ft drop tower and in a LeRC Learjet. It is found that flow patterns and characteristics remain unchanged after the first 1.5 s into microgravity conditions and that the calculated time for a continuity wave to traverse the test section is less than 1.2 s. It is also found that the dispersed bubbles move at the same velocity as that of the front of the slug and that the transition between bubbly and slug flow is insensitive to diameter. Both the bubbly and the slug flows are suggested to represent a continuum of the same physical process. The characteristics of annular, slug, and bubbly flows are compared.

  1. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector

    Science.gov (United States)

    Haacke, R. Ross; Westbrook, Graham K.; Hyndman, Roy D.

    2007-09-01

    Gas hydrate in continental margins is commonly indicated by a prominent bottom-simulating seismic reflector (BSR) that occurs a few hundred metres below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. Most of the reflection amplitude is caused by the underlying free gas. Gas hydrate can occur without a BSR, however, and the controls on its formation are not well understood. Here we describe two complementary mechanisms for free gas accumulation beneath the gas hydrate stability zone (GHSZ). The first is the well-recognised hydrate recycling mechanism that generates gas from dissociating hydrate when the base of the GHSZ moves upward relative to hydrate-bearing sediment. The second is a recently identified mechanism in which the relationship between the advection and diffusion of dissolved gas with the local solubility curve allows the liquid phase to become saturated in a thick layer beneath the GHSZ when hydrate is present near its base. This mechanism for gas production (called the solubility-curvature mechanism) is possible in systems where the influence of diffusion becomes important relative to the influence of advection and where the gas-water solubility decreases to a minimum several hundred metres below the GHSZ. We investigate a number of areas in which gas hydrate occurs to determine where gas formation is dominated by the solubility-curvature mechanism and where it is dominated by hydrate recycling. We show that the former is dominant in areas with low rates of upward fluid flow (such as old, rifted continental margins), low rates of seafloor uplift, and high geothermal gradient and/or pressure. Conversely, free-gas formation is dominated by hydrate recycling where there are rapid rates of upward fluid flow and seabed uplift (such as in subduction zone accretionary wedges). Using these two mechanisms to investigate the formation of free gas beneath gas hydrate in continental margins, we are able

  2. Dual arc penning ion source gas flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.; Lord, R.S.; Mallory, M.L.; Antaya, T.A.

    1984-01-01

    Support gas, when added directly to an arc or admitted to an auxiliary chamber of a two-arc chamber ion source, increases the beam intensity for multicharged ions such as /sup 16/O/sup 5 +/. To clarify the mechanism of this intensity increase, gas flow rates from the auxiliary chamber to the main chamber have been measured by using the ORIC cyclotron as a mass spectrometer. The results show that only about three percent of the gas admitted to the auxiliary chamber reaches the main chamber. One can then infer that the improved operation probably results from the stabilizing effect of heating the common cathodes with the auxiliary arc and/or the more favorable distribution of the support gas to the part of the main arc close to the cathodes.

  3. A study of stratified gas-liquid pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, George W.

    2005-07-01

    This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of

  4. Kinetic assessment of measured mass flow rates and streamwise pressure distributions in microchannel gas flows

    Institute of Scientific and Technical Information of China (English)

    Jing Fan; Chong Xie; Jianzheng Jiang

    2007-01-01

    Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni > 0.02, but they scat ter between 0.85 and 1.15 as Kni < 0.02 with, to some extent, a very interesting bifurcation trend.

  5. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    Science.gov (United States)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  6. Incorporation of Interstitial Gas Effects on Granular Flows

    Science.gov (United States)

    Hrenya, Christine; Garzo, Vicente; Tenneti, Sudheer; Subramaniam, Shankar

    2013-11-01

    Numerous examples of granular flows exist in which the role of the interstitial gas cannot be ignored. A range of approaches have been taken to incorporate these effects into continuum descriptions. Early efforts simply added a mean drag law to the momentum balance. This ad hoc approach was followed by more rigorous treatments in which an instantaneous drag was incorporated directly into the kinetic equation. Analytical expressions for the resulting continuum description were obtained in the Stokes limit, but not possible higher Reynolds numbers. In the current effort, DNS-based simulations are used to develop a model for the instantaneous drag force that is applicable to a wide range of Reynolds number. This model, based on the Langevin equation, is incorporated into the Enskog equation in order to derive a continuum description for the gas-solid flow. In the limit of Stokes flow, the additional terms arising in the conservation equation are found to match those of previous analytical treatments. Furthermore, the impact of gas on the solid-phase constitutive relations, which was ignored in analytical treatments, is determined. The parameter space examined is consistent with that found in circulating fluidized beds. For such systems, the results indicate a non-negligible impact of the gas phase on the shear viscosity and the Dufour coefficient.

  7. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    Science.gov (United States)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  8. VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM

    OpenAIRE

    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi

    1983-01-01

    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  9. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  10. EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1.60 mm. The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.

  11. Experimental study for the stratified to slug flow regime transition mechanism of gas-oil two-phase flow in horizontal pipe

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Theoretical relations that predict the transition from a stratified pattern to a slug pattern,including a onedimensional wave model that contains less empiricism than the commonly used Taitel-Dukler model,and the ideal model for stratified flow for the gas-liquid flow in horizontal pipes are presented.Superficial velocities of each phase,as the onset of slugging occurs,were predicted,and theoretical analysis was conducted on the stratified to slug flow regime transition.The friction,existing between the fluid and pipe wall,and on the interface of two phases,was especially taken into account.A theoretical model was applied to an experiment about air-oil two-phase flow in a 50 mm horizontal pipe.The effect of pipe diameter on the transition was also studied.The results show that this approach gives a reasonable prediction over the whole range of flow rates,and better agreement has been achieved between predicted and measured critical parameters.

  12. Computational technology of multiscale modeling the gas flows in microchannels

    Science.gov (United States)

    Podryga, V. O.

    2016-11-01

    The work is devoted to modeling the gas mixture flows in engineering microchannels under conditions of many scales of computational domain. The computational technology of using the multiscale approach combining macro - and microscopic models is presented. At macrolevel the nature of the flow and the external influence on it are considered. As a model the system of quasigasdynamic equations is selected. At microlevel the correction of gasdynamic parameters and the determination of boundary conditions are made. As a numerical model the Newton's equations and the molecular dynamics method are selected. Different algorithm types used for implementation of multiscale modeling are considered. The results of the model problems for separate stages are given.

  13. Simulation of rarefied gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    王娴; 王秋旺; 陶文铨; 郑平

    2002-01-01

    Analysis and simulation of rarefied nitrogen gas flow and heat transfer were performed with the Knusden number ranging from 0.05 to 1.0, using the direct simulation of Monte Carlo (DSMC) method. The influences of the Kn number and the aspect ratio on the gas temperature and wall heat flux in the microchannels were studied parametrically. The total and local heat fluxes of the microchannel walls varying with the channel inlet velocities were also investigated in detail. It was found that the Kn number and the aspect ratio greatly influence the heat transfer performance of microchannels, and both the channel inlet and outlet have higher heat fluxes while the heat flux in the middle part of channels is very low. It is also found that the inlet free stream flow velocity has small affect on the wall total heat flux while it changes the distribution of local heat flux.

  14. Flow and Combustion in Advanced Gas Turbine Combustors

    CERN Document Server

    Janicka, Johannes; Schäfer, Michael; Heeger, Christof

    2013-01-01

    With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts.

  15. Laser Doppler flowmeter study on regional cerebral blood flow in early stage after standard superficial temporal artery-middle cerebral artery bypass surgery for moyamoya disease

    Institute of Scientific and Technical Information of China (English)

    GESANG Dun-zhu; ZHANG Dong; ZHAO Ji-zong; WANG Shuo; ZHAO Yuan-li; WANG Rong; SUN Jian-jun; MENG Ze

    2009-01-01

    Background Standard superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery is an effective treatment for moyamoya disease, but recent evidence suggests that postoperative cerebral hyperperfusion can occur. In this study, the trendline of changes in regional cerebral blood flow (rCBF) after surgery were continually monitored near the site of anastomosis in order to investigate both the efficacy of the procedure for improving rCBF and the possible riskof hyperperfusion.Methods Standard STA-MCA bypass surgery was performed on 13 patients, rCBF was measured continually using laser Doppler flowmetry (LDF) until the 5th day after the operation with the LDF probe implanted adjacent to the area of the anastomosis. The trendline of rCBF changes postoperatively was recorded for the analysis performed using SPSS 13.0.Results The baseline LDF value of cortical rCBF was (84.68±14.39) perfusion unit (PU), which was linear relative to absolute perfusion volume before anastomosis and (88.90±11.26) PU immediately after anastomosis (P >0.05). The value changed significantly from before to after anastomosis (P 0.05).Conclusions STA-MCA anastomosis improves the cerebral blood supply significantly in the early stage after surgery,however, the risk of symptomatic hyperperfusion may exist, which may possibly occur on the 1st day and 5th day after surgery. A LDF is useful for postoperative monitoring for both the efficacy of bypass and possible risk of neurologic deterioration or bleeding from hyperperfusion.

  16. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    OpenAIRE

    Xue Liu; Guohui Li; Sihao Lv

    2013-01-01

    An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation....

  17. GAS FLOW CONTROL SYSTEM IN REACTIVE MAGNETRON SPUTTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. M. Klimovich

    2015-01-01

    Full Text Available  It is known that the discharge parameters and the chemical composition of the particles flux impinging onto the substrate during a reactive magnetron sputtering are unstable. As a result spontaneous transitions between the «metal» mode of the target surface and the «poisoned» mode of the target surface have been observed. This leads to nonrepeatability of the coating compositions from process to process. The aim of this work is to design a gas flow control system for reactive sputtering processes. The control system allows to maintain a steady nonequilibrium state of the magnetron discharge in transition mode where the chemical state of the target surface is unstable. The intensities of spectral lines of the discharge spectrum are proposed as control parameters. Photodiode detectors were used for registration of intensities of spectral lines. A gas flow control system regulates argon and reactive gas flow automatically, using feedback signals from photodiode detectors on the intensities of the spectral lines, vacuum gauge, ion current sensor, sensors of discharge current and voltage. As an example, the process of reactive magnetron Ti-Al-N deposition is considered. The following discharge parameters are controlled during sputtering a composite target based on Ti with Al cylindrical inserts: current, voltage, total pressure of a gas mixture, substrate temperature, bias voltage and current of the substrate. Nitrogen flow was controlled by the spectral line intensity of titanium TiI 506,5 nm. The value of the line intensity is connected with the value of reactivity. Elemental composition and structure of the Ti-Al-N coatings were studied using Rutherford backscattering spectroscopy, scanning electron microscopy and X-ray diffraction. It was found, that stoichiometric Ti-Al-N coatings have a globular structure, enhanced hardness and low friction coefficient in contrast to Ti-Al-N coatings with nonstoichiometric composition, which have a

  18. Thermographic investigation of surface temperature of the evaporating liquid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2017-01-01

    Full Text Available An experimental study of the temperature field on the surface of horizontal liquid layer (Ethanol evaporating into gas flow (Air has been performed. Temperature gradient of the gas-liquid interface has been measured with the help of Titanium 570M IR camera. Shear stresses on gas-liquid interface induced by thermocapillary effect and inert gas flow have been defined.

  19. Gas and liquid fuel injection into an enclosed swirling flow

    Science.gov (United States)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  20. Breakdown parameter for kinetic modeling of multiscale gas flows.

    Science.gov (United States)

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  1. Simulation and Modeling of Flow in a Gas Compressor

    Directory of Open Access Journals (Sweden)

    Anna Avramenko

    2015-01-01

    Full Text Available The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.

  2. Long-term flow monitoring of submarine gas emanations

    Science.gov (United States)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  3. Data set from gas sensor array under flow modulation☆

    Science.gov (United States)

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-01-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  4. Gas/slurry flow in coal-liquefaction processes (fluid dynamics in a three-phase-flow column). Final technical progress report, 1 October 1979-31 March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ying, D.H.S.; Sivasubramanian, R.; Moujaes, S.F.; Givens, E.N.

    1982-04-01

    A commercial coal liquefaction plant will employ vertical tubular reactors feeding slurry and gas concurrently upward through these vessels. In the SRC-I plant design the reactor is essentially an empty vessel with only a distributor plate located near the inlet. Because the commercial plant represents a considerable scale-up over Wilsonville or any pilot plant, this program addressed the need for additional data on behavior of three phase systems in large vessels. Parameters that were investigated in this program were studied at conditions that relate directly to projected plant operating conditions. The fluid dynamic behavior of the three-phase upflow system was studied by measuring gas and slurry holdup, liquid dispersion, solids suspension and solids accumulation. The dependent parameters are gas and liquid velocities, solid particle size, solids concentration, liquid viscosity, liquid surface tension and inlet distributor. Within the range of liquid superficial velocity from 0.0 to 0.5 ft/sec, gas holdup is found to be independent of liquid flow which agrees with other investigators. The results also confirm our previous finding that gas holdup is independent of column diameter when the column diameter is 5 inches or larger. The gas holdup depends strongly on gas flow rate; gas holdup increases with increasing gas velocity. The effect of solids particles on gas holdup depends on the gas flow rate. Increasing liquid viscosity and surface tension reduce gas holdup which agrees with other investigators. Because of the complexity of the system, we could not find a single correlation to best fit all the data. The degree of liquid backmixing markedly affects chemical changes occurring in the dissolver, such as sulfur removal, and oil and distillate formation.

  5. Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array

    Science.gov (United States)

    Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr

    2016-11-01

    Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.

  6. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  7. The Behavior and Characteristics of the Interfacial Waves in Gas-Liquid Two-Phase Separated Flow Thorugh Downward Inclined Rectangular Channel

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    An Experimental investigation on the behavior and characteristics of interfacial waves in downward inclined rectangular channel was conducted.The interfacial waves were traced and measured by using conductance technique.The wave patterns were distingushed and defined.The characteristics of the interfacial waves.such as time-averaged film thickness,wave height,wave propagation speed,wavelength and wave frequency,were systematically examined in terms of gas and liquid superficial volumetric fluxes.The effect of the inclination and flow channel geometry of the test section on the interfacial wave was also investigated.

  8. CFD Analysis of Gas Distributor in Packed Column--Prediction of Gas Flow and Effect of Tower Internals Geometry Structure

    Institute of Scientific and Technical Information of China (English)

    张吕鸿; 周海鹰; 李鑫钢; 杜玉萍

    2004-01-01

    Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-lioration of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.

  9. Towards molecular gas flows in micro propulsion devices

    Science.gov (United States)

    Groll, Rodion; Rath, Hans J.

    Developing micro propulsion devices like cold gas thrusters the geometry has to be optimized for the varying pressure and temperature fields inside the unit. Modelling diluted gas flows in microchannels the influence of the mean free path of molecules has to be respected describing pressure drop and specific momentum of a micro-propulsion unit. With the molecule mass factor the density is given used for a five-equation-system modelling the momentum and heat diffusion inside a channel flow for higher Knudsen numbers. The five equations are transport equation for the three mean velocity components, the velocity standard deviation and the molecule collision rate. The present model does not base on the definition of a Dirichlet boundary condition. The momentum boundary condition is given by a shear stress function depending on the collision rate and the standard deviation square of the molecule velocity. With this new wall stress modelling method the slip velocity results from the computation of the transported parameters. The present model is validated computing Poiseuille and Couette flows with different Knudsen numbers. Showing the advantages of the present model the simulation results are compared with simulation results of the wall-distance depending diffusivity model of Lockerby and Reese and BGK results of a Lattice-Boltzmann simulation.

  10. Analysis of Developing Gas/liquid Two-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas

    2010-06-01

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.

  11. Effect of partial superficial parotidectomy on rest and stimulated full salivary flow rate%腮腺区域切除术对动、静态唾液总流率的影响

    Institute of Scientific and Technical Information of China (English)

    代冬; 梁辰; 刘芳; 李钧

    2012-01-01

    Objective To evaluate the effect of the partial superficial parotidectomy on rest and stimulated full salivary flow rate. Methods Thirty patients with benign tumors of parotid gland, treated by partial superficial parotidectomy were included. Resting whole saliva, stimulated whole saliva and bilateral parotid saliva were collected before and three months after partial superficial parotidectomy. Flow rates were calculated. Results The parotid salivary flow rates in the affected side before operation were significantly lower than that in the normal side. The parotid saliva in the affected side of all patients after operation could be collected, but significantly reduced. Compared to preoperation, resting and stimulated whole salivary flow rate had no significant change. Conclusion Parotid gland benign tumor affects the parotid saliva quantity. Parotid gland remained partial secretion function after partial superficial parotidectomy. Partial superficial parotidectomy has little influence on whole saliva secretion.%目的 探讨腮腺区域性切除术对动、静态唾液总流率的影响及在保留残余腺体功能方面的作用.方法 对行腮腺区域性切除术的腮腺良性肿瘤患者30人,分别于手术前和术后3个月收集静态混合唾液、酸刺激动态混合唾液及双侧腮腺液,计算各组唾液流率,并进行统计学分析.结果 术前患侧腮腺流率明显低于健侧.所有病例手术后患侧腮腺均能收集到唾液,但流率明显降低;而静态及动态唾液总流率与术前相比没有明显降低.结论 腮腺良性肿瘤的发生明显影响腮腺唾液分泌功能.腮腺区域性切除术后患侧腮腺仍能够保留部分分泌功能.腮腺区域性切除术虽未能引起对侧腺体代偿,但对患者口腔内唾液分泌总量的影响较小.

  12. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    Science.gov (United States)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  13. Flammable gas interlock spoolpiece flow response test report

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  14. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed......-outlet. The swirling flow was concentric dueto the design of the double inlet for the cyclonic separator, which greatly improvedthe separating efficiency. The separating efficiency was greater than 90% with theparticle diameter of more than 100 μm....

  15. Gas flow calibrations performed at the National Metrology Institute of South Africa (NMISA

    Directory of Open Access Journals (Sweden)

    Jonker D.

    2014-01-01

    Full Text Available The National Metrology Institute of South Africa (NMISA Gas Flow Laboratory provides traceability to the South African Industry for gas flow measurements. A new primary standard for gas flow calibrations was purchased and commissioned. With three flow cells, a flow range of 0.5 mL/min to 50 000 mL/min is covered. The main features of this standard are accuracy, speed and convenience. This paper describes the activities of the NMISA Gas Flow Laboratory – a discussion of the primary standard, the validation thereof, calibration methods for client instrumentation, analysis of measurement results and the calculation of measurement uncertainties.

  16. LIF Measurement of Interacting Gas Jet Flow with Plane Wall

    Science.gov (United States)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.

    2011-05-01

    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  17. Gas flow within Martian soil: experiments on granular Knudsen compressors

    Science.gov (United States)

    Koester, Marc; Kelling, Thorben; Teiser, Jens; Wurm, Gerhard

    2017-09-01

    Thermal creep efficiently transports gas through Martian soil. To quantify the Martian soil pump we carried out laboratory analog experiments with illuminated granular media at low ambient pressure. We used samples of 1 μm to 5 μm SiO2 (quartz), basalt with a broad size distribution between 63 μm and 125 μm, and JSC-Mars 1A with a size fraction from 125 μm to 250 μm. The mean ambient pressure was varied between 50 Pa and 9000 Pa. Illumination was varied between 100 W/m2 and 6700 W/m2. The experiments confirm strong directed gas flows within granular and dusty soil and local sub-soil pressure variations. We find that Martian soil pumps can be described with existing models of thermal creep for capillaries, using the average grain size and light flux related temperatures.

  18. Computation of Particle Laden Turbulent gas Jet Flows Employing the Stochastic Separated Flow Approach

    Directory of Open Access Journals (Sweden)

    V. Ramanujachari

    1992-10-01

    Full Text Available The dispersion of particles in the presence of Turbulent gas flow is studied theoretically using a stochastic separated flow model and the results compared with the available experimental data. As the particle loading in the jet is of the order of 0.1-0.4 per cent, the particles are assumed to have negligible effect on the mean and the turbulent gas phase properties (one-way coupling. The particle-turbulent eddy interactions are calculated by paying attention to the energy containing eddies, characterised by the integral length scale. The fluctuating velocities are sampled randomly from Gaussian distribution, and the particle trajectories are obtained using a procedure similar to random-walk computation. A large number of particle trajectories are averaged to obtain the statistical nature of the turbulent gas-particle jet. It is seen that the particles with less inertia, which are characterised by the Stokes number, tend to diffuse more. The turbulent diffusivities of the particles are in agreement with the available experimental data, when the time-averaged velocities of gas and particles are the same, obtained by the stochastic separated flow model.

  19. Stability of stratified flow and slugging in horizontal gas-liquid flow

    Institute of Scientific and Technical Information of China (English)

    GU Hanyang; GUO Liejin

    2005-01-01

    A transient one-dimensional two-fluid model is proposed to investigate numerically the interfacial instability and the onset of slugging for liquid-gas flow in a horizontal duct. In the present model, the effects of surface tension and transverse variations in dynamic pressure are taken into account. The evolution of interfacial disturbances is displayed and compared with the linear viscous KelvinHelmholtz stability analyses. It shows that interfacial wave is more instable due to the non-linear effect. The model predicts well the stability limit of stratified flow in comparison with the experimental data, and also automatically tracks the onset of slugging. The results show that the initiation of hydrodynamic slugging is related to local interfacial instability. Based on the cycle of slugging, a model for slug frequency is presented, which predicts the trends of slug frequencies with gas/liquid flow rate well in comparison with the available data. The effects of physical properties on slugging have been examined. It is found that with the increase in the gas viscosity and liquid density the slugging would be inhibited, whereas, with the increase in liquid viscosity and gas density, the slugging can be promoted.

  20. Lattice gas automata for flow and transport in geochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  1. Lattice gas automata for flow and transport in geochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  2. Injected power and entropy flow in a heated granular gas

    Science.gov (United States)

    Visco, P.; Puglisi, A.; Barrat, A.; Trizac, E.; van Wijland, F.

    2005-10-01

    Our interest goes to the power injected in a heated granular gas and to the possibility to interpret it in terms of entropy flow. We numerically determine the distribution of the injected power by means of Monte Carlo simulations. Then, we provide a kinetic-theory approach to the computation of such a distribution function. Finally, after showing why the injected power does not satisfy a fluctuation relation à la Gallavotti-Cohen, we put forward a new quantity which does fulfill such a relation, and is not only applicable in a variety of frameworks outside the granular world, but also experimentally accessible.

  3. Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application

    DEFF Research Database (Denmark)

    Böttcher, N.; Singh, Ashok; Kolditz, O.

    2012-01-01

    In this work, we present a framework for numerical modeling of CO 2 injection into porous media for enhanced gas recovery (EGR) from depleted reservoirs. Physically, we have to deal with non-isothermal, compressible gas flows resulting in a system of coupled non-linear PDEs. We describe the mathe......In this work, we present a framework for numerical modeling of CO 2 injection into porous media for enhanced gas recovery (EGR) from depleted reservoirs. Physically, we have to deal with non-isothermal, compressible gas flows resulting in a system of coupled non-linear PDEs. We describe...... the mathematical framework for the underlying balance equations as well as the equations of state for mixing gases. We use an object-oriented finite element method implemented in C++. The numerical model has been tested against an analytical solution for a simplified problem and then applied to CO 2 injection...... into a real reservoir. Numerical modeling allows to investigate physical phenomena and to predict reservoir pressures as well as temperatures depending on injection scenarios and is therefore a useful tool for applied numerical analysis. © 2011 Elsevier B.V. All rights reserved....

  4. Experimental study on performance of flow & desulfurisation of a gas-liquid screen scrubber for wet flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gasliquid screen scrubber were experimentally studied when limestone wag used as absorbent. Experiments were carried out at varying the flue gas velocity and slurry flux in concurrent and countercurrent tower respectively. The experimental results showed that the flow resistance of absorber increased rapidly with an increase of the flue gas velocity whether in concurrent or in countercurrent tower, and the up trend of the flow resistance in the countercurrent tower was higher than those in the concurrent one. The influence of the flue gas velocity on the flow resistance of absorber was more than those of the slurry flux density. Whether in the concurrent tower or in the countercurrent one, increasing the flue gas velocity or the slurry flux density would enhance the desulphurization efficiency. The influence of the slurry flux density on the desulfurisation efficiency was greater than those of the flue gas velocity.

  5. Two critical issues in Langevin simulation of gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom and State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences (China); Fan, Jing [State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    A stochastic algorithm based on the Langevin equation has been recently proposed to simulate rarefied gas flows. Compared with the direct simulation Monte Carlo (DSMC) method, the Langevin method is more efficient in simulating small Knudsen number flows. While it is well-known that the cell sizes and time steps should be smaller than the mean free path and the mean collision time, respectively, in DSMC simulations, the Langevin equation uses a drift term and a diffusion term to describe molecule movements, so no direct molecular collisions have to be modeled. This enables the Langevin simulation to proceed with a much larger time step than that in the DSMC method. Two critical issues in Langevin simulation are addressed in this paper. The first issue is how to reproduce the transport properties as that described by kinetic theory. Transport coefficients predicted by Langevin equation are obtained by using Green-Kubo formulae. The second issue is numerical scheme with boundary conditions. We present two schemes corresponding to small time step and large time step, respectively. For small time step, the scheme is similar to DSMC method as the update of positions and velocities are uncoupled; for large time step, we present an analytical solution of the hitting time, which is the crucial factor for accurate simulation. Velocity-Couette flow, thermal-Couette flow, Rayleigh-Bénard flow and wall-confined problem are simulated by using these two schemes. Our study shows that Langevin simulation is a promising tool to investigate small Knudsen number flows.

  6. Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kubo, K.; Takashima, S.; Moriyama, S.T. [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Tanaka, M. [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu (Japan); Sugiyama, T. [Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packed columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)

  7. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir

    Institute of Scientific and Technical Information of China (English)

    Lin ZUO; Lixia SUN; Changfu YOU

    2009-01-01

    Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

  8. The mechanism of the flowing ground water impacting on coalbed gas content

    Institute of Scientific and Technical Information of China (English)

    QIN Shengfei; SONG Yan; TANG Xiuyi; FU Guoyou

    2005-01-01

    The hydrogeological condition affects the coalbed gas storage dramatically. In an area of stronger hydrodynamics, the coal has a lower gas content, while a higher gas content exists in an area of weaker hydrodynamics. Obviously, the flowing groundwater is harmful to coalbed gas preservation. But few researches focus on the mechanism of how the flowing water diminishes the coalbed gas content.Based on the phenomenon that the flowing groundwater not only makes coalbed gas content lower, but also fractionates the carbon isotope, this research puts forward an idea that it is the water solution that diminishes the coalbed gas content,rather than the water-driven action or the gas dissipation through cap rocks. Only water-soluble action can both fractionate the carbon isotope and lessen the coalbed gas content,and it is an efficient way to take gas away and affect the gas content.

  9. Inferring network flows from incomplete information with application to natural gas flows. [State-to-state natural gas flows in 1974-77

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1980-02-01

    A method is detailed for estimating flows along arcs (edges or links) of a network, such as a transportation network, when the total outflow and total inflow at each node (vertex) are known. It proves the optimality of a greedy method of choosing flows for independent estimation so as to determine the other flows, and does so by exploiting an underlying matroid structure. The resulting problem is formulated both as a linear program and a multi-commodity flow problem, and sensitivity analysis is performed. The technique is applied to the estimation of US state-to-state natural gas flows in the years 1974 to 1977, and numerical results are presented; 1974 and 1975 results are checked against actual data. The potential application of the same technique to the estimation of disaggregate data (of any kind), when aggregate and some disaggregate data are known, is pointed out.

  10. Carbon and Noble Gas Isotope Banks in Two-Phase Flow: Changes in Gas Composition During Migration

    Science.gov (United States)

    Sathaye, K.; Larson, T.; Hesse, M. A.

    2015-12-01

    In conjunction with the rise of unconventional oil and gas production, there has been a recent rise in interest in noble gas and carbon isotope changes that can occur during the migration of natural gas. Natural gas geochemistry studies use bulk hydrocarbon composition, carbon isotopes, and noble gas isotopes to determine the migration history of gases from source to reservoir, and to trace fugitive gas leaks from reservoirs to shallow groundwater. We present theoretical and experimental work, which helps to explain trends observed in gas composition in various migration scenarios. Noble gases are used as tracers for subsurface fluid flow due to distinct initial compositions in air-saturated water and natural gases. Numerous field studies have observed enrichments and depletions of noble gases after gas-water interaction. A theoretical two-phase gas displacement model shows that differences in noble gas solubility will cause volatile gas components will become enriched at the front of gas plumes, leaving the surrounding residual water stripped of dissolved gases. Changes in hydrocarbon gas composition are controlled by gas solubility in both formation water and residual oil. In addition to model results, we present results from a series of two-phase flow experiments. These results demonstrate the formation of a noble gas isotope banks ahead of a main CO2 gas plume. Additionally, we show that migrating hydrocarbon gas plumes can sweep biogenic methane from groundwater, significantly altering the isotope ratio of the gas itself. Results from multicomponent, two-phase flow experiments qualitatively agree with the theoretical model, and previous field studies. These experimentally verified models for gas composition changes can be used to aid source identification of subsurface gases.

  11. Study of Solid Particle Behavior in High Temperature Gas Flows

    Science.gov (United States)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  12. Numerical study of liquid-gas flow on complex boundaries

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2015-11-01

    Simulation techniques for liquid-gas flows near solid boundaries tend to fall two categories, either focusing on accurate treatment of the phase interface away from wall, or focusing on detailed modeling of contact line dynamics. In order to fill the gap between these two categories and to simulate liquid-gas flows in large scale engineering devices with complex boundaries, we develop a conservative, robust, and efficient framework for handling moving contact lines. This approach combines a conservative level set method to capture the interface, an immersed boundary method to represent the curved boundary, and a macroscopic moving contact line model. The performance of the proposed approach is assessed through several simulations. A drop spreading on a flat plate and a circular cylinder validate the equilibrium contact angle. The migration of a drop on an inclined plane is employed to validate the contact line dynamics. The framework is then applied to perform a 3D simulation of the migration of a drop through porous media, which consists of irregular placed cylinders. The conservation error is shown to remain small for all the simulations.

  13. Model of coupled gas flow and deformation process in heterogeneous coal seams and its application

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hui; ZHAO Quan-sheng; YU Yong-jiang

    2011-01-01

    The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal were investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical failure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.

  14. Derivation of stable Burnett equations for rarefied gas flows

    Science.gov (United States)

    Singh, Narendra; Jadhav, Ravi Sudam; Agrawal, Amit

    2017-07-01

    A set of constitutive relations for the stress tensor and heat flux vector for the hydrodynamic description of rarefied gas flows is derived in this work. A phase density function consistent with Onsager's reciprocity principle and H theorem is utilized to capture nonequilibrium thermodynamics effects. The phase density function satisfies the linearized Boltzmann equation and the collision invariance property. Our formulation provides the correct value of the Prandtl number as it involves two different relaxation times for momentum and energy transport by diffusion. Generalized three-dimensional constitutive equations for different kinds of molecules are derived using the phase density function. The derived constitutive equations involve cross single derivatives of field variables such as temperature and velocity, with no higher-order derivative in higher-order terms. This is remarkable feature of the equations as the number of boundary conditions required is the same as needed for conventional Navier-Stokes equations. Linear stability analysis of the equations is performed, which shows that the derived equations are unconditionally stable. A comparison of the derived equations with existing Burnett-type equations is presented and salient features of our equations are outlined. The classic internal flow problem, force-driven compressible plane Poiseuille flow, is chosen to verify the stable Burnett equations and the results for equilibrium variables are presented.

  15. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  16. Gas phase depletion and flow dynamics in horizontal MOCVD reactors

    Science.gov (United States)

    Van de Ven, J.; Rutten, G. M. J.; Raaijmakers, M. J.; Giling, L. J.

    1986-08-01

    Growth rates of GaAs in the MOCVD process have been studied as a function of both lateral and axial position in horizontal reactor cells with rectangular cross-sections. A model to describe growth rates in laminar flow systems on the basis of concentration profiles under diffusion controlled conditions has been developed. The derivation of the growth rate equations includes the definition of an entrance length for the concentration profile to developed. In this region, growth rates appear to decrease with the 1/3 power of the axial position. Beyond this region, an exponential decrease is found. For low Rayleigh number conditions, the present experimental results show a very satisfactory agreement with the model without parameter fitting for both rectangular and tapered cells, and with both H 2 and N 2 as carrier gases. Theory also predicts that uniform deposition can be obtained over large areas in the flow direction for tapered cells, which has indeed been achieved experimentally. The influence of top-cooling in the present MOCVD system has been considered in more detail. From the experimental results, conclusions could be drawn concerning the flow characteristics. For low Rayleigh numbers (present study ≲ 700) it follows that growth rate distributions correspond with forced laminar flow characteristics. For relatively high Rayleigh numbers (present work 1700-2800), free convective effects with vortex formation are important. These conclusions are not specific for the present system, but apply to horizontal cold-wall reactors in general. On the basis of the present observations, recommendations for a cell design to obtain large area homogeneous deposition have been formulated. In addition, this work supports the conclusion that the final decomposition of trimethylgallium in the MOCVD process mainly takes place at the hot substrate and susceptor and not in the gas phase.

  17. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  18. The flow gradients in the vicinity of a shock wave for a thermodynamically imperfect gas

    Science.gov (United States)

    Uskov, V. N.; Mostovykh, P. S.

    2016-11-01

    Supersonic rotational planar and axisymmetric flows of a non-viscous, non-heat-conductive gas with arbitrary thermodynamic properties in the vicinity of a steady shock wave are studied. The differential equations describing the gas flow upstream and downstream of the discontinuity surface and the dynamic compatibility conditions at this discontinuity are used. The gas flow non-uniformity in the shock vicinity is described by the spatial derivatives of the gasdynamic parameters at a point on the shock surface. The parameters are the gas pressure, density, and velocity vector. The derivatives with respect to the directions of the streamline and normal to it, and of the shock surface and normal to it, are considered. Spatial derivatives of all gasdynamic parameters are expressed through the flow non-isobaric factor along the streamline, the streamline curvature, and the flow vorticity and non-isoenthalpy factors. An algorithm for determining these factors of the gas flow downstream of a shock wave is developed. Example calculations of these factors for imperfect oxygen and thermodynamically perfect gas are presented. The influence coefficients of the upstream flow factors on the downstream flow factors are calculated. The gas flow in the vicinity of the shock is described by the isolines of gasdynamic parameters. Uniform planar and axisymmetric flows at different distances from the axis of symmetry are examined; the isobars, isopycnics, isotachs and isoclines are used to characterize the downstream flow behind a curved shock in an imperfect gas.

  19. Gas flow analysis during thermal vacuum test of a spacecraft.

    Science.gov (United States)

    Scialdone, J. J.

    1973-01-01

    The pressures indicated by two tubulated ionization gages, one pointing to a spinning spacecraft undergoing thermal vacuum test and the other the walls of the chamber, have been used in a computer program to calculate important parameters of flow kinetics in the vacuum chamber. These parameters calculated as a function of time are: the self-contamination of the spacecraft (defined as the return of outgassed molecules on its critical surfaces either in orbit or while undergoing vacuum test); the spacecraft outgassing including leaks from sealed compartments; and the gas pumping performance of the vacuum chamber. The test indicated the feasibility of this type of evaluation and the improvements in instrumentations and arrangements needed for future tests.

  20. Skewed gas flow technology offers antidote to opacity derates

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M. [ATCO Power AB (Canada). Battle River Generating Station

    2001-06-01

    Deratings due to opacity problems at the Battle River Generating Station in Alberta, Canada led ATCO Power to evaluate and install skewed gas flow technology (SGFT) in one-half of the Unit 5 twin-casing electrostatic precipitator during the August 2000 outage. Preliminary operating results show that the modified casing produces opacity readings at the outlet 40% lower than those seen at the outlet of the unmodified casing. The dust loading tests indicate a 27.5% improvement in collector efficiency. This article includes a technical review and evaluation of Battle River's SGFT installation, as well as the rationale used to provide the initial economic justification. 3 figs., 1 tab., 1 photo.

  1. Pseudo-particle modeling for gas flow in microchannels

    Institute of Scientific and Technical Information of China (English)

    WANG LiMin; GE Wei; CHEN FeiGuo

    2007-01-01

    The velocity profiles and temperature distributions of gas flow in microchannels, for Knudsen numbers ranging from 0.01 to 0.20, are investigated with pseudo-particle modeling (PPM). It has been found that the velocity profiles are mainly affected by Knudsen number and the external force fields applied. When Knudsen number was increased, the slip velocities on the walls increased at the beginning, and then decreased. The temperature distributions were also significantly affected by the external force. The Darcy friction factor increased with increasing Knudsen number, and its variation with Mach number under increased Knudsen number was similar to the so-called premature laminar-turbulent transition observed in experiments.

  2. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  3. Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation

    Institute of Scientific and Technical Information of China (English)

    LI; Zhihui; ZHANG; Hanxin; FU; Song

    2005-01-01

    The gas-kinetic unified algorithm using Boltzmann model equation have been extended and developed to solve the micro-scale gas flows in Poiseuille-like micro-channels from Micro-Electro-Mechanical Systems (MEMS). The numerical modeling of the gas kinetic boundary conditions suitable for micro-scale gas flows is presented. To test the present method, the classical Couette flows with various Knudsen numbers, the gas flows from short microchannels like plane Poiseuille and the pressure-driven gas flows in two-dimensional short microchannels have been simulated and compared with the approximate solutions of the Boltzmann equation, the related DSMC results, the modified N-S solutions with slip-flow boundary theory, the gas-kinetic BGK-Burnett solutions and the experimental data. The comparisons show that the present gas-kinetic numerical algorithm using the mesoscopic Boltzmann simplified velocity distribution function equation can effectively simulate and reveal the gas flows in microchannels. The numerical experience indicates that this method may be a powerful tool in the numerical simulation of micro-scale gas flows from MEMS.

  4. Experimental Study of the Interfacial Waves in Horizontal Stratified Gas-liquid Two-phase Flows by Using the Developed Image Processing Technique

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto,; Indarto,

    2015-01-01

    Experimental series of stratified gas-liquid two-phase flows had been carried out in a 26 mm i.d. transparent acrylic horizontal pipe. The study was aimed to determine the interfacial wave characteristics of the flow and to develop a high quality database of it. The longitudinal section of the pipe was used as the reference section of image recording. Air and water were used as the test fluids, flowing co-currently inside the pipe. The flow behavior was recorded by using a high-speed video camera around 5 m in axial distance from the inlet pipe to ensure the fully-developed stratified gas-liquid two-phase flow. To correct the refraction due to the acrylic pipe, a correction box was employed in the visualization test section. The group of stratified smooth and wavy two-phase flows were successfully recorded and classified on the basis of the visualization study from 24 couples of test condition of superficial water and air velocities. Digital image processing technique was then used to perform quantitative ana...

  5. Dissipation process of binary mixture gas in thermally relativistic flow

    CERN Document Server

    Yano, Ryosuke

    2016-01-01

    In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...

  6. Gas and Particle Flow in a Spray Roaster

    Directory of Open Access Journals (Sweden)

    Simon Johansson

    2014-01-01

    Full Text Available In the steel industry, waste hydrochloric acid is produced through the process to pickle steel slabs for removal of corrosion. Regenerated hydrochloric acid is obtained by separating the chloride gas from the waste product through spray roasting.This process also produces a by-product in the form of iron oxide which is sold to different industries. The present study is a continuation of a study arising from the need to better understand the dynamics inside the regeneration reactor, which in turn will improve possibilities to optimize the regeneration process, which to date has been manually adjusted by trial and error. In this study the velocity and temperature distribution inside the reactor is numerically modelled together with the droplet motion through the reactor. The main objective is to investigate the influence of a changed spray nozzle position on the flow characteristics of the continuous and dispersed phase, and the relation between temperature and energy efficiency and the regeneration process. Numerical models of the type of flow present in the regeneration reactor are not represented to any major extent in the literature, making the present study relevant to the engineers and researchers active in the steel industry and the application in question.

  7. Superficies de segundo orden

    OpenAIRE

    Salazar Salazar, Luis Álvaro

    1987-01-01

    Este trabajo se propone poner al alcance de estudiantes de primeros semestres de carreras de aplicación de la matemática, un algoritmo proporcionado por el álgebra lineal, para tratar con mas generalidad, agilidad y libertad unos objetos de la geometría analítica de no fácil manipulación por otros métodos y que se conocen como superficies de segundo orden o superficies cuádricas. En este orden de ideas, el autor considera importante que con este tratamiento se incluya este tema en una asignat...

  8. Transient analysis importance for gas wells flow; A importancia da analise transiente no escoamento de pocos de gas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Marcelo; Lorensini, Rodrigo V.; Lopes, Jansen M.; Sales, Antonio E.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    With the increase of Brazil's natural gas demand a program was instituted aiming to anticipate the national gas production. In this context, gas field development projects have been prioritized. Natural gas production in deep and ultra-deep water has the challenge to flow the production without the risk of hydrate formation and to ensure equipment and flow lines integrity. Flowing simulations indicate that temperatures in gas wells production systems may reach very low values, depending on the adopted initial conditions. This is a critical condition, since equipment and materials applied to the production system have temperature restrictions and provides a thermodynamic condition to hydrate formation. This paper shows the importance of unsteady-state studies and analyzes to predict unfavorable conditions, still during basic project phase, contributing to an appropriate definition of materials and equipment that attain the required conditions, and assisting in the elaboration of operational procedures that mitigate the problems identified during the simulations. (author)

  9. A simple model of gas flow in a porous powder compact.

    Energy Technology Data Exchange (ETDEWEB)

    Shugard, Andrew D.; Robinson, David B.

    2014-04-01

    This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.

  10. A Simple Model of Gas Flow in a Porous Powder Compact

    Energy Technology Data Exchange (ETDEWEB)

    Shugard, Andrew D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Robinson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-07-01

    This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.

  11. A Wall-Function Approach to Incorporating Knudsen-Layer Effects in Gas Micro Flow Simulations

    Science.gov (United States)

    2005-07-13

    7) Planar Couette and Poiseuille Flow Simulations To test this proposed wall-function approach, we use a simple centered finite-difference...numerical scheme to solve the Navier-Stokes equations for monatomic gas flow in benchmark one-dimensional planar Couette and Poiseuille systems. Figures 2...and compressible flows . The limited test cases we have investigated (planar Couette flow , planar Poiseuille flow , and low-Reynolds number flow around

  12. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  13. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  14. Steady state cooling flow models with gas loss for normal elliptical galaxies

    Science.gov (United States)

    Sarazin, Craig L.; Ashe, Gregory A.

    1989-01-01

    A grid of cooling flow models for the hot gas in normal elliptical galaxies is calculated, including the loss of gas due to inhomogeneous cooling. The loss process is modeled as a distributed sink for the gas with the rate of loss being proportional to the local cooling rate. The cooling flow models with gas loss have smaller sonic radii, smaller inflow rates in their central regions, lower densities, and higher temperatures than homogeneous models. The reduction in the amount of hot gas flowing into the center of the models brings the models into much better agreement with the observed X-ray surface brightness profiles of elliptical galaxies. However, there is a large dispersion in the observed X-ray luminosities of ellipticals, and this cannot be explained by variations in the efficiency of gas loss. The gas-loss models have X-ray surface brightness profiles which are much less centrally peaked than the no-gas-loss models.

  15. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  16. Gas dilution system using critical flow Venturi nozzles for generating primary trace-moisture standards in multiple gas species

    Science.gov (United States)

    Amano, Minami; Abe, Hisashi

    2017-02-01

    Gas dilution systems are commonly used to generate calibration gas mixtures for secondary gas standards. However, if a gas dilution system is used to generate gas mixtures for primary trace-moisture standards in multiple gas species, difficulty arises; flow control with relative stability of better than 0.009% is required although the relative uncertainty of the best gas flow meter to date is around 0.3%. In this study, we developed a novel gas dilution system using critical flow Venturi nozzles to address this problem. The developed dilution system can measure and control the flow rates of gases in the range of approximately 0.05 l min-1 to 7 l min-1 (when converted to those measured at 101 325 Pa and 273.15 K) with relative stability of better than 0.007%. Using the dilution system, we developed a magnetic suspension balance/diffusion-tube humidity generator capable of generating trace moisture in N2 in the range of approximately 10 nmol mol-1 to 5 µmol mol-1 in amount fraction. The accuracy of the generated trace-moisture standard was verified by measurement with cavity ring-down spectroscopy.

  17. Transient multiphase flow modeling of gas well liquid loading

    NARCIS (Netherlands)

    Veeken, K.; Hu, B.; Schiferli, W.

    2009-01-01

    Gas well liquid loading occurs when gas production becomes insufficient to lift the associated liquids to surface. When that happens gas production first turns intermittent and eventually stops. Hence in depleting gas reservoirs the technical abandonment pressure and ultimate recovery are typically

  18. Local Gas Phase Flow Characteristics of a Gas—Liquid—Solid Three—Phase Reversed Flow Jet Loop Reactor

    Institute of Scientific and Technical Information of China (English)

    WENJianping; ChenYunlin; 等

    2002-01-01

    The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.

  19. Magnetic Field Generation and Zonal Flows in the Gas Giants

    Science.gov (United States)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  20. Improvement of performance of gas flow channel in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2008-10-15

    This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)

  1. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    CERN Document Server

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2016-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  2. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  3. Effects of Orifice Orientation and Gas-Liquid Flow Pattern on Initial Bubble Size

    Institute of Scientific and Technical Information of China (English)

    刘长军; 梁斌; 唐盛伟; 闵恩泽

    2013-01-01

    In many gas-liquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gas-liquid flow pattern. Bubble formation models for variant gas-liquid flow pat-terns have been developed based on force balance. The effects of the orientation of gas-liquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient air-water system, the suitable gas-liquid flow pattern is important to obtain smaller bubbles under the low velocity liquid cross-flow con-ditions with stainless steel spargers. Among the four types of gas-liquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found to be insignificant when liquid velocity is higher than 3.2 m·s-1 or the orifice diameter is small enough.

  4. Analysis of the occurrence of flow-induced pulsations in a gas control station

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Riezebos, H.J.

    2001-01-01

    Strong flow-induced pulsations were observed at some measurement and control stations of the major gas transport company in the Netherlands, Gasunie. These resonances occur when the gas flow is passing closed side branches in the system at a sufficiently high velocity. Unsteady vortex shedding at th

  5. Observations of Gas-Liquid Flows Through Contractions in Microgravity

    Science.gov (United States)

    McQuillen, John

    1996-01-01

    Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.

  6. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

    Institute of Scientific and Technical Information of China (English)

    WANG Moran; LI Zhixin

    2005-01-01

    The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.

  7. Generalized second-order slip boundary condition for nonequilibrium gas flows

    Science.gov (United States)

    Guo, Zhaoli; Qin, Jishun; Zheng, Chuguang

    2014-01-01

    It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A key problem in the application of such models is that suitable boundary conditions must be specified. In the present work, a generalized second-order slip boundary condition is developed in which an effective mean-free path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers' problem, the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show that the proposed method is able to give satisfied predictions, indicating the good potential of the method for nonequilibrium flows.

  8. Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD

    Institute of Scientific and Technical Information of China (English)

    Gao Yan-Tao; Zhang Xiao-Dan; Zhao Ying; Sun Jian; Zhu Feng; Wei Chang-Chun; Chen Fei

    2006-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (H2+SiH4).Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).

  9. The influence of the gas content of water and the flow velocity on cavitation erosion aggressiveness

    OpenAIRE

    Stoffel, Bernd; Širok, Brane; Dular, Matevž

    2015-01-01

    A study of the influence of the gas content of water and the flow velocity on cavitation erosion aggressiveness was performed. A cavitation tunnel with a single hydrofoil was used for the experiments. While the cavitation number andthe mean flow velocity remained constant throughout the tests, the gas content of the water was changed in steps from low (approximately 1%) to high (4 %). The gas content of the water was adjusted with a bubble generator. In addition tests at a constant cavitation...

  10. Estimation of gas flow dustiness in the main pipelines of booster compressor stations

    Science.gov (United States)

    Yukhymenko, M.; Ostroha, R.; Litvinenko, A.; Bocko, J.

    2017-08-01

    The article provides groundings for cleaning the gas flows of major pipelines from soild particles in order to improve the compressor operation reliability. One obtained formulas for determination of the dust level in the vertical and horizontal sections of the pipelines supplying gas to the booster compressor stations. Ways of structural modernization of vertical pipeline sections using the inbuilt separation devices for more efficient removal of dust particles from the gas flow are described.

  11. CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Ning Yang; Wei Wang; Wei Ge; Jinghai Li

    2003-01-01

    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  12. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    Science.gov (United States)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  13. Multi-scale gas flow in Bazhen formation shales

    Science.gov (United States)

    Vasilyev, R.; Gerke, K.; Korost, D. V.; Karsanina, M.; Balushkina, N. S.; Kalmikov, G. A.; Mallants, D.

    2013-12-01

    scans (1 μm resolution). High resolution SEM images (with resolution up to 10 nm) are used to reconstruct the 3D structure of kerogen nanoporosity. Pore-networks are extracted directly from 3D images using the maximal ball extraction algorithm, or pore-network parameters were combined (pore and throat size distributions and connection number statistics) to merge macro and nanoscale porosities using a previously developed concept of under-resolution porosity (Korost and Gerke, 2012). Using analytical relationships between conductance and pressure for nanopores (Mehmani et al., 2013), the gas permeability was solved iteratively. For samples with dominant kerogen type nanoporosity we obtained satisfactory predictions of gas permeability. Finally, we also discuss current problems and future challenges (e.g., oil flow). This work was partially supported by RFBR grants 12-05-33089, 12-04-32264, 13-04-00409, 13-05-01176 and 12-05-01130.

  14. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    Energy Technology Data Exchange (ETDEWEB)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  15. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  16. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    OpenAIRE

    Xie, Jianyu; Yu, Bo; Zhang, Xinyu; Shao, Qianqian; Song, Xianzhi

    2013-01-01

    A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilli...

  17. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    Science.gov (United States)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  18. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  19. High bias gas flows increase lung injury in the ventilated preterm lamb.

    Directory of Open Access Journals (Sweden)

    Katinka P Bach

    Full Text Available BACKGROUND: Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI, leading to the development of bronchopulmonary dysplasia (BPD. It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. METHODS: Preterm lambs of 131 days' gestation (term = 147 d were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13, 18 L/min (n = 12 or 28 L/min (n = 14. Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. RESULTS: High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. CONCLUSIONS: High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.

  20. High Bias Gas Flows Increase Lung Injury in the Ventilated Preterm Lamb

    Science.gov (United States)

    Bach, Katinka P.; Kuschel, Carl A.; Hooper, Stuart B.; Bertram, Jean; McKnight, Sue; Peachey, Shirley E.; Zahra, Valerie A.; Flecknoe, Sharon J.; Oliver, Mark H.; Wallace, Megan J.; Bloomfield, Frank H.

    2012-01-01

    Background Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI), leading to the development of bronchopulmonary dysplasia (BPD). It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. Methods Preterm lambs of 131 days’ gestation (term = 147 d) were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13), 18 L/min (n = 12) or 28 L/min (n = 14). Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. Results High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. Conclusions High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD. PMID:23056572

  1. X-ray visualisation and dissolved gas quantification: multiphase flow research and development at NEL

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Andrew R.W.; Corlett, Anne E.

    1997-07-01

    NEL is actively investigating new techniques for the measurement of multiphase flows. This paper describes two such investigations, an X-ray system to visualise three-phase flows and a manometric/volumetric system to quantify the dissolved gas content of oil/gas flows. The X-ray system was used in both horizontal and vertical flows, covering slug, annular and bubble flow regimes. Also covered were stratified (horizontal only) and churn (vertical only) flows. The system was able to provide visualisation of features not visible in flows with low water cut (due to poor light transmission through oil) and therefore increased the understanding of three-phase flow behaviour. Quantifying the amount of dissolved gas within a hydrocarbon oil is of importance to the oil industry due to the problems associated with the artificial decrease in density of a gas filled oil and the effects of gas breakout. The present study found that the gas uptake by the oil was highly dependent on the following factors; volumetric gas fraction, line pressure and liquid flowrate. The underlying water cut of the oil also appeared to have an effect. (author)

  2. Oil- water separation efficiency in a gas- liquid cross- flow multi- stage flotation column%气-液错流式多级浮选塔内油水分离效率

    Institute of Scientific and Technical Information of China (English)

    严超宇; 刘艳升; 曹睿; 孙曙光

    2011-01-01

    以空气-含柴油污水为实验介质,在2级错流浮选塔中,考察了表观气速、液体流量和含油质量浓度对分离效率的影响.结果表明,总分离效率随表观气速的增大呈先增后降的变化趋势;液体流量的增大会显著降低浮选塔的总分离效率;污水含油质量浓度的提高会增大浮选塔的总分离效率.在液体流量为80 L/h,表观气速为3.75×10-3m/s的条件下,总分离效率较第1级提高了53.03%.%The effects of superficial gas velocity, liquid flux and oil mass concentration on the oil -water separation efficiency were investigated in a two - stage cross - flow flotation column with the air - diesel oil containing wastewater as experimental medium. The results showed that the oil removal efficiency increased with increasing the superficial gas velocity, then decreased when the superficial gas velocity approached to a certain value. The increases of liquid flux could significantly decrease the overall separation efficiency of the flotation column. The in-crement of oil mass concentration in the wastewater increased the overall separation efficiency. Under the condition of liquid flux 80 L/h and superficial gas velocity 3.75 x 10~3m/s,the overall separation efficiency for the two - stage flotation column was enhanced over 53.03% than that of the single - stage flotation column.

  3. Common Superficial Bursitis.

    Science.gov (United States)

    Khodaee, Morteza

    2017-02-15

    Superficial bursitis most often occurs in the olecranon and prepatellar bursae. Less common locations are the superficial infrapatellar and subcutaneous (superficial) calcaneal bursae. Chronic microtrauma (e.g., kneeling on the prepatellar bursa) is the most common cause of superficial bursitis. Other causes include acute trauma/hemorrhage, inflammatory disorders such as gout or rheumatoid arthritis, and infection (septic bursitis). Diagnosis is usually based on clinical presentation, with a particular focus on signs of septic bursitis. Ultrasonography can help distinguish bursitis from cellulitis. Blood testing (white blood cell count, inflammatory markers) and magnetic resonance imaging can help distinguish infectious from noninfectious causes. If infection is suspected, bursal aspiration should be performed and fluid examined using Gram stain, crystal analysis, glucose measurement, blood cell count, and culture. Management depends on the type of bursitis. Acute traumatic/hemorrhagic bursitis is treated conservatively with ice, elevation, rest, and analgesics; aspiration may shorten the duration of symptoms. Chronic microtraumatic bursitis should be treated conservatively, and the underlying cause addressed. Bursal aspiration of microtraumatic bursitis is generally not recommended because of the risk of iatrogenic septic bursitis. Although intrabursal corticosteroid injections are sometimes used to treat microtraumatic bursitis, high-quality evidence demonstrating any benefit is unavailable. Chronic inflammatory bursitis (e.g., gout, rheumatoid arthritis) is treated by addressing the underlying condition, and intrabursal corticosteroid injections are often used. For septic bursitis, antibiotics effective against Staphylococcus aureus are generally the initial treatment, with surgery reserved for bursitis not responsive to antibiotics or for recurrent cases. Outpatient antibiotics may be considered in those who are not acutely ill; patients who are acutely ill

  4. SUPERFICIAL CERVICAL PLEXUS BLOCK

    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari

    2014-01-01

    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  5. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    Science.gov (United States)

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  6. Numerical investigation into the performance PEMFC with a wave-like gas flow channel design

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.M. [Kao Yuan Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Kuo, J.K. [National Univ. of Tainan, Taiwan (China). Inst. of Greenergy

    2007-07-01

    Proton exchange membrane fuel cells (PEMFCs) are a viable power source for many applications. This inexpensive and compact power source has high power density, high performance and good electrical stability. A study was conducted to gain a better understanding of the transport mechanism in a fuel cell, which involves coupled fluid flow, heat and mass transfer and electrochemical reactions. In particular, a two-dimensional computational model was developed to study the transport phenomena in PEMFCs with wave-like gas flow channels and conventional straight gas flow channels, respectively. The velocity, temperature and gas concentration distributions within the novel wave-like gas flow channel were investigated numerically. The electrical performance of a PEMFC with wave-like gas flow channels was then compared with that of a PEMFC with conventional straight gas flow. Simulations were based on a steady state, single-phase, multi-species, two-dimensional mass transfer model of a PEMFC. The effect of the wave-like channel profile on the gas flow characteristics was determined along with temperature distribution, electrochemical reaction efficiency, and electrical performance. In comparison to a conventional straight gas flow channel, the wave-like channel increased the fuel flow velocity, enhanced the transport through the porous layer, and improved the temperature distribution. It was concluded that the PEMFC with wave-like gas flow has better fuel utilization efficiency and superior heat transfer characteristics. It also has a higher PEMFC output voltage and better current density and polarization characteristics. 12 refs., 1 tab., 8 figs.

  7. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration, particulate measurement. 92.117 Section 92.117 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... orifice, a bellmouth nozzle, or a laminar flow element or an NIST traceable flow calibration device...

  8. LDA/PIV measurements of gas flow in a 4-stroke motored engine

    Energy Technology Data Exchange (ETDEWEB)

    Obokata, T.; Kato, M.; Ishima, T. [Gunma Univ., Tenjin, Kiryu (Japan). Graduate School of Mechanical Engineering; Kaneko, M. [Fuji Heavy Industries Ltd., Tokyo (Japan)

    2009-07-01

    The key technology for improving the internal combustion engine involves understanding and controlling the gas flows in the cylinder. However, it is not easy to understand the turbulence characteristics of gas flows because they are intermittent, highly turbulent, and three-dimensional complex flows. Numerical simulations of gas flow and combustion are important and powerful tools to understand the gas flows in the cylinder. It is important to verify the numerical simulation results by the reliable and detailed experimental data obtained at the same engine. This presentation discussed an investigation on the turbulent characteristics of in-cylinder flows at the same engine by laser doppler anemometry (LDA) and particulate image velocimetry for verifying the numerical results. Turbulent characteristics of gas flow in the internal combustion engine were also experimentally analysed under various operating conditions. The experimental setup was illustrated and the specifications of LDA and the test engine were identified. The prototype tumble generation valve was also illustrated and the results of the measurement of flow velocity through an intake valve and measurement of in-cylinder flow velocity were offered. Animations of the flow velocity through a valve were also presented. It was concluded that the effect of the turbulence generating valve (TGV) was clarified by the experimental data. The effect of the TGV was remarkable in the upper side of the cylinder. tabs., figs.

  9. Effect of electromagnetic force and anode gas on electrolyte flow in aluminum electrolysis cell

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA Xiao-xia; BAO Sheng-zhong

    2006-01-01

    Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.

  10. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  11. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  12. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  13. Effect of Surface Forces on the Gas Flow in Nanosize Capillaries

    Science.gov (United States)

    Roldughin, V. I.; Zhdanov, V. M.

    2005-05-01

    The flow of gas in ultrafine capillary under the action of temperature gradient is considered with allowance for the action of surface forces. It is shown that the presence of surface forces considerably increases the effect of thermal transpiration compared to the classical value determined in a free molecular regime of gas flow. The coefficient responsible for the mechanocaloric effect for the case of gas flow under the pressure gradient was also determined using Onsager relation for the kinetic coefficients calculated with accownt of the effect of surface forces.

  14. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  15. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  16. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    Science.gov (United States)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  17. Gas-lift pumps for flowing and purifying molten silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Carlson, Frederick

    2016-02-23

    The embodiments herein relate to a sheet production apparatus. A vessel is configured to hold a melt of a material and a cooling plate is disposed proximate the melt. This cooling plate configured to form a sheet of the material on the melt. A pump is used. In one instance, this pump includes a gas source and a conduit in fluid communication with the gas source. In another instance, this pump injects a gas into a melt. The gas can raise the melt or provide momentum to the melt.

  18. The Gas Flow from the Gas Attenuator to the Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  19. Superficies de placer

    OpenAIRE

    Delli Gatti, Romina

    2012-01-01

    La presente tesis cuenta con 28 pinturas en distintos formatos y tama- ños a través de los cuales la artista investiga diferentes objetos de su entorno cotidiano que le resultan agradables y pueden llegar a transformar anímicamente. De esta manera se van construyendo superficies ideales, relacionadas principalmente con lo cotidiano y lo intimo, lo orgánico, lo industrial, el diseño textil y lo abstracto. Es un intento por generar o prolongar una sensación visual de agrado y placer a tra...

  20. CFD modelling of longwall goaf gas flow to improve gas capture and prevent goaf self-heating

    Institute of Scientific and Technical Information of China (English)

    REN Ting-xiang

    2009-01-01

    CFD models have been developed to investigate the Iongwall goaf gas flow pat-terns under different mining and geological control conditions. The Iongwall goaf was treated as porous regions and gas flow was modelled as a momentum sink added to the momentum equation. Gas desorption from the caved goaf and destressed coal seams within the mining disturbed area was modelled as additional mass sources in the continu-ity equation. These CFD models were developed according to specific Iongwall layouts and calibrated against field monitoring data. Two case studies were presented demon-strating the application of CFD modelling of goaf gas flow characteristics for improved goaf gas capture and the reduction of oxygen ingress into the goaf areas for self-heating pre-vention. Results from the case studies indicate that the optimum goaf drainage strategy would be a combination of shallow (near the face) and deep holes to improve the overall drainage efficiency and gas purity. For gassy longwall faces retreating against the seam dip, it is recommended to conduct cross-measure roof hole drainage targeting the fractured zones overlying the return comer, rather than high capacity surface goaf drainage deep in the goaf.

  1. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations

    Energy Technology Data Exchange (ETDEWEB)

    Ertekin; King, G.R.; Schwerer, F.C.

    1983-10-01

    A mathematical formulation, applicable to both numerical simulation and transient well analysis, describing the flow of gas in very tight (k < 0.1 md) porous media has been developed. Unique to this formulation is the dual-mechanism transport of gas. In this formulation gas is assumed to be traveling under the influence of two fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial-turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition, pressure and saturation dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The dynamic slippage derived from this formulation is found to be most applicable in reservoirs with permeabilities less than or equal to 0.01 md. The results from this study indicate that in reservoirs of this type, differences between recoveries after ten years of production using the dynamic slip described in this paper and constant slip approaches were as great as 10% depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30 can be expected.

  2. Unified Kinetic Approach for Simulation of Gas Flows in Rarefied and Continuum Regimes

    Science.gov (United States)

    2007-06-01

    a low-speed flow induced by temperature gradients. The nonuniform boundary temperature distribution can induce flows in reactor : a significant flow...Rotational Spectrum and Molecular Interaction Potential, ibid R. R. Arslanbekov and V. I. Kolobov, Simulation of Low Pressure Plasma Processing Reactors ... Microchannel flow in the slip regime: gas-kinetic BGK—Burnett solutions, J. Fluid Mech. 513, 87 (2004) 59 R.L.Bayut, PhD thesis, MIT 1999 60

  3. Model of Gas Flow Through Porous Refractory Applied to an Upper Tundish Nozzle

    Science.gov (United States)

    Liu, Rui; Thomas, Brian G.

    2015-02-01

    Argon gas commonly is injected into the liquid metal stream through the porous refractory walls in many metallurgical processes. In this work, a new model has been developed to investigate gas diffusion through heated porous refractory, including the effects of refractory geometry, the thermal expansion of the gas, temperature-dependent gas viscosity, and possible leakage into unsealed joints. A novel one-way-flow pressure boundary condition has been formulated and implemented to prevent unrealistic flow into the refractory. The complete model is validated with both analytical solutions of 1D test problems and observations of a water bubbling experiment. Then, to demonstrate practical application of this general model, argon gas flow is simulated through a double-slitted upper tundish nozzle during continuous steel casting with a slide-gate system. Realistic liquid steel pressure distributions with the bubbling threshold condition are applied on the inner surface. Parametric studies are conducted to investigate the effects of joint gas leakage, refractory conductivity, permeability, and injection pressure on the resulting gas distributions, gas mass flow rates, and leakage fraction. This new model of porous flow can serve as the first step of a comprehensive multiphase model system.

  4. Technological study of laser cutting silicon steel controlled by rotating gas flow

    Science.gov (United States)

    Lei, Hong; Yi, Zhang; chenglong, Mi

    2009-04-01

    Using traditional laser cutting technology, it is easy to produce molten slag in laser cutting silicon steel sheet. The main reason is the inevitable oxidizing reaction in the process caused by the use of oxygen as the aided gas. As a common solution, high pressure and high purity N 2 or an inert gas is therefore used instead of oxygen. Although the cut quality is improved, the cutting efficiency is reduced because of the lack of energy generated from an exothermic oxidation reaction. The technology used in this paper is to employ a newly developed cyclone slag separator. The slag separator is located under the workpiece to form rotating gas flow for controlling the direction of the flowing slag gas. Adopting the new technology reported here, oxygen is still used as the aided gas. The experiments prove that, by controlling the technical parameters reasonably tightly, glossy and dross-free cutting kerfs are obtained for reduced laser power. The gas flow acting under the workpiece is simulated using the finite element method (FEM). The operating law of the rotating gas flow is verified by ANSYS, which provides an academic basis for controlling the flowing direction of the slag gas.

  5. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  6. Gas phase dispersion in compost as a function of different water contents and air flow rates

    Science.gov (United States)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  7. Experiments in stratified gas-liquid pipe flow

    NARCIS (Netherlands)

    Birvalski, M.

    2015-01-01

    The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and

  8. GasAndes will flow by mid year

    Energy Technology Data Exchange (ETDEWEB)

    True, W.R.

    1997-04-21

    An important gas pipeline in the Southern Cone of South America will start up later this year in time for the region`s Southern Hemisphere winter. Gasoducto GasAndes S.A., Santiago, Chile, has completed pipelay on the $350 million, 287 mile, 24-in. line from La Mora, state of Mendoza, Argentina, to Santiago. The line`s significance lies in part in how it draws the historically antagonistic countries into closer interdependence. And it is also the first gas-import project to one of the region`s largest and most important cities. The line will bring gas to fuel several power plants supplying electricity to Santiago. In addition, Metrogas S.A., Santiago`s gas distribution company and a partner in GasAndes, will also be receiving gas for the city`s first natural-gas distribution system, which is currently being installed. The paper discusses the market, the pipeline, scada and metering, and environmental measures.

  9. Experiments in stratified gas-liquid pipe flow

    NARCIS (Netherlands)

    Birvalski, M.

    2015-01-01

    The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and

  10. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan); Hazuku, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan)], E-mail: hazuku@kaiyodai.ac.jp; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2008-12-15

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions.

  11. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    Science.gov (United States)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  12. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  13. Gas flow across a wet screen - Analogy to a relief valve with hysteresis

    Science.gov (United States)

    Nachman, A.; Dodge, F. T.

    1983-01-01

    The flow of gas through a wet fine-mesh screen is analyzed in terms of the capillary forces of the liquid wetting the screen and the pressure difference across the screen thickness driving the gas flow. Several different types of time-dependent flow are shown to be possible. The most interesting type is one in which the pressure difference opens small channels in the liquid, which are then closed rapidly by the wetting action of the liquid. The opening and closing exhibit hysteresis, and the flow is highly oscillatory.

  14. The effect of surface roughness on rarefied gas flows by lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    Liu Chao-Feng; Ni Yu-Shan

    2008-01-01

    This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics.

  15. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  16. EFFECT OF GAS FLOW RATE ON CRYSTAL STRUCTURES OF ELECTROSPUN AND GAS-JET/ELECTROSPUN POLY(VINYLIDENE FLUORIDE) FIBERS

    Institute of Scientific and Technical Information of China (English)

    Yi Lin; Yong-yi Yao; Xiao-zhan Yang; Li-ming Shen; Rui-xia Li; Da-cheng Wu

    2009-01-01

    The effect of gas flow rate on crystal structures of electrospun and gas-jet/electrospun poly(vinylidene fluoride) (PVDF) fibers was investigated. PVDF fibers were prepared by electrospinning and gas-jet/electrospinning of its N,N-dimethylformamide (DMF) solutions. The morphology of the PVDF fibers was investigated by scanning electron microscopy (SEM). With an increase of the gas flow rate, the average diameters of PVDF fibers were decreased.The crystal structures and thermal properties of the PVDF fibers were investigated by attenuated Fourier transform infrared spectroscopy (AT-FTIR), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). It was found that electrospinning and gas-jet/electrospinning of PVDF from its DMF solutions promoted the formation of β phase. Moreover, gas-jet/electrospun PVDF fibers exhibited higher crystallinity and β phase content than electrospun fibers did. Similar with electrostatic force, the drawing force of gas jet may induce the conformational change to all-trans (TTTT) planar zigzag conformation, and then promote the formation of the β phase.

  17. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    2003-12-01

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  18. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Science.gov (United States)

    Li, Zhihui; Wu, Junlin; Ma, Qiang; Jiang, Xinyu; Zhang, Hanxin

    2014-12-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  19. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhihui; Ma, Qiang [Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, P.O.Box 211, Mianyang 621000, China and National Laboratory for Computational Fluid Dynamics, No.37 Xueyuan Road, Beijing 100191 (China); Wu, Junlin; Jiang, Xinyu [Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, P.O.Box 211, Mianyang 621000 (China); Zhang, Hanxin [National Laboratory for Computational Fluid Dynamics, No.37 Xueyuan Road, Beijing 100191 (China)

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  20. Test studies of gas flow in rock and coal surrounding a mined coal seam

    Institute of Scientific and Technical Information of China (English)

    Lv Youchang

    2012-01-01

    An analysis of the variation rule of abutment pressure at the mining working face in a single coal seam and the mechanical behavior of surrounding rock during stoping is presented.Consideration of the elastic and plastic deformation zones that develop during the mining process allowed the determination of a relationship between horizontal stress and vertical stress.Based on this,a confined pressure unloading test was conducted by the use of the "gas-containing coal thermo-fluid-solid coupling 3-axis servo seepage" experimental apparatus.Thus,gas flow patterns in the elastic and plastic zones were derived from an experimental point of view.Darcy's law and the Klinkenberg effect were used to derive a gas flow equation for the elastic and plastic stress fields.The study of gas flow phenomena at the working face during coal mining is of great importance for the study of gas migration and enrichment oatterns.

  1. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  2. Recent Results on Fast Flow Gas-Phase Partial Oxidation of Lower Alkanes

    Institute of Scientific and Technical Information of China (English)

    Vladimir S. Arutyunov

    2004-01-01

    Recent experimental results and kinetic modeling of fast flow gas-phase oxidation of methane and other lower alkanes to methanol and other oxygenates are discussed, alongside with prospects and possible areas for applications of the processes.

  3. Gas-Kinetic Computational Algorithms for Hypersonic Flows in Continuum and Transitional Regimes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project explores two gas-kinetic computational algorithms for simulation of hypersonic flows in both continuum and transitional regimes. One is the...

  4. Water droplet evaporation and dynamics in a mini-channel under action of the gas flow

    Science.gov (United States)

    Isachenko, E. A.; Orlik, E. V.; Bykovskaya, E. F.

    2016-10-01

    An experimental setup was developed to study the vaporization and dynamics of liquid droplets, blown by the gas flow in a mini-channel. The shadow method was the main method of measurement; a drop was also observed from the top. A series of experiments was carried out with single water drops with volumes varying from 60 to 150 gl in the channel of 6 mm height on the polished stainless steel substrate. The experiments have resulted in the dependences of evaporation rate in the temperature range of the substrate surface from 25 to 70°C and Reynolds numbers of the gas flow from 0 to 2500. The advancing and receding contact angles were measured depending on the Re number of the gas flow. The gas flow rate at which the droplet motion over the substrate starts was determined depending on the surface temperature at different drop volumes.

  5. Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, J.U.

    2000-07-01

    Large Eddy Simulations (LES) are an accepted tool in turbulence research. Most LES investigations deal with low Reynolds-number flows and have a high spatial discretization, which results in high computational costs. To make LES applicable to industrial purposes, the possibilities of LES to deliver results with low computational costs on high Reynolds-number flows have to be investigated. As an example, the cold flow through the Siemens V64.3A.HR gas turbine burner shall be examined. It is a gas turbine burner of swirl type, where the fuel is injected on the surface of vanes perpendicular to the main air flow. The flow regime of an industrial gas turbine is governed by several flow phenomena. The most important are the fuel injection in form of a jet in cross flow (JICF) and the swirl flow issuing into a combustion chamber. In order to prove the ability of LES to deal with these flow phenomena, two numerical investigations were made in order to reproduce the results of experimental studies. The first one deals with JICF. It will be shown that the reproduction of three different JICF is possible with LES on meshes with a low number of mesh points. The results are used to investigate the flow physics of the JICF, especially the merging of two adjacent JICFs. The second fundamental investigation deals with swirl flows. Here, the accuracy of an axisymmetric assumption is examined in detail by comparing it to full 3D LES computations and experimental data. Having demonstrated the ability of LES and the flow solver to deal with such complex flows with low computational efforts, the LES approach is used to examine some details of the burner. First, the investigation of the fuel injection on a vane reveals that the vane flow tends to separate. Furthermore the tendency of the fuel jets to merge is shown. Second, the swirl flow in the combustion chamber is computed. For this investigation the vanes are removed from the burner and swirl is imposed as a boundary condition. As

  6. Active bypass flow control for a seal in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  7. Computational physics of electric discharges in gas flows

    CERN Document Server

    Surzhikov, Sergey T

    2012-01-01

    Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This worktreats methods of computational modeling of electrodischarge processes and dynamics of partially ionized gases. These methods are necessary to tackleproblems of physical mechanics, physics of gas discharges and aerophysics.Particular attention is given to a solution of two-dimensional problems of physical mechanics of glow discharges.The use o

  8. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  9. In situ visualization study of CO 2 gas bubble behavior in DMFC anode flow fields

    Science.gov (United States)

    Yang, H.; Zhao, T. S.; Ye, Q.

    This paper reports on a visual study of the CO 2 bubble behavior in the anode flow field of an in-house fabricated transparent Direct Methanol Fuel Cell (DMFC), which consisted of a membrane electrode assembly (MEA) with an active area of 4.0 × 4.0 cm 2, two bipolar plates with a single serpentine channel, and a transparent enclosure. The study reveals that at low current densities, small discrete bubbles appeared in the anode flow field. At moderate current densities, a number of gas slugs formed, in addition to small discrete bubbles. And at high current densities, the flow field was predominated by rather long gas slugs. The experiments also indicate that the cell orientation had a significant effect on the cell performance, especially at low methanol flow rates; for the present flow field design the best cell performance could be achieved when the cell was orientated vertically. It has been shown that higher methanol solution flow rates reduced the average length and the number of gas slugs in the flow field, but led to an increased methanol crossover. In particular, the effect of methanol solution flow rates on the cell performance became more pronounced at low temperatures. The effect of temperature on the bubble behavior and the cell performance was also examined. Furthermore, for the present flow field consisting of a single serpentine channel, the channel-blocking phenomenon caused by CO 2 gas slugs was never encountered under all the test conditions in this work.

  10. Gas separation by the molecular exchange flow through micropores of the membrane

    Science.gov (United States)

    Matsumoto, Michiaki; Nakaye, Shoeji; Sugimoto, Hiroshi

    2016-11-01

    A model gas separator that makes use of the molecular exchange flow through porous membrane of 18 cm2 area is fabricated. The gas separator performance is tested for helium-neon mixture. The separator divides a continuous flow of gas mixture into two flows of different gases. The difference of mole percentage is around 8 % at the volumetric feed flow rate of 1 sccm. In the present system, the molecular exchange flow is induced in two Knudsen pumps, where the mixed cellulose ester membrane is used as the thermal transpiration material. The experiment demonstrates the capability of these pumps to increase the concentration of heavy and light molecules, respectively, from the feed mixture.

  11. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  12. Formation and evolution of gas flow channels in the abutment pressure area

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Zhang Xibin; Xu Lifeng; Zhang Jiangli; Zhou Genli

    2012-01-01

    The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area.Fracture and damage mechanics theory is used to understand the observations.The following two techniques were used to understand the evolution of gas flow channels:field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples.Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration.The abutment pressure affects the local stress and,hence,the local gas conduction.The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area.Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network.Gas permeability continuously increases during this time.This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.

  13. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    Science.gov (United States)

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  14. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    Science.gov (United States)

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-09-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.

  15. Effect of pressure on gas-solid flow behavior in dense gas-fluidised beds: a discrete particle simulation study

    NARCIS (Netherlands)

    Li, Jie; Kuipers, J.A.M.

    2002-01-01

    A computational study has been carried out to assess the influence of pressure on the flow structures and regime transitions in dense gas-fluidized beds using the discrete particle simulation (DPS) approach. By employing particle level simulation, the particle–particle–fluid interactions were analyz

  16. Techniques in Gas-Phase Thermolyses. Part 6. Pulse Pyrolysis: Gas Kinetic Studies in an Inductively Heated Flow Reactor

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Bo, P.; Carlsen, Lars

    1985-01-01

    A prototype of an inductively heated flow reactor for gas kinetic studies is presented. The applicability of the system, which is based on a direct coupling between the reactor and the ion source of a mass spectrometer, is illustrated by investigations of a series of simple bond fission reactions...

  17. A Gas-Kinetic Scheme for Turbulent Flow

    Science.gov (United States)

    2014-09-19

    prediction of this area may lead to un- suitable geometries or high development costs. In this study a gas-kinetic scheme is used, follow- ing the RANS...reconstruction and Roe’s approximate Riemann solver. Remarkably, the gas-kinetic scheme provides a rather accurate predic- tion, whereas the conventional Navier...GKS on medium grid, ( ) GKS on coarsest grid, ( ) Navier-Stokes (Roe’s approximate Riemann solver) on finest grid, ( o ): experimental data from

  18. On the origin of heterogeneous structure in dense gas-solid flows

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2005-01-01

    The formation and evolution of flow structures in dense gas-fluidized beds with ideal collisional particles (elastic and frictionless) are investigated numerically by employing the discrete particle method, with special focus on the effect of gas¿particle interaction. It is clarified that

  19. A Study of the Critical Nozzle for Flow Rate Measurement of High-Pressure Hydrogen Gas

    Institute of Scientific and Technical Information of China (English)

    H.D.Kim; J.H.Lee; K.A.Park; T.Setoguchi; S.Matsuo

    2007-01-01

    The mass flow rate measurement using a critical nozzle shows the validity of the inviscid theory, indicating that the discharge coefficient increases and approaches unity as the Reynolds number increases under the ideal gas law.However, when the critical nozzle measures the mass flow rate of a real gas such as hydrogen at a pressure of hundreds bar, the discharge coefficient exceeds unity, and the real gas effects should be taken into account. The present study aims at investigating the flow features of the critical nozzle using high-pressured hydrogen gas. The axisymmetric, compressible Navier-Stokes computation is employed to simulate the critical nozzle flow, and a fully implicit finite volume method is used to discretize the governing equation system. The real gas effects are simulated to consider the intermolecular forces, which account for the possibility of liquefying hydrogen gas. The computational results are compared with past experimental data. It has been found that the coefficient of discharge for real gas can be corrected properly below unity adopting the real gas assumption.

  20. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations

    DEFF Research Database (Denmark)

    Kanno, I; Lassen, N A

    1979-01-01

    Two methods are described for calculation of regional cerebral blood flow from completed tomographic data of radioactive inert gas distribution in a slice of brain tissue. It is assumed that the tomographic picture gives the average inert gas concentration in each pixel over data collection periods...

  1. NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.

  2. Effect of gas field production and CO2 injection on brine flow and salt precipitation

    NARCIS (Netherlands)

    Loeve, D.; Tambach, T.J.; Hofstee, C.; Plug, W.J.; Maas, J.

    2012-01-01

    This paper reports modeling of gas field produc-tion and CO2 injection from a theoretical reser-voir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during

  3. Effect of CO2 injection on brine flow and salt precipitation after gas field production

    NARCIS (Netherlands)

    Tambach, T.J.; Loeve, D.; Hofstee, C.; Plug, W.J.; Maas, J.G.

    2014-01-01

    This paper reports modeling of gas field production and CO2 injection in a theoretical reservoir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during and

  4. Experimental study of swirl flow patterns in Gas Conditioning Tower at various entry conditions

    DEFF Research Database (Denmark)

    Jinov, Andrei A.; Larsen, Poul Scheel

    1999-01-01

    In a gas conditioning tower hot flue gas with relatively high dust loads is cooled by injecting water spray near the top. For satisfactory operation wet particles should be kept off walls and all water should have evaporated to yield a uniformly cooled flow before it reaches the bottom of the tower...

  5. Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe

    OpenAIRE

    Hongjun Zhu; Hongnan Zhao; Qian Pan; Xue Li

    2014-01-01

    A numerical simulation has been conducted to investigate flow erosion and pipe deformation of elbow in gas-solid two-phase flow. The motion of the continuous fluid phase is captured based on calculating three-dimensional Reynolds-averaged-Navier-Stokes (RANS) equations, while the kinematics and trajectory of the discrete particles are evaluated by discrete phase model (DPM), and a fluid-structure interaction (FSI) computational model is adopted to calculate the pipe deformation. The effects o...

  6. PIV MEASUREMENTS FOR GAS FLOW UNDER GRADIENT MAGNETIC FIELDS

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaodong; WU Feng; F.YAMAMOTO

    2004-01-01

    Particle Image Velocimetry (PIV) techniques were developed to measure the convective N2-air flow under gradient magnetic fields. The velocity fields were calculated by the Minimum Quadratic Difference (MQD) algorithm and spurious vectors were eliminated by Delaunay Tessellation.The N2-air flow was measured as the magnetic flux density varying from 0 ~ 1.5 T. A strengthened vortex flow of air was observed under the condition that the magnetic field was applied, and the velocity of N2 jet rose with the increase of the magnetic density. The experimental results show that the magnetic force will induce a vortex flow and cause a convection flow of the air mixture when both gradients of the O2 concentration and the magnetic field intensity exist.

  7. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)

    2011-06-15

    The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.

  8. Numerical simulation of gas flow process in mining-induced crack network

    Institute of Scientific and Technical Information of China (English)

    Zhou; Hongwei; Liu; Jinfeng; Xue; Dongjie; Yi; Haiyang; Xue; Junhua

    2012-01-01

    The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.

  9. FLOW REGIMES, GAS HOLD-UP AND AXIAL GAS MIXING IN THE GAS-LIQUID MULTISTAGE AGITATED CONTACTOR

    NARCIS (Netherlands)

    BREMAN, BB; BEENACKERS, AACM; BOUMA, MJ

    1995-01-01

    Experimental data are reported on Row regimes, gas hold-up and axial gas mixing of a gas-liquid Multi-stage Agitated Contactor (MAC), consisting of nine compartments [height, H, over diameter, D = 1; D = 0.09 m) separated by horizontal baffles with an opening of 0.04 m and with one centrally positio

  10. Radiation-transport method to simulate noncontinuum gas flows for MEMS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Torczynski, John Robert

    2004-01-01

    A Micro Electro Mechanical System (MEMS) typically consists of micron-scale parts that move through a gas at atmospheric or reduced pressure. In this situation, the gas-molecule mean free path is comparable to the geometric features of the microsystem, so the gas flow is noncontinuum. When mean-free-path effects cannot be neglected, the Boltzmann equation must be used to describe the gas flow. Solution of the Boltzmann equation is difficult even for the simplest case because of its sevenfold dimensionality (one temporal dimension, three spatial dimensions, and three velocity dimensions) and because of the integral nature of the collision term. The Direct Simulation Monte Carlo (DSMC) method is the method of choice to simulate high-speed noncontinuum flows. However, since DSMC uses computational molecules to represent the gas, the inherent statistical noise must be minimized by sampling large numbers of molecules. Since typical microsystem velocities are low (< 1 m/s) compared to molecular velocities ({approx}400 m/s), the number of molecular samples required to achieve 1% precision can exceed 1010 per cell. The Discrete Velocity Gas (DVG) method, an approach motivated by radiation transport, provides another way to simulate noncontinuum gas flows. Unlike DSMC, the DVG method restricts molecular velocities to have only certain discrete values. The transport of the number density of a velocity state is governed by a discrete Boltzmann equation that has one temporal dimension and three spatial dimensions and a polynomial collision term. Specification and implementation of DVG models are discussed, and DVG models are applied to Couette flow and to Fourier flow. While the DVG results for these benchmark problems are qualitatively correct, the errors in the shear stress and the heat flux can be order-unity even for DVG models with 88 velocity states. It is concluded that the DVG method, as described herein, is not sufficiently accurate to simulate the low-speed gas flows

  11. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Directory of Open Access Journals (Sweden)

    Lixin WANG

    2016-02-01

    Full Text Available The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regional flow field is built with Pro/E software. Based on FLUENT module of ANSYS Workbench, along with standard k-ε turbulence model and DPM model, simulation analysis of moving trajectories of dust particles in butterfly valve region under 3 blast furnace gas flow speeds is conducted. Results show that the deposition mass of dust particles decreases firstly, then increases with the enlargement of valve plate opening angle under the blast furnace gas flow speed of 8 m/s, while decreases with the enlargement of valve plate opening under the blast furnace gas flow speeds of 12 m/s and 16 m/s. In the case of the valve plate opening angle of 15°, the deposition rate of dust particles increases with the growing of blast furnace gas flow speed, while decreases with the growing of blast furnace gas flow speed under the cases of valve plate opening angle of 45° and 75°. The research results provide a theoretical reference for the development of automatic dust removal system in the butterfly valve region of the blast furnace gas pipeline.

  12. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  13. Calculation of temperature field in gas flow with internal heat source

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2015-01-01

    Full Text Available Gas flow sequentially moving through three zones (input z1 of a cylindrical channel was considered. Analytical solutions taking into account the influence of heat source limitation in the axial direction and intensity of air flow in this direction on thermal balance were obtained.

  14. Eulerian modeling of reactive gas-liquid flow in a bubble column

    NARCIS (Netherlands)

    Zhang, D.

    2007-01-01

    Despite the widespread application of bubble columns and intensive research efforts devoted to understand their complex behavior, detailed knowledge on the fluid flow, mass transfer and chemical reactions as well as their interactions is currently very limited. Gas-liquid flow in bubble column

  15. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  16. Eulerian modeling of reactive gas-liquid flow in a bubble column

    NARCIS (Netherlands)

    Zhang, Dongsheng

    2007-01-01

    Despite the widespread application of bubble columns and intensive research efforts devoted to understand their complex behavior, detailed knowledge on the fluid flow, mass transfer and chemical reactions as well as their interactions is currently very limited. Gas-liquid flow in bubble column react

  17. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  18. Droplets in annular-dispersed gas-liquid pipe-flows

    NARCIS (Netherlands)

    Van 't Westende, J.M.C.

    2008-01-01

    Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed mo

  19. Algebraic model for bubble tracking in horizontal gas-liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Felipe G.C. de; Tisserant, Hendy R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica e de Materiais; Mazza, Ricardo A.; Rosa, Eugenio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The current work extends the concept of unit-cell applied in gas-liquid slug flow models to predict the evolution of the gas and liquid flow properties along a horizontal pipe. The motivation of this model is its simplicity, easiness of application and low computational cost. It is a useful tool of reference data generation in order to check the consistency of numerical slug tracking models. The potential of the model is accessed by comparing the gas bubbles and liquid slug sizes, the translational bubble velocity and the pressure drop against experimental data. (author)

  20. Active bypass flow control for a seal in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-03-14

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  1. NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE

    Institute of Scientific and Technical Information of China (English)

    WANG Can-xing; YI Lin

    2006-01-01

    The three-dimension gas-particle flow in a spiral cyclone is simulated numerically in this paper. The gas flow field was obtained by solving the three-dimension Navier-Stokes equations with Reynolds Stress Model (RSM). It is shown that there are two regions in the cyclone, the steadily tangential flow in the spiral channel and the combined vortex flow in the centre. Numerical results for particles trajectories show that the initial position of the particle at the inlet plane substantially affects its trajectory in the cyclone. The particle collection efficiency curves at different inlet velocities were obtained and the effects of inlet flow rate on the performance of the spiral cyclone were presented.Numerical results also show that the increase of flow rate leads to the increase of particles collection efficiency, but the pressure drop increases sharply.

  2. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    Science.gov (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  3. LIQUID PHASE FLOW ESTIMATION IN GAS-LIQUID TWO-PHASE FLOW USING INVERSE ANALYSIS AND PARTICLE TRACKING VELOCIMETRY

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; MURAI Yuichi; SASAKI Toshio; YAMAMOTO Fujio

    2004-01-01

    An inverse analysis algorithm is proposed for estimating liquid phase flow field from measurement data of bubble motion. This kind of technology will be applied in future for various estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channel flow as the problem-handling in civil, mechanical, electronic, and chemical engineering. The relationship between the dispersion motion and the carrier phase flow is governed and expressed by the translational motion equation of spherical dispersion. The equation consists of all the force components including inertia, added inertia, drag, lift, pressure gradient force and gravity force. Using this equation enables us to estimate the carrier phase flow structure using only the data of the dispersion motion. Whole field liquid flow structure is also estimated using spatial or temporal interpolation method. In order to verify this principle, the Taylor-Green vortex flow, and the Karman vortex shedding from a square cylinder have been chosen. The results show that the combination of the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporal post-processing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phase flow.

  4. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  5. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, Majid, E-mail: majid.taghavi@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Biorobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa (Italy); Sadeghi, Ali; Mazzolai, Barbara [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Beccai, Lucia, E-mail: lucia.beccai@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Mattoli, Virgilio, E-mail: virgilio.mattoli@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy)

    2014-12-30

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  6. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    Science.gov (United States)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  7. Studies of gas flow in grate fired boilers. Studier av gasstroemning i rosteldade pannor

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jan (Vattenfall Utveckling AB, Aelvkarleby (Sweden)); Tryman, R. (FOA, Tumba (SE))

    1991-01-22

    As a first step towards understanding the gas flow in a grate fired boiler, the isothermal flow in a water model has been studied. Laser-Doppler velocimetry of mean velocities and turbulence was performed in two coordinate directions at about 230 points. The FLUENT program was used for numerical calculations of the flow in the model, and an acceptable agreement with the measurements was achieved. (L.E.).

  8. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  9. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  10. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  11. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Institute of Scientific and Technical Information of China (English)

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa

    2001-01-01

    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  12. Flow resistance reduction of coal water slurry through gas phase addition

    OpenAIRE

    Robak Jolanta; Ignasiak Karina

    2016-01-01

    One of the main advantages of coal water slurry fuel (CWS) is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase...

  13. Local Measurement of Gas-Liquid Bubbly Flow with a Double-Sensor Probe

    Institute of Scientific and Technical Information of China (English)

    孙科霞; 张鸣远; 陈学俊

    2000-01-01

    A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local varameter measurements in gas-liquid two-phase flows.

  14. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    Directory of Open Access Journals (Sweden)

    Jianyu Xie

    2013-01-01

    Full Text Available A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilling fluid properties, on the temperature and pressure distributions are studied.

  15. Formation of a Multi-Charged Plasma in the Directed Gas Flow

    Science.gov (United States)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2016-05-01

    We consider a gas-dynamic model describing the formation of a plasma with multiply ionized ions under the conditions of resonant heating of the electron component. Based on the isothermal approximation, possible regimes of the plasma flow are classified, the influence of the geometric divergence of the flow on the formation of the ion charge distribution is studied, and optimal regimes for the achievement of the maximum ion charge are identified. The model can be used for optimization and interpretation of modern experiments on generation of the extreme ultraviolet radiation due to the excitation of lines of multiply ionized atoms in a gas flow heated by strong millimeter or submillimeter waves.

  16. Study on gas permeability coefficient measurement of coal seam by radial flow method

    Science.gov (United States)

    Zhang, Shuchuan

    2017-08-01

    For the accurate measurement of the coal seam permeability coefficient, the application range of the coal seam permeability coefficient was studied under various gas flow conditions with the guidance of the coal seam gas flow theory. Adopting the radial flow method, the measurement and calculation of the permeability coefficient of the coal seam C13-1 in Xinji No.1 Coal Mine shows that the permeability coefficient of the original coal seam C13-1 is less than 0.1, and the coal seam is difficult to extract.

  17. Model investigations 3D of gas-powder two phase flow in descending bed with consideration radial distribution of flow

    Directory of Open Access Journals (Sweden)

    B. Panic

    2013-04-01

    Full Text Available The results of experimental investigations concerning radial distribution of powder accumulation in bed and static pressure were presented in this paper. To realize this research physical model of gas-powder two phase flow with descending bed was projected and constructed. Amounts of “dynamic” and “static” powder accumulated in bed, in dependence on gas velocity and of bed particles were investigated. In 3D model “static” powder (with its radial distribution at the tuyere level and in the higher part of bed was measured. The influence of bed particles, powder and gas radial distribution on values of interaction forces between flow phases in investigated system was defined.

  18. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  19. Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas

    Science.gov (United States)

    Caboussat, A.; Picasso, M.; Rappaz, J.

    2005-03-01

    A numerical model for the three-dimensional simulation of liquid-gas flows with free surfaces is presented. The incompressible Navier-Stokes equations are assumed to hold in the liquid domain. In the gas domain, the velocity is disregarded, the pressure is supposed to be constant in each connected component of the gas domain and follows the ideal gas law. The gas pressure is imposed as a normal force on the liquid-gas interface. An implicit splitting scheme is used to decouple the physical phenomena. Given the gas pressure on the interface, the method described in [J. Comput Phys. 155 (1999) 439; Int. J. Numer. Meth. Fluids 42(7) (2003) 697] is used to track the liquid domain and to compute the velocity and pressure fields in the liquid. Then the connected components of the gas domain are found using an original numbering algorithm. Finally, the gas pressure is updated from the ideal gas law in each connected component of gas. The implementation is validated in the frame of mould filling. Numerical results in two and three space dimensions show that the effect of pressure in the bubbles of gas trapped by the liquid cannot be neglected.

  20. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  1. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    Science.gov (United States)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  2. Operator Splitting Method for Simulation of Dynamic Flows in Natural Gas Pipeline Networks

    CERN Document Server

    Dyachenko, Sergey A; Chertkov, Michael

    2016-01-01

    We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.

  3. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  4. A CFD study of gas-solid jet in a CFB riser flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  5. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions. High...

  6. Visualization and research of gas-liquid two phase flow structures in cylindrical channel

    Directory of Open Access Journals (Sweden)

    Stefański Sebastian

    2017-01-01

    Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.

  7. Propagation of acoustic perturbations in a gas flow with dissipation

    Science.gov (United States)

    Zavershinskii, I. P.; Molevich, N. E.

    1992-10-01

    In an earlier study (Ingard and Singhal, 1973), it has been found that, in a nondissipating moving medium, an acoustic wave propagating from a source in the flow direction has a smaller amplitude than a wave moving against the flow. Here, it is demonstrated that consideration of dissipation phenomena, which are related to the shear and bulk viscosities and heat conductivity of a medium, leads to an additional anisotropy of the sound amplitude, whose sign is opposite to that obtained in the above mentioned study.

  8. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of

  9. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    Science.gov (United States)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  10. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  11. Hydrodynamic modelling of gas-particle flows in riser reactors.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Sint Annaland, van M.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Complex hydrodynamic behavior of circulating fluidized beds makes their scale-up very complicated. In particular, large-scale lateral solids segregation causes a complex two-phase flow pattern which influences significantly their performance. Lateral solids segregation has been attributed to direct

  12. A Study of the Gas Flow through Air Jet Loom

    Institute of Scientific and Technical Information of China (English)

    Heuy-Dong Kim; Chae-Min Lim; Ho-Joon Lee; Doo-Hwan Chun

    2007-01-01

    Air jet loom, as one of the shuttleless looms, transports a yarn into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the recent past, many studies have been reported on the air jet discharged from a nozzle exit, but studies for understanding the flow field characteristics associated with shear layer and shock wave/boundary layer interaction in the nozzle were not conducted enough. In this paper, a computational study was performed to explain the flow field in the air jet nozzle with an acceleration tube and validated with previous experimental data available. The results obtained from the computational study show that, in the supersonic flow regime, the flow field depends significantly on the length of acceleration tube. As nozzle pressure ratio increases, drag force acting on the string also increases. For a longer acceleration tube, the total pressure loss is large, owing to the frictional loss.

  13. Efficiency of energy separation at compressible gas flow in a planar duct

    Science.gov (United States)

    Makarov, M. S.; Makarova, S. N.

    2014-12-01

    The method of energy separation in a high-speed flow proposed by A.I. Leontyev is investigated numerically. The adiabatic compressible gas flow (of a helium-xenon mixture) with a low Prandtl number in a planar narrow duct and a flow with heat exchange in a duct partitioned by a heat-conducting wall are analysed. The temperature recovery factor on the adiabatic wall, degree of cooling the low-speed flow part, temperature efficiency, and the adiabatic efficiency in a duct with heat exchange are estimated. The data are obtained for the first time, which make it possible to compare the efficiency of energy separation in a high-speed flow with the efficiency of similar processes in vortex tubes and other setups of gas-dynamic energy separation.

  14. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Abstract)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat transfer and fluid flow in the anode GDL and channel becomes crucial. This entails that further understanding...... of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the vertical upward gas-liquid flow pattern in a 0.5×1×94 mm micro-channel is both numerically and experimentally analysed. A sheet...... the transparent cell is made which consists of a channel for the inlet air and a channel for the water-bubble flow. The transparent material is Plexiglas that is sealed with a sheet of silicon. The conventional co-current gas-liquid two-phase flow patterns, such as bubbly flow, slug flow and annular flow...

  15. Effect of particle inertia on fluid turbulence in gas-solid disperse flow

    Science.gov (United States)

    Mito, Yoichi

    2016-11-01

    The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.

  16. Particles carried by ascending gas flow at the Tongchanghe copper mine,Guizhou Province,China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We collected and analyzed, using transmission electron microscopy, the particles carried by ascending gas flow in soil above the concealed orebody of the Tongchanghe copper mine, Guizhou Province. Particles of native copper, native copper-iron alloy, and native chromium-iron-copper alloy particles in the ascending gas flow were first discovered. Commonly, they were aggre- gations of relatively small particles. Individual particles within aggregations were subcircular, elliptical, regularly polygonal, or elongate and from 5 to 40 nm in size. The aggregations were subcircular or elliptical and 20-150 nm in size. Chloride, oxide, sulfate, and hydroxide particles containing ore-forming metals in the ascending gas flow were also discovered. The elements of the particles were commonly in a high valence state, suggesting that they were formed in a near-surface oxidizing environment. Discovery of the particles extracted from the ascending gas flow above the Tongchanghe copper mineprovided a powerful tool for exploration for deep concealed orebodies. Our study also showed that native copper, native copper-iron alloys, native chromium-iron-copper alloys, as well as chloride, oxide, sulfate, and hydroxide compounds containing ore-forming metals can be transported in particle form by ascending gas flow below the Earth’s surface.

  17. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    Science.gov (United States)

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.

    2010-03-01

    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  18. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  19. Calculations of the flow resistance and heat emission of a sphere in the laminar and high-turbulent gas flows

    Science.gov (United States)

    Simakov, N. N.

    2016-12-01

    An early drag crisis can occur at high turbulence of incoming gas flow to a sphere. To study the influence of a crisis on heat transfer from a sphere to gas, a numerical experiment was carried out in which the free gas flow around a sphere with a temperature lower than the sphere temperature was simulated for two cases. The flow was laminar in the first case and highly turbulent in the second case. To take into account turbulence, the kinematic coefficient of turbulent viscosity with a value, which is much higher (up to 2000 times) than that for physical viscosity, was introduced. The results of calculations show that the early drag crisis occurs at Reynolds numbers of about 100 and results in considerable (by four to seven times) decrease in the hydrodynamic force and sphere drag coefficient C d . The early drag crisis is also accompanied by the crisis of heat transfer from a sphere to gas with a decrease in Nusselt numbers Nu by three to six times.

  20. Programmed automation of modulator cold jet flow for comprehensive two-dimensional gas chromatographic analysis of vacuum gas oils.

    Science.gov (United States)

    Rathbun, Wayne

    2007-01-01

    A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.

  1. Computational study of liquid-gas cross-flow within structured packing cells

    Science.gov (United States)

    Lavalle, Gianluca; Lucquiaud, Mathieu; Valluri, Prashant

    2016-11-01

    Absorption columns used in the carbon capture processes and filled with structured packings are crucial to foster the exchanges and the transfers between the absorber liquid and the flue gas. However, flow reversal can occur under special flow conditions, resulting in a dramatic drop of the technological performances. We investigate numerically the liquid-gas pattern within a cross-flow packing cell. The cell is a complex geometry with two connected channels, where the two phases flow co- or counter-currently. We show that an increase of both the gas speed and the liquid load leads to an increase of the pressure drop. Particular focus is also given to the analysis of flow repartition and flooding delay. We reveal that tilting the unit cell helps to delay the flooding and extends the operational capability. The pressure drop of the cross-flow unit cell is also compared to the Mellapak packing which is widely used in carbon capture applications. Finally, we support this study by performing numerical simulations on simpler geometries by means of a low-dimensional film-gas model, in order to investigate the two-phase dynamics and predict the flooding onset with a low computational cost. The authors gratefully acknowledge EPSRC Grant No. EP/M001482/1.

  2. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  3. Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures

    Science.gov (United States)

    Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen

    Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.

  4. Numerical investigation of interface region flows in mass spectrometers: neutral gas transport

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, Manish [Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Groth, Clinton P T [Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Thomson, Bruce A [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada); Baranov, Vladimir [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada); Collings, Bruce A [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada)

    2004-04-21

    The supersonic jet flows of neutral gas from atmospheric to near-vacuum conditions in the interface region of mass-spectrometer systems is investigated by continuum-based (fluid) numerical simulations. An enhanced understanding of the neutral gas transport is of paramount importance to fully understand flows in the interface region of mass spectrometers, for it is the neutral dynamics that governs and drives the ions from the high pressure ion source through the interface orifice towards the ion optics and detector subsystems. The key features and structure of the complex neutral gas flow are examined and the influence of large pressure differences imposed across the interface region, orifice geometry, and gas skimmer configuration used for flow control are assessed. The flow structure is shown to be that of a classical under-expanded free jet for 'skimmer-absent' cases and very good agreement between the numerical predictions and empirical and experimental values is demonstrated. For the 'skimmer-present' cases, the shock structure downstream of the orifice and skimmer is identified and fully described and its influences on the flow skimming and focusing processes are discussed.

  5. Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2015-08-01

    The Boltzmann equation with an arbitrary intermolecular potential is solved by the fast spectral method. As examples, noble gases described by the Lennard-Jones potential are considered. The accuracy of the method is assessed by comparing both transport coefficients with variational solutions and mass/heat flow rates in Poiseuille/thermal transpiration flows with results from the discrete velocity method. The fast spectral method is then applied to Fourier and Couette flows between two parallel plates, and the influence of the intermolecular potential on various flow properties is investigated. It is found that for gas flows with the same rarefaction parameter, differences in the heat flux in Fourier flow and the shear stress in Couette flow are small. However, differences in other quantities such as density, temperature, and velocity can be very large.

  6. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    Science.gov (United States)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  7. Simulation of gas and particle flow in a circulating fluidized bed; Kaasu- ja kiintoainevirtauksen simulointi kiertoleijukattilassa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, S. [Aabo Akademi, Turku (Finland). Inst. of Heat Engineering

    1996-12-01

    The aim of this work was to study the effects of different parameters on the flow behaviour in a CFB riser by means of empirical models based on measurement data and a computer code based on macroscopic equations for multiphase flow. The effects of primary air velocity and riser geometry have been observed in the results. Simulation of secondary air flow proved to be problematic with the software used. In the project, also analyses of measurement data from cold model experiments has been performed. Moreover, the possibilities to use commercial CFD codes for simulation of gas-solids flow were investigated. The code FLUENT seemed promising. (author)

  8. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    Science.gov (United States)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  9. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    Science.gov (United States)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  10. ENERGY COMPONENTS OF GAS-LIQUID FLOW IN AEROTANK

    Directory of Open Access Journals (Sweden)

    Frolova Anna Olegovna

    2013-09-01

    Full Text Available In the article the main processes of hydrodynamic regime of aeration tank are observed: the formation and ascent of air bubbles during aeration and motion of the water-sludge mixture. The formulas for determining the potential speed of an air bubble during aeration and energy of the water-sludge stream motion are presented. The investigation of interaction mechanism of purified waste water and air bubbles in the process of aeration in relation to the flow dynamics is poorly explored and challenging. Interaction of energetic components of the bubbles flow during aeration and uniform stream motion in the aerotank is the part of mass transfer and diffusion. The increase in total energy of the system by means of summing and raising potentials of the stream and bubbles speed can lead to increasing the purification effect, that means speeding up the diffusion processes.

  11. Numerical simulation of the passive gas mixture flow

    Directory of Open Access Journals (Sweden)

    Kyncl Martin

    2015-01-01

    Full Text Available We work with the system of equations describing non-stationary compressible turbulent multicomponent flow in the gravitational field, and we focus on the numerical solution of these equations. In these computations we assume the mixture of perfect inert gases. The thermodynamic constants are functions in time and space. The finite volume method is used. In order to solve the local boundary problem at each mesh face, we use the original analysis of the exact solution of the Riemann problem. The roughness of the surface is simulated via the specific dissipation at the wall. We show the computational results obtained with the own-developed code (C,FORTRAN for the solution of the 3D compressible turbulent mixture flow. The originality of this work lies with the special handling of the boundary conditions, which shows superior behavior, and own computational code.

  12. Coupled model of deformation and gas flow process with temperature and slippage effect

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    2015-06-01

    Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code

  13. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-09-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  14. An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows

    KAUST Repository

    Liang, Tengfei

    2013-01-01

    Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.

  15. Modeling condensation with a noncondensable gas for mixed convection flow

    Science.gov (United States)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  16. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  17. Interplay of discharge and gas flow in atmospheric pressure plasma jets

    Science.gov (United States)

    Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

    2011-05-01

    Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  18. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  19. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  20. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  1. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  2. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    Science.gov (United States)

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.

  3. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen

    2009-07-01

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.

  4. Simulations of Micro Gas Flows by the DS-BGK Method

    KAUST Repository

    Li, Jun

    2011-01-01

    For gas flows in micro devices, the molecular mean free path is of the same order as the characteristic scale making the Navier-Stokes equation invalid. Recently, some micro gas flows are simulated by the DS-BGK method, which is convergent to the BGK equation and very efficient for low-velocity cases. As the molecular reflection on the boundary is the dominant effect compared to the intermolecular collisions in micro gas flows, the more realistic boundary condition, namely the CLL reflection model, is employed in the DS-BGK simulation and the influence of the accommodation coefficients used in the molecular reflection model on the results are discussed. The simulation results are verified by comparison with those of the DSMC method as criteria. Copyright © 2011 by ASME.

  5. DESIGN AND CALIBRATION OF A CAPILLARY FLOWMETER SET FOR MEASUREMENT OF GAS FLOWS

    Directory of Open Access Journals (Sweden)

    Menderes LEVENT

    1998-01-01

    Full Text Available In this study, design and calibration of a capillary flowmeter set was represented. The capillary flowmeters will be used for measurements of small gas flows having laminar flow regime. The gases (such as, nitrogen, argon, methane, hydrogen and carbon-dioxide supplied from high pressure gas bottles and passed through capillary flowmeters (1 to 3 at various times. Each capillary flowmeter was made of glass and calibrated with one or two gases. Outlet of the capillary flowmeters were connected to the needle valves which have been used for regulating gas flowrates of the capillary flowmeters. Gases individually passed to a bubble flowmeter, and residence time of gases are recorded by using a stop watch. Then, from collected experimental results actual gas flowrates through the capillary flowmeters are calculated by using Hagen-Poiseuille equation.

  6. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    Science.gov (United States)

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  7. Integrating inertial factor obtained from turbulent gas flow in reservoir characterization and well performance

    Energy Technology Data Exchange (ETDEWEB)

    Deghmoum, A.H.; Akkouche, M.; Hadji, A.R. [Sonatrach, Alger (Algeria). AMT CRD; Slimani, K. [Oklahoma Univ., Norman, OK (United States); Mazouzi, A.; Azouguene, A. [Sonatrach, Alger (Algeria). AMT PED

    2002-06-01

    Reservoir rock properties, cinematic charges and production rate flow are affected by the flow of gas through porous media at high velocity, inertial or turbulent effects. In the region of streamline flow, Darcy's law applies, but is not universally valid for porous flow. When dealing with flow equations, it is important to consider these factors to minimize the model error during the field exploitation and the performance of producing gas wells. It is possible to associate the inertial factor within the petrophysical properties of the porous medium, and to use it as an indicator of the heterogeneity as it relates to permeability. The unsteady state gas flow was used to determine the inertial factor in this paper. In addition, the analysis of under reservoir pressures where a large number of reservoir cores obtained from Hassi R'Mell and RKF Algerian reservoirs was performed. To improve reservoir characterization, appropriate scales relating the inertial factor and reservoir rock properties were developed. To avoid the turbulence flow regime near the wellbore and to maximize the level of hydrocarbon production, the scales formed the basis for the selection of adequate perforation intervals.

  8. STABILITY OF VORTEX STREET IN GAS-LIQUID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Li Yong-guang; Lin Zong-hu

    2003-01-01

    The stability of the Karmen vortex street in gas-liquid two-phase flow was studied experimentally and theoretically. The values of the parameter h/l characterizing the vortex street structure (I.e., the ratio of the vortex street width to the distance between two vortexes) for a stable vortex street in gas-liquid two-phase flow were obtained for the first time. The parameter h/l was proved to be a variable, not a constant as in single-phase flow. H/l is related to the upstream fluid void fraction. In gas-liquid two-phase fluid flow to form a steady vortex street is more difficult than in a single-phase fluid flow. Because in the unsteady vortex shedding the vortex shedding band frequency is broader than the one in the single phase fluid flow, so it is easier to induce the cross-cylinder resonance than in the single phase fluid flow, and this case should give rise to the attention of engineers.

  9. Precise measurement of flow and leakage of arbitrary gas species over a wide range; Genaue Messung von Durchfluss und Leckrate beliebiger Gase ueber einen weiten Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Jitschin, Wolfgang [Fachhochschule Giessen-Friedberg (Germany). Kalibrierlaboratorium

    2008-10-15

    Many applications of vacuum technology require the measurement of gas flow rates and leakage rates. Depending on the application, gas flows are described by various units, whose definitions are uniquely given. Primary methods for measuring gas flow are described, which allow the direct measurement of gas flow according to its definition. Examples illustrate practical usage of the methods of measurement. Furthermore, fundamental flow devices are investigated, namely thin orifice and Venturi tube. The gas flow through these devices is well understood and the relationship between flow and pressures is well predictable. Therefore, these devices allow a measurement of gas flow by a measurement of pressures. (orig.)

  10. A Comparison of Critical Regimes in Collapsible Tube, Pipe, Open Channel and Gas-Dynamic Flows

    Science.gov (United States)

    Arun, C. P.

    2003-11-01

    Though of considerable interest to clinical scientists, collapsible tubes are only recently receiving due interest by fluid physicists. The subject of critical phenomena in collapsible tube flow appears not to have been examined critically. For example, it has been proposed in the past that shock waves in physiological tubes are abnormal. We propose a classification of flow through collapsible tubes recognising that compressibility in gas-dynamic and pipe flow (cf.waterhammer) corresponds to distensibility in collapsible tube flow. Thus, opening and closing waves of collapsible tube flow (predistension regime) is subcritical flow and the post-distension regime, supercritical. Physiological tubes are often hyperelastic and contractile and often, when distension is very significant, a hypercritical regime corresponding to hypersonic gas-dynamic flow is admissible. Such a hypercritical regime would allow storage of energy and muscle contraction in the wall of the tube and hence continuance of propulsion in the essentially intermittent flow that is seen in collapsible tubes. Such a mechanism appears to be in operation in the human aorta, bowel and urethra. The present work offers a comparison of critical regimes in various fluid flow situations including collapsible tubes, that is in harmony with known phenomena seen in nature.

  11. Fuel relocation as deduced from the gas flow resistance and thermal behavior of Halden Assembly IFA-430. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Dagbjartsson, S. J.; Appelhans, T. D.; Quapp, W. J.

    1979-01-01

    The relationship of axial gas flow and fuel temperature measurements to fuel cracking and relocation occurring during the first month of irradiation of light water reactor fuel rods is discussed. Two types of fuel rod axial gas flow tests were used to determine the effective hydraulic diameter and its change during the ramping operations. Fuel centerline and off-center measurements are compared with the results of the gas flow analysis and pretest FRAP calculations.

  12. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    OpenAIRE

    Wang, Ruijie; Xu, Xinpeng; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. ...

  13. Appliance of Inertial Gas-Dynamic Separation of Gas-Dispersion Flows in the Curvilinear Convergent-Divergent Channels for Compressor Equipment Reliability Improvement

    Science.gov (United States)

    Liaposhchenko, O. O.; Sklabinskyi, V. I.; Zavialov, V. L.; Pavlenko, I. V.; Nastenko, O. V.; Demianenko, M. M.

    2017-08-01

    The new methods of vibration and inertial gas-dynamic separation of gas-condensate and dusty flows and the corresponding separation devices are proposed in order to avoid emergencies and premature wear of parts and components of the compressor equipment. The formation of the gas flow and disperse particles in the curvilinear convergent-divergent channels are investigated. The optimizing hydrodynamic profiling of a geometrical configuration of curvilinear separation channels with rigid and flexible walls of baffles is carried out.

  14. Linear stability of the Couette flow of a vibrationally excited gas. 2. viscous problem

    Science.gov (United States)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2016-03-01

    Based on the linear theory, stability of viscous disturbances in a supersonic plane Couette flow of a vibrationally excited gas described by a system of linearized equations of two-temperature gas dynamics including shear and bulk viscosity is studied. It is demonstrated that two sets are identified in the spectrum of the problem of stability of plane waves, similar to the case of a perfect gas. One set consists of viscous acoustic modes, which asymptotically converge to even and odd inviscid acoustic modes at high Reynolds numbers. The eigenvalues from the other set have no asymptotic relationship with the inviscid problem and are characterized by large damping decrements. Two most unstable viscous acoustic modes (I and II) are identified; the limits of these modes were considered previously in the inviscid approximation. It is shown that there are domains in the space of parameters for both modes, where the presence of viscosity induces appreciable destabilization of the flow. Moreover, the growth rates of disturbances are appreciably greater than the corresponding values for the inviscid flow, while thermal excitation in the entire considered range of parameters increases the stability of the viscous flow. For a vibrationally excited gas, the critical Reynolds number as a function of the thermal nonequilibrium degree is found to be greater by 12% than for a perfect gas.

  15. Measurement of Concentration Distribution of Hydrogen Gas Flow by Measuring the Intensity of Raman Scattering Light

    Science.gov (United States)

    Asahi, Ippei; Ninomiya, Hideki

    An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

  16. Instantaneous insulation in a micro-slab: A mechanism for flow generation in a rarefied gas

    Science.gov (United States)

    Manela, A.; Pogorelyuk, L.

    2016-12-01

    We analyze the response of a gas in a micro-slab, set at an initial pure-conduction state, to instantaneous thermal insulation of its boundaries. In line with ongoing efforts in generating gas flows at the microscale, thermal insulation is suggested as a means for flow excitation with no moving parts. The problem is analyzed in the entire range of gas rarefaction rates and for arbitrary initial temperature differences between the walls. Analytical solutions are obtained in the linearized limit of small temperature differences for large (collisionless) and small (continuum) Knudsen numbers. These solutions are supported by direct simulation Monte Carlo calculations, which are then used to investigate the nonlinear problem with large initial temperature differences. Followed by the system's initial state, boundary insulation results in a series of time-decaying waves, propagating across the slab, and transferring the system between its conductive and adiabatic equilibrium states. While larger initial temperature differences result in higher flow rates, it is found that nonlinear effects reduce the efficiency of flow excitation through boundaries insulation. At high Knudsen numbers, this is rationalized through the system's initial state, in which the gas uniform temperature is lower than the arithmetic mean of walls temperatures. At low Knudsen numbers, the dominant effect of molecular collisions causes thermal dissipation, which in turn results in kinetic energy losses. The analysis may be readily applied to calculate the gas response to arbitrary time variations of the boundary-imposed heat flux.

  17. FLOW DYNAMICS OF GAS-SOLID FLUIDIZED BEDS WITH EVAPORATIVE LIQUID INJECTION

    Institute of Scientific and Technical Information of China (English)

    Bing Du; W. Warsito; Liang-Shih Fan

    2006-01-01

    The electrical capacitance tomography (ECT) with neural network multi-criteria image reconstruction technique (NN-MOIRT) is developed for real time imaging of a gas-solid fluidized bed using FCC particles with evaporative liquid injection. Some aspects of the fundamental characteristics of the gas-solid flow with evaporative liquid injection,including real time and time averaged cross-sectional solids concentration distributions, the cross-sectional solids concentration fluctuations and the quasi-3D flow structures are studied. A two-region model and a direct image calculation are proposed to describe the dynamic behavior in both the bubble/void phase and the emulsion phase based on the tomographic images. Comparisons are made between the fundamental behaviors of the gas-solid flows with and without evaporative liquid injection for various gas velocities ranging from bubbling to turbulent fiuidization regimes. Significant differences are observed in the behavior of the gas-solid flow with the evaporative liquid injection compared to the fluidized bed without liquid injection.

  18. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    Science.gov (United States)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  19. Analysis of spectrum characteristics of optical scintillation in stack gas flow

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Qing; Liu He-Lai; Zeng Zong-Yong; Jiang Yu

    2006-01-01

    Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.

  20. Raman imaging of millimeter-long carbon nanotubes grown by a gas flow method

    Science.gov (United States)

    Kihara, Katsuya; Ishitani, Akihiro; Koyama, Tomohiro; Fukasawa, Mamoru; Inaba, Takumi; Shimizu, Maki; Homma, Yoshikazu

    2017-02-01

    Growing long carbon nanotubes (CNTs) is an important prerequisite for practical applications of CNTs. Although gas-flow-guided chemical vapor deposition can be used to produce millimeter-long CNTs, little is known regarding the associated growth mechanism. In the present work, Raman imaging was employed to characterize individual CNTs grown by the gas flow method, and Raman images of a CNT over 1.6 mm long were obtained. Two radial breathing modes were observed and the associated Raman images exhibited exactly identical distributions, indicating that the long CNT most likely had a double-walled structure, in which the CNT diameter was uniform along the whole length.

  1. Vapor flows in the continuum limit in the presence of a small amount of noncondensable gas

    OpenAIRE

    Taguchi, Satoshi; Aoki, Kazuo; Takata, Shigeru

    2004-01-01

    Steady flows of a vapor around its condensed phase of arbitrary shape, on the surface of which evaporation and condensation of the vapor may take place, are considered in the presence of a small amount of a noncondensable gas. By a systematic asymptotic analysis of the Boltzmann system, the present authors have derived the fluid-dynamic system describing such flows in the continuum limit in the case where the amount of the noncondensable gas is infinitesimal compared with that of the vapor [K...

  2. Friction resistance for gas flow in smooth microtubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new tube-cutting method was used to measure the pressure and Mach number distribution along a microtube of 108.3 μm. Experiments were also performed concerning the average Fanning friction factors of five kinds of microtubes whose diameters range from 80.0 to 166.6 μm. It is found that the pressure distribution in a microtube becomes nonlinear at a high Mach number and the product of measured average Fanning friction factors Cf and Reynolds number Re is higher than 16. Numerical results show that the gas compressibility leads to a variation of the velocity profile from parabolic, and results in a large velocity gradient at the tube inner wall surface. The transition from laminar to turbulence in microtubes also occurs at Re≈2 300, and the phenomenon of early transition is not observed in the experiments.

  3. Friction resistance for gas flow in smooth microtubes

    Institute of Scientific and Technical Information of China (English)

    杜东兴; 李志信; 过增元

    2000-01-01

    A new tube-cutting method was used to measure the pressure and Mach number distribution along a microtube of 108.3 μm. Experiments were also performed concerning the average Fanning friction factors of five kinds of microtubes whose diameters range from 80.0 to 166.6 μm. It is found that the pressure distribution in a microtube becomes nonlinear at a high Mach number and the product of measured average Fanning friction factors 75, and Reynolds number Re is higher than 16. Numerical results show that the gas compressibility leads to a variation of the velocity profile from parabolic, and results in a large velocity gradient at the tube inner wall surface. The transition from laminar to turbulence in microtubes also occurs at Re ≈ 2 300, and the phenomenon of early transition is not observed in the experiments.

  4. Swirling midframe flow for gas turbine engine having advanced transitions

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.; Kusters, Bernhard W.; Morrison, Jay A.; Beeck, Alexander R.

    2016-12-27

    A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configured to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.

  5. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Han Huawei [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: colin.han@uoit.ca; Zhu Zhenfeng [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask., S7N 5A9 (Canada)]. E-mail: zhz752@mail.usask.ca; Gabriel, Kamiel [University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: kamiel.gabriel@uoit.ca

    2006-12-15

    Interfacial waves play a very important role in the mass, momentum and energy transport phenomena in annular flow. In this paper, film thickness time-trace measurements for air-water annular flow were collected in a small vertical tube using a parallel wire probe. Using the data, a typical disturbance wave shape was obtained and wave properties (e.g., width, height, speed and roughness) were presented. The liquid mass flux ranged from 100 to 200 kg/m{sup 2} s and the gas mass flux ranged from 18 to 47 kg/m{sup 2} s. Disturbance wave characteristics were defined and the effects of changing the gas flow rate on the wave spacing, wave width, wave peak height and wave base height were studied. An average velocity model for the wave and base regions has been developed to determine the wave velocity. The investigation method could be further extended to annular-mist flow which frequently occurs in boiling water reactors.

  6. An integrated approach to study of strata behaviour and gas flow dynamics and its application

    Institute of Scientific and Technical Information of China (English)

    Hua Guo; Liang Yuan

    2015-01-01

    This paper presents an advanced and integrated research approach to longwall mining-induced strata move-ment, stress changes, fractures, and gas flow dynamics with actual examples of its application from recent studies for co-extraction of coal and methane development at Huainan Mining Group in China, in a deep and multi-seam mining environment. The advanced approach takes advantage of the latest techniques in Australia for mine scale geotechnical characterisation, field measurement, monitoring and numerical modelling. Key techniques described in this paper include coal mine site 3D geotechnical characterisation methods, surface deep downhole multi-point extensometers and piezometers for overburden displacement and pore pressure measurements during mining, tracer gas tests for goaf gas flow patterns, and advanced numerical modelling codes for coupled coal mine strata, water and gas simulations, and longwall goaf gas flow investigations. This integrated approach has resulted in significant insights into the complex dynamic interaction between strata, groundwater, and gas during mining at Huainan Mining Group in recent years. Based on the findings from the extensive field monitoring and numerical modelling studies, a three-dimensional annular-shaped over-lying zone along the perimeter of the longwall panel was identified for optimal methane drainage during mining.

  7. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  8. Theoretical Valuation of Multi-Channel Cyclone to Reduce Gas Flow Dustiness in Agressive Environment

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2016-10-01

    Full Text Available Contaminated gas cleaning from finely divided solids is carried out using a new generation of multi-channel design cyclones. The application of these devices are separated and precipitated particles with a minimum diameter up to 2 micrometers, reaching up to 95% cleaning efficiency. Cyclones of such constructions are usually used under usual conditions at elevated temperature and low humidity. Under aggressive conditions, these devices can be clogged, and their recovery is not possible. Further studies are research into the application of constructive solutions to adapt the cyclone gas cleaning of the particulate matter under aggressive conditions. This theoretical evaluation has described the characteristics change of gas flow and particulate matters at different aggressive environment. Such conditions were loudly describe the gas-flow high-temperature range of 50–200 °C and gas-vapor stream, the humidity reaches 70–100%. Estimated aggressive conditions on the gas flow dynamics forces – pressure, resistance and centrifugal, and particulate mechanical – gravitational and adhesion strength. All parameters are evaluated in comparison with the values under normal conditions.

  9. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.

    Science.gov (United States)

    Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko

    2007-09-01

    It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.

  10. Supersonic flow of a nonequilibrium gas-discharge plasma around a body

    Science.gov (United States)

    Lapushkina, T. A.; Erofeev, A. V.; Ponyaev, S. A.; Bobashev, S. V.

    2009-06-01

    The flow of a nonequilibrium gas-discharge plasma around a semicylindrical body is studied. The aim of the study is to see how a change in the degree of nonequilibrium of the incoming plasma changes the separation distance between a shock wave and the body. Experiments are carried out with a supersonic nozzle into which a semicylindrical body is placed. The inlet of the nozzle is connected to a shock tube. In the course of the experiment, electrodes built into the wall of the nozzle initiate a gas discharge in front of the body to produce an additional nonequilibrium ionization in the stationary incoming supersonic flow. The discharge parameters are selected such that the discharge raises the electron temperature and still minimizes heating of the gas. The degree of nonequilibrium of the flow varies with gas-discharge current. Diagnostics of the flow is carried out with a schlieren system based on a semiconductor laser. The system can record flow patterns at definite time instants after discharge initiation.

  11. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Institute of Scientific and Technical Information of China (English)

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi

    2012-01-01

    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  12. General slip regime permeability model for gas flow through porous media

    Science.gov (United States)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  13. Thermal transpiration and mechanocaloric effect. IV. Flow of a polyatomic gas in a cylindrical tube

    Science.gov (United States)

    Loyalka, S. K.; Storvick, T. S.; Lo, S. S.

    1982-04-01

    The phenomenological coefficients for mass and energy flows due to axial pressure and to temperature gradients on long capillary tubes containing a polyatomic gas at all degrees of rarefaction are reported. The Hansen and Morse polyatomic gas model of the linearized Wang Chang and Uhlenbeck equation was used together with Maxwell's diffuse scattering boundary conditions. The results are consistent with previous results obtained for flow between parallel plates. Experimental isothermal flow data are nearly quantitatively represented by the theory in the transition flow regime (Knudsen number ˜ 1). Experimental thermal transpiration effect ratios (Δp/p0)/(ΔT/T0) are also quantitatively represented for simple gases, argon, air, and carbon dioxide. Thermal transpiration measurements on sulfur dioxide correlate as the other gases but the transpiration effect ratio is not quantitatively given by the theory due to inadequacy of the Hansen-Morse model and the continuum theory for strongly polar gases.

  14. Amplification, attenuation, and dispersion of sound in inhomogeneous flows. [of compressible gas

    Science.gov (United States)

    Kentzer, C. P.

    1975-01-01

    First order effects of gradients in nonuniform potential flows of a compressible gas are included in a dispersion relation for sound waves. Three nondimensional numbers, the ratio of the change in the kinetic energy in one wavelength to the thermal energy of the gas, the ratio of the change in the total energy in one wavelength to the thermal energy, and the ratio of the dilatation frequency (the rate of expansion per unit volume) to the acoustic frequency, play the dominant role permitting the separation of the effects of flow gradients into isotropic and anisotropic effects. Dispersion and attenuation (or amplification) of sound are proportional to the wavelength for small wavelength and depend on the direction of wave propagation relative to flow gradients. Modification of ray acoustics for the effects of flow gradients is suggested and conditions for amplification and attenuation of sound are discussed.

  15. Thermocapillary flow and gaseous convection in microgravity: Results from GAS payload G-0518

    Science.gov (United States)

    Thomas, S.

    1986-01-01

    Thermocapillary flow and gaseous convection in microgravity were investigated in GAS payload G-0518 during Space Shuttle Mission 41-D. A cylinder of paraffin was supported and heated differentially from its ends to induce a melt from solid to liquid and drive thermocapillary flow in the resulting liquid phase. Laminar thermocapillary flow was observed in the liquid paraffin and found to show a transition to time-dependent oscillatory motion at a Marangoni number of about Ma = 34000 with a period of approximately T = 8 seconds. In addition, free convection in a gas in microgravity was observed for the first time. The gaseous convection was caused by the thermal and/or velocity boundary layers present at the heater-liquid interface. Oscillation occurred in the gaseous convection simultaneously with those in the liquid, implying the two are strongly coupled. The gaseous convection may be driven by coupled thermocapillary flow/thermal expansion convection or microgravity bouyancy convection.

  16. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    Science.gov (United States)

    Kalashnik, M. V.; Visheratin, K. N.

    2008-04-01

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100°C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  17. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Science.gov (United States)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  18. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst

    Directory of Open Access Journals (Sweden)

    S.A. Khorrami

    2016-07-01

    Full Text Available Carbon nanotubes (CNTs were grown on copper catalyst by thermal chemical vapor deposition (TCVD using H2 and N2 as carrier gases. CNTs with different morphologies were observed using different carrier gas flow rates. The influence of carrier gas flow rates on the structure of carbon nanotubes was compared. Catalyst nanolayer was sputtered on mirror polished silicon wafers. The catalyst film thickness was determined by using the Rutherford Back Scattering (RBS technique. Ethanol as carbon source has been used. The surface morphology and nanostructure were studied by Scanning Electron Microscopy (SEM, Raman Spectroscopy, Tunneling Electron Microscopy (TEM and Atomic Force Microscopy (AFM. Results indicated that the amounts of deposited carbon decrease with increasing flow rates. These results showed that CNTs’ length decreased with increasing flow rates. Results suggest that Cu nanolayer is suitable as catalyst due to the fact that CNTs are monotonous.

  19. The hydrogen gas clearance method for liver blood flow examination: inhalation or local application of hydrogen?

    Science.gov (United States)

    Metzger, H P

    1989-01-01

    The combined method of hydrogen inhalation and local hydrogen production enable the determination of hepatic blood flow (HBF) and local hepatic blood flow (LHBF). LHBF was registered within a small superficial tissue volume of 0.5 mm in diameter by means of a multi-wire electrode having 200 microns producing and 100 microns measuring wires arranged within less than 300 microns distance between the measuring wires. The feeding current for hydrogen production was 1 microA, the potential less than 10 V. The clearance in response to inhalation was registered by means of the same measuring electrodes within the same tissue volume. Spontaneously breathing rats (Wistar-Frömter strain, 180-230 g bw, N = 19, ketamin-xylazine anesthesia, artificial respiration) showed the following flow values: HBF +/- SD = 0.50 +/- 0.26 ml/g.min, n = 48 registrations; LHBF +/- SD = 4.66 +/- 2.13 ml/g.min, n = 43. The validity of the combined method is demonstrated in the LHBF/HBF graph which summarizes the data of hemorrhagic and control animals, m = 0.1 and yo = 0.001. The correlation coefficient of r = 0.685 shows a reasonable correlation of the combined data despite the wide scattering of the individual values.

  20. Flow of a Dusty Gas Between Two Parallel Plates One Stationary and Other Oscillating

    Directory of Open Access Journals (Sweden)

    P. Mitra

    1981-07-01

    Full Text Available The solution for the flow of an incompressible viscous dusty gas, induced by two infinitely extended parallel plates when the lower plate is at rest and the upper plate begins to oscillate harmonically in its own plane, is obtained, It is found that (i with the increase in the mass concentration both the velocities of the dusty gas and the particle decreases, (ii the velocity of the dusty gas increases and that of the particle decreases with the increase in neta.

  1. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  2. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    Science.gov (United States)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  3. Calculation of the fresh gas flow requirements of the Hafnia A and D anaesthetic circuits.

    Science.gov (United States)

    Thomsen, A

    1980-01-01

    Semi-closed anaesthetic circuits are converted into the corresponding Hafnia circuits by replacing the expiratory valve by a side tube connected to an ejector flowmeter. Theoretical analysis of the Hafnia A and D circuits revealed by the fresh gas flow requirements are dependent on the inspiration/expiration time ratio. Using a ratio of 1/1.2 and a sine-wave respiratory waveform, the minimal fresh gas requirements were calculated as 2.1 (Hafnia A) and 2.5 (Hafnia D) times the respiratory minute volume. The fresh gas requirements are identical with spontaneous or controlled ventilation.

  4. Plane Poiseuille flow: Near continuum results for a rigid sphere gas

    Science.gov (United States)

    Loyalka, S. K.; Hickey, K. A.

    1989-10-01

    In Poiseuille flow between two parallel plates, the bulk flow is characterized by the Burnett distribution. We report explicit results for this distribution by solving numerically the relevant integral equations for a rigid sphere gas in the context of the linearized Boltzmann equation. Then, we use this distribution together with the Chapman-Enskog distribution to obtain asymptotic results (near-continuum) for mass and heat fluxes corresponding to planar thermal transpiration and mechanocaloric effects.

  5. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    OpenAIRE

    Joris Meurs

    2016-01-01

    This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC), gas chromatography (GC) and supercritical fluid chromatography (SFC). To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI) was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a p...

  6. Instrument for thermal radiation flux measurement in high temperature gas flow (Cuernavaca instrument)

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, N.H. [Universidade Tecnica, Lisbon (Portugal); Leontiev, A.I. [Moscow State Technical University (Russian Federation)

    1995-05-01

    A new instrument for hemispherical radiation heat flux measurement is proposed. It is based on the theory of blow of the boundary layer, taking into account that at the critical mass flow rate through the porous surface the thermal boundary layer is blown off and only radiation flux from high temperature gases reaches the porous surface. With the measurement of blow of gas flow and the temperature of the porous material, the respective heat flux is obtained. (author)

  7. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.

    2013-01-16

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.

  8. IDENTIFICATION OF GAS-LIQUID FLOW REGIMES IN A HORIZONTAL FLOW USING NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    JIA Zhi-hai; NIU Gang; WANG Jing

    2005-01-01

    The knowledge of flow regimes is very important in the study of a two-phase flow system. A new flow regime identification method based on a Probability Density Function (PDF) and a neural network is proposed in this paper. The instantaneous differential pressure signals of a horizontal flow were acquired with a differential pressure sensor. The characters of differential pressure signals for different flow regimes are analyzed with the PDF. Then, four characteristic parameters of the PDF curves are defined, the peak number (K1), the maximum peak value (K2), the peak position (K3) and the PDF variance (K4). The characteristic vectors which consist of the four characteristic parameters as the input vectors train the neural network to classify the flow regimes. Experimental results show that this novel method for identifying air-water two-phase flow regimes has the advantages with a high accuracy and a fast response. The results clearly demonstrate that this new method could provide an accurate identification of flow regimes.

  9. Numerical simulation of the passive gas mixture flow

    Directory of Open Access Journals (Sweden)

    Kyncl Martin

    2016-01-01

    Full Text Available The aim of this paper is the numerical solution of the equations describing the non-stationary compressible turbulent multicomponent flow in gravitational field. The mixture of perfect inert gases is assumed. We work with the RANS equations equipped with the k-omega and the EARSM turbulence models. For the simulation of the wall roughness we use the modification of the specific turbulent dissipation. The finite volume method is used, with thermodynamic constants being functions in time and space. In order to compute the fluxes through the boundary faces we use the modification of the Riemann solver, which is the original result. We present the computational results, computed with the own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general.

  10. Nanocrystalline Al Composites from Powder Milled under Ammonia Gas Flow

    Directory of Open Access Journals (Sweden)

    J. Cintas

    2014-01-01

    Full Text Available The production of high hardness and thermally stable nanocrystalline aluminium composites is described. Al powder was milled at room temperature in an ammonia flow for a period of less than 5 h. NH3 dissociation during milling provokes the absorption, at a high rate, of nitrogen into aluminium, hardening it by forming a solid solution. Controlled amounts of AlN and Al5O6N are formed during the subsequent sintering of milled powders for consolidation. The pinning action of these abundant dispersoids highly restrains aluminium grain growth during heating. The mean size of the Al grains remains below 45 nm and even after the milled powder is sintered at 650°C for 1 h.

  11. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  12. Formation of the geometrically controlled carbon coils by manipulating the additive gas (SF6) flow rate.

    Science.gov (United States)

    Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under the thermal chemical vapor deposition system. The nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. The flow rate and the injection time of SF6 varied according to the different reaction processes. Geometries of carbon coils developed from embryos to nanosized coils with increasing SF, flow rate from 5 to 35 sccm under the short SF6 flow injection time (5 minutes) condition. The gradual development of carbon coils geometries from nanosized to microsized types could be observed with increasing SF6 flow rate under the full time (90 minutes) SF6 flow injection condition. The flow rate of SF6 for the coil-type geometry formation should be more than or at least equal to the flow rate of carbon source gas (C2H2). A longer injection time of SF6 flow would increase the size of coils diameters from nanometer to micrometer.

  13. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  14. Gas-dynamic modeling of gas flow in semi-closed space including channel surface fluctuation

    Science.gov (United States)

    Petrova, E. N.; Salnikov, A. F.

    2016-10-01

    In this article frequency interaction conditions, that affect on acoustic stability of solid-propellant rocket engine (SPRE) action, and its influence on level change of pressure fluctuations with longitudinal gas oscillations in the combustion chamber (CC) are considered. Studies of CC in the assessment of the operating rocket engine stability are reported.

  15. EFFECT OF NOZZLE FAN ANGLE ON SPRAYS IN GAS-SOLID RISER FLOW

    Institute of Scientific and Technical Information of China (English)

    Muhammad; M.; R.; Qureshi; Chao; Zhu; Chao-Hsin; Lin; Liang-Shih; Fan

    2006-01-01

    A three-dimensional simulation study is performed for investigating the hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-fluidized catalytic cracking (FCC) riser of rectangular cross-section. Rectangular nozzles with a fixed aspect ratio but different fan angles are used for the spray feeding. While our numerical simulation reveals a generic three-phase flow structure with strong three-phase interactions under rapid vaporization of sprays, this paper tends to focus on the study of the effect of nozzle fan angle on the spray coverage as well as vapor flux distribution by spray vaporization inside the riser flow. The gas-solid (air-FCC) flow is simulated using the multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the Lagrangian trajectory method, with a strong two-way coupling between the Eulerian gas-solid flow and the Lagrangian trajectories of spray. Our simulation shows that the spray coverage is basically dominated by the spray fan angle. The spray fan angle has a very minor effect on spray penetration. The spray vaporization flux per unit area of spray coverage is highly non-linearly distributed along the spray penetration. The convection of gas-solid flow in a riser leads to a significant downward deviation of vapor generated by droplet vaporization, causing a strong recirculating wake region in the immediate downstream area of the spray.

  16. Determination of flow rates of oil, water and gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Roach, G.J.; Watt, J.S.; Zastawny, H.W. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics

    1993-12-31

    This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.

  17. Flow dynamics of a spiral-groove dry-gas seal

    Science.gov (United States)

    Wang, Bing; Zhang, Huiqiang; Cao, Hongjun

    2013-01-01

    The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.

  18. Creating Small Gas Bubbles in Flowing Mercury Using Turbulence at an Orifice

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, Mark W [ORNL; Abdou, Ashraf A [ORNL; Paquit, Vincent C [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL

    2010-01-01

    Pressure waves created in liquid mercury pulsed spallation targets have been shown to create cavitation damage to the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating such a population in mercury is difficult due to the high surface tension and particularly the non-wetting behavior of mercury on gas-injection hardware. If the larger injected gas bubbles can be broken down into small bubbles after they are introduced to the flow, then the material interface problem is avoided. Research at the Oak Ridge National Labarotory is underway to develop a technique that has shown potential to provide an adequate population of small-enough bubbles to a flowing spallation target. This technique involves gas injection at an orifice of a geometry that is optimized to the turbulence intensity and pressure distribution of the flow, while avoiding coalescence of gas at injection sites. The most successful geometry thus far can be described as a square-toothed orifice having a 2.5 bar pressure drop in the nominal flow of 12 L/s for one of the target inlet legs. High-speed video and high-resolution photography have been used to quantify the bubble population on the surface of the mercury downstream of the gas injection sight. Also, computational fluid dynamics has been used to optimize the dimensions of the toothed orifice based on a RANS computed mean flow including turbulent energies such that the turbulent dissipation and pressure field are best suited for turbulent break-up of the gas bubbles.

  19. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  20. Analysis of the horizontal flow in the advanced gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Ganesan, P. [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Gotts, J. [EDF Energy, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2014-06-01

    Highlights: • CFD is used to assess the effect of horizontal flows in AGRs. • The horizontal flows can reduce the graphite brick temperature significantly. • Such effects are not taken into consideration in current engineering calculations. • There might be flow instabilities when the fuel channel flow is very low but horizontal flows reduce its possibility. - Abstract: The purpose of the paper is to report a computational investigation of horizontal flows in the UK advanced-gas-cooled reactor (AGR) by using computational fluid dynamics with ANSYS FLUENT. The study is relevant to practical issues encountered in some AGR stations currently in operation in the UK. It is carried out using a comparative approach based on the results of two contrasting models: one simulating the full effect of the cross flow, the other simulating the simplified approach currently employed by the industry which neglects the momentum of the horizontal cross flow. The study reveals that the horizontal cross flow plays a significant role in the cooling of the moderator brick, while the axial variation of the brick geometry also significantly changes the distribution of the temperature within the brick. It is also found that under some circumstances the so-called horizontal inter-brick leakage (HIBL) flow could influence the cooling performance in the narrow gaps, resulting in a local hot spot. Furthermore, there may be flow instabilities in the flows in AGR fuel channels due to the interactions between the flow in the main arrowhead flow passages and that in some narrow passages connected to it, but the influence on the brick temperature is negligible. Horizontal cross flow has an effect of reducing such instabilities.

  1. Gas mass derived by infrasound and UV cameras: Implications for mass flow rate

    Science.gov (United States)

    Delle Donne, D.; Ripepe, M.; Lacanna, G.; Tamburello, G.; Bitetto, M.; Aiuppa, A.

    2016-10-01

    Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining the acoustic source by thermal imagery. We show that different acoustic methods give comparable total gas masses in the 2 to 1425 kg range, which are fully consistent with the gas masses derived by UV cameras and previous direct SO2 measurements. We show that total erupted gas mass, estimated by infrasound is not simply a function of the initial pressure, but rather the full infrasonic waveform should be considered. Thermal imagery provides evidence that infrasound is generated during the entire gas thrust phase. We provide examples to show how total gas masses derived by infrasonic signals can be affected by large uncertainties if duration of the signal is neglected. Only when duration of infrasound is included, the best correlation (0.8) with UV cameras and the 1:1 direct linear proportionality is obtained. Our results open new perspective for remotely derived gas mass and mass flow rates from acoustic signals.

  2. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  3. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran Sundaresan

    2010-02-14

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided

  4. Visual Measurements of Droplet Size in Gas Liquid Annular Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fore, L.B.; Ibrahim, B.B.; Beus, S.G.

    2000-07-01

    Drop size distributions have been measured for nitrogen-water annular flow in a 9.67 mm hydraulic diameter duct, at system pressures of 3.4 and 17 atm and a temperature of 38 C. These new data extend the range of conditions represented by existing data in the open literature, primarily through an increase in system pressure. Since most existing correlations were developed from data obtained at lower pressures, it should be expected that the higher-pressure data presented in this paper would not necessarily follow those correlations. The correlation of Tatterson, et al. (1977) does not predict the new data very well, while the correlation of Kataoka, et al. (1983) only predicts those data taken at the lower pressure of 3.4 atm. However, the maximum drop size correlation of Kocamustafaogullari, et al. (1994) does predict the current data to a reasonable approximation. Similarly, their correlation for the Sauter mean diameter can predict the new data, provided the coefficient in the equation is adjusted.

  5. A gas kinetic scheme for hybrid simulation of partially rarefied flows

    Science.gov (United States)

    Colonia, S.; Steijl, R.; Barakos, G.

    2017-06-01

    Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.

  6. Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers

    Science.gov (United States)

    1980-03-01

    lated fluid resistance (pressure gradient) to motion, due to friction in the form: AP/L = au + bpu 2 (1) where AP is a pressure drop over a length L, p...is the density of the fluid, u an average gas velocity, and a and b are constants. Dividing this equa- tion by velocity yields: I AP/Lu = a + bpu (la...a is negligible com- pared to bpu , where pu is the mass flow rate. lim AP/L = bpu (lb) U u This condition exists in turbulent flow where the flow

  7. CONJUGATE MODEL FOR HEAT AND MASS TRANSFER OF POROUS WALL IN THE HIGH TEMPERATURE GAS FLOW

    Institute of Scientific and Technical Information of China (English)

    A.F. Polyakov; D.L.Reviznikov; 沈青; 魏叔如

    2001-01-01

    Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow.The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

  8. Inter and intra blade row laser velocimetry studies of gas turbine compressor flows

    Science.gov (United States)

    Williams, M. Carlson

    1987-01-01

    The use of a two-component LDV to study the flow within gas turbine intrablade passages and air flow through multistage compressor rigs is investigated. The LDV, multistage compressor, and the data acquisition system employed in the experiments are described. The velocity magnitude and air angle as a function of rotor position were mapped; modulations in the multistage compressor data resulted in the application of spectral analysis techniques to identify and characterize the periodic fluctuations. It is noted that the two-component LDV is applicable to the characterization of the aerodynamics of flows.

  9. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  10. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Sihao Lv

    2013-01-01

    Full Text Available An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation. The particle fraction, the time-averaged axial particle velocity, the histogram of particle fluctuation velocity, and the wavelet analysis of pressure signals are obtained. The results are in good agreement with experimental measurements. The mean value and the variance of axial particle velocity are greater than those of radial particle velocities. Particle collision frequencies at bubble vibrant movement regions along axial direction are much higher than those of radial direction and attenuated along height increase. Low-frequency component of pressure signal indicating the bubble movement behaviors in the center of reactor is stronger than wall regions. Furthermore, the negative values represent the passed bubble and positive peak values disclose the continuous motion of single bubble.

  11. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    Science.gov (United States)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  12. Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal

    Institute of Scientific and Technical Information of China (English)

    GAO Yu; XIAO Qinghua; ZHOU Qigang; DAI Xiaolin; TU Hailing

    2006-01-01

    The thermal elastic stresses induced in 300 mm Si crystal may be great troubles because it can incur the generation of dislocations and undesirable excessive residual stresses.A special thermal modeling tool, CrysVUn, was used for numerical analysis of thermal elastic stresses and stress distribution of 300 mm Si crystal under the consideration of different thermal shields and gas flow conditions.The adopted governing partial equations for stress calculation are Cauchy's first and second laws of motion.It is demonstrated that the presence and shape of thermal shield, the gas pressure and velocity can strongly affect von Mises stress distribution in Si crystal.With steep-wall shield, however, the maximal stress and ratio of high stress area are relatively low.With slope-wall shield or without shield, both maximal stress and ratio of high stress area are increased in evidence.Whether thermal shields are used or not, the increase of gas flow velocity could raise the stress level.In contrast, the increase of gas pressure cannot result in so significant effect.The influence of thermal shield and gas flow should be attributed to the modification of heat conduction and heat radiation by them.

  13. Navier-Stokes-Fourier analytic solutions for non-isothermal Couette slip gas flow

    Directory of Open Access Journals (Sweden)

    Milićev Snežana S.

    2016-01-01

    Full Text Available The explicit and reliable analytical solutions for steady plane compressible non-isothermal Couette gas flow are presented. These solutions for velocity and temperature are developed by macroscopic approach from Navier-Stokes-Fourier system of continuum equations and the velocity slip and the temperature jump first order boundary conditions. Variability of the viscosity and thermal conductivity with temperature is involved in the model. The known result for the gas flow with constant and equal temperatures of the walls (isothermal walls is verified and a new solution for the case of different temperature of the walls is obtained. Evan though the solution for isothermal walls correspond to the gas flow of the Knudsen number Kn≤0.1, i.e. to the slip and continuum flow, it is shown that the gas velocity and related shear stress are also valid for the whole range of the Knudsen number. The deviation from numerical results for the same system is less than 1%. The reliability of the solution is confirmed by comparing with results of other authors which are obtained numerically by microscopic approach. The advantage of the presented solution compared to previous is in a very simple applicability along with high accuracy. [Projekat Ministarstva nauke Republike Srbije, br. 35046 i 174014

  14. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  15. Characterization of Gas Flow Ability and Contribution of Diffusion to Total Mass Flux in the Shale

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2013-07-01

    Full Text Available The aim of this study is to search a parameter which characterize the flow ability and analyze the contribution of diffusion to total mass flux of gas flow in pore of shale whose size is as low as nanoscale. The diffusion coefficient of the flow region which was determined by Kundsen number was taken as the diffusion coefficient of system, then it was substituted into the equation which describes gas diffusive and flow in nano-porous media, the apparent permeability and mass flux were calculated and the impacts of the pore radius and gas type were analyzed finally. The result showed that the diffusion of gas in shale was mainly in the transition diffusion or Fick diffusion region; The ratio of the apparent permeability of considering the diffusion and slippage effect to Darcy permeability and the ratio of diffusion mass flux to total mass flux increased with the decreasing of the pore radius; The diffusion ability of the methane was stronger than ethane’s. The present study implied that the calculated results of the diffusion coefficient which considers three kind of diffusion was less than that one considering Knudsen diffusion only; Considering diffusion and slippage effect, the apparent permeability of nanoscale pore of shale was 10-6 μm2 level, not 10-9 μm2 level in general temperature and pressure of shale reservoir.

  16. The Non-selfsimilar Riemann Problem for 2-D Zero-Pressure Flow in Gas Dynamics

    Institute of Scientific and Technical Information of China (English)

    Wenhua SUN; Wancheng SHENG

    2007-01-01

    The non-selfsimilar Riemann problem for two-dimensional zero-pressure flow in gas dynamics with two constant states separated by a convex curve is considered. By means of the generalized Rankine-Hugoniot relation and the generalized characteristic analysis method, the global solution involving delta shock wave and vacuum is constructed. The explicit solution for a special case is also given.

  17. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  18. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  19. Flow of a Rarefied Gas between Parallel and Almost Parallel Plates

    Science.gov (United States)

    2005-07-13

    Flow of a Rarefied Gas between Parallel and Almost Parallel Plates Carlo Cercignani, Maria Lampis and Silvia Lorenzani Dipartimento di Matematica ...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Matematica , Politecnico di Milano, Milano, Italy 20133 8. PERFORMING

  20. A comparison of hyperbolic solvers for ideal and real gas flows

    Directory of Open Access Journals (Sweden)

    R. M. L. Coelho

    2006-09-01

    Full Text Available Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods require the so-called Roe's average state, which is frequently difficult and sometimes impossible to obtain. Other methods that do not require the average state are best suited for complex equations of state. Of these, the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they require more floating points and indirect addressing operations per time step, for a given time interval for integration the second-order methods are less-time consuming than the first-order methods for a required accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is much faster than the others, and is thus recommended for nonideal one-phase gas flows.

  1. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  2. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    van Eck, H. J. N.; Koppers, W. R.; van Rooij, G. J.; W. J. Goedheer,; Engeln, R.; D.C. Schram,; Cardozo, N. J. L.; Kleyn, A. W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial mag

  3. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    Science.gov (United States)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  4. SENSITIVE LIMITS ON THE MOLECULAR GAS CONTENT OF CLUSTER COOLING FLOWS

    NARCIS (Netherlands)

    MCNAMARA, BR; JAFFE, W

    1994-01-01

    We have searched for molecular gas toward six cluster cooling flows in the CO(2-1) line using the James Clerk Maxwell Telescope. The sample includes clusters with estimated total cooling rates Of m(CF) approximately 10-600M. yr-1, at redshifts between z approximately 0.01-0.06. None were detected ei

  5. Closed-cycle gas flow system for cooling of high Tc d.c. SQUID magnetometers

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1995-01-01

    A high Tc.d.c SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system in

  6. $L^\\infty$ solutions for a model of polytropic gas flow with diffusive entropy

    CERN Document Server

    Frid, Hermano; Karlsen, Kenneth H

    2010-01-01

    We establish the global existence of $L^\\infty$ solutions for a model of polytropic gas flow with diffusive entropy. The result is obtained by showing the convergence of a class of finite difference schemes, which includes the Lax-Friedrichs and Godunov schemes. Such convergence is achieved by proving the estimates required for the application of the compensated compactness theory.

  7. The Cauchy problem for a model of immiscible gas flow with large data

    Energy Technology Data Exchange (ETDEWEB)

    Sande, Hilde

    2008-12-15

    The thesis consists of an introduction and two papers; 1. The solution of the Cauchy problem with large data for a model of a mixture of gases. 2. Front tracking for a model of immiscible gas flow with large data. (AG) refs, figs

  8. High-repetition-rate XeCl waveguide laser without gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.P.; Gordon C. III; Moutoulas, C.; Feldman, B.J.

    1987-03-01

    Operation of a microwave discharge XeCl laser at pulse-repetition rates extending to 8 kHz without flow of the laser gas is reported. Present limits on pulse-repetition rate appear to be imposed by thermally induced refractive-index gradients.

  9. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  10. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    Science.gov (United States)

    Besedina, T. V.; Tverkovkin, B. E.; Udot, A. V.; Yakushev, A. P.

    1987-08-01

    An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N2O4].

  11. Streamside management zone (SMZ efficiency in herbicide retention from simulated surface flow Eficiência de zonas ripárias (SMZ na retenção de herbicidas presentes em escoamento superficial simulado

    Directory of Open Access Journals (Sweden)

    A.T. Matos

    2008-03-01

    Full Text Available Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%, two cover conditions (undisturbed O horizon and raked surface, and two periods under contrasting soil moisture conditions (summer dry and winter wet season and correlated to O horizon and site conditions. Picloram (highly soluble in water and atrazine (moderately sorbed into soil particles at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1 were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.Experimento de escoamento superficial, em escala piloto, foi conduzido para se avaliar a eficiência de zonas ripárias (SMZs na retenção de herbicidas presentes no escoamento superficial gerado em atividades silviculturais. A retenção do herbicida foi avaliada em terrenos com cinco diferentes declividades (2, 5, 10, 15 e 20%, duas condições de cobertura do solo (com e sem o horizonte O e dois períodos de

  12. Simultaneous flow of gas and water in a damage-susceptible argillaceous rock

    Science.gov (United States)

    Nguyen, T. S.

    2011-12-01

    A research project has been initiated by the Canadian Nuclear Safety Commission (CNSC) to study the influence of gas generation and migration on the long term safety of deep geological repositories for radioactive wastes. Such facilities rely on multiple barriers to isolate and contain the wastes. Depending on the level of radioactivity of the wastes, those barriers include some or all of the following: corrosion and structurally resistant containers, low permeability seals around the emplacements rooms, galleries and shaft, and finally the host rock formations. Large quantities of gas may be generated from the degradation of the waste forms or the corrosion of the containers. The generated gas pressures, if sufficiently large, can induce cracks and microcracks in the engineered and natural barriers and affect their containment functions. The author has developed a mathematical model to simulate the above effects. The model must be calibrated and validated with laboratory and field experiments in order to provide confidence in its future use for assessing the effects of gas on the long term safety of nuclear wastes repositories. The present communication describes the model and its use in the simulation of laboratory and large scale in-situ gas injection experiments in an argillaceous rock, known as Opalinus clay, from Mont Terri, Switzerland. Both the laboratory and in-situ experiments show that the gas flow rate substantially increases when the injection pressure is higher than the confining stress. The above observation seems to indicate that at high gas injection pressures, damage could possibly be induced in the rock formation resulting in an important increase in its permeability. In order to simulate the experiments, we developed a poro-elastoplastic model, with the consideration of two compressible pore fluids (water and gas). The bulk movement of the pore fluids is assumed to obey the generalized Darcy's law, and their respective degree of saturation is

  13. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  14. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  15. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  16. Cake layer reduction by gas sparging cross flow ultrafiltration of skim latex serum

    Directory of Open Access Journals (Sweden)

    Harunsyah Nik Meriam Sulaiman

    2002-11-01

    Full Text Available A gas sparged method was investigated for reducing cake layer formation and enhancing the crossflow ultrafiltration process. The injection of nitrogen gas promotes turbulence and increases the permeate flux of the process fluid. Experiments were carried out using a tubular membrane (100 kDa MWCO,mounted vertically with skim latex serum, which results from the coagulation of skim latex by-product. The objective of this research was focused mainly on the observed reversible cake resistance during the cross flow ultrafiltration of skim latex serum. The effect of operating parameters, including feed flow rate, flowrate gas sparging and transmembrane pressure ware investigated. Results obtained thus far show that the use of gas sparged technique has been able to enhance total permeate flux in the range 8.29% to 145.33% compared to non-gas sparged condition. In this research optimum permeate flux was obtained at a feed flowrate of 1400 ml/min, a flowrate gas sparging of 500 ml/min and a transmembrane pressure of 0.89 barg.

  17. Radial pressure profiles in a cold-flow gas-solid vortex reactor.

    Science.gov (United States)

    Pantzali, Maria N; Kovacevic, Jelena Z; Heynderickx, Geraldine J; Marin, Guy B; Shtern, Vladimir N

    2015-12-01

    A unique normalized radial pressure profile characterizes the bed of a gas-solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950-1240 kg/m(3), 1-2 mm, 2 kg to maximum solids capacity, and 0.4-0.8 Nm(3)/s (corresponding to gas injection velocities of 55-110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized-with respect to the overall pressure drop-pressure profiles for different gas injection velocities in particle-free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 61: 4114-4125, 2015.

  18. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  19. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    Science.gov (United States)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy / energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependant. In addition, flow back water-transformed BEAS-2B cells show a better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  20. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  1. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  2. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    Science.gov (United States)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  3. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    Science.gov (United States)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and

  4. Software Package \\Nesvetay-3D" for modeling three-dimensional flows of monatomic rarefied gas

    Directory of Open Access Journals (Sweden)

    V. A. Titarev

    2014-01-01

    Full Text Available Analysis of three-dimensional rarefied gas flowsin microdevices (micropipes, micropumps etc and over re-entry vehicles requires development of methods of computational modelling. One of such methods is the direct numerical solution of the Boltzmann kinetic equation for the velocity distribution function with either exact or approximate (model collision integral. At present, for flows of monatomic rarefied gas the Shakhov model kinetic equation, also called S-model, has gained wide-spread use. The equation can be regarded as a model equation of the incomplete thirdorder approximation. Despite its relative simplicity, the S-model is still a complicated integrodifferential equation of high dimension. The numerical solution of such an equation requires high-accuracy parallel methods.The present work is a review of recent results concerning the development and application of three-dimensional computer package Nesvetay-3D intended for modelling of rarefied gas flows. The package solves Boltzmann kinetic equation with the BGK (Krook and Shakhov model collision integrals using the discrete velocity approach. Calculations are carried out in non-dimensional variables. A finite integration domain and a mesh are introduced in the molecular velocity space. Next, the kinetic equation is re-written as a system of kinetic equations for each of the discrete velocities. The system is solved using an implicit finite-volume method of Godunov type. The steady-state solution is computed by a time marching method. High order of spatial accuracy is achieved by using a piece-wise linear representation of the distribution function in each spatial cell. In general, the coefficients of such an approximation are found using the least-square method. Arbitrary unstructured meshes in the physical space can be used in calculations, which allow considering flows over objects of general geometrical shape. Conservative property of the method with respect to the model collision

  5. System for measurement and automatic regulation of gas flow within an oil aging test device

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar

    2014-01-01

    Full Text Available This paper describes a system within an oil aging test device that serves for measurement and automatic regulation of gas flow. Following an already realized system that continuously monitors, logs, and regulates transformer oil temperature during the aging process and maintains temperature consistency within strict limits, a model of a flow meter and regulator of air or oxygen through transformer oil samples is developed. A special feature of the implemented system is the measurement of very small gas flows. A short technical description of the realized system is given with a functional block diagram. The basic technical characteristics of the system are specified, and the operating principles and application of the system are described. The paper also gives performance test results in a real exploitation environment.

  6. Scaling laws for gas-solid riser flow through two-fluid model simulation

    Institute of Scientific and Technical Information of China (English)

    P.R. Naren; Vivek. V. Ranade

    2011-01-01

    Scale up of gas-solid circulating fluidized bed (CFB) risers poses many challenges to researchers. In this paper, CFD investigation of hydrodynamic scaling laws for gas-solid riser flow was attempted on the basis of two-fluid model simulations, in particular, the recently developed empirical scaling law of Qi, Zhu,and Huang (2008). A 3D computational model with periodic boundaries was used to perform numerical experiments and to study the effect of various system and operating parameters in hydrodynamic scaling of riser flow. The Qi scaling ratio was found to ensure similarity in global parameters like overall crosssectional average solid holdup or pressure drop gradient. However, similarity in local flow profiles was not observed for all the test cases. The present work also highlighted the significance of error bars in reporting experimental values.

  7. The axial symmetric vibrations of cylindrical shell, filled by the flowing Gas-Liquid mixture

    Directory of Open Access Journals (Sweden)

    Grigoryan Sh.H.

    2011-09-01

    Full Text Available The problem of axial symmetric self–vibrations of the infinite long shell, filled by flowing gas bubbles of large and small sizes in fluid mixture is considered. The subsonic and supersonic regimes of the mixture flow are discussed. For vibration frequencies of the system under consideration are shown that shell frequencies with big bubbles–liquids mixture exceed the frequencies of system of with small gas bubbles–liquid mixture. In subsonic regime increasing of shell thickness brings to increasing of shell frequencies, as in case of shell with pure fluid. In subsonic regime the frequencies are increasing with decreasing of the flowing velocity, on the contrary, brings to decreasing of frequencies, similar to the case of shell with the pure fluid.

  8. OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.

  9. An experiment-based comparative investigation of correlations for microtube gas flow

    Indian Academy of Sciences (India)

    K Tang; J L Huang; T Jin; M X Wu

    2015-04-01

    An experimental system was built to measure the gas (nitrogen and helium) flow characteristics in circular microchannels with diameters of 50, 20 and 5 m. The Reynolds number of the flow was controlled in the large range of 15 to 2550. The highest Mach number could reach a magnitude of 0.625 and the highest Knudsen number was over 0.021. Four available empirical correlations were comparatively studied, in terms of the influence from compressibility and rarefaction. The accuracy of each correlation was investigated, and qualitative explanations were given according to the essence of fluid dynamics. The compressibility is found to be the dominant parameter in the experiments carried out. The results obtained by gas flow in holey optical fibres are helpful for the design of micro-scale pulse tube cryocoolers.

  10. Final results of bilateral comparison between NIST and PTB for flows of high pressure natural gas

    Science.gov (United States)

    Mickan, B.; Toebben, H.; Johnson, A.; Kegel, T.

    2013-01-01

    In 2009 NIST developed a US national flow standard to provide traceability for flow meters used for custody transfer of pipeline quality natural gas. NIST disseminates the SI unit of flow by calibrating a customer flow meter against a parallel array of turbine meter working standards, which in turn are traceable to a pressure-volume-temperature-time (PVTt) primary standard. The calibration flow range extends from 0.125 actual m3/s to 9 actual m3/s with an expanded uncertainty as low as 0.22% at high flows, and increasing to almost 0.40% at the lowest flows. Details regarding the traceability chain and uncertainty analysis are documented in prior publications. The current manuscript verifies NIST's calibration uncertainty via a bilateral comparison with the German National Metrology Institute PTB. The results of the bilateral are linked to the 2006 key comparison results between three EURAMET national metrology institutes (i.e., PTB, VSL and LNE). Linkage is accomplished in spite of using a different transfer standard in the bilateral versus the key comparison. A mathematical proof is included that demonstrates that the relative difference between a laboratory's measured flow and the key comparison reference value is independent of the transfer package for most flow measurement applications. The bilateral results demonstrate that NIST's natural gas flow measurements are within their specified uncertainties and are equivalent to those of the EURAMET National Metrology Institutes. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Computational fluid dynamic modeling of gas flow characteristics of the high-power CW CO2 laser

    Institute of Scientific and Technical Information of China (English)

    Hongyau Huang; Youqing Wang

    2011-01-01

    @@ To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.%To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.

  12. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  13. Numerical modeling of flow in a differential chamber of the gas-dynamic interface of a portable mass-spectrometer

    Science.gov (United States)

    Pivovarova, E. A.; Smirnovsky, A. A.; Schmidt, A. A.

    2013-11-01

    Mathematical modeling of flow in the differential chamber of the gas-dynamic interface of a portable mass-spectrometer was carried out to comprehensively study the flow structure and make recommendations for the optimization of the gas-dynamic interface. Modeling was performed using an OpenFOAM open computational platform. Conditions for an optimal operating mode of the differential chamber were determined.

  14. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  15. Determination of Diffusion Coefficients of Selected Long Chain Hydrocarbons using Reversed- Flow Gas Chromatographic Technique

    Directory of Open Access Journals (Sweden)

    Khalisanni Khalid

    2011-01-01

    Full Text Available The reversed-flow gas chromatography (RF-GC technique was used to study the evaporation rate and estimating the diffusion coefficient of samples. The RF-GC system comprises of six-port valve, sampling and diffusion column, detector and modified commercial gas chromatography machine. Selected long chain of hydrocarbons (99.99% purity was used as samples. The solute (stationary phase were carried out by carrier gas (mobile phase to the detector. The data obtained from the RF-GC analysis were analysed by deriving the elution curve of the sample peaks using mathematical expression to find the diffusion coefficients values of respective liquids. The values obtained were compared with theoretical values to ensure the accuracy of readings. The interesting findings of the research showed the theoretical values of equilibrium at liquid-gas interphase lead to profound an agreement with the experimental evidence, which contributes for the references of future studies.

  16. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    Science.gov (United States)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  17. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  18. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  19. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    Science.gov (United States)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  20. Applying Alkyl-Chain Surface Functionalizations in Mesoporous Inorganic Structures: Their Impact on Gas Flow and Selectivity Depending on Temperature.

    Science.gov (United States)

    Besser, Benjamin; Ahmed, Atiq; Baune, Michael; Kroll, Stephen; Thöming, Jorg; Rezwan, Kurosch

    2016-10-12

    Porous inorganic capillary membranes are prepared to serve as model structures for the experimental investigation of the gas transport in functionalized mesopores. The porous structures possess a mean pore diameter of 23 nm which is slightly reduced to 20 nm after immobilizing C16-alkyl chains on the surface. Gas permeation measurements are performed at temperatures ranging from 0 to 80 °C using Ar, N2, and CO2. Nonfunctionalized structures feature a gas transport according to Knudsen diffusion with regard to gas flow and selectivity. After C16-functionalization, the gas flow is reduced by a factor of 10, and the ideal selectivities deviate from the Knudsen theory. CO2 adsorption measurements show a decrease in total amount of adsorbed gas and isosteric heat of adsorption. It is hypothesized that the immobilized C16-chains sterically influence the gas transport behavior without a contribution from adsorption effects. The reduced gas flow derives from an additional surface resistance caused by the C16-chains spacially limiting the adsorption and desorption directions for gas molecules propagating through the structure, resulting in longer diffusion paths. In agreement, the gas flow is found to correlate with the molecular diameter of the gas species (CO2 ideal selectivities with the relation [Formula: see text]. The influence on selectivity increases with increasing temperature which leads to the conclusion that the temperature induced movement of the C16-chains is responsible for the stronger interaction between gas molecules and surface functional groups.

  1. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    Science.gov (United States)

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  2. A novel acoustic method for gas flow measurement using correlation techniques

    Science.gov (United States)

    Knuuttila, Matti Tapani

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3%. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user.

  3. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations

    Science.gov (United States)

    Di Staso, G.; Clercx, H. J. H.; Succi, S.; Toschi, F.

    2016-11-01

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  4. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  5. A NOVEL SLIGHTLY COMPRESSIBLE MODEL FOR LOW MACH NUMBER PERFECT GAS FLOW CALCULATION

    Institute of Scientific and Technical Information of China (English)

    邓小刚; 庄逢甘

    2002-01-01

    By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perfect gas flows is derived. In view of numerical calculations, this model is proved very efficient,for it is kept within the p-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solutions. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cellcentered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model.Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performaces are shown for sphere viscous flows.

  6. The Calculated Ratio of the Gas Flow in a Countercurrent Cyclone Dust Concentrator

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available There are numerous studies of the structure of swirling flow in a variety of devices in which the peculiarities of the parameters associated with the twist flow. The values of the local parameters of the twist of the axial direction are experimentally and connect them with a constructive twist parameter, which is built from the idealized repose of the gas flow in vortex distribution and speed at the exit of the swirl. For counter flow chamber is the equation for the input pulse in the radial direction and the twist parameter is provided in the radial direction. It allows us to estimate the maximum radius of the circumferential velocity not only near the outlet, but also near the end surface of the chamber. On a cylindrical surface with a radius of outlet cyclone tangential turbulent friction in the radial direction depends on the product of a circle and radial speeds. Compiled equation changes the flow of angular momentum in the axial zone, depending on the force of friction tangential flow on the surface with the radius of the outlet pipe of the cyclone. This equation allowed assessing the circulation of gas in the axial zone.

  7. Numerical modeling and verification of gas flow through a network of crossed narrow v-grooves

    Science.gov (United States)

    Bejhed, Johan; Nguyen, Hugo; Åstrand, Peter; Eriksson, Anders; Köhler, Johan

    2006-10-01

    The gas flow through a network of crossing thin micro-machined channels has been successfully modeled and simulated. The crossings are formed by two sets of v-grooves that intersect as two silicon wafers are bonded together. The gas is distributed from inlets via a manifold of channels to the narrow v-grooves. The narrow v-grooves could work as a particle filter. The fluidic model is derived from the Navier-Stokes equation and assumes laminar isothermal flow and incorporates small Knudsen number corrections and Poiseuille number calculations. The simulations use the finite element method. Several elements of the full crossing network model are treated separately before lumping them together: the straight v-grooves, a single crossing in an infinite set and a set of exactly four crossings along the flow path. The introduction of a crossing effectively corresponds to a virtual reduction of the length of the flow path, thereby defining a new effective length. The first and last crossings of each flow path together contribute to a pressure drop equal to that from three ordinary crossings. The derived full network model has been compared to previous experimental results on several differently shaped crossed v-groove networks. Within the experimental errors, the model corresponds to the mass flow and pressure drop measurements. The main error source is the uncertainty in v-groove width which has a profound impact on the fluidic behavior.

  8. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-guo; JIN Ning-de; WANG Zhen-ya; ZHANG Wen-yin

    2009-01-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a high-speed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic param-eter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to tmderstand the temporal and spatial evolution of flow pattern dynamics.

  9. An Integrated microfluidic platform for liquid droplet in gas flow generation with in liquid flow collection and manipulation

    Science.gov (United States)

    Tirandazi, Pooyan; Hidrovo, Carlos H.

    2016-11-01

    Discretization of biological samples and chemical reactions within digital droplets is a powerful technique which has rapidly emerged in many biochemical syntheses. The ability to generate, manipulate, and monitor millions of microdroplets in a short time provides great potential for high throughput screening and detection in microbiology. Here we report a microfluidic device for the formation of uniform microdroplets (50 μm-100 μm) using a high speed gas as the continuous phase. Gas-borne droplets are generated in a chip-based flow-focusing device fabricated in PDMS, and travel along the gaseous microchannel and are subsequently captured within a second liquid phase. The droplets are then transferred and collected in a minichamber and move into the manipulation section for further processing operations on the drops. All these steps are performed automatically in a single multilayer chip. This integrated microfluidic platform for generation, collection, and manipulation of the droplets provides great opportunities for monitoring and detection of gas-analytes. Utilizing the generated picoliter airborne droplets feature lower reaction times and higher transfer rates as compared to conventional air sampling techniques. Thus, it can greatly facilitate the investigation of airborne analytes by interrogation of the digital droplets using different analytical techniques. Furthermore, the presented liquid-in-gas generation method can be utilized for production of oil-free microparticles and microcapsules used in the food industry and for drug delivery.

  10. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.

    Science.gov (United States)

    1981-03-01

    Kunii and Levenspiel Model ----------------- 66 C. FLUIDIZED BED VARIABLES THAT AFFECT HEAT TRANSFER ---------------------------------- 69 5 1...and Levenspiel Model -------------------------- 68 25. Heat transfer coefficient vs. mass velocity --------- 72 26. Contact geometry of surface-particle...becomes a very important factor. According to Kunii and Levenspiel [34], distributors should have a sufficient pressure drop to achieve equal flow

  11. Multiple temperature model for the information preservation method and its application to nonequilibrium gas flows

    Science.gov (United States)

    Zhang, Jun; Fan, Jing; Jiang, Jianzheng

    2011-08-01

    The information preservation (IP) method has been successfully applied to various nonequilibrium gas flows. Comparing with the direct simulation Monte Carlo (DSMC) method, the IP method dramatically reduces the statistical scatter by preserving collective information of simulation molecules. In this paper, a multiple temperature model is proposed to extend the IP method to strongly translational nonequilibrium gas flows. The governing equations for the IP quantities have been derived from the Boltzmann equation based on an assumption that each simulation molecule represents a Gaussian distribution function with a second-order temperature tensor. According to the governing equations, the implementation of IP method is divided into three steps: molecular movement, molecular collision, and update step. With a reasonable multiple temperature collision model and the flux splitting method in the update step, the transport of IP quantities can be accurately modeled. We apply the IP method with the multiple temperature model to shear-driven Couette flow, external force-driven Poiseuille flow and thermal creep flow, respectively. In the former two cases, the separation of different temperature components is clearly observed in the transition regime, and the velocity, temperature and pressure distributions are also well captured. The thermal creep flow, resulting from the presence of temperature gradients along boundary walls, is properly simulated. All of the IP results compare well with the corresponding DSMC results, whereas the IP method uses much smaller sampling sizes than the DSMC method. This paper shows that the IP method with the multiple temperature model is an accurate and efficient tool to simulate strongly translational nonequilibrium gas flows.

  12. RESOLVING GAS FLOWS IN THE ULTRALUMINOUS STARBURST IRAS 23365+3604 WITH KECK LGSAO/OSIRIS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Crystal L. [Physics Department, University of California, Santa Barbara, CA 93106-9530 (United States); Soto, Kurt T. [Institute for Astronomy, ETH Zurich, Zurich 8093 (Switzerland)

    2016-03-01

    Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a circumnuclear bar (or irregular disk) of semimajor axis 0.″42 (520 pc) in Paα emission. The line-of-sight velocity of the ionized gas increases from the northeast toward the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero-velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear disk/bar structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the ouflow (detected previously in line wings) is not detected, adding support to the conjecture that the fast wind originates well beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes.

  13. Convective heat transfer for incompressible laminar gas flow in micropassage with constant wall temperature

    Institute of Scientific and Technical Information of China (English)

    An; Gang; (

    2001-01-01

    [1]Tuckermann, D. B., Pease, R. F., Optimized convective cooling using micromachined structure, J. Electro-Chemical Society, 1982, 129(3): 98c.[2]Wu Peiyi, Little, W. A., Measurement of friction factor for the flow of gases in very fine channel used for microminiature Joule-Thomson refrigerators, Cryogenics, 1983, 23(5): 273.[3]Wu Peiyi, Little, W. A., Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators, Cryogenics, 1984, 24(8): 415.[4]Choi, B., Barron, R. F., Warrington, R. O., Fluid flow and heat transfer in microtubes, ASME DSC, 1991, 32: 123.[5]Pfahler, J., Harley, J., Bua, H. et al., Gas and liquid flow in small channel, ASME DSC, 1991, 32: 49.[6]Beskok, A., Karniadakis, G. E., Simulation of slip-flow in complex micro-geometries, ASME DSC, 1992, 40: 355.[7]Mohiuddin, M. G., Li Dongqing, Dale, J. D., Heat transfer and fluid flow in microchannels, Int. J. Heat and Mass Transfer, 1997, 40(13): 3079.[8]Li, J. M., Wang, B. X., Peng, X. F., The wall effect for laminar flow through microtube, in Int. Center for Heat and Mass Transfer (ICHMT) Symposium on Molecular and Microscale Heat Transfer in Material Processing and Other Application Yokohama, Japan, (eds. Tanasawa, I., Nishio, S.), New York: Begell House,1996, 55-65.[9]Li, J. M., Wang, B. X., Peng, X. F., Laminar flow of gas through extremely narrow parallel plates, in Heat Transfer and Technology 1996, Proc. Fourth ISHT (ed. Wang, B. X.), Beijing: Higher Education Press, 1996, 318-322.[10]Li, J. M., Wang, B. X., Peng, X. F., Wall effect of gas laminar heat transfer in microtubes, Journal of Engineering Thermophysics (in Chinese), 1998, 19(5): 596.[11]Li, J. M., Wang, B. X., Peng, X. F., Laminar heat transfer of gas in microchannels between two paralled plates, Journal of Engineering Thermophysics (in Chinese), 1999, 20(2): 194.[12]Tao, W. Q., Numerical Heat Transfer (in Chinese), Xi

  14. Use of Distribution Devices for Hydraulic Profiling of Coolant Flow in Core Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2014-01-01

    Full Text Available In setting up a reactor plant for the transportation-power module of the megawatt class an important task is to optimize the path of flow, i.e. providing moderate hydraulic resistance, uniform distribution of the coolant. Significant contribution to the hydraulic losses makes one selected design of the coolant supplies. It is, in particular, hemispherical or semi-elliptical shape of the supply reservoir, which is selected to reduce its mass, resulting in the formation of torusshaped vortex in the inlet manifold, that leads to uneven coolant velocity at the inlet into the core, the flow pulsations, hydraulic losses.To control the flow redistribution in the core according to the level of energy are used the switchgear - deflectors installed in a hemispherical reservoir supplying coolant to the fuel elements (FE of the core of gas-cooled reactor. This design solution has an effect on the structure of the flow, rate in the cooling duct, and the flow resistance of the collector.In this paper we present the results of experiments carried out on the gas dynamic model of coolant paths, deflectors, and core, comprising 55 fuel rod simulators. Numerical simulation of flow in two-parameter model, using the k-ε turbulence model, and the software package ANSYS CFX v14.0 is performed. The paper demonstrates that experimental results are in compliance with calculated ones.The results obtained suggest that the use of switchgear ensures a coolant flow balance directly at the core inlet, thereby providing temperature reduction of fuel rods with a uniform power release in the cross-section. Considered options to find constructive solutions for deflectors give an idea to solve the problem of reducing hydraulic losses in the coolant paths, to decrease pulsation components of flow in the core and length of initial section of flow stabilization.

  15. Gas flows in galactic nuclei: observational constraints on BH-galaxy coevolution

    CERN Document Server

    Garcia-Burillo, Santiago

    2016-01-01

    Galaxy nuclei are a unique laboratory to study gas flows. High-resolution imaging of the gas flows in galactic nuclei are instrumental in the study of the fueling and the feedback of star formation and nuclear activity in nearby galaxies. Several fueling mechanisms can be now confronted in detail with observations done with state-of-the-art interferometers. Furthermore, the study of gas flows in galactic nuclei can probe the feedback of activity on the interstellar medium of galaxies. Feedback action from star formation and AGN activity is invoked to prevent galaxies from becoming overly massive, but also to explain scaling laws like black hole (BH)-bulge mass correlations and the bimodal color distribution of galaxies. This close relationship between galaxies and their central supermassive BH can be described as co-evolution. There is mounting observational evidence for the existence of gas outflows in different populations of starbursts and active galaxies, a manifestation of the feedback of activity. We su...

  16. Film stability in a vertical rotating tube with a core-gas flow.

    Science.gov (United States)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  17. Deterministic approach for unsteady rarefied flow simulations in complex geometries and its application to gas flows in microsystems

    Science.gov (United States)

    Chigullapalli, Sruti

    Micro-electro-mechanical systems (MEMS) are widely used in automotive, communications and consumer electronics applications with microactuators, micro gyroscopes and microaccelerometers being just a few examples. However, in areas where high reliability is critical, such as in aerospace and defense applications, very few MEMS technologies have been adopted so far. Further development of high frequency microsystems such as resonators, RF MEMS, microturbines and pulsed-detonation microengines require improved understanding of unsteady gas dynamics at the micro scale. Accurate computational simulation of such flows demands new approaches beyond the conventional formulations based on the macroscopic constitutive laws. This is due to the breakdown of the continuum hypothesis in the presence of significant non-equilibrium and rarefaction because of large gradients and small scales, respectively. More generally, the motion of molecules in a gas is described by the kinetic Boltzmann equation which is valid for arbitrary Knudsen numbers. However, due to the multidimensionality of the phase space and the complex non-linearity of the collision term, numerical solution of the Boltzmann equation is challenging for practical problems. In this thesis a fully deterministic, as opposed to a statistical, finite volume based three-dimensional solution of Boltzmann ES-BGK model kinetic equation is formulated to enable simulations of unsteady rarefied flows. The main goal of this research is to develop an unsteady rarefied solver integrated with finite volume method (FVM) solver in MEMOSA (MEMS Overall Simulation Administrator) developed by PRISM: NNSA center for Prediction of Reliability, Integrity and Survivability of Microsystems (PRISM) at Purdue and apply it to study micro-scale gas damping. Formulation and verification of finite volume method for unsteady rarefied flow solver based on Boltzmann-ESBGK equations in arbitrary three-dimensional geometries are presented. The solver is

  18. Drenaje suplementario del sistema venoso superficial en colgajos pediculados Supplementary drainage of superficial venous system in pedicled flaps

    Directory of Open Access Journals (Sweden)

    A. Fernández García

    2012-06-01

    Full Text Available Los colgajos pediculados pueden sufrir edema y congestión debido a que su drenaje a trevés del sistema venoso superfical es imposible y el flujo hacia el sistema profundo a nivel del pedículo es precario. Esta situación suele evolucionar hacia la necrosis parcial o la pérdida total del colgajo en pocas horas. La apertura del sistema venoso superficial permite el drenaje adecuado de los tejidos transferidos y evita estas complicaciones. Este artículo analiza el papel de las anastomosis microquirúrgicas en el sistema venoso superficial de los colgajos pediculados. Esta técnica permite comunicar el sistema venoso superfical de los tejidos transferidos con el sistema venoso superficial del territorio que rodea al defecto. Presentamos los resultados obtenidos con esta técnica en colgajos de perforante en hélice, colgajos miocutáneos, colgajos neurocutáneos y colgajos fasciograsos volteados.The pedicled flaps can suffer edema and congestion due to the impossibility of drainage toward the superficial venous system and the precarious flow via the deep system at the level of the pedicle. The evolution of this situation is usually partial necrosis or total loss of the flap in a few hours. The opening of the venous superficial system achieves an appropriate drainage of the transfered tissues and avoids these complications. In this article we analyze the role of the microsurgical anastomosis at the level of the superficial venous system of pedicled flaps. This technique allows to communicate the superficial venous system of the transfered tissues with the superficial venous system of the territory around the defect. We report the results with this method in propeller perforator flaps, miocutaneous flaps, neurocutaneous flaps and adipofascial turn over flaps.

  19. Three-dimensional direct numerical simulations of co/counter-current vertical gas-Liquid annular flows

    Science.gov (United States)

    Farhaoui, Asma; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar

    2016-11-01

    We carry out three-dimensional numerical simulations of co/counter current Gas-Liquid annular flows using the parallel code, BLUE, based on a projection method for the resolution of the Navier-Stokes equations and a hybrid Front-Tracking/Level-Set method for the interface advection. Gas-Liquid annular flows and falling films in a pipe are present in a broad range of industrial processes. This configuration consists of an important multiphase flow regime where the liquid occupies the area adjacent to the internal circumference of the pipe and the gas flows in the pipe core. Experimentally, four distinctive flow regimes were identified ('dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes), that we attempt to simulate. In order to visualize these different regimes, various liquid (water) and gas (air) flow-rates are investigated. EPSRC UK Programme Grant EP/K003976/1.

  20. Experimental determination of noble gas, SF6 and CO2 flow profiles through a porous sandstone

    Science.gov (United States)

    Kilgallon, Rachel; Gilfillan, Stuart; Edlmann, Katriona; McDermott, Chris

    2016-04-01

    The noble gases (He, Ne, Ar, Kr and Xe) and SF6 have recently been used as artificial and inherent tracers of CO2 flow and migration from within[1,2] and from geological reservoirs[3]. However, outstanding questions remain, particularly regarding the flow behaviour of the noble gases compared to CO2. Here we present results from specially constructed experimental equipment, which has been used to determine the factors affecting transport of noble gases relative to CO2 in a porous sandstone. The experimental setup consists of a sample loop that can be loaded with a desired gas mixture. This sample can be released as a pulse into a feeder gas stream through a flow cell. The flow cell consists of a 3.6 cm diameter core, which can be of any length. The sample is surrounded by aluminium foil and treated with epoxy resin inside stainless steel tubing. The flow cell is encased by two purpose designed dispersion end plates. Real-time analysis of the arrival peaks of the gases downstream is recorded using a Quadrupole Mass Spectrometer (QMS). For the experiments, a 0.96 m core of Fell Sandstone was selected to represent a porous media. Noble gases and SF6 pulses were flowed through a CO2 carrier gas at five different pressure gradients (10 - 50 kPa) with arrival profiles measured using the QMS. Surprisingly, peak arrival times of He were slower than the other noble gases at each pressure gradient. The differences in peak arrival times between He and other noble gases increased as pressure decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr and Xe) along with SF6 show a steeper peak rise at initial appearance, but have a longer duration profile than the He curves. Interestingly, the breakthrough curve profiles for both Kr and Xe were similar to SF6 indicating that Kr and Xe could be substituted for SF6, which is a potent greenhouse gas, in tracing applications. In addition, CO2 pulses were passed through a N2 carrier gas. The