WorldWideScience

Sample records for supercoset target space

  1. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading

    Institute of Scientific and Technical Information of China (English)

    KE san-Min; SHI Kang-Jie; WANG Chun; WU Sheng

    2007-01-01

    We find one parameter flat currents of the sigma model on supercoset targets with Z2m grading given by Young satisfaction equations of motion and the Virasoro constraint.This meads that one can generate a series of classical solutions from the original one.For these new solutions one can also construct flat currents and conserved charges,which form the same set with the original one.

  2. Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Z2n Grading

    Institute of Scientific and Technical Information of China (English)

    KE San-Min; LI Xin-Ying; WANG Chun; YUE Rui-Hong

    2011-01-01

    The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).%The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints.This enables us to show that the conserved charges of the theory are in involution.When n =2,our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).Bena,Polchinski and Roiban[1] found an infinite number of non-local classically conserved charges for the Grecn-Schwarz superstring in AdS5 × S5 background.[2] Similar results were obtained for some other strings[3-9] that propagate in AdS space-time,as discussed in Refs.[7 9].Vallilo[10] showed that such charges also exist in the pure-spinor formalism of the superstring in AdS5 × S5.Bianchi and Klǔson[11] gave the current algebra of the pure-spinor superstring.Berkovits[12] proved that the nonlocal charges in the string theory are BRST-invariant and physical.

  3. Hamiltonian analysis of a Green-Schwarz sigma model on a supercoset target with Z4m grading

    Institute of Scientific and Technical Information of China (English)

    KE San-Min; YANG Wen-Li; WANG Chun; WANG Zhan-Yun

    2011-01-01

    We perform a Hamiltonian analysis of the Green-Schwarz sigma model on a supercoset target with Z4m grading.The fundamental Poisson brackets between the spatial component of the fiat currents depending on a continuous parameter,which can be thought of as a first step in the complete calculation of the algebra of the transition matrices,are obtained.When m =1,our results are reduced to the results of the type ⅡB Green-Schwarz superstring on AdS5 × S5 background obtained by Das,Melikyan and Sato.

  4. Sigma models on supercosets

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir

    2010-08-15

    The purpose of this thesis is to deepen our understanding of the fundamental properties and defining features of non-linear sigma models on superspaces. We begin by presenting the major concepts that we have used in our investigation, namely Lie superalgebras and supergroups, non-linear sigma models and two dimensional conformal field theory. We then exhibit a method, called cohomological reduction, that makes use of the target space supersymmetry of non-linear sigma models to compute certain correlation functions. We then show how the target space supersymmetry of Ricci flat Lie supergroups simplifies the perturbation theory of suitable deformed Wess-Zumino-Witten models, making it possible to compute boundary conformal weights to all orders. This is then applied to the OSP (2S+2 vertical stroke 2S) Gross-Neveu Model, leading to a dual description in terms of the sigma model on the supersphere S{sup 2S+1} {sup vertical} {sup stroke} {sup 2S}. With this results in mind, we then turn to the similar, yet more intricate, theory of the non-linear sigma model on the complex projective superspaces CP{sup N-1} {sup vertical} {sup stroke} {sup N}. The cohomological reduction allows us to compute several important quantities non-perturbatively with the help of the system of symplectic fermions. Combining this with partial perturbative results for the whole theory, together with numerical computations, we propose a conjecture for the exact evolution of boundary conformal weights for symmetry preserving boundary conditions. (orig.)

  5. On deformations of AdS_n x S^n supercosets

    CERN Document Server

    Hoare, B; Tseytlin, A A

    2014-01-01

    We study the deformed AdS_5 x S^5 supercoset model of arXiv:1309.5850 which depends on one parameter kappa and has classical quantum group symmetry. We confirm the conjecture that in the ``maximal'' deformation limit kappa -> infinity this model is T-dual to ``flipped'' double Wick rotation of AdS_5 x S^5, i.e. dS_5 x H^5 space supported by an imaginary 5-form flux. In the imaginary deformation limit, kappa -> i, the corresponding target space metric is of a pp-wave type and thus the resulting light-cone gauge S-matrix becomes relativistically invariant. Omitting non-unitary contributions of imaginary WZ terms, we find that this tree-level S-matrix is equivalent to that of the generalized sine-Gordon model representing the Pohlmeyer reduction of the undeformed AdS_5 x S^5 superstring model. We also study in some detail similar deformations of the AdS_3 x S^3 and AdS_2 x S^2 supercosets. The bosonic part of the deformed AdS_3 x S^3 model happens to be equivalent to the symmetric case of the sum of the Fateev i...

  6. Supergravity background of lambda-deformed model for AdS2 x S2 supercoset

    CERN Document Server

    Borsato, R; Wulff, L

    2016-01-01

    Starting with the F/G supercoset model corresponding to the AdS_n x S^n superstring one can define the lambda-model of arXiv:1409.1538 either as a deformation of the F/F gauged WZW model or as an integrable one-parameter generalization of the non-abelian T-dual of the AdS_n x S^n superstring sigma model with respect to the whole supergroup F. Here we consider the case of n=2 and find the explicit form of the 4d target space background for the lambda-model for the PSU(1,1|2)/[SO(1,1) x SO(2)] supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Phi and the RR 5-form (represented by a 2-form F in 4d) being non-trivial. This implies that the lambda-model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the lambda-model where only the bosonic subgroup of F is gau...

  7. On deformations of AdS{sub n}×S{sup n} supercosets

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, B. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstrasse 15, D-12489 Berlin (Germany); Roiban, R. [Department of Physics, The Pennsylvania State University,University Park, PA 16802 (United States); Tseytlin, A.A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2014-06-03

    We study the deformed AdS{sub 5}×S{sup 5} supercoset model of arXiv:1309.5850 which depends on one parameter ϰ and has classical quantum group symmetry. We confirm the conjecture that in the “maximal” deformation limit, ϰ→∞, this model is T-dual to “flipped” double Wick rotation of the target space AdS{sub 5}×S{sup 5}, i.e. dS{sub 5}×H{sup 5} space supported by an imaginary 5-form flux. In the imaginary deformation limit, ϰ→i, the corresponding target space metric is of a pp-wave type and thus the resulting light-cone gauge S-matrix becomes relativistically invariant. Omitting non-unitary contributions of imaginary WZ terms, we find that this tree-level S-matrix is equivalent to that of the generalized sine-Gordon model representing the Pohlmeyer reduction of the undeformed AdS{sub 5}×S{sup 5} superstring model. We also study in some detail similar deformations of the AdS{sub 3}×S{sup 3} and AdS{sub 2}×S{sup 2} supercosets. The bosonic part of the deformed AdS{sub 3}×S{sup 3} model happens to be equivalent to the symmetric case of the sum of the Fateev integrable deformation of the SL(2) and SU(2) principal chiral models, while in the AdS{sub 2}×S{sup 2} case the role of the Fateev model is played by the 2d “sausage” model. The ϰ=i limits are again directly related to the Pohlmeyer reductions of the corresponding AdS{sub n}×S{sup n} supercosets: (2,2) super sine-Gordon model and its complex sine-Gordon analog. We also discuss possible deformations of AdS{sub 3}×S{sup 3} with more than one parameter.

  8. Target Space $\

    CERN Document Server

    Huggett, Nick

    2015-01-01

    This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space -- larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements 'outside' string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of 'target space', the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain wh...

  9. Target space supergeometry of $\\eta$ and $\\lambda$-deformed strings

    CERN Document Server

    Borsato, Riccardo

    2016-01-01

    We study the integrable $\\eta$ and $\\lambda$-deformations of supercoset string sigma models, the basic example being the deformation of the $AdS_5 \\times S^5$ superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the $\\lambda$-deformation gives rise to a standard supergravity background; for the $\\eta$-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so(2,4). We argue that the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  10. Supergravity background of λ-deformed model for AdS2×S2 supercoset

    Directory of Open Access Journals (Sweden)

    R. Borsato

    2016-04-01

    Full Text Available Starting with the Fˆ/G supercoset model corresponding to the AdSn×Sn superstring one can define the λ-model of arXiv:1409.1538 either as a deformation of the Fˆ/Fˆ gauged WZW model or as an integrable one-parameter generalisation of the non-abelian T-dual of the AdSn×Sn superstring sigma model with respect to the whole supergroup Fˆ. Here we consider the case of n=2 and find the explicit form of the 4d target space background for the λ-model for the PSU(1,1|2/SO(1,1×SO(2 supercoset. We show that this background represents a solution of type IIB 10d supergravity compactified on a 6-torus with only metric, dilaton Φ and the RR 5-form (represented by a 2-form F in 4d being non-trivial. This implies that the λ-model is Weyl invariant at the quantum level and thus defines a consistent superstring sigma model. The supergravity solution we find is different from the one in arXiv:1410.1886 which should correspond to a version of the λ-model where only the bosonic subgroup of Fˆ is gauged. Still, the two solutions have equivalent scaling limit of arXiv:1504.07213 leading to the isometric background for the metric and eΦF which is related to the η-deformed AdS2×S2 sigma model of arXiv:1309.5850. Similar results are expected in the AdS3×S3 and AdS5×S5 cases.

  11. Target space supergeometry of η and λ-deformed strings

    Science.gov (United States)

    Borsato, Riccardo; Wulff, Linus

    2016-10-01

    We study the integrable η and λ-deformations of supercoset string sigma models, the basic example being the deformation of the AdS 5 × S 5 superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the λ-deformation gives rise to a standard (generically type II*) supergravity background; for the η-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so (2, 4). We argue that most of the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  12. Target space supergeometry of η and λ-deformed strings

    Energy Technology Data Exchange (ETDEWEB)

    Borsato, Riccardo; Wulff, Linus [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2016-10-10

    We study the integrable η and λ-deformations of supercoset string sigma models, the basic example being the deformation of the AdS{sub 5}×S{sup 5} superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the λ-deformation gives rise to a standard (generically type II*) supergravity background; for the η-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so(2,4). We argue that most of the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  13. Supergravity background of the lambda-deformed AdS_3 x S^3 supercoset

    CERN Document Server

    Chervonyi, Yuri

    2016-01-01

    We construct the solution of type IIB supergravity describing the integrable lambda-deformation of the AdS_3 x S^3 supercoset. While the geometry corresponding to the deformation of the bosonic coset has been found in the past, our background is more natural for studying superstrings, and several interesting features distinguish our solution from its bosonic counterpart. We also report progress towards constructing the lambda-deformation of the AdS_5 x S^5 supercoset.

  14. SL(2;R)/U(1) supercoset and elliptic genera of Non-compact Calabi-Yau Manifolds

    CERN Document Server

    Eguchi, T

    2004-01-01

    We first discuss the relationship between the SL(2;)/U(1) supercoset and = 2 Liouville theory and make a precise correspondence between their representations. We shall show that the discrete unitary representations of SL(2;)/U(1) theory correspond exactly to those massless representations of = 2 Liouville theory which are closed under modular transformations and studied in our previous work [18]. It is known that toroidal partition functions of SL(2;)/U(1) theory (2D Black Hole) contain two parts, continuous and discrete representations. The contribution of continuous representations is proportional to the space-time volume and is divergent in the infinite-volume limit while the part of discrete representations is volume-independent. In order to see clearly the contribution of discrete representations we consider elliptic genus which projects out the contributions of continuous representations: making use of the SL(2;)/U(1), we compute elliptic genera for various non-compact space-times such as the conifold, ...

  15. Classical Geometry and Target Space Duality

    OpenAIRE

    1995-01-01

    This is the written version of lectures presented at Cargese 95. A new formulation for a ``restricted'' type of target space duality in classical two dimensional nonlinear sigma models is presented. The main idea is summarized by the analogy: euclidean geometry is to riemannian geometry as toroidal target space duality is to ``restricted'' target space duality. The target space is not required to possess symmetry. These lectures only discuss the local theory. The restricted target space duali...

  16. Supercoset construction of Yang-Baxter-deformed AdS×S backgrounds

    Science.gov (United States)

    Kyono, Hideki; Yoshida, Kentaroh

    2016-08-01

    We study Yang-Baxter deformations of the AdS×S superstring with the classical Yang-Baxter equation. We make a general argument on the supercoset construction and present a formula to describe the dilaton in terms of classical r-matrices. The supercoset construction is explicitly performed for some classical r-matrices, and the full backgrounds including the Ramond-Ramond (R-R) sector and dilaton are derived. Within the class of Abelian r-matrices, perfect agreement is shown for well-known examples including gravity duals of non-commutative gauge theories, γ-deformations of S and Schrödinger spacetimes. It is remarkable that the supercoset construction works well, even if the resulting backgrounds are not maximally supersymmetric. In particular, three-parameter γ-deformations of S and Schrödinger spacetimes do not preserve any supersymmetries. As for non-Abelian r-matrices, we will focus upon a specific example. The resulting background does not satisfy the equation of motion of the Neveu-Schwarz-Neveu-Schwarz two-form because the R-R three-form is not closed.

  17. Supercoset construction of Yang-Baxter deformed AdS$_5\\times$S$^5$ backgrounds

    CERN Document Server

    Kyono, Hideki

    2016-01-01

    We proceed to study Yang-Baxter deformations of the AdS$_5\\times$S$^5$ superstring with the classical Yang-Baxter equation. We make a general argument on the supercoset construction and present the master formula to describe the dilaton in terms of classical $r$-matrices. The supercoset construction is explicitly performed for some classical $r$-matrices and the full backgrounds including the Ramond-Ramond (R-R) sector and dilaton are derived. Within the class of abelian $r$-matrices, the perfect agreement is shown for well-known examples including gravity duals of non-commutative gauge theories, $\\gamma$-deformations of S$^5$ and Schr\\"odinger spacetimes. It would be remarkable that the supercoset construction works well, even if the resulting backgrounds are not maximally supersymmetric. In particular, three-parameter $\\gamma$-deformations of S$^5$ and Schr\\"odinger spacetimes do not preserve any supersymmetries. As for non-abelian $r$-matrices, we will focus upon a specific example. The resulting backgroun...

  18. String theory in target space

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Hansen, Tobias [II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, D- 22761 Hamburg (Germany)

    2014-06-10

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  19. String theory in target space

    CERN Document Server

    Boels, Rutger H

    2014-01-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincare invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main condition...

  20. String theory in target space

    Science.gov (United States)

    Boels, Rutger H.; Hansen, Tobias

    2014-06-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  1. Supercoset construction of Yang-Baxter deformed AdS5×S5 backgrounds

    Science.gov (United States)

    Hideki, Kyono

    2017-01-01

    We consider Yang-Baxter deformations of the AdS5×S5 superstring theory. In previous works, the metric and B-field of some well-known string backgrounds concerned with the AdS/CFT correspondence have been obtained as deformations of AdS5×S5 based on r-matrices satisfying the homogeneous Yang-Baxter equation. Recently, the remaining fields including the Ramond-Ramond fields and the dilaton have been derived completely by performing the supercoset construction for abelian r-matrices. We also discuss the deformation with a non-abelian r-matrix and, in this case, the resulting background is not a solution of the type IIB supergravity. This article is based on the original paper [1].

  2. Hypersonic sliding target tracking in near space

    Directory of Open Access Journals (Sweden)

    Xiang-yu Zhang

    2015-12-01

    Full Text Available To improve the tracking accuracy of hypersonic sliding target in near space, the influence of target hypersonic movement on radar detection and tracking is analyzed, and an IMM tracking algorithm is proposed based on radial velocity compensating and cancellation processing of high dynamic biases under the earth centered earth fixed (ECEF coordinate. Based on the analysis of effect of target hypersonic movement, a measurement model is constructed to reduce the filter divergence which is caused by the model mismatch. The high dynamic biases due to the target hypersonic movement are approximately compensated through radial velocity estimation to achieve the hypersonic target tracking at low systematic biases in near space. The high dynamic biases are further eliminated by the cancellation processing of different radars, in which the track association problem can be solved when the dynamic biases are low. An IMM algorithm based on constant acceleration (CA, constant turning (CT and Singer models is used to achieve the hypersonic sliding target tracking in near space. Simulation results show that the target tracking in near space can be achieved more effectively by using the proposed algorithm.

  3. On integrable deformations of superstring sigma models related to AdSn×Sn supercosets

    Directory of Open Access Journals (Sweden)

    B. Hoare

    2015-08-01

    Full Text Available We consider two integrable deformations of 2d sigma models on supercosets associated with AdSn×Sn. The first, the “η-deformation” (based on the Yang–Baxter sigma model, is a one-parameter generalization of the standard superstring action on AdSn×Sn, while the second, the “λ-deformation” (based on the deformed gauged WZW model, is a generalization of the non-abelian T-dual of the AdSn×Sn superstring. We show that the η-deformed model may be obtained from the λ-deformed one by a special scaling limit and analytic continuation in coordinates combined with a particular identification of the parameters of the two models. The relation between the couplings and deformation parameters is consistent with the interpretation of the first model as a real quantum deformation and the second as a root of unity quantum deformation. For the AdS2×S2 case we then explore the effect of this limit on the supergravity background associated with the λ-deformed model. We also suggest that the two models may form a dual Poisson–Lie pair and provide direct evidence for this in the case of the integrable deformations of the coset associated with S2.

  4. On integrability of strings on symmetric spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, Linus [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2015-09-17

    In the absence of NSNS three-form flux the bosonic string on a symmetric space is described by a symmetric space coset sigma-model. Such models are known to be classically integrable. We show that the integrability extends also to cases with non-zero NSNS flux (respecting the isometries) provided that the flux satisfies a condition of the form H{sub abc}H{sup cde}∼R{sub ab}{sup de}. We then turn our attention to the type II Green-Schwarz superstring on a symmetric space. We prove that if the space preserves some supersymmetry there exists a truncation of the full superspace to a supercoset space and derive the general form of the superisometry algebra. In the case of vanishing NSNS flux the corresponding supercoset sigma-model for the string is known to be integrable. We prove that the integrability extends to the full string by augmenting the supercoset Lax connection with terms involving the fermions which are not captured by the supercoset model. The construction is carried out to quadratic order in these fermions. This proves the integrability of strings on symmetric spaces supported by RR flux which preserve any non-zero amount of supersymmetry. Finally we also construct Lax connections for some supercoset models with non-zero NSNS flux describing strings in AdS{sub 2,3}×S{sup 2,3}×S{sup 2,3}×T{sup 2,3,4} backgrounds preserving eight supersymmetries.

  5. Target Analysis for the Twinkle Space Mission

    Science.gov (United States)

    Rice, Malena; Tinetti, Giovanna; Zingales, Tiziano; Twinkle Consortium

    2016-10-01

    Twinkle is a dedicated exoplanet space mission planned for launch in 2019 to observe and characterize the atmospheres of planets around F, G, K, and M type stars. By obtaining high-resolution near-infrared transit spectra (0.5 – 4.5 microns), Twinkle will identify molecules of interest within planetary atmospheres. Twinkle will provide critical data for the characterization of individual exoplanets, leading to an improved understanding of planetary systems as a whole. In this study, we provide an analysis of potential targets for the Twinkle space mission, and we find that the spacecraft will be capable of observing a wide range of planet types, including Earths, Super Earths, Sub Neptunes, Large Neptunes, and Hot Jupiters. We discuss the population distribution of observable targets in terms of planet temperature and radius, host star temperature, and observation time necessary to achieve the desired signal-to-noise ratios. We also include sample Twinkle spectra from a simulated data set, as well as an example retrieval using the TauRex program to retrieve molecules in these simulated spectra. We conclude with a discussion of these results and their implications for the Twinkle mission.

  6. Recognized simulation of space locomotive target based on sky background

    Science.gov (United States)

    Zhang, Han; Ma, Jianhong

    2017-01-01

    Space moving object recognition and tracking is an important research topic in computer vision. It has broad application prospects in space exploration, detection of traffic flow, military field, automatic control and other fields. This paper aims to propose a new space target recognition algorithm, and use this algorithm to identify the motion trajectory simulation of a certain object in the universe.

  7. On integrable deformations of superstring sigma models related to AdS_n x S^n supercosets

    CERN Document Server

    Hoare, B

    2015-01-01

    We consider two integrable deformations of 2d sigma models on supercosets associated with AdS_n x S^n. The first, the "eta-deformation" (based on the Yang-Baxter sigma model), is a one-parameter generalization of the standard superstring action on AdS_n x S^n, while the second, the "lambda-deformation" (based on the deformed gauged WZW model), is a generalization of the non-abelian T-dual of the AdS_n x S^n superstring. We show that the eta-deformed model may be obtained from the lambda-deformed one by a special scaling limit and analytic continuation in coordinates combined with a particular identification of the parameters of the two models. The relation between the couplings and deformation parameters is consistent with the interpretation of the first model as a real quantum deformation and the second as a root of unity quantum deformation. For the AdS_2 x S^2 case we then explore the effect of this limit on the supergravity background associated to the lambda-deformed model. We also suggest that the two m...

  8. Error-space estimate method for generalized synergic target tracking

    Institute of Scientific and Technical Information of China (English)

    Ming CEN; Chengyu FU; Ke CHEN; Xingfa LIU

    2009-01-01

    To improve the tracking accuracy and stability of an optic-electronic target tracking system,the concept of generalized synergic target and an algorithm named error-space estimate method is presented.In this algo-rithm,the motion of target is described by guide data and guide errors,and then the maneuver of the target is separated into guide data and guide errors to reduce the maneuver level.Then state estimate is implemented in target state-space and error-space respectively,and the prediction data of target position are acquired by synthe-sizing the filtering data from target state-space according to kinematic model and the prediction data from error-space according to guide error model.Differing from typ-ical multi-model method,the kinematic and guide error models work concurrently rather than switch between models.Experiment results show that the performance of the algorithm is better than Kalman filter and strong tracking filter at the same maneuver level.

  9. Expanding the Targeting Process into the Space Domain

    Science.gov (United States)

    2008-06-01

    representation of that service but also allows a cross- pollenization of knowledge between the services. These personnel issues are made even more challenging...activities of headquarters, barracks, commissary, motor pool, and airfield would constitute an Installation; an airframe production plant and all...maintain a space targeting cell. Navy: The Navy currently has approximately 1000 Space Operations and Engineering Officers (active and reserve

  10. New Evidence for (0,2) Target Space Duality

    CERN Document Server

    Anderson, Lara B

    2016-01-01

    In the context of (0,2) gauged linear sigma models, we explore chains of perturbatively dual heterotic string compactifications. The notion of target space duality originates in non-geometric phases and can be used to generate distinct GLSMs with shared geometric phases leading to apparently identical target space theories. To date, this duality has largely been studied at the level of counting states in the effective theories. We extend this analysis to the effective potential and loci of enhanced symmetry in dual theories. By engineering vector bundles with non-trivial constraints arising from slope-stability (i.e. D-terms) and holomorphy (i.e. F-terms) the detailed structure of the vacuum space of the dual theories can be explored. Our results give new evidence that GLSM target space duality may provide important hints towards a more complete understanding of (0,2) string dualities.

  11. New evidence for (0,2) target space duality

    Science.gov (United States)

    Anderson, Lara B.; Feng, He

    2017-02-01

    In the context of (0, 2) gauged linear sigma models, we explore chains of perturbatively dual heterotic string compactifications. The notion of target space duality originates in non-geometric phases and can be used to generate distinct GLSMs with shared geometric phases leading to apparently identical target space theories. To date, this duality has largely been studied at the level of counting states in the effective theories. We extend this analysis to the effective potential and loci of enhanced symmetry in dual theories. By engineering vector bundles with non-trivial constraints arising from slope-stability (i.e. D-terms) and holomorphy (i.e. F-terms) the detailed structure of the vacuum space of the dual theories can be explored. Our results give new evidence that GLSM target space duality may provide important hints towards a more complete understanding of (0, 2) string dualities.

  12. Nonlinear Sigma Models with Compact Hyperbolic Target Spaces

    CERN Document Server

    Gubser, Steven; Schoenholz, Samuel S; Stoica, Bogdan; Stokes, James

    2015-01-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggest...

  13. Fast calculation method of complex space targets' optical cross section.

    Science.gov (United States)

    Han, Yi; Sun, Huayan; Li, Yingchun; Guo, Huichao

    2013-06-10

    This paper utilizes the optical cross section (OCS) to characterize the optical scattering characteristics of a space target under the conditions of Sun lighting. We derive the mathematical expression of OCS according to the radiometric theory, and put forward a fast visualization calculation method of complex space targets' OCS based on an OpenGL and 3D model. Through the OCS simulation of Lambert bodies (cylinder and sphere), the computational accuracy and speed of the algorithm were verified. By using this method, the relative error for OCS will not exceed 0.1%, and it only takes 0.05 s to complete a complex calculation. Additionally, we calculated the OCS of three actual satellites with bidirectional reflectance distribution function model parameters in visible bands, and results indicate that it is easy to distinguish the three targets by comparing their OCS curves. This work is helpful for the identification and classification of unresolved space target based on photometric characteristics.

  14. Targeted and comprehensive space-environment sensors: description and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey; O' Brien, Paul; Mazur, Joe; Ginet, Gregory

    2009-01-01

    We discuss the roles of the two classes of space-environment sensors on operational space systems: (1) Targeted sensors capable of measuring the environment and effects at a level sufficient for providing situational awareness for the host spacecraft and (2) Comprehensive sensors capable of providing detailed environment measurements that can be mapped to a broad region of near-Earth space, providing global situational awareness and quantitative characterization of the environment. Our purpose is to show the usefulness of a heterogeneous architecture with both classes of sensors for the near-term and long-term needs of National Security Space

  15. FDTD Application of Targets Electromagnetic Scattering in Layered Space

    Directory of Open Access Journals (Sweden)

    Jiang Yan-nan

    2013-07-01

    Full Text Available Finite Difference Time Domain (FDTD was used to characterize the electromagnetic scattering (EMS for targets in layered space. A new set of 1D modified Maxwell equations and auxiliary equations with incident angle was derived from 2D Maxwell equations and was used to compute the electromagnetic field in vertical boundary in 2D total field-scattered field (TF/SF, and thus incidence of uniform plane wave in time domain can be directly realized. In order to avoid complex Somerfield integration, the reciprocity theorem was used to simplify an extrapolation algorithm. Then the proposed algorithm and program in this paper were validated by applying them to compute the electromagnetic scattered field for targets in half-space and the radiation field for line current in layered lossy space. Finally this algorithm was used to characterize EMS for a tunnel in multi-layered space, for a tunnel open to vehicle, and for a tunnel and vehicle in lossless layered space. The results show the vehicle has a great impact on the scattering field, and the layered media surrounded the target can shield the scattering field.

  16. Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space.

    Science.gov (United States)

    Peón, Antonio; Naulaerts, Stefan; Ballester, Pedro J

    2017-06-19

    Many computational methods to predict the macromolecular targets of small organic molecules have been presented to date. Despite progress, target prediction methods still have important limitations. For example, the most accurate methods implicitly restrict their predictions to a relatively small number of targets, are not systematically validated on drugs (whose targets are harder to predict than those of non-drug molecules) and often lack a reliability score associated with each predicted target. Here we present a systematic validation of ligand-centric target prediction methods on a set of clinical drugs. These methods exploit a knowledge-base covering 887,435 known ligand-target associations between 504,755 molecules and 4,167 targets. Based on this dataset, we provide a new estimate of the polypharmacology of drugs, which on average have 11.5 targets below IC50 10 µM. The average performance achieved across clinical drugs is remarkable (0.348 precision and 0.423 recall, with large drug-dependent variability), especially given the unusually large coverage of the target space. Furthermore, we show how a sparse ligand-target bioactivity matrix to retrospectively validate target prediction methods could underestimate prospective performance. Lastly, we present and validate a first-in-kind score capable of accurately predicting the reliability of target predictions.

  17. Low-Outgassing Photogrammetry Targets for Use in Outer Space

    Science.gov (United States)

    Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.

    2011-01-01

    A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..

  18. Nonlinear sigma models with compact hyperbolic target spaces

    Science.gov (United States)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-06-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  19. Nonlinear sigma models with compact hyperbolic target spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  20. Kane Method Based Dynamics Modeling and Control Study for Space Manipulator Capturing a Space Target

    Directory of Open Access Journals (Sweden)

    Yanhua Han

    2016-01-01

    Full Text Available Dynamics modeling and control problem of a two-link manipulator mounted on a spacecraft (so-called carrier freely flying around a space target on earth’s circular orbit is studied in the paper. The influence of the carrier’s relative movement on its manipulator is considered in dynamics modeling; nevertheless, that of the manipulator on its carrier is neglected with the assumption that the mass and inertia moment of the manipulator is far less than that of the carrier. Meanwhile, we suppose that the attitude control system of the carrier guarantees its side on which the manipulator is mounted points accurately always the space target during approaching operation. The ideal constraint forces can be out of consideration in dynamics modeling as Kane method is used. The path functions of the manipulator’s end-effector approaching the space target as well as the manipulator’s joints control torque functions are programmed to meet the soft touch requirement that the end-effector’s relative velocity to the space target is zero at touch moment. Numerical simulation validation is conducted finally.

  1. Grasping Strategy in Space Robot Capturing Floating Target

    Institute of Scientific and Technical Information of China (English)

    Wei Cheng; Liu Tianxi; Zhao Yang

    2010-01-01

    When the space robot captures a floating target,contact impact occurs inevitably and frequently between the manipulator hand and the target,which seriously impacts the position and attitude of the robot and grasping security."Dynamic grasping area"is introduced to describe the collision process of manipulator grasping target,and grasping area control equation is established.By analyzing the impact of grasping control parameters,base and target mass on the grasping process and combining the life experience,it is found that if the product of speed control parameter and dB adjustment parameter is close to but smaller than the minimum grasping speed,collision impact in the grasping process could be reduced greatly,and then an ideal grasping strategy is proposed.Simulation results indicate that during the same period,the strategy grasping is superior to the accelerating grasping,in that the amplitude of impact force is reduced to 20%,and the attitude control torque is reduced to 15%,and the impact on the robot is eliminated significantly.The results would have important academic value and engineering significance.

  2. The ignition design space of magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Lindemuth, Irvin R. [2490 North Grannen Road, Tucson, Arizona 85745 (United States)

    2015-12-15

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  3. Circular Orbit Target Capture Using Space Tether-Net System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2013-01-01

    Full Text Available The space tether-net system for on-orbit capture is proposed in this paper. In order to research the dynamic behaviors during system deployment, both free and nonfree deployment dynamics in circular orbit are developed; the system motion with respect to Local Vertical and Local Horizontal frame is also researched with analysis and simulation. The results show that in the case of free deployment, the capture net follows curve trajectories due to the relative orbit dynamic perturbation, and the initial deployment velocities are planned by state transformation equations for static and floating target captures; in the case of non-free deployment, the system undergoes an altitude libration along the Local Vertical, and the analytical solutions that describe the attitude libration are obtained by using variable separation and integration. Finally, the dynamics of postdeployment system is also proved marginally stable if the critical initial conditions are satisfied.

  4. Mitochondria as Sub-cellular Targets of Space Radiation

    Science.gov (United States)

    Hei, Tom; Zhang, Bo; Davidson, Mercy

    High linear energy transfer (LET) radiation including alpha particles and heavy ions is the major type of radiation find in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation, to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. Mitochondria are the sole energy center of a cell and normal mitochondria are highly dynamic organelles that move along microtubules or microfilaments and continuously fuse and divide in healthy cells. A balance between mitochondrial fusion and fission is essential to maintain normal mitochondrial function. Targeted cytoplasmic irradiation by high LET alpha particles induced DNA oxidative damage and double strand breaks in wild type rho+ human small airway epithelial (SAE) cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-kappaB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in rho+ SAE cells. In contrast, SAE cells with depleted mitochondrial DNA (rho0) and, therefore, no oxidative metabolic functions, exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET alpha particles. The results indicate that normal mitochondrial function is essential in mediating radiation induced genotoxic damages in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation protection.

  5. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  6. Pulsed Laser Interactions with Space Debris: Target Shape Effects

    CERN Document Server

    Liedahl, D A; Libby, S B; Nikolaev, S; Phipps, C R

    2013-01-01

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon p...

  7. Semi-classical mechanics in phase space: the quantum target of minimal strings

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Cesar [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain); Montanez, Sergio [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain); Resco, Pedro [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain)

    2005-11-15

    The target space M{sub p,q} of (p,q) minimal strings is embedded into the phase space of an associated integrable classical mechanical model. This map is derived from the matrix model representation of minimal strings. Quantum effects on the target space are obtained from the semiclassical mechanics in phase space as described by the Wigner function. In the classical limit the target space is a fold catastrophe of the Wigner function that is smoothed out by quantum effects. Double scaling limit is obtained by resolving the singularity of the Wigner function. The quantization rules for backgrounds with ZZ branes are also derived.

  8. Semi-Classical Mechanics in Phase Space: The Quantum Target of Minimal Strings

    CERN Document Server

    Gómez, C; Resco, P; Gomez, Cesar; Montanez, Sergio; Resco, Pedro

    2005-01-01

    The target space $M_{p,q}$ of $(p,q)$ minimal strings is embedded into the phase space of an associated integrable classical mechanical model. This map is derived from the matrix model representation of minimal strings. Quantum effects on the target space are obtained from the semiclassical mechanics in phase space as described by the Wigner function. In the classical limit the target space is a fold catastrophe of the Wigner function that is smoothed out by quantum effects. Double scaling limit is obtained by resolving the singularity of the Wigner function. The quantization rules for backgrounds with ZZ branes are also derived.

  9. On Symmetries of Target Space for $\\sigma$-model of p-brane Origin

    CERN Document Server

    Ivashchuk, V D

    1998-01-01

    The target space M for the sigma-model appearing in theories with p-branes is considered. It is proved that M is a homogeneous space G/H. It is symmetric if and only if the U-vectors governing the sigma-model metric are either coinciding or mutually orthogonal. For nonzero noncoinciding U-vectors the Killing equations are solved. Using a block-orthogonal decomposition of the set of the U-vectors it is shown that under rather general assumptions the algebra of Killing vectors is a direct sum of several copies of sl(2,R) algebras (corresponding to 1-vector blocks), several solvable Lie algebras (corresponding to multivector blocks) and the Killing algebra of a flat space. The target space manifold is decomposed in a product of R^m, several 2-dimensional spaces of constant curvature (e.g. Lobachevsky space, part of de Sitter space) and several solvable Lie group manifolds.

  10. Targeting Cislunar Near Rectilinear Halo Orbits for Human Space Exploration

    Science.gov (United States)

    Williams, Jacob; Lee, David E.; Whitley, Ryan J.; Bokelmann, Kevin A.; Davis, Diane C.; Berry, Christopher F.

    2017-01-01

    Part of the challenge of charting a human exploration space architecture is finding locations to stage missions to multiple destinations. To that end, a specific subset of Earth-Moon halo orbits, known as Near Rectilinear Halo Orbits (NRHOs) are evaluated. In this paper, a systematic process for generating full ephemeris based ballistic NRHOs is outlined, different size NRHOs are examined for their favorability to avoid eclipses, the performance requirements for missions to and from NRHOs are calculated, and disposal options are evaluated. Combined, these studies confirm the feasibility of cislunar NRHOs to enable human exploration in the cislunar proving ground.

  11. Near-Earth Object Human Space Flight Accessible Targets Study (NHATS)

    Data.gov (United States)

    National Aeronautics and Space Administration — This list of potential mission targets should not be interpreted as a complete list of viable NEAs for an actual human exploration mission. As the NEA orbits are...

  12. Target tracking in the recommender space: Toward a new recommender system based on Kalman filtering

    CERN Document Server

    Nowakowski, Samuel; Boyer, Anne

    2010-01-01

    In this paper, we propose a new approach for recommender systems based on target tracking by Kalman filtering. We assume that users and their seen resources are vectors in the multidimensional space of the categories of the resources. Knowing this space, we propose an algorithm based on a Kalman filter to track users and to predict the best prediction of their future position in the recommendation space.

  13. Identifying On-Orbit Test Targets for Space Fence Operational Testing

    Science.gov (United States)

    Pechkis, D.; Pacheco, N.; Botting, T.

    2014-09-01

    Space Fence will be an integrated system of two ground-based, S-band (2 to 4 GHz) phased-array radars located in Kwajalein and perhaps Western Australia [1]. Space Fence will cooperate with other Space Surveillance Network sensors to provide space object tracking and radar characterization data to support U.S. Strategic Command space object catalog maintenance and other space situational awareness needs. We present a rigorous statistical test design intended to test Space Fence to the letter of the program requirements as well as to characterize the system performance across the entire operational envelope. The design uses altitude, size, and inclination as independent factors in statistical tests of dependent variables (e.g., observation accuracy) linked to requirements. The analysis derives the type and number of necessary test targets. Comparing the resulting sample sizes with the number of currently known targets, we identify those areas where modelling and simulation methods are needed. Assuming hypothetical Kwajalein radar coverage and a conservative number of radar passes per object per day, we conclude that tests involving real-world space objects should take no more than 25 days to evaluate all operational requirements; almost 60 percent of the requirements can be tested in a single day and nearly 90 percent can be tested in one week or less. Reference: [1] L. Haines and P. Phu, Space Fence PDR Concept Development Phase, 2011 AMOS Conference Technical Papers.

  14. GPU-based calculation of scattering characteristics of space target in the visible spectrum

    Science.gov (United States)

    Cao, YunHua; Wu, Zhensen; Bai, Lu; Song, Zhan; Guo, Xing

    2014-10-01

    Scattering characteristics of space target in the visible spectrum, which can be used in target detection, target identification, and space docking, is calculated in this paper. Algorithm of scattering characteristics of space target is introduced. In the algorithm, space target is divided into thousands of triangle facets. In order to obtain scattering characteristics of the target, calculation of each facet will be needed. For each facet, calculation will be executed in the spectrum of 400-760 nanometers at intervals of 1 nanometer. Thousands of facets and hundreds of bands of each facet will cause huge calculation, thus the calculation will be very time-consuming. Taking into account the high parallelism of the algorithm, Graphic Processing Units (GPUs) are used to accelerate the algorithm. The acceleration reaches 300 times speedup on single Femi-generation NVDIA GTX 590 as compared to the single-thread CPU version of code on Intel(R) Xeon(R) CPU E5-2620. And a speedup of 412x can be reached when a Kepler-generation NVDIA K20c is used.

  15. Progress in the Visualization and Mining of Chemical and Target Spaces.

    Science.gov (United States)

    Medina-Franco, José L; Aguayo-Ortiz, Rodrigo

    2013-12-01

    Chemogenomics is a growing field that aims to integrate the chemical and target spaces. As part of a multi-disciplinary effort to achieve this goal, computational methods initially developed to visualize the chemical space of compound collections and mine single-target structure-activity relationships, are being adapted to visualize and mine complex relationships in chemogenomics data sets. Similarly, the growing evidence that clinical effects are many times due to the interaction of single or multiple drugs with multiple targets, is encouraging the development of novel methodologies that are integrated in multi-target drug discovery endeavors. Herein we review advances in the development and application of approaches to generate visual representations of chemical space with particular emphasis on methods that aim to explore and uncover relationships between chemical and target spaces. Also, progress in the data mining of the structure-activity relationships of sets of compounds screened across multiple targets are discussed in light of the concept of activity landscape modeling.

  16. IR image generation of space target based on OpenGL

    Science.gov (United States)

    Shen, Tongsheng; Guo, Ming; Wang, Chenggang

    2007-11-01

    IR Scene simulation has been an important way to design and assess the IR sensor, and the key of simulation is the generation of IR scene image. Based on OpenGL, the method of IR image generation is proposed. The geometry model is constructed with professional CAD software, and the observer location is determined after scene transformation. The full infrared model of space target is built based on infrared physics and heat transfer, which includes the radiation, convection, conduction between different parts of the space target, and which also includes the radiation, convection of environment. Radiance of space target is converted to gray value, and properties of scene are defined according to the gray level. After a series of processing, dynamic IR images are generated with the technology of double buffering.

  17. ICA Based Speckle Filtering for Target Extraction in SAR Images Using Adaptive Space Separation

    Institute of Scientific and Technical Information of China (English)

    LI Yu-tong; ZHOU Yue; YANG Lei

    2008-01-01

    A novel approach based on independent component analysis (ICA) for speckle filtering and target extraction of synthetic aperture radar (SAR) images is proposed using adaptive space separation with weighted information entropy (WIE) incorporated. First the basis and the independent components are respectively obtained by ICA technique, and WIE of the image is computed; then based on the threshold computed from function T-WIE (threshold versus weighted-information-entropy), independent components are adaptively separated and the bases are classified accordingly. Thus, the image space is separated into two subspaces: "clean" and "noise". Then, a proposed nonlinear operator ABO is applied on each component of the 'clean' subspace for further optimization. Finally, recovery image is obtained reconstructing this subspace and target is easily extracted with binarisation. Note that here T-WIE is an interpolated function based on several representative target SAR images using proposed space separation algorithm.

  18. Research on Space Target Recognition Algorithm Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Shen Yiying

    2013-07-01

    Full Text Available The space target recognition algorithm, which is based on the time series of radar cross section (RCS, is proposed in this paper to solve the problems of space target recognition in the active radar system. In the algorithm, EMD method is applied for the first time to extract the eigen of RCS time series. The normalized instantaneous frequencies of high-frequency intrinsic mode functions obtained by EMD are used as the eigen values for the recognition, and an effective target recognition criterion is established. The effectiveness and the stability of the algorithm are verified by both simulation data and real data. In addition, the algorithm could reduce the estimation bias of RCS caused by inaccurate evaluation, and it is of great significance in promoting the target recognition ability of narrow-band radar in practice.  

  19. Effects of target fragmentation on evaluation of LET spectra from space radiations: implications for space radiation protection studies

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.

    1996-01-01

    We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.

  20. The non-abelian target space duals of Taub-NUT space

    CERN Document Server

    Hewson, S F

    1995-01-01

    We discuss the non-abelian duality procedure for groups which do not act freely. As an example we consider Taub-NUT space, which has the local isometry group SU(2) \\otimes U(1). We dualise over the entire symmetry group as well as the subgroups SO(3) and U(1), presenting unusual new solutions to low energy string theory. The solutions obtained highlight the relationship between fixed points of an isometry in one solution and singular points in another. We also find the interesting results that, in this case, the U(1) and SO(3) T-duality procedures commute with each other, and that the extreme points of the O(1,1) duality group for the time translations have special significance under the SO(3) T-duality.

  1. Analysis of influential factors on a space target's laser radar cross-section

    Science.gov (United States)

    Han, Yi; Sun, Huayan; Guo, Huichao

    2014-03-01

    This paper utilises the idea of theoretical analysis to introduce a fast and visual laser radar cross-section (LRCS) calculation method for space targets that is implemented with OpenGL. We chose the cube, cylinder and cone as targets based on the general characteristics of satellite shapes. The four-parameter mono-station BRDF is used, and we assume the surface materials are either purely diffuse, purely specular or mixed. The degree of influence on a target's total LRCS of the target's shape and size and the surface materials' BRDF are described. We describe the general laws governing influential factors by comparing simulated results. These conclusions can provide a reference for new research directions and methods to determine a target's laser scattering characteristics.

  2. Integrable boundary interaction in 3D target space: The “pillow-brane” model

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Sergei L., E-mail: sergei@physics.rutgers.edu [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849 (United States); L.D. Landau Institute for Theoretical Physics, Chernogolovka, 142432 (Russian Federation); Zamolodchikov, Alexander B. [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849 (United States); Institute for Information Transmission Problems, Moscow (Russian Federation)

    2013-08-21

    We propose a model of boundary interaction, with three-dimensional target space, and the boundary values of the field X∈R{sup 3} constrained to lay on a two-dimensional surface of the “pillow” shape. We argue that the model is integrable, and suggest that its exact solution is described in terms of certain linear ordinary differential equation.

  3. Generating an optimal target list for a space mission dedicated to transit spectroscopy

    Science.gov (United States)

    Zingales, Tiziano

    2016-10-01

    Nowadays several space missions and ground-based surveys discovered more than 3000 exoplanets. The characterization of their atmospheres is necessary to understand how were they formed, how do they evolve, how are they affected by starlight, stellar winds and other fundamental questions. ARIEL and Twinkle are two dedicated space mission for the study of exoplanetary atmospheres. ARIEL is one the three candidates for the next ESA medium class mission expected to be launched in 2026. Twinkle, proposed to be launched in 2019, is a small, low-cost mission. In order to draft the target lists of the two missions, it is important to look for the best targets that can be observed with the instrumentationassembled on the two satellites. The final lists have to take into account both the number of already known exoplanets and the number of existing exoplanets still not discovered (thanks to the Kepler space mission we can estimate the occurrence rate of exoplanets around the stars, Fressin et al, 2013). Future space missions (GAIA, Cheops, PLATO, Kepler II and TESS) and ground-based surveys will deliver many new exoplanets in the next decade. For this reason a trustworthy target list of exoplanets for a space mission planned to be launched in 2026 (or 2019) needs to take intoaccount a more complete list than the currently available.

  4. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia

    Science.gov (United States)

    Zhang, Bo; Liang, Bin; Wang, Ziwei; Mi, Yilin; Zhang, Yiman; Chen, Zhang

    2017-05-01

    A noncooperative target with large inertia grasped by space robot may contain a large unkonwn initial angular momentum, which will cause the compound system unstable. Unloading the unkonwn angular momentum of the compound system is a necessary and diffcult task. In the paper, a coordinated stabilization scenario is introduced to reduce the angular momentum, which has two stages, Momentum Reduction and Momentum Redistribution. For the Momentum Reduction, a modified adaptive sliding mode control algorithm is proposed and used to reduce the unknown angular momentum of target, which uses a new signum function and time-delay estimation to assure fast convergence and achieve good performance with small chattering effect. Finally, a plane dual-arm space robot is simulated, the numerical simulations show that the proposed control algorithm is able to stabilize a noncooperative target with large inertia successfully, while the attitude disturbance of base is small. The control algorithm also has a good robust performance.

  5. Feature to space conversion during target selection in the dorsolateral and ventrolateral prefrontal cortex of monkeys.

    Science.gov (United States)

    Inoue, Masato; Mikami, Akichika

    2010-03-01

    To investigate the neuronal mechanism of the process of selection of a target from an array of stimuli, we analysed neuronal activity of the lateral prefrontal cortex during the response period of a serial probe reproduction task. During the response period of this task, monkeys were trained to select a memorized target object from an array of three objects and make a saccadic eye movement toward it. Of 611 neurons, 74 neurons showed visual response and 56 neurons showed presaccadic activity during the response period. Among visual neurons, 27 showed array- and target-selectivity. All of these array- and target-selective visual responses were recorded from the ventrolateral prefrontal cortex (VLPFC). Among 56 neurons with presaccadic activity, nine showed target-selective activity, 17 showed target- and direction-selective activity, and 23 showed direction-selective activity. The target-selective, and the target- and direction-selective activities were recorded from the VLPFC, and the direction-selective activities were recorded from VLPFC and dorsolateral prefrontal cortex (DLPFC). The starting time of the activity was earlier for the target-selective, and target- and direction-selective activities in VLPFC, intermediate for the direction-selective activities in VLPFC, and later for the direction-selective activities in DLPFC. These results suggest that VLPFC plays a role in the process of selection of a target object from an array of stimuli, VLPFC and DLPFC play a role in determining the location of the target in space, and DLPFC plays a role in selecting a direction and making a decision to generate a saccadic eye movement.

  6. 3D Imaging of Rapidly Spinning Space Targets Based on a Factorization Method.

    Science.gov (United States)

    Bi, Yanxian; Wei, Shaoming; Wang, Jun; Mao, Shiyi

    2017-02-14

    Three-dimensional (3D) imaging of space targets can provide crucial information about the target shape and size, which are significant supports for the application of automatic target classification and recognition. In this paper, a new 3D imaging of space spinning targets via a factorization method is proposed. Firstly, after the translational compensation, the scattering centers two-dimensional (2D) range and range-rate sequence induced by the target spinning is extracted using a high resolution spectral estimation technique. Secondly, measurement data association is implemented to obtain the scattering center trajectory matrix by using a range-Doppler tracker. Then, we use an initial coarse angular velocity to generate the projection matrix, which consists of the scattering centers range and cross-range, and a factorization method is applied iteratively to the projection matrix to estimate the accurate angular velocity. Finally, we use the accurate estimate spinning angular velocity to rescale the projection matrix and the well-scaled target 3D geometry is reconstructed. Compared to the previous literature methods, ambiguity in the spatial axes can be removed by this method. Simulation results have demonstrated the effectiveness and robustness of the proposed method.

  7. Unobservable Problem of Target Tracking with Bearing-only Measurements in 3-dimensional Space

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-gang; SHENG An-dong

    2008-01-01

    The bearings-only tracking (BOT) system is said to be observability if and only if the target motion parameters can be uniquely determined by noise-free bearing measurements. By utilizing the method of orthogonal vectors and characteristic of linear matrix equation, the problem of observability for BOT in noise-free bearings measurements from single observer is discussed based on the target and observer traveling in the 3-dimensional space. A proposition that BOT for target and observer traveling in the 3-dimensional space with constant acceleration remains unsolvable is presented and proved. By proving the proposition, it is also shown that some motion parameter ratios of target can be estimated under certain condition satisfied by measurements and time samples. The proposition is extended to arbitrary rank of manoeuvre for the observer and the target, which BOT remains unobservable property while the rank of target manoeuvre is higher than that of the observer manoeuvre. The theoretical analysis of this paper provides the guidelines for how the observer trajectory should be formulated to avoid unobservable state for BOT in practice application.

  8. Scale-space point spread function based framework to boost infrared target detection algorithms

    Science.gov (United States)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2016-07-01

    Small target detection is one of the major concern in the development of infrared surveillance systems. Detection algorithms based on Gaussian target modeling have attracted most attention from researchers in this field. However, the lack of accurate target modeling limits the performance of this type of infrared small target detection algorithms. In this paper, signal to clutter ratio (SCR) improvement mechanism based on the matched filter is described in detail and effect of Point Spread Function (PSF) on the intensity and spatial distribution of the target pixels is clarified comprehensively. In the following, a new parametric model for small infrared targets is developed based on the PSF of imaging system which can be considered as a matched filter. Based on this model, a new framework to boost model-based infrared target detection algorithms is presented. In order to show the performance of this new framework, the proposed model is adopted in Laplacian scale-space algorithms which is a well-known algorithm in the small infrared target detection field. Simulation results show that the proposed framework has better detection performance in comparison with the Gaussian one and improves the overall performance of IRST system. By analyzing the performance of the proposed algorithm based on this new framework in a quantitative manner, this new framework shows at least 20% improvement in the output SCR values in comparison with Laplacian of Gaussian (LoG) algorithm.

  9. Systematic mining of analog series with related core structures in multi-target activity space.

    Science.gov (United States)

    Gupta-Ostermann, Disha; Hu, Ye; Bajorath, Jürgen

    2013-08-01

    We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.

  10. The influence of the earth radiation on space target detection system

    Science.gov (United States)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  11. Target selection of classical pulsating variables for space-based photometry

    Science.gov (United States)

    Plachy, E.; Molnar, L.; Szabo, R.; Kolenberg, K.; Banyai, E.

    2016-05-01

    In a few years the Kepler and TESS missions will provide ultra- precise photometry for thousands of RR Lyrae and hundreds of Cepheid stars. In the extended Kepler mission all targets are proposed in the Guest Observer (GO) Program, while the TESS space telescope will work with full frame images and a ~15-16th mag brightness limit with the possibility of short cadence measurements for a limited number of pre-selected objects. This paper highlights some details of the enormous and important work of the target selection process made by the members of Working Group 7 (WG#7) of the Kepler and TESS Asteroseismic Science Consortium.

  12. Target selection of classical pulsating variables for space-based photometry

    CERN Document Server

    Plachy, E; Szabó, R; Kolenberg, K; Bányai, E

    2016-01-01

    In a few years the Kepler and TESS missions will provide ultra-precise photometry for thousands of RR Lyrae and hundreds of Cepheid stars. In the extended Kepler mission all targets are proposed in the Guest Observer (GO) Program, while the TESS space telescope will work with full frame images and a ~15-16th mag brightness limit with the possibility of short cadence measurements for a limited number of pre-selected objects. This paper highlights some details of the enormous and important work of the target selection process made by the members of Working Group 7 (WG#7) of the Kepler and TESS Asteroseismic Science Consortium.

  13. Bearings-only fusion tracking for maneuvering target with wavelet transform in three dimensional space

    Institute of Scientific and Technical Information of China (English)

    Tian Hongwei; Jing Zhongliang; Hu Shiqiang; Li Jianxun

    2005-01-01

    A new fusion tracking algorithm is presented to track maneuvering target in three-dimensional (3D) space with bearings-only measurements. With the introduction of passive location and interacting multiple model (IMM) algorithm based on multirate model, the high-rate sequence measurements of two sensors are utilized. Simulation results show that the performance of tracking has been improved. The new algorithm removes the barrier of processing high-rate bearingsonly measurements.

  14. Chasing Ghosts in Space Radiobiology Research: The Lost Focus on Non-Targeted Effects

    Science.gov (United States)

    Cucinotta, Francis; Saganti, Premkumar; Cacao, Eliedonna

    2016-07-01

    The doses and dose-rates of astronaut exposures to galactic cosmic rays (GCR) are accurately known, and lead to particle hits per cell nucleus from high charge and energy (HZE) particles of much less than one hit per cell per week. A large number of experiments have shown that additivity of biological effects is a valid assumption for space radiation exposures, while experiments at higher doses and dose-rates than occur in space continue to be a focus of the majority of space radiobiology research. Furthermore HZE particle exposures with mono-energetic particles manifest themselves as a mixed-radiation field due to the contributions of delta-rays and the random impact parameter of a particles track core to DNA and non-DNA targets in cells and tissues. The mixed-field manifestation of mono-energetic HZE particle exposures is well known from theoretical studies of microdosimetry and track structure. Additional mixed-field effects occur for single species experiments due to nuclear fragmentation in particle accelerator beam-lines and biological samples along with energy straggling. In contrast to these well known aspects of space radiobiology there are many open questions on the contribution of non-targeted effects to low dose and dose-rate exposures. Non-targeted effects (NTEs) include bystander effects and genomic instability, and have been shown to be the most important outstanding question for reducing uncertainties in space radiation cancer risk assessment. The dose-rate and radiation quality dependence of NTE's has not been established, while there is an over-arching need to develop 21st century experimental models of human cancer risk. We review possible mechanisms of NTE's and how new experiments to address these issues could be designed.

  15. Target-distractor similarity has a larger impact on visual search in school-age children than spacing.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke

    2015-01-22

    In typically developing children, crowding decreases with increasing age. The influence of target-distractor similarity with respect to orientation and element spacing on visual search performance was investigated in 29 school-age children with normal vision (4- to 6-year-olds [N = 16], 7- to 8-year-olds [N = 13]). Children were instructed to search for a target E among distractor Es (feature search: all flanking Es pointing right; conjunction search: flankers in three orientations). Orientation of the target was manipulated in four directions: right (target absent), left (inversed), up, and down (vertical). Spacing was varied in four steps: 0.04°, 0.5°, 1°, and 2°. During feature search, high target-distractor similarity had a stronger impact on performance than spacing: Orientation affected accuracy until spacing was 1°, and spacing only influenced accuracy for identifying inversed targets. Spatial analyses showed that orientation affected oculomotor strategy: Children made more fixations in the "inversed" target area (4.6) than the vertical target areas (1.8 and 1.9). Furthermore, age groups differed in fixation duration: 4- to 6-year-old children showed longer fixation durations than 7- to 8-year-olds at the two largest element spacings (p = 0.039 and p = 0.027). Conjunction search performance was unaffected by spacing. Four conclusions can be drawn from this study: (a) Target-distractor similarity governs visual search performance in school-age children, (b) children make more fixations in target areas when target-distractor similarity is high, (c) 4- to 6-year-olds show longer fixation durations than 7- to 8-year-olds at 1° and 2° element spacing, and (d) spacing affects feature but not conjunction search-a finding that might indicate top-down control ameliorates crowding in children.

  16. Entanglement Entropy in the $\\sigma$-Model with the de Sitter Target Space

    CERN Document Server

    Vancea, Ion V

    2016-01-01

    We derive the formula of the entanglement entropy between the left and right oscillating modes of the $\\sigma$-model with the de Sitter target space. To this end, we study the theory in the cosmological gauge in which the non-vanishing components of the metric on the two-dimensional base space are functions of the expansion parameter of the de Sitter space. The model is embedded in the causal north pole diamond of the Penrose diagram. We argue that the cosmological gauge is natural to the $\\sigma$-model as it is compatible with the canonical quantization relations. In this gauge, we obtain a new general solution to the equations of motion in terms of time-independent oscillating modes. The constraint structure is adequate for quantization in the Gupta-Bleuler formalism. We construct the space of states as a one-parameter family of Hilbert spaces and give the Bargmann-Fock and Jordan-Schwinger representations of it. Also, we give a simple description of the physical subspace as an infinite product of $\\mathcal...

  17. Laser tracker orientation in confined space using on-board targets

    Science.gov (United States)

    Gao, Yang; Kyle, Stephen; Lin, Jiarui; Yang, Linghui; Ren, Yu; Zhu, Jigui

    2016-08-01

    This paper presents a novel orientation method for two laser trackers using on-board targets attached to the tracker head and rotating with it. The technique extends an existing method developed for theodolite intersection systems which are now rarely used. This method requires only a very narrow space along the baseline between the instrument heads, in order to establish the orientation relationship. This has potential application in environments where space is restricted. The orientation parameters can be calculated by means of two-face reciprocal measurements to the on-board targets, and measurements to a common point close to the baseline. An accurate model is then applied which can be solved through nonlinear optimization. Experimental comparison has been made with the conventional orientation method, which is based on measurements to common intersection points located off the baseline. This requires more space and the comparison has demonstrated the feasibility of the more compact technique presented here. Physical setup and testing suggest that the method is practical. Uncertainties estimated by simulation indicate good performance in terms of measurement quality.

  18. Size, Albedo, and Taxonomy of the Don Quijote Space Mission Target

    Science.gov (United States)

    Harris, Alan; Mueller, Michael; Fitzsimmons, Alan

    2006-03-01

    Rendezvous and lander missions are a very effective but very expensive way of investigating Solar-System bodies. The planning, optimization and success of space missions depends crucially on prior remotely-sensed knowledge of target bodies. Near-Earth asteroids (NEAs), which are mainly fragments of main-belt asteroids, are seen as important goals for investigation by space missions, mainly due to the role their forebears played in planet formation and the evolution of the Solar System, but also for the pragmatic reason that these objects can collide with the Earth with potentially devastating consequences. The European Space Agency is currently planning the Don Quijote mission to a NEA, which includes a rendezvous (and perhaps a lander) spacecraft and an impactor vehicle. The aim is to study the physical properties of the target asteroid and the effects of the impact on its dynamical state, as a first step in considering realistic mitigation measures against an eventual hazardous NEA. Two potential targets have been selected for the mission, the preferred one being (10302) 1989 ML, which is energetically easier to reach and is possibly a scientifically interesting primitive asteroid. However, due to the ambiguity of available spectral data, it is currently not possible to confidently determine the taxonomic type and mineralogy of this object. Crucially, the albedo is uncertain by a factor of 10, which leads to large uncertainties in the size and mass and hence the planned near-surface operations of Don Quijote. Thermal-infrared observations are urgently required for accurate size and albedo determination. These observations, which can only be carried out by Spitzer and would require only a modest amount of observing time, would enable an accurate diameter to be derived for the first time and the resulting albedo would remove the taxonomic ambiguity. The proposed Spitzer observations are critical for effective mission planning and would greatly increase our

  19. A design of space robot multi-target capture algorithm based on DSP

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-na; HU Bing-liang; LIU Xue-bin; LIU Hui; LIU Qian-wen

    2009-01-01

    To correctly capture spatial targets from cluttered and motive celestial background, a new Multi-Target Capture algorithm was proposed, which is a comparative difference algorithm based on the combination of centroid extraction and despun registration of efficient points. Moreover, this algorithm was applied in an image processing system based on the DSP featuring high speed and high performance. The procedures of image processing are as follows: first, label efficient points in the frame and extract their centroids; second, make appropriate despun registration, according to the reference rotation angles provided by Space Robot position system; third, translate and register centroid coordinates of efficient points in reference frames and get the registration points according to the principle that there are the most same centroid coordinates of efficient points when completely registered; finally, eliminate the same background points by using comparative difference method. The result shows that this image processing system can meet the needs of the whole system.

  20. First protein drug target's appraisal of lead-likeness descriptors to unfold the intervening chemical space.

    Science.gov (United States)

    Athar, Mohd; Lone, Mohsin Y; Jha, Prakash C

    2017-03-01

    Despite the advances in combinatorial chemistry, high throughput and virtual screening experiments, plethora of clinical studies disquiet due to lead and drug-likeness attritions. For mitigation, the knowledge of physicochemical properties are really useful for guiding and selection of compounds from libraries dictated by certain rule of thumbs. However, robust bio-technological and instrumental innovations have created exponential increase in novel compounds and databases which compelled rethinking of the evaluation procedures. Known descriptive molecular property filters proposed by Lipinski, Verber and Hann are not efficient enough to encompass long array of compounds. Moreover, these filters do not take into account the specificity of biological target. In this pursuit, we have tried to appraise eight molecular properties for two major classes of biological targets viz membrane proteins and ion channels binding ligands. These molecular properties were utilized to search for the specific attributes that can be identified as an intervening space for dictating the biological activity.

  1. The First Experience With Space Scanning Extracted Beam On The Spin@u-70 Setup Target Possibility And Measurement Tool

    CERN Document Server

    Afonin, A G; Gres, V N; Terekhov, V I

    2004-01-01

    This paper presents the first results of experiments aimed at a provision of possibilities of the extracted beam space scanning on polarized target of the SPIN@U-70 Setup. The design and features of the special instrumentation are given.

  2. Richland five-year O2 R and D Program: Target space enhancement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-06-30

    This document contains the reports of progress and the plans for future work of Douglas United Nuclear, Inc., on the Target Space Enhancement Mission. The DUN research and development program is based on a long-range operating plan which recognizes a continuing need for the production of special nuclear materials in AEC facilities. Among these expected needs are increased requirements for non-defense plutonium, tritium, and other isotopes. The purpose of the target space enhancement mission is to establish an improved irradiation capability in the Hanford reactors to respond to these needs. Programs are included to reduce the unit costs of non-defense plutonium, to develop the use of Oralloy to meet future enrichment requirements, and to increase the flexibility of the reactors to produce isotopes such as plutonium-238 and uranium-233. The paper describes the scope and objectives; incentives for the study; progress during this report period; evaluation of efforts; budget period plans; and program schedules. Four studies are being undertaken: channel enlargement; highly enriched fuel use; high power density fuel; and advanced technology which includes reactor kinetics, instrumentation, and control systems improvements and transient analysis.

  3. Optimal target grasping of a flexible space manipulator for a class of objectives

    Science.gov (United States)

    Toglia, Chiara; Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.

    2011-04-01

    Space graspers are complex systems, composed by robotic arms placed on an orbiting platform. In order to fulfil the manoeuvres' requirements, it is necessary to properly model all the forces acting on the space robot. A fully nonlinear model is used to describe the dynamics, based on a multibody approach. The model includes the orbital motion, the gravity gradient, the aerodynamic effects, as well as the flexibility of the links. The present paper aims to design, thanks to nonlinear optimization algorithms, a class of manoeuvres that, given the same target to be grasped, are characterized by different mission objectives. The grasping mission can be performed with the objective to minimize the power consumption. Collision avoidance constraints can be also added when the target is equipped with solar panels or other appendices. In some cases, large elastic displacements should be expected, possibly leading to an inaccurate positioning of the end-effector. Therefore, different design strategies can require that the manoeuvre is accomplished with minimum vibrations' amplitude at the end-effector. Performance of the different strategies is analyzed in terms of control effort, trajectory errors, and flexible response of the manipulator.

  4. Low Delta-V Near-Earth Asteroids: a survey of suitable targets for space missions

    CERN Document Server

    Ieva, S; Perna, D; Barucci, M A; Bernardi, F; Fornasier, S; De Luise, F; Perozzi, E; Rossi, A; Brucato, J R

    2014-01-01

    In the last decades Near-Earth Objects (NEOs) have become very important targets to study, since they can give us clues to the formation, evolution and composition of the Solar System. In addition, they may represent either a threat to humankind, or a repository of extraterrestrial resources for suitable space-borne missions. Within this framework, the choice of next-generation mission targets and the characterisation of a potential threat to our planet deserve special attention. To date, only a small part of the 11,000 discovered NEOs have been physically characterised. From ground and space-based observations one can determine some basic physical properties of these objects using visible and infrared spectroscopy. We present data for 13 objects observed with different telescopes around the world (NASA-IRTF, ESO-NTT, TNG) in the 0.4 - 2.5 um spectral range, within the NEOSURFACE survey (http://www.oa-roma.inaf.it/planet/NEOSurface.html). Objects are chosen from among the more accessible for a rendez-vous mis...

  5. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    Science.gov (United States)

    Guo, Bao-Feng; Wang, Jun-Ling; Gao, Mei-Guo

    2015-04-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. Project supported by the National Natural Science Foundation of China (Grant No. 61401024), the Shanghai Aerospace Science and Technology Innovation Foundation, China (Grant No. SAST201240), and the Basic Research Foundation of Beijing Institute of Technology (Grant No. 20140542001).

  6. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    Institute of Scientific and Technical Information of China (English)

    郭宝锋; 王俊岭; 高梅国; 尚朝轩; 傅雄军

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm.

  7. The Parameter Space of Magnetized Target Fusion (aka Magneto-Inertial Fusion)

    Science.gov (United States)

    Lindemuth, Irvin

    2016-10-01

    Magnetized Target Fusion (MTF), aka Magneto-Inertial Fusion (MIF), is an approach to fusion that compresses a preformed, magnetized (but not necessarily magnetically confined) plasma with an imploding liner or pusher. MTF/MIF operates in a density regime in between the eleven orders of magnitude (1011) in density that separate inertial confinement fusion (ICF) from magnetic confinement fusion MCF. Compared to MCF, the higher density, shorter confinement times, and compressional heating as the dominant heating mechanism potentially reduce the impact of magnetic instabilities. Compared to ICF, the magnetically reduced thermal transport and lower density leads to orders-of-magnitude reduction in the difficult-to-achieve areal-density parameter and a significant reduction in required implosion velocity and radial convergence, potentially reducing the deleterious effects of implosion hydrodynamic instabilities. This tutorial presents fundamental analysis and simple time-dependent modeling to show where significant fusion gain might be achieved in the intermediate-density regime. The analysis shows that the fusion design space is potentially a continuum between ICF and MCF but practical considerations limit the space in which ignition might be obtained. Generic time-dependent modeling addresses the key physics requirements and defines ``ball-park'' values needed for target-plasma initial density, temperature, and magnetic field and implosion system size, energy, and velocity. The modeling shows energy gains greater than 30 can potentially be achieved and that high gain may be obtained at low convergence ratios, e.g., less than 15. A non-exhaustive review of past and present MTF/MIF efforts is presented and the renewed interest in MTF/MIF within the US (e.g., ARPA-E's ALPHA program) and abroad is noted.

  8. Detection of low-energy antinuclei in space using an active-target particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Greenwald, Daniel; Konorov, Igor; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany)

    2015-07-01

    Measuring antimatter in space excellently probes various astrophysical processes. The abundances and energy spectra of antiparticles reveal a lot about the creation and propagation of cosmic-ray particles in the universe. Abnormalities in their spectra can reveal exotic sources or inaccuracies in our understanding of the involved processes. The measurement of antiprotons and the search for antideuterons and antihelium are optimal at low kinetic energies since background from high-energy cosmic-ray collisions is low. For this reason, we are developing an active-target particle detector capable of detecting ions and anti-ions in the energy range of 30-100 MeV per nucleon. The detector consists of 900 scintillating fibers coupled to silicon photomultipliers and is designed to operate on nanosatellites. The primary application of the detector will be the Antiproton Flux in Space (AFIS) mission, whose goal is the measurement of geomagnetically trapped antiprotons inside Earth's inner radiation belt. In this talk, we explain our particle identification technique and present results from first in-beam measurements with a prototype.

  9. Stare and chase of space debris targets using real-time derived pointing data

    Science.gov (United States)

    Steindorfer, Michael A.; Kirchner, Georg; Koidl, Franz; Wang, Peiyuan; Antón, Alfredo; Fernández Sánchez, Jaime; Merz, Klaus

    2017-09-01

    We successfully demonstrate Stare & Chase: Space debris laser ranging to uncooperative targets has been achieved without a priori knowledge of any orbital information. An analog astronomy CCD with a standard objective, piggyback mounted on our 50 cm Graz SLR receive telescope, 'stares' into the sky in a fixed direction. The CCD records the stellar background within a field of view of approx. 7°. From the stellar X/Y positions on the sensor a plate solving algorithm determines the pointing data of the image center with an accuracy of approx. 15 arc seconds. If a sunlit target passes through this field of view, its equatorial coordinates are calculated, stored and a Consolidated Prediction Format (CPF) file is created in near real time. The derived CPF data is used to start laser ranging ('chase' the object) within the same pass to retrieve highly accurate distance information. A comparison of Stare & Chase CPFs with standard TLE predictions shows the possibilities and limits of this method.

  10. A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures

    Science.gov (United States)

    Anglberger, H.; Kempf, T.

    2016-10-01

    Specific imaging effects that are caused mainly by the range measurement principle of a radar device, its much lower frequency range as compared to the optical spectrum, the slanted imaging geometry and certainly the limited spatial resolution complicates the interpretation of radar signatures decisively. Especially the coherent image formation which causes unwanted speckle noise aggravates the problem of visually recognizing target objects. Fully automatic approaches with acceptable false alarm rates are therefore an even harder challenge. At the Microwaves and Radar Institute of the German Aerospace Center (DLR) the development of methods to implement a robust overall processing workflow for automatic target recognition (ATR) out of high resolution synthetic aperture radar (SAR) image data is under progress. The heart of the general approach is to use time series exploitation for the former detection step and simulation-based signature matching for the subsequent recognition. This paper will show the overall ATR chain as a proof of concept for the special case of airplane recognition on image data from the space borne SAR sensor TerraSAR-X.

  11. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  12. The space-math link in preschool boys and girls: Importance of mental transformation, targeting accuracy, and spatial anxiety.

    Science.gov (United States)

    Wong, Wang I

    2017-06-01

    Spatial abilities are pertinent to mathematical competence, but evidence of the space-math link has largely been confined to older samples and intrinsic spatial abilities (e.g., mental transformation). The roles of gender and affective factors are also unclear. This study examined the correlations between counting ability, mental transformation, and targeting accuracy in 182 Hong Kong preschoolers, and whether these relationships were weaker at higher spatial anxiety levels. Both spatial abilities related with counting similarly for boys and girls. Targeting accuracy also mediated the male advantage in counting. Interestingly, spatial anxiety moderated the space-math links, but differently for boys and girls. For boys, spatial abilities were irrelevant to counting at high anxiety levels; for girls, the role of anxiety on the space-math link is less clear. Results extend the evidence base of the space-math link to include an extrinsic spatial ability (targeting accuracy) and have implications for intervention programmes. Statement of contribution What is already known on this subject? Much evidence of a space-math link in adolescent and adult samples and for intrinsic spatial abilities. What does this study add? Extended the space-math link to include both intrinsic and extrinsic spatial abilities in a preschool sample. Showed how spatial anxiety moderated the space-math link differently for boys and girls. © 2016 The British Psychological Society.

  13. Adaptive Measurement Partitioning Algorithm for a Gaussian Inverse Wishart PHD Filter that Tracks Closely Spaced Extended Targets

    Directory of Open Access Journals (Sweden)

    P. Li

    2017-06-01

    Full Text Available Use of the Gaussian inverse Wishart probability hypothesis density (GIW-PHD filter has demonstrated promise as an approach to track an unknown number of extended targets. However, when targets of various sizes are spaced closely together and performing maneuvers, estimation errors will occur because measurement partitioning algorithms fail to provide the correct partitions. Specifically, the sub-partitioning algorithm fails to handle cases in which targets are of different sizes, while other partitioning approaches are sensitive to target maneuvers. This paper presents an improved partitioning algorithm for a GIW-PHD filter in order to solve the above problems. The sub-partitioning algorithm is improved by considering target extension information and by employing Mahalanobis distances to distinguish among measurement cells of different sizes. Thus, the improved approach is not sensitive to either differences in target sizes or target maneuvering. Simulation results show that the use of the proposed partitioning approach can improve the tracking performance of a GIW-PHD filter when target are spaced closely together.

  14. Cholera cases cluster in time and space in Matlab, Bangladesh: implications for targeted preventive interventions.

    Science.gov (United States)

    Debes, Amanda K; Ali, Mohammad; Azman, Andrew S; Yunus, Mohammad; Sack, David A

    2016-12-01

    : Cholera remains a serious public health threat in Asia, Africa and in parts of the Americas. Three World health Organization (WHO) pre-qualified oral cholera vaccines are now available but their supply is limited, so current supplies must be administered strategically. This requires an improved understanding of disease transmission and control strategies. : We used demographics and disease surveillance data collected from 1991 to 2000 in Matlab, Bangladesh, to estimate the spatial and temporal extent of the zone of increased risk around cholera cases. Specifically, we compare the cholera incidence among individuals living close to cholera cases with that among individuals living close to those without medically-attended cholera in this rural endemic setting. : Those living within 50 m of a confirmed cholera case had 36 times (95% confidence interval: 23-56) the risk of becoming a cholera case in the first 3 days (after case presentation) compared with risk elsewhere in the community. The relative risk gradually declined in space and time, but remained significantly high up to 450 me away within 3 days of case presentation, and up to 150 m away within 23 days from the date of presentation of the case. : These findings suggest that, if conducted rapidly, vaccinating individuals living close to a case (ring vaccination) could be an efficient and effective strategy to target vaccine to a high-risk population in an endemic setting.

  15. Research on the development of space target detecting system and three-dimensional reconstruction technology

    Science.gov (United States)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  16. Target-distractor similarity has a larger impact on visual search in school-age children than spacing

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.

    2015-01-01

    In typically developing children, crowding decreases with increasing age. The influence of target-distractor similarity with respect to orientation and element spacing on visual search performance was investigated in 29 school-age children with normal vision (4- to 6-year-olds [N = 16], 7- to 8-year

  17. TARGET:?

    National Research Council Canada - National Science Library

    James M Acton

    2014-01-01

      By 2003. as military planners had become worried that the country's long-range conventional weapons, such as cruise missiles, might be too slow to reach hypothetical distant targets that needed to be struck urgently...

  18. Efficient characterization of labeling uncertainty in closely-spaced targets tracking

    NARCIS (Netherlands)

    Moreno Leon, Carlos; Moreno Leon, Carlos; Driessen, Hans; Mandal, Pranab K.

    2016-01-01

    In this paper we propose a novel solution to the labeled multi-target tracking problem. The method presented is specially effective in scenarios where the targets have once moved in close proximity. When this is the case, disregarding the labeling uncertainty present in a solution (after the targets

  19. Robust, fast and accurate vision-based localization of a cooperative target used for space robotic arm

    Science.gov (United States)

    Wen, Zhuoman; Wang, Yanjie; Luo, Jun; Kuijper, Arjan; Di, Nan; Jin, Minghe

    2017-07-01

    When a space robotic arm deploys a payload, usually the pose between the cooperative target fixed on the payload and the hand-eye camera installed on the arm is calculated in real-time. A high-precision robust visual cooperative target localization method is proposed. Combing a circle, a line and dots as markers, a target that guarantees high detection rates is designed. Given an image, single-pixel-width smooth edges are drawn by a novel linking method. Circles are then quickly extracted using isophotes curvature. Around each circle, a square boundary in a pre-calculated proportion to the circle radius is set. In the boundary, the target is identified if certain numbers of lines exist. Based on the circle, the lines, and the target foreground and background intensities, markers are localized. Finally, the target pose is calculated by the Point-3-Perspective algorithm. The algorithm processes 8 frames per second with the target distance ranging from 0.3m to 1.5 m. It generated high-precision poses of above 97.5% on over 100,000 images regardless of camera background, target pose, illumination and motion blur. At 0.3 m, the rotation and translation errors were less than 0.015° and 0.2 mm. The proposed algorithm is very suitable for real-time visual measurement that requires high precision in aerospace.

  20. Challenges of Sustaining the International Space Station through 2020 and Beyond: Including Epistemic Uncertainty in Reassessing Confidence Targets

    Science.gov (United States)

    Anderson, Leif; Carter-Journet, Katrina; Box, Neil; DiFilippo, Denise; Harrington, Sean; Jackson, David; Lutomski, Michael

    2012-01-01

    This paper introduces an analytical approach, Probability and Confidence Trade-space (PACT), which can be used to assess uncertainty in International Space Station (ISS) hardware sparing necessary to extend the life of the vehicle. There are several key areas under consideration in this research. We investigate what sparing confidence targets may be reasonable to ensure vehicle survivability and for completion of science on the ISS. The results of the analysis will provide a methodological basis for reassessing vehicle subsystem confidence targets. An ongoing annual analysis currently compares the probability of existing spares exceeding the total expected unit demand of the Orbital Replacement Unit (ORU) in functional hierarchies approximating the vehicle subsystems. In cases where the functional hierarchies availability does not meet subsystem confidence targets, the current sparing analysis further identifies which ORUs may require additional spares to extend the life of the ISS. The resulting probability is dependent upon hardware reliability estimates. However, the ISS hardware fleet carries considerable epistemic uncertainty (uncertainty in the knowledge of the true hardware failure rate), which does not currently factor into the annual sparing analysis. The existing confidence targets may be conservative. This paper will also discuss how confidence targets may be relaxed based on the inclusion of epistemic uncertainty for each ORU. The paper will conclude with strengths and limitations for implementing the analytical approach in sustaining the ISS through end of life, 2020 and beyond.

  1. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments

    Science.gov (United States)

    Teillet, P.M.; Barsi, J.A.; Chander, G.; Thome, K.J.

    2007-01-01

    This paper provides a comprehensive list of prime candidate terrestrial targets for consideration as benchmark sites for the post-launch radiometric calibration of space-based instruments. The key characteristics of suitable sites are outlined primarily with respect to selection criteria, spatial uniformity, and temporal stability. The establishment and utilization of such benchmark sites is considered an important element of the radiometric traceability of satellite image data products for use in the accurate monitoring of environmental change.

  2. Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil

    CSIR Research Space (South Africa)

    Van Greunen, DG

    2017-02-01

    Full Text Available A series of twenty seven acetylcholinesterase inhibitors, as potential agents for the treatment of Alzheimer's disease, were designed and synthesised based upon previously unexplored chemical space surrounding the molecular skeleton of the drug...

  3. Non-Targeted Effects and LET: Considerations for Earth and Space Research

    Science.gov (United States)

    Sowa, Marianne B.

    2016-01-01

    It is evident from reports in the literature that there are many confounding factors that are capable of modulating radiation-induced non-targeted responses such as the bystander effect and the adaptive response. It has even been suggested that the observation of non-targeted responses may not be universally observable for differing radiation qualities. Dr. William Morgan made many contributions to the study of radiation induced non-targeted effects and it is indeed this area of research where we first began our collaboration more than a decade ago. In this presentation, I will discuss elements of this journey together with a particular emphasis on the role of LET in non-targeted effects.

  4. Dynamics modeling and control of a 6-DOF space robot with flexible panels for capturing a free floating target

    Science.gov (United States)

    Yu, Zhang-wei; Liu, Xiao-feng; Cai, Guo-ping

    2016-11-01

    In many kinds of on-orbit space robot tasks, capturing free floating target using space robot attracts more attention of researchers. However, most existing researches about dynamics and control of space robot concern planar problem, and the effect of flexible panel on capturing dynamics of the system is not considered. In this paper, spatial dynamics and control of a 6-DOF space robot with flexible panels are investigated and spatial impact problem is considered. Dynamic model of the system is established by the single direction recursive construction method and the Jourdain's velocity variation principle. The Hertz contact and impact theory and the method of computer graphics are used to establish the impact model. The computed torque control method is used to design active controller to suppress the spacecraft drift caused by the impact. Numerical simulation results show that the established dynamic model is effective in describing the dynamics behavior of the space robot; flexible panels have big influence on impact dynamic characteristics; the designed controller may effectively control the spacecraft drift during the capture process.

  5. A novel method of target recognition based on 3D-color-space locally adaptive regression kernels model

    Science.gov (United States)

    Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-10-01

    Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.

  6. The Space Missions WAXS/WFXT and SWIFT New Targets for the VLT

    CERN Document Server

    Chincarini, G L

    1999-01-01

    At OAB we were, during the year 1998, deeply involved in planning two important space missions for which very large ground based telescopes, VLT in particular, would play a very large and important role in the optical followup. The study of the first mission, Wide Angle X-ray Survey using a Wide Field X-ray Telescope, was coordinated by the Observatory of Brera, involved mainly Italian industries and resulted in a proposal to the Italian Space Agency under the Small Satellite Program. The second mission, SWIFT, has been coordinated and directed by the Goddard Space Flight Center and resulted in the submission of a proposal to NASA under the MIDEX program. The science goal of this mission is the detection and study of the Gamma-ray bursts.

  7. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    Science.gov (United States)

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  8. Challenges of Sustaining the International Space Station Through 2020 and Beyond: Reassessing Confidence Targets for System Availability

    Science.gov (United States)

    Lutomski, Michael G.; Carter-Journet, Katrina; Anderson, Leif; Box, Neil; Harrington, Sean; Jackson, David; DiFilippo, Denise

    2012-01-01

    The International Space Station (ISS) was originally designed to operate until 2015 with a plan for deorbiting the ISS in 2016. Currently, the international partnership has agreed to extend the operations until 2020 and discussions are underway to extend the life even further to 2028. Each partner is responsible for the sustaining engineering, sparing, and maintenance of their own segments. National Aeronautics and Space Administration's (NASA's) challenge is to purchase the needed number of spares to maintain the functional availability of the ISS systems necessary for the United States On-Orbit Segment s contribution. This presentation introduces an analytical approach to assessing uncertainty in ISS hardware necessary to extend the life of the vehicle. Some key areas for consideration are: establishing what confidence targets are required to ensure science can be continuously carried out on the ISS, defining what confidence targets are reasonable to ensure vehicle survivability, considering what is required to determine if the confidence targets are too high, and whether sufficient number of spares are purchased. The results of the analysis will provide a methodological basis for reassessing vehicle subsystem confidence targets. This analysis compares the probability of existing spares exceeding the total expected unit demand of the Orbital Replacement Unit (ORU) in functional hierarchies approximating the vehicle subsystems. In cases where the functional hierarchies' availability does not meet subsystem confidence targets, the analysis will further identify which ORUs may require additional spares to extend the life of the ISS. The resulting probability is dependent upon hardware reliability estimates. However, the ISS hardware fleet carries considerable epistemic uncertainty which must be factored into the development and execution of sparing risk postures. In addition, it is also recognized that uncertainty in the assessment is due to disconnects between

  9. The collision-free trajectory planning for the space robot to capture a target based on the wavelet interpolation algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the research of path planning for manipulators with many DOF, generally there is a problem in most traditional methods, which is that their computational cost (time and memory space) increases exponentially as DOF or resolution of the discrete configuration space increases. So this paper presents the collision-free trajectory planning for the space robot to capture a target based on the wavelet interpolation algorithm. We made wavelet sample on the desired trajectory of the manipulator' s end-effector to do trajectory planning by use of the proposed wavelet interpolation formula, and then derived joint vectors from the trajectory information of the endeffector based on the fixed-attitude-restrained generalized Jacobian matrix of multi-arm coordinated motion, so as to control the manipulator to capture a static body along the desired collision-free trajectory. The method overcomes the shortcomings of the typical methods, and the desired trajectory of the end-effector can be any kind of complex nonlinear curve. The algorithm is simple and highly effective and the real trajectory is close to the desired trajectory. In simulation, the planar dual-arm three DOF space robot is used to demonstrate the proposed method, and it shows that the algorithm is feasible.

  10. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Lindemuth, I.R.

    1994-12-31

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.

  11. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    Science.gov (United States)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  12. Configurable adaptive optical system for imaging of ground-based targets from space

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.

    2003-03-01

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  13. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  14. New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope

    Science.gov (United States)

    Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.

    2014-01-01

    We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.

  15. NICA-MPD fixed target mode: soft jet studies in the relative 4-velocity space

    CERN Document Server

    Okorokov, V A

    2016-01-01

    Experimental results obtained by studying the properties of soft jets in the 4-velocity space at $\\sqrt{s} \\sim 2-20$ GeV are presented. The changes in the mean distance from the jet axis to the jet particles, the mean kinetic energy of these particles, and the cluster dimension in response to the growth of the collision energy are consistent with the assumption that quark degrees of freedom manifest themselves in processes of pion jet production at intermediate energies. The energy at which quark degrees of freedom begin to manifest themselves experimentally in the production of soft pion jets is estimated for the first time. The estimated value of this energy is $2.8 \\pm 0.6$ GeV. The suggestions are made for future investigations on NICA-MPD.

  16. High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang

    for the spacecraft to navigate safely and autonomously towards the target. These methods are applied on three distinct study cases, which are based on the platform of the microASC instrument. In relation to the Mars2020 rover, a structured light system is used to navigate the PIXL instrument towards the Martian...... the surface and to enhance the PIXL instrument's capabilities with highly accurate distance measurements. Optical observations of planetary bodies and satellites are utilized to determine the inertial position of a spacecraft. A software module is developed, tested and verified by both ground based and in......-ight observations, where the performanceover the complete operational envelope is characterized by simulations. The in-flight observations were captured onboard Juno, during the Earth flyby, by the microASC instrument, operating as an inertially controlled imager. The involvement in Juno's Earth Fly By operational...

  17. Targeted enrichment of the black cottonwood (Populus trichocarpa gene space using sequence capture

    Directory of Open Access Journals (Sweden)

    Zhou Lecong

    2012-12-01

    Full Text Available Abstract Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’. A total of 20.76Mb (5% of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end, 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.

  18. Vision affects tactile target and distractor processing even when space is task-irrelevant

    Directory of Open Access Journals (Sweden)

    Ann-Katrin eWesslein

    2014-02-01

    Full Text Available The human brain is adapted to integrate the information from multiple sensory modalities into coherent, robust representations of the objects and events in the external world. A large body of empirical research has demonstrated the ubiquitous nature of the interactions that take place between vision and touch, with the former typically dominating over the latter. Many studies have investigated the influence of visual stimuli on the processing of tactile stimuli (and vice versa. Other studies, meanwhile, have investigated the effect of directing a participant’s gaze either toward or else away from the body-part receiving the target tactile stimulation. Other studies, by contrast, have compared performance in those conditions in which the participant’s eyes have been open versus closed. We start by reviewing the research that has been published to date demonstrating the influence of vision on the processing of tactile targets, that is, on those stimuli that have to be attended or responded to. We outline that many – but not all – of the visuotactile interactions that have been observed to date may be attributable to the direction of spatial attention. We then move on to focus on the crossmodal influence of vision, as well as of the direction of gaze, on the processing of tactile distractors. We highlight the results of those studies demonstrating the influence of vision, rather than gaze direction (i.e., the direction of overt spatial attention, on tactile distractor processing (e.g., tactile variants of the negative-priming or flanker task. The conclusion is that no matter how vision of a tactile distractor is engaged, the result would appear to be the same, namely that tactile distractors are processed more thoroughly.

  19. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M.; Tabocchini, M.A. [Istituto Superiore di Sanita, Rome (Italy). Physics Lab.; Sapora, O. [Istituto Superiore di Sanita, Rome (Italy). Comparative Toxicology Lab.

    2002-12-01

    DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to {gamma}-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation. (author)

  20. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    Science.gov (United States)

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  1. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition

    Directory of Open Access Journals (Sweden)

    Yanpeng Li

    2016-01-01

    Full Text Available Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC, which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  2. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    Science.gov (United States)

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2017-05-20

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spaces

    Directory of Open Access Journals (Sweden)

    Maziar Nekovee

    2010-01-01

    Full Text Available Cognitive radio is being intensively researched as the enabling technology for license-exempt access to the so-called TV White Spaces (TVWS, large portions of spectrum in the UHF/VHF bands which become available on a geographical basis after digital switchover. Both in the US, and more recently, in the UK the regulators have given conditional endorsement to this new mode of access. This paper reviews the state-of-the-art in technology, regulation, and standardisation of cognitive access to TVWS. It examines the spectrum opportunity and commercial use cases associated with this form of secondary access.

  4. TARGET/CRYOCHIL - THERMODYNAMIC ANALYSIS AND SUBSCALE MODELING OF SPACE-BASED ORBIT TRANSFER VEHICLE CRYOGENIC PROPELLANT RESUPPLY

    Science.gov (United States)

    Defelice, D. M.

    1994-01-01

    The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will

  5. Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    Science.gov (United States)

    Barbee, Brent; Mink, Ronald; Adamo, Daniel

    2011-01-01

    Near-Earth Asteroids (NEAs) have been identified by the current administration as potential destinations for human explorers during the mid-2020s. While the close proximity of these objects' orbits to Earth's orbit creates a risk of highly damaging or catastrophic impacts, it also makes some of these objects particularly accessible to spacecraft departing Earth, and this presents unique opportunities for solar system science and humanity's first ventures beyond cislunar space. Planning such ambitious missions first requires the selection of potentially accessible targets from the growing population of nearly 7,800 NEAs. To accomplish this, NASA is conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS). Phase I of the NHATS was executed during September of 2010, and Phase II was completed by early March of 2011. The study is ongoing because previously undetected NEAs are being discovered constantly, which has motivated an effort to automate the analysis algorithms in order to provide continuous monitoring of NEA accessibility. The NHATS analysis process consists of a trajectory filter and a minimum maximum estimated size criterion. The trajectory filter employs the method of embedded trajectory grids to compute all possible ballistic round-trip mission trajectories to every NEA in the Jet Propulsion Laboratory (JPL) Small-Body Database (SBDB) and stores all solutions that satisfy the trajectory filter criteria. An NEA must offer at least one qualifying trajectory solution to pass the trajectory filter. The Phase II NHATS filter criteria were purposely chosen to be highly inclusive, requiring Earth departure date between January 1st, 2015 and December 31st, 2040, total round-trip flight time = 8 days, Earth departure C(sub 3) energy = 30 m. This corresponds to an absolute magnitude H = 30 m. The distributions of osculating heliocentric orbital semi-major axis (a), eccentricity (e), and inclination (i), for those 590 NEAs are

  6. Calculation of the the yield of produced damages by secondary particles in semiconductor targets in space proton environments

    Energy Technology Data Exchange (ETDEWEB)

    Hormaza, Joel Mesa [Universidade Estadual Paulista Julio de Mesquisa Filho (IB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Garcia, Cesar E. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), Havana (Cuba); Arruda Neto, Joao D.T.; Rodrigues, Tulio E. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Schelin, Hugo R.; Paschuck, Sergei A.; Denyak, Valery; Evseev, Ivan [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2010-07-01

    When the ionizing radiation passes through semiconductor devices, transfers its energy to its composition materials through a variety of interaction mechanisms. The two foremost consequences of this energy deposition are ionization and atomic displacement, which may be responsible for degradation effects devices, depending on the physical principles on which the device operates. The main sources of ionizing radiation in low earth orbit are from galactic cosmic rays, solar particle events , and leptons and protons trapped in the radiation belts. Previous investigations have shown an strong correlation between the proton flux in the atmosphere and the Single Event Upset (SEU) rate semiconductor devices aboard aircraft and satellites. The contribution of nuclear inelastic processes to this kind of degradation effects is poorly understood. When this kind of collision occurs, a nuclear reaction is initiated, typically resulting in the emission of secondary nuclear fragments. As these particles pass through the material, they lose their energy by atomic/nuclear interactions. In this sense, two relevant questions for the spatial technology development, associated with a typical space environment and shielding configuration are: a) what kind of secondary particles are possible and what are their relative fluxes? and b) which particles are considered important when designing, for example, a satellite? In this work, the MCNPX 2.5.0 Monte Carlo radiation transport code was used to simulate space proton environments in order to contribute to the answer of these questions. As preliminary results, we shown the calculation of total dose and displacement damage, as well as the multiplicity and the spectra of secondary particles for Si and GaAs targets, considering the NASA model for emission of solar protons (ESP) and the NASA AP8MIN model for trapped protons. Also a comparative discussion with some previous equivalent results is presented. (author)

  7. Optimization of the GOSAT global observation from space with region-by-region target-mode operations

    Science.gov (United States)

    kuze, A.; Suto, H.; Shiomi, K.; Kawakami, S.; Nakajima, M.

    2013-12-01

    Since its launch in 2009, the Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has continued its grid observation and acquired about 20,000 samples per day. Now that more than 10 programs are planned or proposed to monitor greenhouse gases from space. TANSO-FTS is the only instrument that uses a Fourier transfer spectrometer. It is not an imaging spectrometer but has a symmetrical instrument line shape function (ILSF) that can be expressed to high precision for all wavelengths with a simple analytical function and can reduce fitting errors for atmosphere remote sensing. Therefore, other future instruments can cross-calibrate their data with accurate and precise GOSAT spectra. Since August 2010, TANSO-FTS has selected 3-point cross-track scan mode, which has the current best pointing stability and observes a single point three times in 14 sec. Column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) have been well validated at the TCCON sites, where surface albedo is not high and aerosol optical thickness is small. Long term GOSAT data show seasonal and latitudinal variation and annual increase accurately and precisely. JAXA has been processing and providing all the Level 1B spectra data that were acquired on-orbit. Thus the distribution of the Level 1B is spatially equal. The Level 2 users are retrieving XCO2 and XCH4 from the Level 1 by filtering cloud contaminated, aerosol thick, and low signal-to-noise ratio scenes. As a result, the yield rate at cloudy area such as Amazon, south-east Asia, and Central America, low surface albedo area such as snow and ice, bay and channels is very low. Aerosol thick area such as Sahara also has larger errors. Now that GOSAT demonstrated accurate XCO2 and XCH4 remote sensing, demand for emission source measurements of mega cities, power plants, gas fields, and volcanos has increased. In addition to grid

  8. World-volume and target-space anomalies in the D=10 super-fivebrane sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, K. [Padua Univ. (Italy). Dipt. di Fisica; Tonin, M. [Padua Univ. (Italy). Dipt. di Fisica

    1996-09-16

    The fields of the conjectured ``heterotic`` super-fivebrane sigma model in ten dimensions are made out of a well-known gravitational sector, the X and the {theta}, and of a still unknown heterotic sector which should be coupled to the Yang-Mills fields. We compute the one-loop d=6 world-volume and D=10 target-space Lorentz anomalies which arise from the gravitational sector of the heterotic super-fivebrane sigma model, using a method which we developed previously for the Green-Schwarz heterotic superstring. These anomalies turn out to carry an overall coefficient which is half of that required by the string-fivebrane duality conjecture. As a consequence, the world-volume anomaly vanishes if the heterotic fields consist of 16 (rather than 32) complex Weyl fermions on the world-volume. This implies that the string-fivebrane duality conjecture can not be based on a ``heterotic`` super-fivebrane sigma model with only fermions in the heterotic sector. Possible implications of this result are discussed. (orig.).

  9. Image Segmentations for Space Target Based-on SUSAN Algorithm%基于SUSAN算法的空间目标分割算法

    Institute of Scientific and Technical Information of China (English)

    淡雪; 岳晓奎

    2011-01-01

    With the rapid development of space technology, space background of the division of non-cooperative target has become the new focus of concern. SUSAN algorithm is a new class of parallel boundary segmentation algorithm using the USAN principle, covered by the template target pixel to extract the statistical features. Characteristics of the target image for the space, this paper presents a space-based object segmentation algorithm SUSAN algorithm. Target by the edges in the image information extraction, to achieve the artificial separation of target and background. The algorithm has good noise immunity, feature location accuracy, computing speed, better able to maintain the structural information of the characteristics of the image features, ideal for real-time image segmentation space.%随着航天科技的迅猛发展,空间背景下非合作目标的分割问题已经成为人们关注的新焦点.SUSAN算法是一种新兴的并行边界类分割算法,采用USAN原理,通过对模板覆盖像素的统计来提取目标的特征.针对空间目标图像的特点,提出了一种基于SUSAN算法的空间目标分割算法.利用图像中目标的边缘轮廓信息进行特征提取,实现了人造目标与背景的分离.该算法具有抗噪声能力好、特征定位准确、计算速度快、能够较好的保持图像的特征结构信息等特点,非常适用于航天图像的实时分割处理.

  10. The New York City Space Science Research Alliance Enhancing Undergraduate Education and Research: An Educational Initiative Targetting Increased Diversity in Space Science

    Science.gov (United States)

    Johnson, L. P.; Austin, S. A.; Robbins, I. K.; Zirbel, E. L.; Tyson, N. D.; Damas, M. C.; Steiner, J. C.; Frost, J.; Storck, B.; Kaufman, S. E.; Greenbaum, S.; Ekejiuba, I. E.

    2001-05-01

    The New York City Space Science Research Alliance Program is initiating and enhancing multiple collaborations in Space Science research and developing a Space Science major in the City University of New York Baccalaureate Degree (BS) program. The Alliance is a coalition of CUNY Colleges in collaboration with the Astrophysics Department of the Hayden Planetarium, the NASA Goddard Space Flight Center and the NASA Goddard Institute for Space Studies. The purpose of this initiative is to increase the pool of minority or underrepresented astrophysicists, astronomers and physicists; given the CUNY system with over 200,000 mostly minority students, this represents a unique opportunity to increase the production of minority scientists. The CUNY Baccalaureate Program offers students the chance to earn a BS by completing an individualized program of study and taking courses at any combination of the University's seventeen colleges and at the Graduate School and University Center. o Hayden, GSFC and GISS scientists are assisting in the development of the proposed CUNY BS Degree program in Space Science; o Hayden and GISS scientists will be among the faculty teaching courses in this program and classes will be held at Hayden and GISS; o Concentrations for students will include Planetary Science, Earth-Sun Connection, and Astrophysics; and o Undergraduate research and research related activities will play a significant role in the Space Science program; Research projects include: "Astrometry and Photometry of Asteroids, Comets with Emphasis on Near Earth Objects (NEO's)", "Photometry of Binary and Variable Stars", "Radial Distribution of Supernovae in Spiral and Elliptical Galaxies", "The Evolution of Galaxies in Groups", "Radio Luminosity Extinction in Jets of Extragalactic Radio Sources", "The Distribution and Dynamics of Atmospheric Aerosols on Jupiter" and "Probing Planetary Surfaces for Micro-Organisms". [Supported by NASA-Space Science.

  11. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal [Department of Physics, BC Cancer Agency, Fraser Valley Centre, 13750 96th Avenue, Surrey, British Columbia V3V 1Z2 (Canada)

    2014-06-15

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand

  12. 天基红外卫星协同预警临空高速目标配置优化%Optimization of space-based infrared satellites deployment for near-space hypersonic target warning

    Institute of Scientific and Technical Information of China (English)

    谢鑫; 李为民; 黄仁全

    2015-01-01

    围绕天基红外卫星协同预警临空高速目标配置问题,考虑临空高速目标预警的任务需求和不同轨道卫星的覆盖特性,建立了 GEO、HEO 和 LEO 红外预警卫星的配置优化模型。在给定的威胁想定和传感器参数设置下,经仿真求解,构型为“5GEO +3HEO +24/4/2LEO”的天基红外预警卫星星座可满足临空高速目标防御对天基预警系统的预警需求。%Aiming at the problem of space-based infrared satellites deployment for near-space hypersonic target warning, the optimization models for the deployments of GEO,HEO and LEO infrared satellites are established respectively,ac-cording to the requirements of near-space hypersonic target warning and the coverage characteristics of satellites on dif-ferent orbits.Under the conditions of the fixed threat assumption and the sensors parameter setting,the models were sim-ulated and analyzed.The simulation results show that the space-based infrared warning system with the construction of‘5GEO +3HEO +24/4/2LEO’can satisfy the warning requirements for near-space hypersonic target defense.

  13. 空间非合作目标形式概念分析%Analysis of Formal Concept of the Space Non-Cooperative Target

    Institute of Scientific and Technical Information of China (English)

    马宝林; 桂先洲

    2012-01-01

    非合作目标泛指不能提供有效信息的空间目标,在对近年来关于非合作目标定义范畴的局限性进行分析基础上,通过运用形式概念理论,对非合作目标的形式概念进行了分析讨论,所得描述基本可以体现非合作目标的范畴及功能属性.%Non-cooperative target refers to the space target which cannot provide effective information. Based on the analysis of the limitations of non-cooperative target definition in recent years, this paper dis- cusses the concept of non-cooperative target according to formal concept theory. The description derived in this paper can basically reflect the domains and attributes of non-cooperative target.

  14. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse.

    Science.gov (United States)

    Fischer, Lindsey R; Igoudjil, Anissa; Magrané, Jordi; Li, Yingjie; Hansen, Jason M; Manfredi, Giovanni; Glass, Jonathan D

    2011-01-01

    Motor axon degeneration is a critical but poorly understood event leading to weakness and muscle atrophy in motor neuron diseases. Here, we investigated oxidative stress-mediated axonal degeneration in mice lacking the antioxidant enzyme, Cu,Zn superoxide dismutase (SOD1). We demonstrate a progressive motor axonopathy in these mice and show that Sod1(-/-) primary motor neurons extend short axons in vitro with reduced mitochondrial density. Sod1(-/-) neurons also show oxidation of mitochondrial--but not cytosolic--thioredoxin, suggesting that loss of SOD1 causes preferential oxidative stress in mitochondria, a primary source of superoxide in cells. SOD1 is widely regarded as the cytosolic isoform of superoxide dismutase, but is also found in the mitochondrial intermembrane space. The functional significance of SOD1 in the intermembrane space is unknown. We used a transgenic approach to express SOD1 exclusively in the intermembrane space and found that mitochondrial SOD1 is sufficient to prevent biochemical and morphological defects in the Sod1(-/-) model, and to rescue the motor phenotype of these mice when followed to 12 months of age. These results suggest that SOD1 in the mitochondrial intermembrane space is fundamental for motor axon maintenance, and implicate oxidative damage initiated at mitochondrial sites in the pathogenesis of motor axon degeneration.

  15. A computer model for evaluation of launch vehicle and target tracking error assignments for direct ascent, deep space ASAT (Anti-satellite) systems

    Science.gov (United States)

    Barclay, R. C.

    1983-12-01

    An unclassified computer model was developed for first order evaluation of deep space Anti-satellite (ASAT) targeting error assignments. Two independent error sources are modeled. With deep space tracking accuracies on the order of kilometers, there is uncertainty in the exact target position. Errors introduced by the launch vehicle guidance system result in uncertainty in the exact position of the ASAT itself. Once the target is acquired by the ASAT sensor subsystem, the maneuver subsystem must then have the capability to make the necessary trajectory corrections to precent a miss. The model assumes a direct ascent vehicle for which the user selects a trajectory by choosing the burnout and intercept position vectors, and a time of flight between them. Monte Carlo simulation is used to generate errors in burnout position and velocity, and intercept position from trivariate normal distributions scaled to user input standard deviations. This is repeated for 500 iterations, from which a mean miss distance and delta V required for trajectory correction can be determined, and used for further analysis.

  16. 基于DBN的空间战场目标威胁评估%Threat Assessment for Space Battlefield Targets Based on Dynamic Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    周立新; 李智

    2011-01-01

    空间战场目标威胁评估对未来空间作战指挥决策具有重要的意义,探讨了空间战场的特点及空间战场威胁目标的特点.针对静态贝叶斯网络(Bayesian network,BN)无法有效地解决动态空间战场中目标的威胁评估问题,提出利用动态贝叶斯网络(dynamic Bayesian network,DBN)来解决空间战场目标威胁评估,建立了基于DBN的空间战场目标威胁评估模型,利用所建立的模型进行了仿真计算.研究结果证明,基于DBN的空间战场目标威胁评估模型能够适应战场形势的变化,可应用于未来空间战场目标威胁评估专家系统的开发,并且比利用静态BN得出的威胁程度更准确,可靠性更高.%Threat assessment of space battlefield targets has great meaning for command and decision-making in the future space operation. The paper discusses the characteristics of space battlefield and space threat targets. Aiming at the problem of threat assessment that is not well solved by Bayes-ian network (BN) in the dynamic space battlefield, a dynamic Bayesian network (DBN) theory is introduced. After that, a DBN-based threat assessment model for space operation is constructed; then, the paper performs a simulation using the proposed model. The simulation result shows that the DBN-based threat assessment model is adaptive to the dynamic change in the battlefield; it can be used in the process of developing the expert system in the future space operation. What is more, the DBN-- based threat assessment model is more effective and reliable to reflect the real threat level than the Bayesian network model.

  17. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  18. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    Directory of Open Access Journals (Sweden)

    Zhenyu Li

    2016-08-01

    Full Text Available Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  19. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  20. Experiment of optical characteristic simulation of space target%空间目标光学特性模拟实验研究

    Institute of Scientific and Technical Information of China (English)

    李雅男; 孙晓兵; 乔延利; 洪津; 张荞

    2009-01-01

    The optical characteristics of several space targets with simple shape and the satellite models are studied according to simulation measurement of spatial targets distinct in shape and material. The result indicates that the location of light source, target and detector plays a decisive function in detecting the optical characteristic of the spatial targets. As for the spherical and cylindric targets, the phase angle of the light source and detector is the main factor to effect the reception of light radiation, as for the three-dimensional targets, the detecting effect is relative to incident and observing angles, and as for the earth synchronous satellites, the optical characteristic is influenced mainly by the observing area and the angle included between the solar panel and earth. This research is significant for deducing the attitude of space targets from observed results.%通过不同材料、形状的空间目标模拟实验测量,研究了几种简单形状目标和卫星缩比模型的光学特性.结果表明:光源-目标-探测器的位置对目标的光学特性起决定作用,对于球体和柱体目标来说,光源和探测器的相位角是影响接收到光辐射的主要因素,而对于立体状目标,它的光学特性则与特定的入射角和观测角有关;对静止卫星而言,其光学特性主要受太阳能电池板对地夹角和观测面积的影响.该研究有助于实际观测数据反演空间目标的姿态,便于对空间目标特性数据进行归类和分发.

  1. Experimental study of the space-time development of the particle production process in hadron-nucleon collisions, using massive target nucleus as a detector

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Experimental study of the space-time development of the particle production process in hadronic collisions at its initial stage was performed. Massive target nuclei have been used as fine detectors of properties of the particle production process development within time intervals smaller than 10 to the 22nd power s and spatial distances smaller than 10 to the 12th power cm. In hadron-nucleon collisions, in particular in nucleon-nucleon collisions, the particle production process goes through intermediate objects in 2 yields 2 type endoergic reactions. The objects decay into commonly observed resonances and paricles.

  2. A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Science.gov (United States)

    Mckay, Charles; Auty, David; Rogers, Kathy

    1987-01-01

    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.

  3. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    Science.gov (United States)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  4. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  5. STATE-SPACE BASED MASS EVENT-HISTORY MODEL I: MANY DECISION-MAKING AGENTS WITH ONE TARGET.

    Science.gov (United States)

    Fushing, Hsieh; Zhu, Li; Shapiro-Ilan, David I; Campbell, James F; Lewis, Edwin E

    2008-12-01

    A dynamic decision-making system that includes a mass of indistinguishable agents could manifest impressive heterogeneity. This kind of non-homogeneity is postulated to result from macroscopic behavioral tactics employed by almost all involved agents. A State-Space Based (SSB) mass event-history model is developed here to explore the potential existence of such macroscopic behaviors. By imposing an unobserved internal state-space variable into the system, each individual's event-history is made into a composition of a common state duration and an individual specific time to action. With the common state modeling of the macroscopic behavior, parametric statistical inferences are derived under the current-status data structure and conditional independence assumptions. Identifiability and computation related problems are also addressed. From the dynamic perspectives of system-wise heterogeneity, this SSB mass event-history model is shown to be very distinct from a random effect model via the Principle Component Analysis (PCA) in a numerical experiment. Real data showing the mass invasion by two species of parasitic nematode into two species of host larvae are also analyzed. The analysis results not only are found coherent in the context of the biology of the nematode as a parasite, but also include new quantitative interpretations.

  6. Feasibility analysis on detecting and tracking space target by laser illumination technology at the daytime%白天激光照明探测跟踪空间目标可行性分析

    Institute of Scientific and Technical Information of China (English)

    康文运; 宋小全

    2011-01-01

    In allusion to the difficult problem of detecting and tracking space target at the daytime,a type of laser illumination system for detecting and tracking space target is designed. Noise of sky background at the daytime,laser echo signal of space target and contrast of target and background are estimated,technology feasibility of detecting and tracking space target by laser illumination is analyzed. The basic technique request and key technology of detecting and tracking space target by laser illumination are generalized.%针对白天探测跟踪空间目标技术难题,从照明激光选取入手,设计了激光照明探测跟踪系统,估算了白天天空背景噪声、空间目标激光回波信号及目标与背景对比度,分析了白天激光照明探测跟踪空间目标的技术可行性,概括了实现白天激光照明探测跟踪空间目标的基本技术要求和需突破的关键技术.

  7. Tracking for near space target based on IMM algorithm%基于交互式多模型算法跟踪临近空间目标

    Institute of Scientific and Technical Information of China (English)

    秦雷; 李君龙; 周荻

    2014-01-01

    Due to the current maneuvering target model is developing towards more and more modular and parallel computing,which puts forward higher requirements for calculation efficiency of algorithm.For high su-personic maneuvering targets in near space,it is often tracked with multiform maneuvering target models,since precision of single target maneuvering model cannot satisfy the requirement of tracking.So it is necessary to use the interactive multiple model algorithm for cross coupling based on a variety of models.The characteristic of this algorithm is adapted to that of high speed and high maneuver for near space target.At the same time,con-sidering the filtering result of extended Kalman filter (EKF)algorithm for strong nonlinear targets is bad,un-scented Kalman filter (UKF)algorithm can be solved very well for this problem.So through simulation contrast experiment of two kinds of algorithms,it proves that interacting multiple model-unscented Kalman filter (IMM-UKF) algorithm guarantees the target tracking accuracy is within the allowable range,validity of the algorithm is veri-fied with Matlab simulation results.%由于目前机动目标模型越来越向模块化、并行计算的方向发展,对目前算法计算效率提出了更高的要求。对于临近空间超声速机动目标一般采用多种机动模型跟踪,单一模型已经很难满足高精度跟踪的需要。因此需要使用基于多种模型进行交叉耦合的交互式多模型(interacting multiple model,IMM)算法,这种算法特点与临近空间目标高速、高机动特性相适应。同时考虑到扩展卡尔曼滤波(extended Kalman filter,EKF)算法对强非线性对象滤波效果不好,无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对于此类问题,可以很好地加以解决。仿真对比试验表明,交互式多模型无迹卡尔曼滤波(interacting multiple model-unscented Kalman filter, IMM-UKF)算法优于单一模型 EKF 算法。

  8. Multi-medium space target visual measurement%多介质下空间目标的视觉测量

    Institute of Scientific and Technical Information of China (English)

    王俊; 朱战霞; 贾国华; 张旭阳

    2011-01-01

    Based on non-contact three-dimensional measuring principle of computer vision and light refraction principle,a new theoretical method of visual measurement in multi-medium was proposed. It used two teams of binocular cameras from different perspectives to observe space target in water, measured the various landmarks of the underwater target by making use of binocular stereo vision technology and the mathematical model of two light refractions, and then obtained the threedimensional coordinates of landmarks, by plane fitting and coordinate transformation, eventually got six-dimensional position and attitude coordinates of underwater target. The results show that the method is suitable for multi-medium visual measurement with high accuracy and good stability.%基于计算机视觉的无接触三维测量原理和光的折射定律,提出一种多介质下空间目标视觉测量方法.采用多相机捆绑调整及多角度相互校正,通过双目立体视觉技术结合光线在多介质中发生两次折射的数学模型对运动体上各标志点进行测量,获取各标志点的三维空间坐标,经平面拟合、坐标转换,最终解算得到运动体六自由度空间坐标.实验结果表明,该方法适用于多介质视觉测量,具有较高的测量精度和良好的稳定性.

  9. Faraday效应对空间目标探测雷达的影响%Faraday Rotation Effect on Space Target Detection Radars

    Institute of Scientific and Technical Information of China (English)

    宋君; 沙祥

    2013-01-01

    The influence of ionospheric Faraday rotation on space target detection radars has been analyzed in this paper.Combining the magnetoionic theory with ionospheric model and earth magnetic field model,a fast numerical model for computing Faraday rotation angle is proposed.Compared with the traditional empirical computation modules,this method is proved to be more applicable,especially in China area.During the high and low solar activity years,several typical frequencies of worldwide space target detection radars have been used to calculate Faraday rotation angles in different area,such as Haikou and Changchun which are respectively the typical areas of low and middle latitude areas in China.Simulation results have been presented and analyzed to prove that Faraday rotation effect can cause serious signal energy loss to the radars with linear polarization antenna pattern.Thus this rotation effect must be considered on the radar system perform ance so as to adopt an applicable antenna polarization mode.%分析了电离层Faraday旋转效应对空间目标探测雷达的影响.从磁离子理论出发,结合电离层模型和地球磁场模型,使用了一种快速的Faraday旋转角计算模型,并与传统使用的经验计算方法进行了比较,表明该方法普适性强,更适用于中国地区.针对当前国际上典型的空间目标探测雷达工作频段,选取我国海口(低纬地区)和长春(中纬地区)为代表,分别计算了太阳活动极大年和极小年间的Faraday旋转角,给出了仿真结果并进行分析,表明Faraday旋转效应给线极化方式雷达带来明显的回波能量损失.在进行雷达设计时,需要将该效应与雷达系统性能综合考虑,采用合适的天线极化方式.

  10. Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing: targeting the RNAs that cause myotonic muscular dystrophy.

    Science.gov (United States)

    Lee, Melissa M; Childs-Disney, Jessica L; Pushechnikov, Alexei; French, Jonathan M; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2009-12-02

    tetramer also bind approximately 13- and approximately 63-fold more tightly to DM1 RNAs than does MBNL1. The modularly assembled compounds are cell permeable and nontoxic as determined by flow cytometry. The results establish that for these two systems: (i) a programmable modular assembly approach can provide synthetic ligands for RNA with affinities and specificities that exceed those of natural proteins; and, (ii) the spacing of ligand modules can be used to tune specificity for one RNA target over another.

  11. An investigation of the low-DeltaV near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA. Two suitable targets for the ARM and MarcoPolo-M5 space missions

    CERN Document Server

    Perna, D; Monteiro, F; Lantz, C; Lazzaro, D; Merlin, F

    2016-01-01

    The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020's for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-DeltaV NEAs (341843) 2008 EV5 and (52381) 1993 HA. 2008 EV5 is the baseline target of ARM, but only one spectrum of this object exists in the literature. 1993 HA is a very favourable target for a space mission based on its dynamical properties: here we intend to assess if it is a suitable target for MarcoPolo-M5. We obtained visible spectroscopy of 2008 EV5 with the FORS2 instrument at ESO-VLT, at different rotational phases. We also obtained visible and near-infrared spectroscopy of 1...

  12. A New Tracking Algorithm of Near Space Hypersonic Targets%一种新的临近空间高超声速目标跟踪算法

    Institute of Scientific and Technical Information of China (English)

    李凡; 毕红葵; 段敏

    2016-01-01

    针对变结构多模型算法(VSMM)在模型集自适应转换过程中,模型集选取容易出现只在单一类型模型中选取的问题,提出一种基于模型集匹配程度检测激活不同类模型的方法。在连续4个滤波周期没有激活不同类模型时,对每个周期所使用模型集与真实运动模式进行匹配程度检测,以此决定是否激活不同类模型。该方法既能有效解决模型转换的缺陷,同时避免了因单个滤波周期内检测判决导致算法切换频繁的问题。仿真结果表明,对比传统算法改进算法能有效提高跟踪性能。%A new tracking algorithm of near space hypersonic target is proposed aimed at the problem that the multiple model algorithms are prone to choose only one single type of models in the process of adaptive conversion based on the degree of model matching.In four non-activated filter period of different models, detections of model matching between real-time model set and real motion model are used to decide wheth-er to activate different classes of models.By so doing,the algorithm effectively solves not only the defects in the model transformation but also the decreasing robustness of the algorithm caused by the j udgment in single filter period.The simulation results show that the improved algorithm can effectively improve the tracking performance compared with the traditional algorithm.

  13. Invariants of directed spaces

    DEFF Research Database (Denmark)

    Raussen, Martin

    2007-01-01

    Directed spaces are the objects of study within directed algebraic topology. They are characterised by spaces of directed paths associated to a source and a target, both elements of an underlying topological space. The algebraic topology of these path spaces and their connections are studied from...

  14. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads

    DEFF Research Database (Denmark)

    Jensen, Kasper; Plichta, Damian Rafal; Panagiotou, Gianni;

    2012-01-01

    The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strains......, in order to uncover the weak links in the proteome of the parasite. We predicted 293 proteins of P. falciparum, including the six out of the seven verified targets for P. falciparum malaria treatment, as targets of 4645 GSK active compounds. Furthermore, we prioritized druggable targets, based on a number...... on integration of available chemical-protein and protein-protein interaction data. Our work suggests that a large number of the P. falciparum proteome is potentially druggable and could therefore serve as novel drug targets in the fight against malaria. At the same time, prioritized compounds from the GSK...

  15. Effects of target fragmentation on evaluation of LET spectra from space radiation in low-earth orbit (LEO) environment: impact on SEU predictions

    Science.gov (United States)

    Shinn, J. L.; Cucinotta, F. A.; Wilson, J. W.; Badhwar, G. D.; O'Neill, P. M.; Badavi, F. F.

    1995-01-01

    Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.

  16. The influence of scoring targets and outer-floaters on attacking and defending team dispersion, shape and creation of space during small-sided soccer games

    Directory of Open Access Journals (Sweden)

    Castellano Julen

    2016-06-01

    Full Text Available The effect of altered game formats on team performances during soccer practice can be harnessed by coaches to stimulate specific tactical behaviours. The aim of the present study was to analyse the influence of using (i small goals [SG], (ii goalkeepers [7G] and (iii floaters [7GF] on the dispersion, shape and available space of teams during small-sided games (SSGs. Twenty-four male soccer players were distributed into four teams composed of five players, two goalkeepers and two floaters that performed six SSG bouts of 6 min, interspersed with 6 min of passive recovery. Offensive and defensive phases were also analysed separately in order to verify the preservation of basic principles of attacking (teams more stretched to create free space and defending (teams more compact to tie-up space during SSGs. The variables used to characterize the collective behaviour were: length [L], width [W], team shape [Sh], and team separateness [TS]. Results revealed that the teams showed different collective behaviours depending on SSG format and a playing phase: a L and W were higher in attack than in defence in all SSGs; b team shapes were more elongated in defence in all SSGs except SG; c the space separating players from their closest opponents (TS was shorter in 7G; and d SG and 7GF elicited greater defensive openness due to increased team width. The results suggest that manipulating task constraints, such as goal size, presence or absence of goalkeepers and floaters can be harnessed by coaches to shape distinct team tactical behaviours in SSGs while preserving the basic principles of attacking and defending.

  17. Effect of a treat-to-target strategy based on methotrexate and intra-articular betamethasone with or without additional cyclosporin on MRI-assessed synovitis, osteitis, tenosynovitis, bone erosion, and joint space narrowing in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Møller-Bisgaard, S; Ejbjerg, B J; Eshed, I

    2016-01-01

    OBJECTIVES: To investigate whether a treat-to-target strategy based on methotrexate (MTX) and intra-articular (IA) betamethasone suppresses magnetic resonance imaging (MRI)-determined measures of disease activity and reduces joint destruction in early rheumatoid arthritis (eRA) patients, and to i......OBJECTIVES: To investigate whether a treat-to-target strategy based on methotrexate (MTX) and intra-articular (IA) betamethasone suppresses magnetic resonance imaging (MRI)-determined measures of disease activity and reduces joint destruction in early rheumatoid arthritis (eRA) patients...... participated in the MRI substudy, and had contrast-enhanced MR images of the non-dominant hand at months 0, 6, 12, and 24. MR images were evaluated for osteitis, synovitis, tenosynovitis, bone erosion, and joint space narrowing (JSN), using validated scoring methods. RESULTS: Significant reductions were seen...

  18. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  19. 基于分段运动特性的空间目标检测算法%A Detection Algorithm of Space Target Based on Segment Movement Characteristics

    Institute of Scientific and Technical Information of China (English)

    田瑞琦; 鲍庆龙; 王丁禾; 陈曾平

    2014-01-01

    In order to improve the detection ability of space targets,we need to analyze the echo model and study the solution of range cell migration.In this paper,aiming at the range cell migration of space tar-gets,bistatic radar-target 3D model and echo model are built.The effect of target motion on range cell mi-gration is analyzed.A method based on segment movement characteristics is proposed to eliminate the influ-ence of high speed on range cell migration.A two-stage algorithm of velocity compensation is put forward, which has both high estimation precision and calculation speed.The international space station(ISS)is cho-sen as study obj ect for simulation,which verifies the validity and effectiveness of the proposed method and its good robust property.%为提高空间目标检测性能,需要分析目标回波模型,研究高速运动目标距离走动补偿方法。针对双基地雷达对空检测过程中可能出现的距离走动问题,建立双基地雷达目标三维模型和回波模型,分析了全过程中目标运动对距离走动的影响,提出了基于分段运动特性的目标检测方法。通过引入两级速度补偿算法,保证参数估计精度的同时提高计算速度。并以空间目标 ISS(International Space Station)为例进行仿真实验,验证算法的有效性和对噪声的鲁棒性。

  20. 基于 OpenGL 的空间目标监视雷达三维显示系统%3D Display System for Space Target Surveillance Radar Based on OpenGL

    Institute of Scientific and Technical Information of China (English)

    沈静波; 刘扬

    2015-01-01

    Due to large detection range of space target surveillance radar and great height of target,a 3D display system is needed to reflect the target’s real spatial position.A framework of radar 3D display system based on OpenGL is proposed,and its modules are divided.For the demands of assistant display for space target,a design for radar beam and search sectors display is put forward to reflect the real-time beam schedu-ling of radar.An earth texture management based on quadtree dynamic fractal is proposed for high resolution display of the surface.A rotation method of 3D earth based on virtual trace ball is proposed to adjust the user’s angle of view agilely.The system is implemented in a space target surveillance radar successfully, achieving smooth display and fluent image.%空间目标监视雷达探测范围较远,目标高度较高,所以需要三维显示软件来反映目标实际的空间位置信息。基于 OpenGL 提出了一种雷达三维显示系统的设计框架和模块划分。针对空间目标的辅助显示需求,提出了雷达波束和搜索屏的显示设计,可以实时反映雷达的波束调度情况;提出了一种基于四叉树动态分形的地球纹理管理方法,用于实现高精度的地表纹理显示;提出了一种基于虚拟轨迹球的三维地球旋转设计,实现了灵活的用户视角调整。该系统已在某型空间目标监视雷达上成功应用,画面显示平滑流畅。

  1. 利用小波分析在轨识别空间目标轨道机动%Detection of Space Target Orbit Maneuver on Board by Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    苏建敏; 董云峰

    2012-01-01

    空间目标的轨道机动往往隐藏在测量噪声中,不容易被识别出来.轨道机动可以引起机械能的突变,用空间目标与航天器的单位质量机械能差作为机动识别的特征信号,不会引入航天器本身的定轨误差.用小波多尺度分解处理含噪声的特征信号,对分解后的数据利用算法识别是否存在机动.仿真结果表明,本文提供的方法能有效识别空间目标的轨道机动.%It is difficult to detect an orbit maneuver of space target with measurement noise.Orbit maneuver brings step of mechanical energy.Mechanical energy difference of unit mass between space target and spacecraft is treated as signal of maneuver detection,so spacecraft orbit determination error won't be added to the signal.In fact,the mechanical energy difference is only determinate by orbit radius of reference spacecraft and relative position and velocity between reference spacecraft and target.Wavelet analysis in differential scale was used to process the signal with noise.The signal has obviously step feature,and Harr wavelet function was selected in wavelet analysis because of its step feature which is same to the signal.Data after wavelet analysis was used to detect orbit maneuver.In the data process,a valve value is necessary.To some special orbit,we got the valve value through many simulations at first.The data process method which detect orbit maneuver of space target is verified by computer numerical simulation.The simulation shows that the correct rate of the detection of orbit maneuver raise when the maneuver level increase.The method can be used on board because it is automatic completely.

  2. Three Dimensional Imaging of Spinning Space Target Based on Multi-Antenna Interferometric Processing%多天线干涉处理的窄带雷达空间旋转目标三维成像

    Institute of Scientific and Technical Information of China (English)

    陈永安; 罗迎; 王恺; 张群; 宋桐

    2016-01-01

    借鉴干涉式逆合成孔径雷达中多天线干涉处理的思想,采用L型三天线成像结构,提出了一种基于多天线干涉处理的窄带雷达空间旋转目标三维成像方法。推导了窄带条件下空间旋转目标回波干涉处理的原理,分析了短时傅里叶变换对回波干涉相位信息的影响,在对各天线回波进行短时傅里叶变换的基础上,在时频平面上有效区分了各散射点对应的回波曲线,获得了不同散射点对应的干涉相位信息,实现了对空间旋转目标的干涉式三维成像。与已有方法相比,该方法仅需利用单部多天线雷达即可获得目标的真实三维信息。仿真结果验证了所提方法的有效性。%This paper uses the idea of multi-antenna interferometric processing in interferometric inverse synthetic aperture radar for reference,and proposes a three dimensional imaging method by utilizing a L-shape three-antenna model for spinning space target in narrowband radar based on multi-antenna interfero-metric processing.First,the theory of spinning space target echo signal interferometric processing in nar-rowband radar is explained.Then,the influence of short-time Fourier transform (STFT)on the interfero-metric phase of echo signal is analyzed.Finally,through conducting STFT on the echo signal received by three antennas,the curves on time-frequency plane corresponding to different scatterers are effectively ex-tracted and separated,the interferometric phase of different scatterers is obtained,and three dimensional imaging for spinning space target is realized.Compared to the existing methods,this method only requires a single multi-antenna radar to obtain the real three dimensional distribution of target.The simulation re-sults show that the method is valid.

  3. 大气湍流畸变对空间目标清晰干涉成像仿真研究%Simulation for space target interference imaging system distorted by atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    刘扬阳; 吕群波; 张文喜

    2012-01-01

    Interference imaging system for space target has close relation with atmospheric environment, and atmospheric turbulence disturbance distorts terribly the wavefront phase of any transmission optics launched from any optics system. In the space target interference imaging system the phase-closure-principle is adopted, in order to eliminate possible effects of atmospheric turbulence on the target image. Based on the power spectrum method and the Fourier transform method, the numerical simulation of wavefront phase screen, which is distorted by atmospheric turbulence conforming to the statistical rules of kolmogonov model and modified Von Karmen model, is respectively implemented. Various images by several different phase-screen models on the interference imaging system are obtained. Simulation results show that, with the advantage of adopting phase-closure-principle, the possible effects of atmospheric turbulence imaging can be eliminated basically.%本文利用功率谱反演法分别展开对符合Kolmogonov统计规律和修正后的VonKarmen统计规律的大气湍流畸变波前相位屏进行了数值模拟研究.得到各种模型下相位屏对该成像系统干涉成像图.仿真结果表明,采用闭合相位原理,基本可以消除大气湍流对光束波前的影响,验证了采用相位闭合技术的优势.

  4. Image Segmentation for Space Target Besed on Differential Box Counting%基于差分盒维数的空间目标图像分割算法

    Institute of Scientific and Technical Information of China (English)

    姚远; 粱志毅

    2012-01-01

    基于差分盒子维数提出了一种针对空间目标的图像分割算法.首先根据空间环境目标自然背景与空间目标人造结构的特点差异,从分形理论的相似性上对星空背景进行分析,利用像素邻域灰度方法得到目标和背景的边界.其次,在对给定阈值及该阈值下图像的差分盒维数关系进行分析的基础上,提出基于灰度方差的阈值选择方法.最后给出空间目标图像分割算法的流程,通过诸多仿真空间图像处理验证该分割算法是有效的.%This report proposes a new image segmentation method facing space target based on differential box counting (DBC). Firstly,according to features of the natural background of space target, utilizing similarity of fractal theory to analyze nebula background, using pixel region gray variance to obtain the edge between target and background. Secondly, through analyze relation of threshold and the DBC dimension under the threshold, threshold selection method of gray variance is given. Finally, following chart of the image segmentation is given; besides the experiment result also proves that the segmentation can achieve excellent effect.

  5. An investigation of the low-ΔV near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA. Two suitable targets for the ARM and MarcoPolo-M5 space missions

    Science.gov (United States)

    Perna, D.; Popescu, M.; Monteiro, F.; Lantz, C.; Lazzaro, D.; Merlin, F.

    2017-01-01

    Context. The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020's for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. As D-types are very rare within the NEA population, considerable effort is still in progress to characterize easily accessible targets with unknown surface composition, in order to discover further asteroids that belong to this taxonomic group. Aims: We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-ΔV NEAs (341843) 2008 EV5 and (52381) 1993 HA. The asteroid 2008 EV5 is the baseline target of ARM, but only one spectrum of this object exists in the literature. The asteroid 1993 HA is a very favourable target for a space mission based on its dynamical properties: here we intend to assess if it is a suitable target for MarcoPolo-M5. Methods: We obtained visible spectroscopy of 2008 EV5 with the FORS2 instrument at ESO-VLT (Paranal, Chile), at different rotational phases. We also obtained visible and near-infrared spectroscopy of 1993 HA, using the EFOSC2 and SOfI instruments at ESO-NTT (La Silla, Chile). Visible photometry of 1993 HA was carried out within the IMPACTON project at the Observatório Astronômico do Sertão de Itaparica (Itacuruba, Brazil). Results: Our new observations are in agreement with the C-type classification of 2008 EV5, which is a requirement for the ARM mission. We obtained five visible spectra which do not show any variability within the limits of noise, suggesting a homogeneous surface. We obtained the first ever spectroscopic dataset ( 0.4-1.6 μm) for 1993 HA, finding a featureless, red-sloped behaviour typical of D-types (a T or X classification is also

  6. 大时宽带宽积雷达空间目标距离像估计%Range Profile Estimation of Space Target for Signals with Large Time-Bandwidth Product

    Institute of Scientific and Technical Information of China (English)

    杨利民

    2014-01-01

    A technique based on quadratic phase filters is proposed to obtain the radial velocity and accel-eration of the space target using signals with large time-bandwidth product.The range profile can be got after the corresponding motion compensation using the estimated parameters.First,the echo model is deduced for the targets,and the mathematical expression is yielded after the pulse compression processing to attain the requirement which is not suitable for the normal pulse compression.Then,this algorithm is employed to esti-mate the radial velocity and acceleration of the space target.In order to yield the target’s range profile,the quadratic-cube phase coefficient and range-Doppler coupling are compensated with the estimated parameters. The simulation results demonstrate the feasibility of refining the space target’s range profile.%采用二次相位滤波的方法,估计大时宽带宽积信号下空间目标的速度及加速度,并进行相应的运动补偿后获得目标一维距离像。首先,推导出具有大时宽带宽积信号的空间目标回波模型,分析了利用传统脉压处理后的数学表达式,给出不适合传统脉压处理的条件。为此,利用该方法得出速度和加速度估计值并进行二次和三次相位项系数及距离多普勒耦合的补偿,以获得目标距离像。仿真实验验证了该条件下提取空间目标一维距离像的可行性。

  7. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  8. Space of Spaces

    CERN Document Server

    Anderson, Edward

    2014-01-01

    Wheeler emphasized the study of Superspace - the space of 3-geometries on a spatial manifold of fixed topology. This is a configuration space for GR; knowledge of configuration spaces is useful as regards dynamics and QM.In this Article I consider furthmore generalized configuration spaces to all levels within the conventional `equipped sets' paradigm of mathematical structure used in fundamental Theoretical Physics. This covers A) the more familiar issue of topology change in the sense of topological manifolds (tied to cobordisms), including via pinched manifolds. B) The less familiar issue of not regarding as fixed the yet deeper levels of structure: topological spaces themselves (and their metric space subcase), collections of subsets and sets. Isham has previously presented quantization schemes for a number of these. I consider some classical preliminaries for this program, aside from the most obvious (classical dynamics for each). Rather, I provide I) to all levels Relational and Background Independence ...

  9. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  10. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  11. Investigation of Space and Energy Distributions of Neutrons Generated in Lead Target and Uranium Blanket of the Electronuclear System "Energy plus Transmutation" under Irradiation with Protons at 1.5 GeV

    CERN Document Server

    Zhuk, I V; Krivopustov, M I; Sosnin, A N; Chultem, D; Vestmaer, V; Tumendelger, T; Zaveryukha, O S; Pavlyuk, A B

    2002-01-01

    The work contains the results of space-energy distributions of neutrons in U/Pb assembly, consisting of extended lead target and the model of natural uranium blanket irradiated with relativistic protons at 1.5 GeV. The research is carried out in the framework of a series of experiments using the model of subcritical heterogeneous electronuclear system at the Laboratory of High Energies, JINR, Dubna ("Investigation of Physical Aspects of Electronuclear Method of Energy Production and Transmutation of Radioactive Waste Using Beams from JINR Synchrophasotron/Nuclotron" - project "Energy plus Transmutation"). The results of measurements and calculations of ^{235}U, ^{238}U and ^{232}Th fission rate distributions as well as threshold spectral indexes {\\bar\\sigma_f^{^{232}Th}}/{\\bar\\sigma_f^{^{235}U}} and {\\bar\\sigma_f^{^{238}U}}/{\\bar\\sigma_f^{^{235}U}} along the radius of the target and model uranium blanket are presented. The results of measurements and calculations of ^{234}U, ^{236}U and ^{237}Np fission rate ...

  12. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  13. VSOP Science Targets

    OpenAIRE

    Hirabayashi, H.; Inoue, M.; 平林, 久; 井上, 允

    1991-01-01

    The VLBI Space Observatory Programme (VSOP) started in 1989,and the observations will start in 1995. VSOP Science targets are reviewed in relation to Japanese VLBI activities. Regions surrounding accreting disks and jets of Active Galactic Nuclei (AGN) will be the most important targets. The physics and distances to water vapor masing regions in and outside the Galaxy can be studied in more detail. VSOP can cover various objects like young supernova and gravitational lensing objects.

  14. Polarization discrimination between repeater false-target and radar target

    Institute of Scientific and Technical Information of China (English)

    SHI LongFei; WANG XueSong; XIAO ShunPing

    2009-01-01

    High fidelity repeater false-target badly affects a radar system's detecting, tracking, and data processing. It is an available approach of confronting false-target for radar that discriminates firstly and then eliminates. Whereas for the technique progress about the repeater false-target jam, it is more and more difficult to discriminate this jam in the time-domain, frequency-domain, or space-domain. The technique using polarization information to discriminate the target and false-target is discussed in this paper. With the difference that false-target signal vector's polarization ratio is fixed and target echo signal vector's polarization ratio is variational along with radar transmission signal's polarization, we transform the discrimination problem to beeline distinguish problem in the 2-dim complex space. The distributing characteristic expression of the false-target discrimination statistic is constructed, with which the discrimination ratio of false-target is analyzed. For the target case, the decomposed model of target scattering matrix and the concept of distinguish quantity are proposed. Then, the discrimination ratio of target can be forecasted according to target distinguish quantity. Thus, the performance of discrimination method has been analyzed integrally. The simulation results demonstrate the method in this paper is effective on the discrimination of target and false-target.

  15. Orbital Evasive Target Tracking and Sensor Management

    Science.gov (United States)

    2012-03-30

    orbits to simulate the space resource management for situation awareness. We adopted NASA’s General Mission Analysis Tool ( GMAT ) for space target...realistic satellite orbits to simulate the space resource management for situation awareness. We adopted NASA’s General Mission Analysis Tool ( GMAT ...Analysis Tool ( GMAT ) for space target tracking with multiple space borne observers. The results indicate that the game theoretic approach is more effective

  16. Auto-targeting Key Technology Analysis of Fire Sprinkler System in Interior Large Space%室内大空间喷水灭火系统自动寻的关键技术分析

    Institute of Scientific and Technical Information of China (English)

    胡国良; 龙铭; 李忠; 王少龙

    2012-01-01

    Along with the rapid development of social economy in our society, the fire disaster prevention and treatment problems in interior large space were popped out increasingly, the traditional fire extinguishing equipments were relatively lagged behind, so the demand of putting out fire in interior large space could not be met. Therefor an auto-targeting fire sprinkler system of interior large space was designed. The horizontal and vertical movements of the system were completed by using the method of two steps of worm transmission and gear transmission together. The early fire was real time detected using flame sensor, and a 16 bits microchip computer SPCE061A ( MCU) was also used as the controller, with which the transmission mechanism could be controlled to target of the early fire location according to the flame sensor signals. The equation of water trajectory was established and simulation was also carried out, the influences of working pressure, pitch angle and installation height on the water jet range and landing velocity were analyzed in detail. The simulation results and field tests show that the designed auto-targeting fire sprinkler system can satisfy the fire extinguishing requirements in prevention and treatment of large space fire disaster with characteristics of low error warning rate, easy & feasible fire detection and locating method, stable operation and accurate in time, and etc.%随着我国社会经济的飞速发展,大空间建筑室内火灾预防和处置问题日益突出,传统消防灭火装备相对滞后,无法满足大空间建筑室内消防灭火的的要求.为此,设计了一种室内大空间自动寻的喷水灭火系统,该系统采用蜗轮蜗杆传动和齿轮传动两级传动方式实现水平和俯仰方向运动,利用火灾探测器进行火灾实时监测,16位单片机SPCE061A作为主控制器,根据火灾探测器信号控制传动机构完成火灾的空间定位.建立了水流轨迹方程并进行了仿真分析,具

  17. STIS target acquisition

    Science.gov (United States)

    Kraemer, Steve; Downes, Ron; Katsanis, Rocio; Crenshaw, Mike; McGrath, Melissa; Robinson, Rich

    1997-01-01

    We describe the STIS autonomous target acquisition capabilities. We also present the results of dedicated tests executed as part of Cycle 7 calibration, following post-launch improvements to the Space Telescope Imaging Spectrograph (STIS) flight software. The residual pointing error from the acquisitions are < 0.5 CCD pixels, which is better than preflight estimates. Execution of peakups show clear improvement of target centering for slits of width 0.1 sec or smaller. These results may be used by Guest Observers in planning target acquisitions for their STIS programs.

  18. Setting reference targets

    Energy Technology Data Exchange (ETDEWEB)

    Ruland, R.E.

    1997-04-01

    Reference Targets are used to represent virtual quantities like the magnetic axis of a magnet or the definition of a coordinate system. To explain the function of reference targets in the sequence of the alignment process, this paper will first briefly discuss the geometry of the trajectory design space and of the surveying space, then continue with an overview of a typical alignment process. This is followed by a discussion on magnet fiducialization. While the magnetic measurement methods to determine the magnetic centerline are only listed (they will be discussed in detail in a subsequent talk), emphasis is given to the optical/mechanical methods and to the task of transferring the centerline position to reference targets.

  19. 基于时差定位算法的空间三站跟踪海洋动目标方法研究%Research on Space 3-station Moving Maritime Target Tracking Method Based on TDOA Location Algorithm

    Institute of Scientific and Technical Information of China (English)

    李悦; 冯新建; 宋庆雷; 秦洋

    2015-01-01

    This paper is focused on the multi‐orientation tracking of moving maritime target by the space moving three‐points TDOA location .A tracking algorithm based on KF (Kalman Filter) and a single/double TDOA tracking algorithm based on SR‐UKF (square root‐nonlinear Kalman filter) are given .The measure method of the initial anchor point and the initial covariance matrix w hich affect the filtering effect is also given .T he simulation re‐sults show that SR‐UKF tracking method is better under the TDOA data missing (single TDOA data) conditions .%研究了运动三站对海洋移动目标多次定位的跟踪滤波问题,给出基于卡尔曼滤波(KF)的定位点跟踪算法和基于平方根‐非线性卡尔曼滤波(SR‐UKF)的单/双时差跟踪算法,对于影响滤波效果的初始定位点和初始协方差阵,给出了计算方法,最后通过仿真验证了时差残缺(单时差)的观测条件下,SR‐UKF跟踪方法更优。

  20. Space Borne Event Timer

    Science.gov (United States)

    Turko, B.

    1980-01-01

    The Space Borne Event Timer is a part of the NASA laser ranging system that is intended to operate aboard the Space Shuttle orbiting over California. The object is to measure, by laser ranging, the earth movement along the San Andreas fault and possibly forecast future earthquakes. A number of cube reflector targets will be placed along both sides of the fault. The ranging system aboard the Space Shuttle will fire a burst of laser pulses at each target and detect the reflected light. Time differences between pulses from the two sides of the fault will indicate earth displacements. The Space Borne Event Timer is a CAMAC compatible system that provides extremely accurate timing data and controls the operation of the ranging system. For each event the time is given in 19.53 increments from the instant of firing the laser to the instant the reflected light is received back, within a range of 130 days.

  1. 基于扩展卡尔曼滤波的空间小目标跟踪算法%An Algorithm for Small Space Target Tracking Based on Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    郭晓军; 万龙; 刘峰

    2016-01-01

    When the space-based platform shoots the star-image pictures, the background and the camera have relative motion simultaneously. Thus the small moving targets can not be detected through the simple frame difference. Based on analysis to star image model, an image registration method is proposed by extracting feature points to match the same triangle. In the method, optimum threshold is selected for single frame image segmentation and background noise removal. Then, the bright stars are divided by the area, and the feature triangles are made up by the stars that meet the conditions. The motion parameters can thus be obtained in adjacent frames by matching the feature triangle. For reducing the complexity, the star centroid coordinate matrix is processed instead of the whole star image to image registration. Finally, the target track is obtained through a multi-frame track association. Simulation and tests demonstrate that the method can achieve high detection rates and low false alarm rate in the sequence frames.%由于天基平台拍摄天空图片时,背景和相机同时发生相对运动,造成相邻帧之间无法通过简单的帧差法得到运动的小目标,造成了空间目标检测的难度。在分析星空图像模型的基础上,提出了一种提取特征点组成匹配三角形的图像配准方法,该方法通过最优阈值的选取对单帧图像进行分割,去除背景噪声。将星点按面积大小划分,符合条件的星点组成特征三角形并在相邻帧中进行匹配得到运动参数。在配准时为了减小计算量,忽略背景插值只针对星点坐标矩阵进行处理。最后通过多帧轨迹关联检测出目标的运动轨迹。仿真实验表明,在运动的序列图像中,该方法能实现高检测率和低虚警率的实时检测。

  2. Space Station

    Science.gov (United States)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  3. Space Colonization: Problems and Prospects

    Directory of Open Access Journals (Sweden)

    Krichevskiy S. V.

    2012-04-01

    Full Text Available Space colonization is the top priority of mankind and the strategic target of manned cosmonautics. It is necessary to comprehend the outcome of human space flights and to give a new impulse to space expansion, scientific and practical solving the problem of space colonization by human beings. The attention is also paid to key issues, potentials, restrictions, forecasts, and prospects of space colonization as well as to the transformation of a man into "a man of the future", "homo cosmicus", and "a universal man", to the formation of "space mankind".

  4. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  5. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  6. A Fast Algorithm to Estimate Space-Time Parameters of Airborne Radar Target%机载雷达目标空时参数快速估计方法

    Institute of Scientific and Technical Information of China (English)

    张立峰; 王彤; 吴建新; 保铮

    2012-01-01

    针对机载雷达动目标空时参数估计中常用的基于最大似然准则的参数搜索方法计算量过大的问题,提出了一种新的目标空时参数快速估计方法,该方法首先对机载雷达阵列回波信号做降维的空时自适应处理,对滤波输出最大的多普勒单元在空域取3个不同方向的导向矢量做空域滤波,得到3个不同的自适应权矢量和输出响应,再利用这些权矢量和输出响应,用多项式求根方法得到目标的空域频率,然后利用多普勒频率滤波响应主瓣附近的3个频率的输出,依据二阶近似求解极值得到目标的多普勒频率最大似然估计值.仿真实验表明,该方法在保证估计精度与参数搜索方法相同的情况下,计算量能够减小到参数搜索方法的1/100.%A novel and fast algorithm is proposed to reduce the computation cost of the common grid searching method in estimating spacial-time parameters of airborne radar targets. The echo signal data from airborne radar array are processed by the dimension reduction spacial-time adaptive processing (STAP) method. Spacial filtering to the Doppler channel with maximal filter output is performed to get three different space angle steer vectors. Then, the spacial frequency is estimated by finding the roots of a polynomial which is constructed utilizing the three adaptive weights and outputs. The Doppler frequency is estimated using the filter outputs of three Doppler channels in the main lobe of the filter response curve and from the peak of the second-order response curve. Simulation results show that the computational cost of the proposed method is 1/ 100 of that of the grid searching method with the same estimation accuracy.

  7. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  8. Targeted phototherapy

    Directory of Open Access Journals (Sweden)

    Zonun Sanga

    2015-03-01

    Full Text Available Conventional phototherapy uses a whole body cabinet or body part machines for the hand, foot or scalp. It has many disadvantages, due to which new phototherapy techniques have been developed. These new techniques are called targeted phototherapy. They include excimer laser, the intense pulse light (IPL system, photodynamic therapy, and an ultraviolet (UV light source with a sophisticated delivery system which is easy to operate by hand. The mechanisms of action of targeted phototherapy systems are similar to those in conventional UVB/UVA therapy. They have many advantages including lower risk of side effects, avoidance of exposure of unnecessary sites, faster response, and shorter duration of treatment. But they also have disadvantages such as high costs and inability to use them for extensive areas. This review article discusses targeted phototherapy, its mechanisms of action, and advantages and disadvantages in comparison to conventional phototherapy.

  9. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  10. Target manifold formation using a quadratic SDF

    Science.gov (United States)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  11. Multipurpose Spaces

    Science.gov (United States)

    Gordon, Douglas

    2010-01-01

    The concept of multipurpose spaces in schools is certainly not new. Especially in elementary schools, the combination of cafeteria and auditorium (and sometimes indoor physical activity space as well) is a well-established approach to maximizing the use of school space and a school district's budget. Nonetheless, there continue to be refinements…

  12. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...

  13. Impact Effect Analysis of Dual-arm Space Robot Capturing a Non-cooperative Target and Force/Position Robust Stabilization Control for Closed-chain Hybrid System%双臂空间机器人捕获非合作目标冲击效应分析及闭链混合系统力/位形鲁棒镇定控制

    Institute of Scientific and Technical Information of China (English)

    董楸煌; 陈力

    2015-01-01

    分析漂浮基双臂空间机器人捕获非合作目标所受的冲击影响效应,及捕获后空间机器人和目标组成的闭链混合系统对目标夹持内力和位形的鲁棒镇定控制。将捕获目标过程视为两机械臂末端与目标碰撞前、碰撞过程和碰撞后三个阶段。在碰撞前空间机器人和目标是分离的两分体系统,利用第二类拉格朗日方程建立漂浮基双臂空间机器人系统的动力学模型。在机械臂末端与目标碰撞阶段,基于空间机器人与目标总动量守恒,利用动量定理计算翻滚目标对空间机器人运动状态的冲击影响效应。在碰撞后,双臂空间机器人已捕获翻滚目标并组成闭链混合系统,针对混合系统在碰撞阶段受冲击影响而产生不稳定运动,提出一种鲁棒控制算法对其进行镇定控制,以实现双臂对目标夹持内力和空间机器人位形的协调控制,并达到期望的稳定状态。数值仿真验证了上述控制算法的有效性。%The impact effect of a free-floating dual-arm space robot to capture a non-cooperative target is analyzed, and during the post-capture the space robot and the target compose a closed-chaln hybrid system, then a clamp force and position robust stabilization control is discussed. The target capture process is considered as pre-impact phase,impact phase and post-impact phase. The space robot and target are separated subsystem in the pre-impact phase, and the dynamics model of free-floating space robot is derived by the second Lagrange equation. In the impact phase, base on the total momentum conservation of space robot and target, the impact effect for the space robot motion is calculated by momentum theorem. In the post-impact phase, the dual-arm space robot has captured the target and formed a closed-chaln hybrid system, considering the unstable motion which is caused by the impact effect in the impact phase, a robust control algorithm is proposed

  14. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  15. Learning Spaces

    CERN Document Server

    Falmagne, Jean-Claude

    2011-01-01

    Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes. Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of A

  16. Morrey spaces

    CERN Document Server

    Adams, David R

    2015-01-01

    In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any “full” interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory. .

  17. 12th Reinventing Space Conference

    CERN Document Server

    2017-01-01

    The 2014 Reinventing Space conference presented a number of questions in the context of a constantly innovating space industry, from addressing the future of global cooperation, investigating the impact of cuts in US government spending on the private space sector, and probing the overall future of the commercial launch sector. Space tourism and new technology promise the revival of interest in space development (the Apollo Era was the first period of intense space activity and growth). The need to create dramatically lower cost, responsive and reliable launch systems and spacecraft has never been more vital. Advances in technology are allowing smaller and cheaper satellites to be orbited - from cubesats to nanosatellites to femtosatellites. Thanks to more efficient new launch possibilities, low cost access to space is becoming ever more achievable. Commercial companies and countries are targeting the industry with new funding. Organised by the British Interplanetary Society, the presentations at this confere...

  18. Small Space Launch: Origins & Challenges

    Science.gov (United States)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  19. Small Sensors for Space Weather

    Science.gov (United States)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  20. Space Bugz!

    DEFF Research Database (Denmark)

    Birke, Alexander; Schoenau-Fog, Henrik; Reng, Lars

    2012-01-01

    This paper presents Space Bugz! - a novel crowd game for large venues or cinemas that utilises the audience's smartphones as controllers for the game. This paper explains what crowd gaming is and describes how the approach used in Space Bugz! enables more advanced gameplay concepts and individual...

  1. Bispinor Space

    Institute of Scientific and Technical Information of China (English)

    Lin ZHU; Xiu Hong FENG; Yan Lin YU

    2007-01-01

    In this paper, we give identifications of bispinor space with Grassmann algebra, and with Clifford algebra. The multiplication in Clifford algebra provides an action on them. Lastly we have researched on the geometry of bispinor space, and define Dirac operators to get a Pythagoras equality.

  2. Space psychology

    Science.gov (United States)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  3. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  4. Borel Spaces

    CERN Document Server

    Berberian, S K

    2002-01-01

    A detailed exposition of G.W. Mackey's theory of Borel spaces (standard, substandard, analytic), based on results in Chapter 9 of Bourbaki's General Topology. Appended are five informal lectures on the subject (given at the CIMPA/ICPAM Summer School, Nice, 1986), sketching the connection between Borel spaces and representations of operator algebras.

  5. Performative Spaces

    DEFF Research Database (Denmark)

    Svaneklink, Annette

    2009-01-01

    that can be related to traditional architectural concepts in terms of dealing with space, body, time and movement. The paper considers this performativity and dual spatiality as being a processual architecture, constantly reconfiguring new hybrids between space, image and user. This dual spatiality raises...

  6. SpaceCube Mini

    Science.gov (United States)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and

  7. A general formalism for phase space calculations

    Science.gov (United States)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  8. EEG Power and Space-Specific Analysis on Target Detection of Vision,Audition and Somatosensory%视、听、体感目标探测的EEG频谱和空间特异性分析

    Institute of Scientific and Technical Information of China (English)

    王悟夷; 许敏鹏; 李岳峙; 张宇婧; 綦宏志; 万柏坤; 谢小波; 崔红岩; 明东

    2013-01-01

    In present study,both behavioral and EEG power analysis were engaged to verify the electrophysiological characteristic of brain hemisphere in a frequency and spatial-distribution view during the processing of target detection in visual,auditory and somatosensory modalities.EEG of 64-channels was recorded in healthy subjects during current experiment.The experimental stimuli materials included target and non-target stimuli from visual,auditory and somatosensory respectively.By analyzing those frequencies and brain regions which presented a significantly difference when compared the EEG power of target with non-target across three modalities,at the same time a behavioral data analysis was performed for all target conditions.Results showed the difficulty of detection for somatosensory target stimulus is significantly larger than that of visual and auditory one.Both delta and theta bands made a key role while the target stimuli were detected across visual,auditory and somatosensory modalities,as a ERP component the P300 was confirmed to take a mainly effect during above processing.There was a clear left hemisphere dominant activation when auditory target was detected.By comparing behavioral results with EEG power results,the distribution of behavioral data (error rates) in three modalities were consistent with the distribution of significantly difference electrodes in EEG power analysis,therefore the EEG power can be a potential electrophysiological (EEG) parameter recogniting task difficulty during target detection across vision,audition and somatosensory.%利用行为学和EEG频谱能量分析方法,考察大脑对视、听和体感单通道靶刺激探测的频段和空间半球分布.采集14位健康受试者的64导联脑电数据,实验材料分为视觉、听觉和体感觉的靶刺激和非靶刺激.分析了3个感觉通道下所有受试者靶刺激EEG Power显著强于非靶刺激的频谱和脑区分布,还比较了3个感觉通道靶刺激的行为学

  9. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  10. Space toxicology: protecting human health during space operations.

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T; Tyl, Rochelle; Lam, Chiu-wing

    2011-02-01

    Space toxicology is a unique and targeted discipline for spaceflight, space habitation, and occupation of celestial bodies including planets, moons, and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures while in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation, continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion and other purposes. As we begin to explore other celestial bodies, in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  11. Knowledge spaces

    CERN Document Server

    Doignon, Jean-Paul

    1999-01-01

    Knowledge spaces offer a rigorous mathematical foundation for various practical systems of knowledge assessment. An example is offered by the ALEKS system (Assessment and LEarning in Knowledge Spaces), a software for the assessment of mathematical knowledge. From a mathematical standpoint, knowledge spaces generalize partially ordered sets. They are investigated both from a combinatorial and a stochastic viewpoint. The results are applied to real and simulated data. The book gives a systematic presentation of research and extends the results to new situations. It is of interest to mathematically oriented readers in education, computer science and combinatorics at research and graduate levels. The text contains numerous examples and exercises and an extensive bibliography.

  12. Space exploration

    National Research Council Canada - National Science Library

    Chris Moore

    2012-01-01

      Here, Moore presents a year in review on space exploration programs. This 2012 NASA's strategy of stimulating the development of commercial capabilities to launch crew and cargo to the ISS began to pay off...

  13. Riesz spaces

    CERN Document Server

    Zaanen, A C

    1983-01-01

    While Volume I (by W.A.J. Luxemburg and A.C. Zaanen, NHML Volume 1, 1971) is devoted to the algebraic aspects of the theory, this volume emphasizes the analytical theory of Riesz spaces and operators between these spaces. Though the numbering of chapters continues on from the first volume, this does not imply that everything covered in Volume I is required for this volume, however the two volumes are to some extent complementary.

  14. Radiation Target Area Sample Environmental Chamber (RTASEC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. proposes the Radiation Target Area Sample Environmental Chamber (RTASEC) as an innovative approach enabling radiobiologists to investigate the...

  15. Space Flight Immunodeficiency

    Science.gov (United States)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  16. Reaching into Pictorial Spaces

    Science.gov (United States)

    Volcic, Robert; Vishwanath, Dhanraj; Domini, Fulvio

    2014-02-01

    While binocular viewing of 2D pictures generates an impression of 3D objects and space, viewing a picture monocularly through an aperture produces a more compelling impression of depth and the feeling that the objects are "out there", almost touchable. Here, we asked observers to actually reach into pictorial space under both binocular- and monocular-aperture viewing. Images of natural scenes were presented at different physical distances via a mirror-system and their retinal size was kept constant. Targets that observers had to reach for in physical space were marked on the image plane, but at different pictorial depths. We measured the 3D position of the index finger at the end of each reach-to-point movement. Observers found the task intuitive. Reaching responses varied as a function of both pictorial depth and physical distance. Under binocular viewing, responses were mainly modulated by the different physical distances. Instead, under monocular viewing, responses were modulated by the different pictorial depths. Importantly, individual variations over time were minor, that is, observers conformed to a consistent pictorial space. Monocular viewing of 2D pictures thus produces a compelling experience of an immersive space and tangible solid objects that can be easily explored through motor actions.

  17. public spaces

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2013-01-01

    Full Text Available The topic of this issue is PUBLIC SPACES. It is familiar and clear to every citizen. The streets and courtyards as childhood experiences remain with us forever. And these are the places where we come with our parents at weekends, where we meet friends, where we have dates and where we already come for a walk with our children.The history of public spaces is long and captivating. It was the main city squares where the most important events took place in history. The Agoras of Ancient Greece and the Roman Forums, the squares of Vatican, Paris and London, Moscow and Saint Petersburg… Greve, Trafalgar, Senate, Palace, Red, Bolotnaya – behind every name there is life of capitals, countries and nations.Public spaces, their shapes, image and development greatly influence the perception of the city as a whole. Both visitors and inhabitants can see in public spaces not only the visage but the heart, the soul and the mind of the city.Unfortunately, sometimes we have to prove the value of public spaces and defend them from those who consider them nothing but a blank space, nobody’s land destined for barbarous development.What should happen to make citizens perceive public spaces as their own and to make authorities consider development and maintenance of squares and parks their priority task against the  background of increasing competition between cities and the fight for human capital? Lately they more often say about “a high-quality human capital”. And now, when they say “the city should be liveable” they add “for all groups of citizens, including the creative class”.

  18. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  19. Scope of space agriculture research

    OpenAIRE

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Katayama, Naomi; Nose, Akihiro; Takeda, Hiroshi; Mitsuhashi, Jun; Sasaki, Masami; Wada, Hidenori; 山下, 雅道; 橋本, 博文; 富田-横谷, 香織; 片山, 直美; 野瀬, 昭博; 武田, 弘

    2009-01-01

    Engineering target of space agriculture is to create bio-regenerative life support system that enables to send human to distant Mars for astrobiological exploration. Even manned space activities are driven by national prestige, manned Mars exploration might be realized under multinational cooperation and coordination. In such project, commonly shared objective should be defined clearly. Participant member should be complimentary each others in their contribution. They should be equal partner,...

  20. Environmental spaces

    DEFF Research Database (Denmark)

    Larsen, Henrik Gutzon

    Using the development of intergovernmental environmental cooperation in the Baltic Sea area as a concrete example, the aim of this study is to explore how the 'environment' in situations of environmental interdependence is identified and institutionalised as political-geographical objects....... 'Environmental interdependence' is to this end conceptualised as a tension between 'political spaces' of discrete state territories and 'environmental spaces' of spatially nested ecosystems. This tension between geographies of political separateness and environmental wholeness is the implicit or explicit basis...... for a large and varied literature. But in both its critical and problemsolving manifestations, this literature tends to naturalise the spatiality of environmental concerns: environmental spaces are generally taken for granted. On the suggestion that there is a subtle politics to the specification...

  1. Einstein spaces

    CERN Document Server

    Petrov, Aleksej Z

    1969-01-01

    Einstein Spaces presents the mathematical basis of the theory of gravitation and discusses the various spaces that form the basis of the theory of relativity. This book examines the contemporary development of the theory of relativity, leading to the study of such problems as gravitational radiation, the interaction of fields, and the behavior of elementary particles in a gravitational field. Organized into nine chapters, this book starts with an overview of the principles of the special theory of relativity, with emphasis on the mathematical aspects. This text then discusses the need for a ge

  2. Entering Space

    Science.gov (United States)

    Zubrin, Robert

    The authors is giving a classification of civilisations depending on the degree of colonisation of the Earth, Solar System and Our Galaxy. The problems of: History of geographic discoveries (The great geographical discoveries during the Middle Age, the concurence of Chinnese and Europeans in this Area); The Astrophysics, such as: Asteroids, Water and Atmosphere on outer planets, Planet Mars Planet, Agriculture on outer planets, Minerals on outer planets; Cosmic flights: Fuels, Robotics, Moon (as an intermediary basis for interplanetary flights), Mars colonisation; Interstellar flights, Space research costs, strategy and tactics of the space colonisation; Policy: War and Peace, International Collaboration are discussed.

  3. Transit space

    DEFF Research Database (Denmark)

    Raahauge, Kirsten Marie

    2008-01-01

    This article deals with representations of one specific city, Århus, Denmark, especially its central district. The analysis is based on anthropological fieldwork conducted in Skåde Bakker and Fedet, two well-off neighborhoods. The overall purpose of the project is to study perceptions of space...... and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...

  4. The Bering Autonomous Target Detection

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Denver, Troelz; Betto, Maurizio

    2003-01-01

    An autonomous asteroid target detection and tracking method has been developed. The method features near omnidirectionality and focus on high speed operations and completeness of search of the near space rather than the traditional faint object search methods, employed presently at the larger...... telescopes. The method has proven robust in operation and is well suited for use onboard spacecraft. As development target for the method and the associated instrumentation the asteroid research mission Bering has been used. Onboard a spacecraft, the autonomous detection is centered around the fully...

  5. Space Conquest

    CERN Multimedia

    2005-01-01

    An old water tank from the time of the ISR is being converted into a temporary store for ATLAS muon chambers. This is the last chapter in the big programme by the PH Department to make better use of space at CERN.

  6. Space Gerontology

    Science.gov (United States)

    Miquel, J. (Editor); Economos, A. C. (Editor)

    1982-01-01

    Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.

  7. Holonomic Spaces

    CERN Document Server

    Solórzano, Pedro

    2010-01-01

    A holonomic space $(V,H,L)$ is a normed vector space, $V$, a subgroup, $H$, of $Aut(V, \\|\\cdot\\|)$ and a group-norm, $L$, with a convexity property. We prove that with the metric $d_L(u,v)=\\inf_{a\\in H}\\{\\sqrt{L^2(a)+\\|u-av\\|^2}\\}$, $V$ is a metric space which is locally isometric to a Euclidean ball. Given a Sasaki-type metric on a vector bundle $E$ over a Riemannian manifold, we prove that the triplet $(E_p,Hol_p,L_p)$ is a holonomic space, where $Hol_p$ is the holonomy group and $L_p$ is the length norm defined within. The topology on $Hol_p$ given by the $L_p$ is finer than the subspace topology while still preserving many desirable properties. Using these notions, we introduce the notion of holonomy radius for a Riemannian manifold and prove it is positive. These results are applicable to the Gromov-Hausdorff convergence of Riemannian manifolds.

  8. Trading Spaces

    Science.gov (United States)

    Cort, Cliff

    2006-01-01

    Education administrators face the dual dilemma of crowded, aging facilities and tightening capital budgets. The challenge is to build the necessary classroom, laboratory and activity space while minimizing the length and expense of the construction process. One solution that offers an affordable alternative is modular construction, a method that…

  9. Space Tourism

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ One day after NASA brougnt the shuttle Discovery back form low Earth orbit,a Private company plans to announce a more audacious(1)v__,a tourist trip around the Moon. Space Adventrues,an American company ,has already sent two (A)t__into orbit.

  10. Trace spaces

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Goubault, Eric; Haucourt, Emmanuel;

    2012-01-01

    of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing...

  11. Trading Spaces

    Science.gov (United States)

    Cort, Cliff

    2006-01-01

    Education administrators face the dual dilemma of crowded, aging facilities and tightening capital budgets. The challenge is to build the necessary classroom, laboratory and activity space while minimizing the length and expense of the construction process. One solution that offers an affordable alternative is modular construction, a method that…

  12. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  13. Hardy spaces via distribution spaces

    Institute of Scientific and Technical Information of China (English)

    LIU Liguang

    2007-01-01

    Let (y)(Rn) be the Schwartz class on Rn and (y)∞(Rn) be the collection of functions (P) (E) (Y)(Rn) with additional property that ∫Rn xγ(p)(x)dx=0for all multiindices γ.Let ((y):(Rn))' and ((y)∞(Rn))' be their dual spaces,respectively.In this paper, it is proved that atomic Hardy spaces defined via ((y)(Rn))' and ((y)∞(Rn))' coincide with each other in some sense.As an application, we show that under the condition that the Littlewood-Paley function of f belongs to LP(Rn) for some p (e) (0, 1], the condition f (e) ((Y)∞(Rn))' is equivalent to that f (e) ((y)(Rn))' and f vanishes weakly at infinity. We further discuss some new classes of distributions defined via (y)(Rn) and (y)∞(Rn), also including their corresponding Hardy spaces.

  14. Second Symposium on Space Industrialization. [space commercialization

    Science.gov (United States)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  15. PREDUAL SPACES FOR Q SPACES

    Institute of Scientific and Technical Information of China (English)

    Peng Lizhong; Yang Qixiang

    2009-01-01

    To find the predual spaces PαRn) of QαRn) is an important motivation in the study of Q spaces. In this article, wavelet methods are used to solve this problem in a constructive way. First, an wavelet tent atomic characterization of PαRn) is given, then its usual atomic characterization and Poisson extension characterization are given. Finally, the continuity on Pαof Calderón-Zygmund operators is studied, and the result can be also applied to give the Morrey characterization of PαRn).

  16. Energy Efficient Cryogenics on Earth and in Space

    Science.gov (United States)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  17. Space Toxicology

    Science.gov (United States)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  18. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  19. Space Handbook,

    Science.gov (United States)

    1985-01-01

    rehydratable drinks including black coffee, tea, cocoa , cocoa -flavored instant breakfast, grape drink, limeade. lemonade, orange drink, grapefruit drink...type of beverage. These packs expanded in length with the addition of the cold or hot water to the beverage powder . The astronauts sat at the food...versatility of the shuttle provides a number of advantages in space exploration, but the primary benefit will be reduced costs of building and launching

  20. Space Nutrition

    Science.gov (United States)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  1. Game Spaces

    DEFF Research Database (Denmark)

    2015-01-01

    , called “pervasive games.” These are games that are based on computer technology, but use a physical space as the game space as opposed to video games. Coupling spatial configuration with performance theory of rituals as liminal phenomena, I put forward a model and a new understanding of the magic circle......When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... or she suddenly finds himself in another world, where artefacts are given new meaning and where other rules apply. This makes sense, but also demands that play and non-play can be easily separated. Even so, the concept of the magic circle has never been analysed with respect to the spatial configuration...

  2. 随机运动目标有限区域探测的概率时间收益%Probability increment with detection duration in limited space for random moving targets

    Institute of Scientific and Technical Information of China (English)

    陈建勇; 曲晓慧; 王健

    2014-01-01

    The probability increment with respect to detection duration in a specific limited space is studied. The new concept of “absolute continuous detection”is given,and in the condition of “absolute continuous detec-tion”,zero probability increment with detection duration is proved.The concept of “one detection cycle”is given.A relation is established between the probability of detection duration and the number of cycles,and the probabili-ty increment and probability increment ratio of continuous detection are defined.The calculation sample indi-cates the basic curves of change of the parameters.%研究了在一个固定区域对随机运动目标进行连续探测的概率时间收益问题。首先建立了“绝对连续探测”的概念,证明了在绝对连续探测条件下,在一个区域的持续探测,持续时间不会带来概率的增加。提出了“一次探测周期”概念,建立了一定“一次探测周期”时持续探测的概率与周期数的函数关系,并定义了持续探测概率的概率收益、概率时间收益率。算例表明了所定义各参数的基本变化形式。

  3. Space Detectives

    Science.gov (United States)

    Tyszka, Steph; Saraiva, Jose; Doran, Rosa

    2017-04-01

    NUCLIO is a Portuguese non-profit organization with a strong record of investing in science education and outreach. We have developed and implemented many activities mostly directed to a young audience, in a bid to awaken and reinforce the interest that young people devote to Astronomy and all things spatial. In this framework, we have created a week-long program called Space Detectives, supported by the Municipality of Cascais, based on a story-line that provided a number of challenges and opportunities for learning matters as diverse as the electro-magnetic spectrum, means of communication, space travel, the martian environment, coding and robotics. We report on the first session that took place in December 2016. We had as participants several kids aged 9 to 12, with a mixed background in terms of interest in the sciences. Their response varied from enthusiastic to somewhat less interested, depending on the nature of the subject and the way it was presented - a reaction not necessarily related to its complexity. This week was taken as something of a trial run, in preparation for the European Commission- funded project "Stories of Tomorrow", to be implemented in schools. The individual activities and the way they were related to the story-line, as well as the smooth transition from one to the next, were subject to an analysis that will allow for improvements in the next installments of this program. We believe this is an excellent approach to the goals of using Space and Astronomy as an anchor for generating and keeping interest in the scientific areas, and of finding new and richer ways of learning.

  4. Space Pharmacology

    CERN Document Server

    Wotring, Virginia E

    2012-01-01

    Space Pharmacology” is a review of the current knowledge regarding the use of pharmaceuticals during spaceflights. It is a comprehensive review of the literature, addressing each area of pharmacokinetics and each major physiological system in turn. Every section begins with a topic overview, and is followed by a discussion of published data from spaceflight, and from ground experiments meant to model the spaceflight situation. Includes a discussion looking forward to the new medical challenges we are likely to face on longer duration exploration missions. This book is a snapshot of our current knowledge that also highlights areas of unknown.

  5. Space Food

    Science.gov (United States)

    1994-01-01

    In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.

  6. Space Software

    Science.gov (United States)

    1990-01-01

    Xontech, Inc.'s software package, XonVu, simulates the missions of Voyager 1 at Jupiter and Saturn, Voyager 2 at Jupiter, Saturn, Uranus and Neptune, and Giotto in close encounter with Comet Halley. With the program, the user can generate scenes of the planets, moons, stars or Halley's nucleus and tail as seen by Giotto, all graphically reproduced with high accuracy in wireframe representation. Program can be used on a wide range of computers, including PCs. User friendly and interactive, with many options, XonVu can be used by a space novice or a professional astronomer. With a companion user's manual, it sells for $79.

  7. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  8. Space exploration

    CERN Document Server

    90, Sol

    2008-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary

  9. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 166 9. Space telescopes Figure 9.1: Paraboloid telescope. In the following sections, NI...planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid ; Figure 9.1) has...rotation of the whole instrument (see SUMER/SOHO, Wilhelm et al (1995) and EIS/Hinode, Culhane et al (2007)). The paraboloid field curvature (Petzval

  10. Broadband target b eam-space transformation in generalized likeliho o d ratio test using acoustic vector sensor array%声矢量阵宽带目标波束域变换广义似然比检测算法∗

    Institute of Scientific and Technical Information of China (English)

    梁国龙; 陶凯; 王晋晋; 范展

    2015-01-01

    Aiming at the problem of passive detection of broadband sources in underwater acoustic vector signal processing, a novel detection algorithm based on beam-space transformation is proposed. The principle of spatial spectrum detection with human eyes is employed for reference, and the generalized likelihood ratio test (GLRT) is applied to the beam-space. First, the design criterion of beam-space transformation matrix is studied for the comprehensive consideration of the environment of multiple targets and the characteristic of vector ambient noise field, so that the analytical solution is obtained. Second, assuming that the number of beams not containing the target signal is given, the probability density function (PDF) model of beam-space data is constructed, and the new GLR test is made by calculating the maximum likelihood estimate of the unknown variables in PDF. Finally, the information of theoretical criterion is adopted in order to estimate the number of beams not containing target signals. The processing gain and the threshold value of this test statistics are also discussed, and the specific implement is explained in detail. Theoretical analysis and simulation results show that under the complex conditions of strong target interference and ambient noise with undulated and time-variant power spectrum, the proposed algorithm can give the processing result with higher gain and detection threshold at constant false alarm rate (CFAR); the results of lake experiment further prove the favorable and robust detection performance.%为了解决水下声矢量信号处理中的宽带目标被动探测问题,提出了一种波束域的检测算法。该算法借鉴人眼对空间谱的检测原理,对波束域数据进行广义似然比检测。首先结合干扰抑制问题和矢量环境噪声场特性,探讨了波束域变换矩阵的设计准则,并推导了解析解的形式;然后在假定已知不含目标波束个数的情况下,构建了波束域的

  11. The moduli space of regular stable maps

    CERN Document Server

    Robbin, Joel; Salamon, Dietmar; 10.1007/s00209-007-0237-x

    2012-01-01

    The moduli space of regular stable maps with values in a complex manifold admits naturally the structure of a complex orbifold. Our proof uses the methods of differential geometry rather than algebraic geometry. It is based on Hardy decompositions and Fredholm intersection theory in the loop space of the target manifold.

  12. Research on Rapid Attitude Tracking for Space Non-Cooperative Target%空间非合作目标快速姿态跟踪导航方法研究

    Institute of Scientific and Technical Information of China (English)

    翟光; 张景瑞

    2013-01-01

    A rapid attitude tracking-based navigation strategy for non-cooperative target tracking is proposed in this paper. In order to cope with the output interruptions of the laser range finder, the relative position-velocity based filter with variance correction is used for approximate tracking; when the laser range finder works properly, the navigation filter based on full-dimensional state observer is adopted by introducing the pole-assignment method and indirect measurement matrix, and the convergence rate can be regulated by using different pole-assignments. Series of simulations are performed with different initial conditions to demonstrate the filter behaviors. The result shows that the navigation strategy proposed in this paper can be used to cope with the interruptions of the laser range finder effectively, and compared with the traditional Extend-Kalman filter, the computational complexity due to matrix derivations can be avoided, and the convergence rate of the navigation filter is improved consequently.%提出了一种空间非合作目标快速姿态跟踪导航方法.在非合作目标相对测量过程中,激光测距仪测距数据具有不连续的特点.当不具备测距数据时,采用基于位置-速度方差修正的姿态跟瞄导航滤波算法,引导追踪航天器完成对目标的粗捕获和保持;当具备测距信息时,通过引入间接量测矩阵和Wonham能控规范型极点配置方法,采用基于全维状态观测器的姿态跟瞄导航滤波算法,完成对目标的连续精确指向跟踪,并通过配置观测器极点调整滤波收敛速度.本文提出的姿态指向跟瞄导航算法克服了非合作目标跟瞄过程中测距信息不连续的问题,与传统扩展卡曼滤波算法相比,能够避免量测方程近似线性化过程中的大量矩阵求导运算,因而提高了跟踪导航滤波的收敛速度,增强了追踪航天器对非合作目标的快速姿态指向与跟瞄能力.

  13. Radio astronomy from space

    Science.gov (United States)

    Woan, G.

    2011-04-01

    At frequencies below about 30 MHz, radio astronomy becomes increasingly difficult from the Earth's surface, mainly due to a combination of poor ionospheric seeing and strong terrestrial interference. The obvious move is to space, either as free-flying spacecraft or with a telescope located somewhere on the Moon. All the major space agencies have a renewed interest in the Moon as a site for exploration and science, and low-frequency radio astronomy is probably the strongest of the astronomical objectives put forward in these programmes. Although the Sun is a strong source of interference in extra-solar system work, it is also a prime target for study in itself. A constellation of satellites (as proposed for the SIRA mission) would be able to image both the Sun and the inner heliosphere over the entire low-frequency band. Here we investigate some of the advantages and limitations of astronomy at these very low frequencies, using space- and lunar-based antennas.

  14. 14 CFR 399.62 - Target dates in hearing cases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Target dates in hearing cases. 399.62... Target dates in hearing cases. (a) Applicability. This section applies to initial and recommended.... (b) Issuance of target dates. In cases to which this section applies, the Board or the administrative...

  15. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  16. Space polypropulsion

    CSIR Research Space (South Africa)

    Kellett, BJ

    2008-04-01

    Full Text Available : A, B, Proxima. 4.2 to 4.3 l.y. A: G2 5790 B: K0 5260 Prox: M5 3120 Nearest stellar system. Could be reached in a human life-time at 0.1c. Barnard’s star 5.96 l.y. M4 3230 Once thought to have planets. Wolf 359 (Leonis) 7.78 l.y. M6 2900... Lalande 21185 8.29 l.y. M2 3500 Planetary system? So far one Jovian planet detected, with possible second and thirds. Could be our first target accessible in one life-time. Sirius (α Canis Maj) A and B 8.58 l.y. A1 and DA 9940 and 25000 There is a...

  17. DARHT2 X-ray converter target system comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P M; Caporaso, G J; Chen, Y J; Ho, D D; McCarrick, J F; Pincosy, P A; Rambo, P W

    1999-03-24

    Four short current pulses with various pulse widths and spacing will be delivered to the x-ray converter target on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility. To ensure that the DARHT-II multi-pulse target will provide enough target material for x-ray production for all four pulses, the target needs either to survive the strike of four electron pulses or to accommodate target replenishment. A distributed target may survive hitting of four electron pulses. For target replenishment, two types of target configurations are being considered: stationary target systems with beam repositioning and dynamic moving target systems. They compare these three target systems and their radiographic performance.

  18. Game Spaces

    DEFF Research Database (Denmark)

    2015-01-01

    When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... hide-and-seek, but even these games are still spatially configured. The border (visible or not) both seem to separate and uphold the game that it is meant for. This chapter sets out to analyse the possible border that separates a game from the surrounding world. Johan Huizinga noted this “separateness......” in his classic work “Homo Ludens” (Huizinga 1938, translated into English 1971). This has since been developed into the concept of the “magic circle” by Salen and Zimmerman (2003), as an understanding of playing games as a kind of alternate reality. When a person cross the magic circle of a game, he...

  19. Space Exploration

    Science.gov (United States)

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  20. U.S. Space Policy and Space Industry Strangulation

    Science.gov (United States)

    2010-03-01

    services. These articles constitute the United States Munitions List.17 The United States Munitions List ( USML ) is also found in Title 22 of the...United States Code.18 Within the USML space related items are found in Category XV – Spacecraft Systems and Associated Equipment and in Section...particular, the USML is targeted as being outdated, containing many items which are no longer exclusive to the United States, and containing items

  1. Variable Lebesgue spaces and hyperbolic systems

    CERN Document Server

    2014-01-01

    This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts. Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some mor...

  2. Electrically charged targets

    Science.gov (United States)

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  3. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  4. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  5. Classical scattering from oscillating targets

    Energy Technology Data Exchange (ETDEWEB)

    Papachristou, P.K.; Diakonos, F.K.; Constantoudis, V.; Schmelcher, P.; Benet, L

    2002-12-30

    We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets.

  6. Deflection of uncooperative targets using laser ablation

    Science.gov (United States)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  7. Space Shuttle development update

    Science.gov (United States)

    Brand, V.

    1984-01-01

    The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.

  8. Shielding from space radiations

    Science.gov (United States)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented.

  9. Performance Simulations of Moving Target Search Algorithms

    Directory of Open Access Journals (Sweden)

    Peter K. K. Loh

    2009-01-01

    Full Text Available The design of appropriate moving target search (MTS algorithms for computer-generated bots poses serious challenges as they have to satisfy stringent requirements that include computation and execution efficiency. In this paper, we investigate the performance and behaviour of existing moving target search algorithms when applied to search-and-capture gaming scenarios. As part of the investigation, we also introduce a novel algorithm known as abstraction MTS. We conduct performance simulations with a game bot and moving target within randomly generated mazes of increasing sizes and reveal that abstraction MTS exhibits competitive performance even with large problem spaces.

  10. Humans in space the psychological hurdles

    CERN Document Server

    Kanas, Nick

    2015-01-01

    Using anecdotal reports from astronauts and cosmonauts, and the results from studies conducted in space analog environments on Earth and in the actual space environment, this book broadly reviews the various psychosocial issues that affect space travelers.  Unlike other books that are more technical in format, this text is targeted for the general public.  With the advent of space tourism and the increasing involvement of private enterprise in space, there is now a need to explore the impact of space missions on the human psyche and on the interpersonal relationships of the crewmembers. Separate chapters of the book deal with psychosocial stressors in space and in space analog environments; psychological, psychiatric, interpersonal, and cultural issues pertaining to space missions; positive growth-enhancing aspects of space travel; the crew-ground interaction; space tourism; countermeasures for dealing with space; and unique aspects of a trip to Mars, the outer solar system, and interstellar travel. .

  11. From world-sheet supersymmetry to super target spaces

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas [North Carolina Univ., Chapel Hill (United States). Dept. of Physics and Astronomy; Roenne, Peter B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Witwatersrand Univ. (South Africa). National Inst. for Theoretical Physics and Centre for Theoretical Physics

    2010-07-15

    We investigate the relation between N=(2,2) superconformal Lie group WZNW models and Lie supergroup WZNW models. The B-twist of an exactly marginal perturbation of the world-sheet superconformal sigma model is the supergroup model. Moreover, the superconformal currents are expressed in terms of Lie superalgebra currents in the twisted theory. As applications, we find protected sectors and boundary actions in the supergroup sigma model. A special example is the relation between string theory on AdS{sub 3} x S{sup 3} x T{sup 4} in the RNS formalism and the U(1,1 vertical stroke 2) x U(1 vertical stroke 1) x U(1 vertical stroke 1) supergroup WZNW model. (orig.)

  12. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-12-15

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  13. Preventing Space Warfare

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The international community should join forces to avoid possible conflicts in space Military competition and conflict in outer space can be divided into three stages:militarization,wea- ponization and the space battle- field. Space militarization has become a thing of the past.Now,many countries are re- searching more advanced space weaponry technology,which means space weapon- ization is becoming a growing reality.The process of space competition is astonishingly

  14. Targeted therapies for cancer

    Science.gov (United States)

    ... nih.gov/pubmed/23589545 . Kummar S, Murgo AJ, Tomaszewski JE, Doroshow JH. Therapeutic targeting of cancer cells: Era of molecularly targeted agents. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, ...

  15. Targeted Cancer Therapies

    Science.gov (United States)

    ... changes, hair depigmentation) Problems with blood clotting and wound healing High blood pressure Gastrointestinal perforation (a rare side effect of some targeted therapies) Certain side effects of some targeted therapies have ...

  16. High Power Cryogenic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  17. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  18. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  19. Hewitt-Nachbin spaces

    CERN Document Server

    Weir, Maurice D

    2013-01-01

    North-Holland Mathematics Studies: Hewitt-Nachbin Spaces exposes the theory of Hewitt-Nachbin spaces, also called realcompact or Q-spaces, taking into account synergistic points of view from which these spaces are investigated. The publication first offers information on embedding in topological products and Hewitt-Nachbin spaces and convergence, including notation and terminology, embedding lemma, E-completely regular spaces, E-compact spaces, and characterizations and properties of Hewitt-Nachbin spaces. The text also touches on Hewitt-Nachbin spaces, uniformities, and related topological sp

  20. Space Station - Implications for space manufacturing

    Science.gov (United States)

    Tingey, D. L.; Willenberg, H. J.; Atkins, H. L.

    1985-01-01

    Space-based materials processing R&D is examined. It is proposed that the Space Station's Microgravity and Materials Processing Facility will be utilized by academic, government, and commercial customers. Users requirements for materials processing in space are discussed. Consideration is given to the time allocation of the facility, charges to users, and the property rights of the users.

  1. Space history, space policy, and executive leadership

    Science.gov (United States)

    Kraemer, Sylvia K.

    1993-01-01

    A lecture that attempts to establish the role of space historians in formulating space policy is presented. The discussion focusses on two adages and their relevance to space policy. The adages are as follows: 'write about what you know;' and 'good managers do things right; good executives do the right things.'

  2. Stepping stones toward global space exploration

    Science.gov (United States)

    Ansdell, M.; Ehrenfreund, P.; McKay, C.

    2011-06-01

    Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations

  3. Targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Neal Rosen; Carlos Arteaga

    2011-01-01

    With unprecedented understanding of molecular events underlying human cancer in this genomic era, a large number of drugs specifically targeting hypothesized oncogenic drivers to which tumors are potentially addicted to have been developed and continue to be developed. These targeted cancer therapies are being actively tested in clinical trials with mixed successes. This editorial provides an overview on successful targeted cancer drugs on the market and those drugs that are in late clinical development stages. Importantly, the article lays out main challenges in developing molecular targeted therapies and potential path forward to overcome these challenges, as well as opportunities for China in this new era of targeted agents. The editorial serves as an introduction to the Targeted Cancer Therapies serias that will review in depth of major pathways and drugs targeting these pathways to be published in the coming issues of the Chinese Journal of Cancer.

  4. Development of distributed target

    CERN Document Server

    Yu Hai Jun; Li Qin; Zhou Fu Xin; Shi Jin Shui; Ma Bing; Chen Nan; Jing Xiao Bing

    2002-01-01

    Linear introduction accelerator is expected to generate small diameter X-ray spots with high intensity. The interaction of the electron beam with plasmas generated at the X-ray converter will make the spot on target increase with time and debase the X-ray dose and the imaging resolving power. A distributed target is developed which has about 24 pieces of thin 0.05 mm tantalum films distributed over 1 cm. due to the structure adoption, the distributed target material over a large volume decreases the energy deposition per unit volume and hence reduces the temperature of target surface, then reduces the initial plasma formalizing and its expansion velocity. The comparison and analysis with two kinds of target structures are presented using numerical calculation and experiments, the results show the X-ray dose and normalized angle distribution of the two is basically the same, while the surface of the distributed target is not destroyed like the previous block target

  5. From Physical Space to Visual Image Space

    Institute of Scientific and Technical Information of China (English)

    YE Zetian; LIN Hui; LIU Xianlin

    2003-01-01

    The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space.Last, the prototype system, surveying & mapping virtual Reality (SMVR),is developed, and the space simulation above is realized. By use of SMVR,the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.

  6. Fundamentals of space medicine

    CERN Document Server

    Clément, Gilles

    2011-01-01

    This book details the findings from life science experiments conducted during and after space missions. It looks at the future of human space flight and what comes next, especially in the areas of planetary exploration and space tourism.

  7. Quasi-uniform Space

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-09-01

    Full Text Available In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

  8. Space Solar Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  9. Sigma-Model Solitons on Noncommutative Spaces

    Science.gov (United States)

    Dabrowski, Ludwik; Landi, Giovanni; Luef, Franz

    2015-12-01

    We use results from time-frequency analysis and Gabor analysis to construct new classes of sigma-model solitons over the Moyal plane and over noncommutative tori, taken as source spaces, with a target space made of two points. A natural action functional leads to self-duality equations for projections in the source algebra. Solutions, having nontrivial topological content, are constructed via suitable Morita duality bimodules.

  10. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  11. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  12. Adaptive optics for laser space debris removal

    Science.gov (United States)

    Bennet, Francis; Conan, Rodolphe; D'Orgeville, Celine; Dawson, Murray; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian; Smith, Craig; Uhlendorf, Kristina

    2012-07-01

    Space debris in low Earth orbit below 1500km is becoming an increasing threat to satellites and spacecrafts. Radar and laser tracking are currently used to monitor the orbits of thousands of space debris and active satellites are able to use this information to manoeuvre out of the way of a predicted collision. However, many satellites are not able to manoeuvre and debris-on debris collisions are becoming a signicant contributor to the growing space debris population. The removal of the space debris from orbit is the preferred and more denitive solution. Space debris removal may be achieved through laser ablation, whereby a high power laser corrected with an adaptive optics system could, in theory, allow ablation of the debris surface and so impart a remote thrust on the targeted object. The goal of this is to avoid collisions between space debris to prevent an exponential increase in the number of space debris objects. We are developing an experiment to demonstrate the feasibility of laser ablation for space debris removal. This laser ablation demonstrator utilises a pulsed sodium laser to probe the atmosphere ahead of the space debris and the sun re ection of the space debris is used to provide atmospheric tip{tilt information. A deformable mirror is then shaped to correct an infrared laser beam on the uplink path to the debris. We present here the design and the expected performance of the system.

  13. Stargate GTM: Bridging Descriptor and Activity Spaces.

    Science.gov (United States)

    Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2015-11-23

    Predicting the activity profile of a molecule or discovering structures possessing a specific activity profile are two important goals in chemoinformatics, which could be achieved by bridging activity and molecular descriptor spaces. In this paper, we introduce the "Stargate" version of the Generative Topographic Mapping approach (S-GTM) in which two different multidimensional spaces (e.g., structural descriptor space and activity space) are linked through a common 2D latent space. In the S-GTM algorithm, the manifolds are trained simultaneously in two initial spaces using the probabilities in the 2D latent space calculated as a weighted geometric mean of probability distributions in both spaces. S-GTM has the following interesting features: (1) activities are involved during the training procedure; therefore, the method is supervised, unlike conventional GTM; (2) using molecular descriptors of a given compound as input, the model predicts a whole activity profile, and (3) using an activity profile as input, areas populated by relevant chemical structures can be detected. To assess the performance of S-GTM prediction models, a descriptor space (ISIDA descriptors) of a set of 1325 GPCR ligands was related to a B-dimensional (B = 1 or 8) activity space corresponding to pKi values for eight different targets. S-GTM outperforms conventional GTM for individual activities and performs similarly to the Lasso multitask learning algorithm, although it is still slightly less accurate than the Random Forest method.

  14. Supercrowding: weakly masking a target expands the range of crowding.

    Science.gov (United States)

    Vickery, Timothy J; Shim, Won Mok; Chakravarthi, Ramakrishna; Jiang, Yuhong V; Luedeman, Robert

    2009-02-10

    Crowding is impairment of peripheral object identification by nearby objects. Critical spacing (the minimum target-flanker distance that does not produce crowding) scales with target eccentricity and is consistently reported as roughly equal to or less than 50% of target eccentricity (0.5e). This study demonstrates that crowding occurs far beyond the typical critical spacing when the target is weakly masked by a surrounding contour or backwards pattern mask. A target was presented at a peripheral location on every trial and participants reported its orientation. Flankers appeared at target-flanker distances of 0.3-0.7e, or were absent. The target was presented with or without a mask. When flankers were absent, the masks only mildly impaired performance. When flankers were present but the mask was absent, target identification was nearly perfect at wide target-flanker distances (0.5e-0.7e). However, when flankers were present and the target was masked, performance dropped significantly, even when target-flanker distances far exceeded the typical crowding range. This phenomenon ("supercrowding") shares critical features with standard crowding: flankers similar to the target impair performance more than dissimilar flankers, and the characteristic anisotropic profile of crowding is preserved. Supercrowding may reflect a general interaction between crowding and other forms of masking.

  15. Targeted tumor radiotherapy

    Directory of Open Access Journals (Sweden)

    Unak Perihan

    2002-01-01

    Full Text Available Targeted tumor radiotherapy is selectively delivery of curative doses of radiation to malignant sites. The aim of the targeted tumor radiotherapy is to use the radionuclides which have high LET particle emissions conjugated to appropriate carrier molecules. The radionuclides are selectively collected by tumor cells, depositing lethal doses to tumor cells while no admission occur to normal cells. In theory, targeted radiotherapy has several advantages over conventional radiotherapy since it allows a high radiation dose to be administered without causing normal tissue toxicity, although there are some limitations in the availability of appropriate targeting agents and in the calculations of administered doses. Therefore, for routine clinical applications more progress is still needed. In this article, the potential use of targeted tumor radiotherapy is briefly reviewed. More general aspects and considerations, such as potential radionuclides, mechanisms of tumor targeting was also outlined.

  16. Protein-protein interactions as druggable targets: recent technological advances.

    Science.gov (United States)

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-10-01

    Classical target-based drug discovery, where large chemical libraries are screened using inhibitory assays for a single target, has struggled to find ligands that inhibit protein-protein interactions (PPI). Nevertheless, in the past decade there have been successes that have demonstrated that PPI can be useful drug targets, and the field is now evolving fast. This review focuses on the new approaches and concepts that are being developed to tackle these challenging targets: the use of fragment based methods to explore the chemical space, stapled peptides to regulate intracellular PPI, alternatives to competitive inhibition and the use of antibodies to enable small molecule discovery for these targets.

  17. Targeting Notch to target cancer stem cells.

    Science.gov (United States)

    Pannuti, Antonio; Foreman, Kimberly; Rizzo, Paola; Osipo, Clodia; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2010-06-15

    The cellular heterogeneity of neoplasms has been at the center of considerable interest since the "cancer stem cell hypothesis", originally formulated for hematologic malignancies, was extended to solid tumors. The origins of cancer "stem" cells (CSC) or tumor-initiating cells (TIC; henceforth referred to as CSCs) and the methods to identify them are hotly debated topics. Nevertheless, the existence of subpopulations of tumor cells with stem-like characteristics has significant therapeutic implications. The stem-like phenotype includes indefinite self-replication, pluripotency, and, importantly, resistance to chemotherapeutics. Thus, it is plausible that CSCs, regardless of their origin, may escape standard therapies and cause disease recurrences and/or metastasis after apparently complete remissions. Consequently, the idea of selectively targeting CSCs with novel therapeutics is gaining considerable interest. The Notch pathway is one of the most intensively studied putative therapeutic targets in CSC, and several investigational Notch inhibitors are being developed. However, successful targeting of Notch signaling in CSC will require a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to prove safe and effective. Additionally, to determine which patients are most likely to benefit from treatment with Notch-targeting therapeutics, reliable biomarkers to measure pathway activity in CSC from specific tumors will have to be identified and validated. This article summarizes the most recent developments in the field of Notch-targeted cancer therapeutics, with emphasis on CSC.

  18. Consideration of radar target glint from ST during OMV rendezvous

    Science.gov (United States)

    McDonald, M. W.; Malone, L. B.; Gleason, E. H.

    1985-09-01

    The nature of radar target glint and the factors upon which it depends when using the Hubble Space Telescope as a radar target is discussed. An analysis of the glint problem using a 35 MHz or 94 MHz radar on the orbital maneuvering vehicle is explored. A strategy for overcoming glint is suggested.

  19. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  20. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.

    Science.gov (United States)

    Iyer, Preeti; Bajorath, Jürgen

    2011-11-01

    Activity landscape representations provide access to structure-activity relationships information in compound data sets. In general, activity landscape models integrate molecular similarity relationships with biological activity data. Typically, activity against a single target is monitored. However, for steadily increasing numbers of compounds, activity against multiple targets is reported, resulting in an opportunity, and often a need, to explore multi-target structure-activity relationships. It would be attractive to utilize activity landscape representations to aid in this process, but the design of activity landscapes for multiple targets is a complicated task. Only recently has a first multi-target landscape model been introduced, consisting of an annotated compound network focused on the systematic detection of activity cliffs. Herein, we report a conceptually different multi-target activity landscape design that is based on a 2D projection of chemical reference space using self-organizing maps and encodes compounds as arrays of pair-wise target activity relationships. In this context, we introduce the concept of discontinuity in multi-target activity space. The well-ordered activity landscape model highlights centers of discontinuity in activity space and is straightforward to interpret. It has been applied to analyze compound data sets with three, four, and five target annotations and identify multi-target structure-activity relationships determinants in analog series.

  1. The ISOLDE target robots

    CERN Multimedia

    Maximilein Brice

    2002-01-01

    ISOLDE targets need to be changed frequently, around 80 times per year. The high radiation levels do not permit this to be done by human hands and the target changes are effected by 2 industrial robots (picture _01). On the left, in the distance, the front-end of the GPS (General Purpose Separator) is seen, while the HRS (High Resolution Separator) is at the right. Also seen are the doors to the irradiated-target storage.

  2. Target Window Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-11

    The target window design implemented and tested in experiments at ANL have performed without failure for the available beam of 6 mm FWHM on a 12 mm diameter target. However, scaling that design to a 25 mm diameter target size for a 12 mm FWHM beam has proven problematic. Combined thermal and mechanical (pressure induced) stresses and strains are too high to maintain the small coolant gaps and provide adequate fatigue lifetime.

  3. Moving Target Defense

    CERN Document Server

    Jajodia, Sushil; Swarup, Vipin; Wang, Cliff; Wang, X Sean

    2011-01-01

    Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instr

  4. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  5. Targeting the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  6. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  7. In Outer Space without a Space Suit?

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author proposes and investigates his old idea - a living human in space without the encumbrance of a complex space suit. Only in this condition can biological humanity seriously attempt to colonize space because all planets of Solar system (except the Earth) do not have suitable atmospheres. Aside from the issue of temperature, a suitable partial pressure of oxygen is lacking. In this case the main problem is how to satiate human blood with oxygen and delete carbonic acid gas (carbon dioxide). The proposed system would enable a person to function in outer space without a space suit and, for a long time, without food. That is useful also in the Earth for sustaining working men in an otherwise deadly atmosphere laden with lethal particulates (in case of nuclear, chemical or biological war), in underground confined spaces without fresh air, under water or a top high mountains above a height that can sustain respiration.

  8. Space weather: European Space Agency perspectives

    Science.gov (United States)

    Daly, E. J.; Hilgers, A.

    Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.

  9. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  10. Budgeting Academic Space

    Science.gov (United States)

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  11. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  12. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  13. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  14. Elements of Hilbert spaces and operator theory

    CERN Document Server

    Vasudeva, Harkrishan Lal

    2017-01-01

    The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...

  15. Strategic Targeted Advertising

    NARCIS (Netherlands)

    A. Galeotti; J.L. Moraga-Gonzalez (José Luis)

    2003-01-01

    textabstractWe present a strategic game of pricing and targeted-advertising. Firms can simultaneously target price advertisements to different groups of customers, or to the entire market. Pure strategy equilibria do not exist and thus market segmentation cannot occur surely. Equilibria exhibit rand

  16. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  17. Vibrotactile target saliency

    NARCIS (Netherlands)

    Toet, A.; Groen, E.l.; Oosterbeek, M.T.J.; Hooge, I.T.C.

    2008-01-01

    We tested the saliency of a single vibrotractile target (T) among 2 to 7 nontargets (N), presented by 8 tactors that were equally distributed over a horizontal band around the torso. Targets and nontargets had different pulse duration, but the same activation period and no onset asynchrony. T-N simi

  18. Segmented Target Design

    Science.gov (United States)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  19. Strategic Targeted Advertising

    NARCIS (Netherlands)

    A. Galeotti; J.L. Moraga-Gonzalez (José Luis)

    2003-01-01

    textabstractWe present a strategic game of pricing and targeted-advertising. Firms can simultaneously target price advertisements to different groups of customers, or to the entire market. Pure strategy equilibria do not exist and thus market segmentation cannot occur surely. Equilibria exhibit rand

  20. The CNGS target

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) target ‘magazine’ of five target units. Each unit contains a series of 10-cm long graphite rods distributed over a length of 2 m. It is designed to maximize the number of secondary particles produced and hence the number of neutrinos. One unit is used at a time to prevent over heating.

  1. Vibrotactile target saliency

    NARCIS (Netherlands)

    Toet, A.; Groen, E.l.; Oosterbeek, M.T.J.; Hooge, I.T.C.

    2008-01-01

    We tested the saliency of a single vibrotractile target (T) among 2 to 7 nontargets (N), presented by 8 tactors that were equally distributed over a horizontal band around the torso. Targets and nontargets had different pulse duration, but the same activation period and no onset asynchrony. T-N simi

  2. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  3. Relative Smooth Topological Spaces

    Directory of Open Access Journals (Sweden)

    B. Ghazanfari

    2009-01-01

    Full Text Available In 1992, Ramadan introduced the concept of a smooth topological space and relativeness between smooth topological space and fuzzy topological space in Chang's (1968 view points. In this paper we give a new definition of smooth topological space. This definition can be considered as a generalization of the smooth topological space which was given by Ramadan. Some general properties such as relative smooth continuity and relative smooth compactness are studied.

  4. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    Science.gov (United States)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  5. Stopped nucleons in configuration space

    CERN Document Server

    Bialas, Andrzej; Koch, Volker

    2016-01-01

    In this note, using the colour string model, we study the configuration space distribution of stopped nucleons in heavy-ion collisions. We find that the stopped nucleons from the target and the projectile end up separated from each other by the distance increasing with the collision energy. In consequence, for the center of mass energies larger than 6 or 10 GeV (depending on the details of the model) it appears that the system created is not in thermal and chemical equilibrium, and the net baryon density reached is likely not much higher than that already present in the colliding nuclei.

  6. Translation and spaces of reading

    Directory of Open Access Journals (Sweden)

    Clive Scott

    2014-01-01

    Full Text Available The author discusses relations between the original and translation in terms of imaginary spaces. Target text is understood here as one of the possible images of the source text, from the perspective which could not be accessible to the original. In accordance with the concept presented here, artistic translation can be not so much reconstructed, as conceptually constructed, in the manner of a cubist object. Acts of creative reading are commented on by the author with examples of his own experimental translations from contemporary French poetry.

  7. Polarimetry for four Stockes parameters in space

    Institute of Scientific and Technical Information of China (English)

    张肇先; 王培纲

    2002-01-01

    Continuously growing attention has been paid to potential of polarimetry to provide additional information of remote sounding of the earth and other planets and to detect some special targets. In the present paper the polarimetric technique in space for all the four Stockes parameters is presented.

  8. Hyperbolic spaces in Teichm\\"uller spaces

    CERN Document Server

    Leininger, Christopher J

    2011-01-01

    We prove, for any n, that there is a closed connected orientable surface S so that the hyperbolic space H^n almost-isometrically embeds into the Teichm\\"uller space of S, with quasi-convex image lying in the thick part. As a consequence, H^n quasi-isometrically embeds in the curve complex of S.

  9. Deep Space CubeSat Prototype Platform Design and Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test a proof of concept prototype for a standard CubeSat form factor platform, designed for missions to deep space targets, as opposed to...

  10. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  11. New characterizations of Hajlasz-Sobolev spaces on metric spaces

    Institute of Scientific and Technical Information of China (English)

    YANG; Dachun(杨大春)

    2003-01-01

    This paper introduces the fractional Sobolev spaces on spaces of homogeneous type, includingmetric spaces and fractals. These Sobolev spaces include the well-known Hajfasz-Sobolev spaces as specialmodels. The author establishes various characterizations of (sharp) maximal functions for these spaces. Asapplications, the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces. Moreover,some embedding theorems are also given.

  12. Section 2: The Space of Media Space

    Science.gov (United States)

    Harrison, Steve

    We began our study of media space with the social aspects of mediated communication because many in the computer-supported cooperative work (CSCW) realm are familiar with models, theories, frameworks, issues, and design approaches related to sociality. But the first media space research came from another set of traditions — the ordering of space and the making of place. Formally, these are the professional and intellectual provinces of architecture, which are probably remote from the disciplinary backgrounds of most readers. However, remoteness in terms of rhetoric and training does not prevent proximity to everyday human experience. The meaning of media space with respect to human experience is the focus of the articles in this section. The spaces are designed to have meaning, and the meaning of the design derives from spatial experience.

  13. Nuclear target development

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J.P.; Thomas, G.E.

    1995-08-01

    The Physics Division operates a target development laboratory that produces thin foil targets needed for experiments performed at the ATLAS and Dynamitron accelerators. Targets are not only produced for the Physics Division but also for other divisions and occasionally for other laboratories and universities. In the past year, numerous targets were fabricated by vacuum evaporation either as self-supporting foils or on various substrates. Targets produced included Ag, Au, {sup 10,11}B, {sup 138}Ba, Be, {sup 12}C, {sup 40}Ca, {sup 116}Cd, {sup 155,160}Gd, {sup 76}Ge, In, LID, {sup 6}LiH, Melamine, Mg, {sup 142,150}Nd, {sup 58}Ni, {sup 206,208}Pb, {sup 194}Pt, {sup 28}Si, {sup 144,148}Sm, {sup 120,122,124}Sn, Ta, {sup 130}Te, ThF{sub 4}, {sup 46,50}Ti, TiH, U, UF{sub 4}, {sup 182}W and {sup 170}Yb. Polypropylene and aluminized polypropylene, along with metallized Mylar were produced for experiments at ATLAS. A number of targets of {sup 11}B of various thickness were made for the DEP 2-MeV Van de Graff accelerator. An increased output of foils fabricated using our small rolling mill included targets of Au, C, {sup 50}Cr, Cu, {sup 155,160}Gd, Mg, {sup 58}Ni, {sup 208}Pb, {sup 105,110}Pd. Sc, Ti, and {sup 64,66}Zn.

  14. Separably injective Banach spaces

    CERN Document Server

    Avilés, Antonio; Castillo, Jesús M F; González, Manuel; Moreno, Yolanda

    2016-01-01

    This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l∞/c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L∞ spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines o...

  15. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  16. AA antiproton production target

    CERN Multimedia

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing of stainless steel. At the entrance to the target assembly was a scintillator screen, imprinted with circles every 5 mm in radius, which allowed to precisely aim the 26 GeV high-intensity proton beam from the PS onto the centre of the target rod. The scintillator screen was a 1 mm thick plate of Cr-doped alumina. See also 7903034 and 7905091.

  17. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  18. Free topological vector spaces

    OpenAIRE

    Gabriyelyan, Saak S.; Morris, Sidney A.

    2016-01-01

    We define and study the free topological vector space $\\mathbb{V}(X)$ over a Tychonoff space $X$. We prove that $\\mathbb{V}(X)$ is a $k_\\omega$-space if and only if $X$ is a $k_\\omega$-space. If $X$ is infinite, then $\\mathbb{V}(X)$ contains a closed vector subspace which is topologically isomorphic to $\\mathbb{V}(\\mathbb{N})$. It is proved that if $X$ is a $k$-space, then $\\mathbb{V}(X)$ is locally convex if and only if $X$ is discrete and countable. If $X$ is a metrizable space it is shown ...

  19. China's Space Activities

    Institute of Scientific and Technical Information of China (English)

    China National Space Administration

    2004-01-01

    @@ Currently, space activities are very active around the world. Space technologies continuously expand to various areas of human activities, and space technology and applications are becoming an indispensable part of modern information society,while the development of space science brings a brand-new view to the development of science and technology. The development of space law is not only an important approach to improving people' s quality of lives, expanding the living space of human being, and exploiting new resources, but also an important symbol of the comprehensive strength and civilization of a nation.

  20. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    YAO BIN

    2011-01-01

    With the successful launch of Tiangong-I (Heavenly Palace -I)unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China's manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The second step,to realize multi-person space flight for extended periods of time,has been fulfilled twice.During China's third manned space flight in 2008,Chinese astronauts walked in space.

  1. Beyond Spaces of Counselling

    DEFF Research Database (Denmark)

    Bank, Mads; Nissen, Morten

    2015-01-01

    The article articulates experiments with spatial constructions in two Danish social work agencies, basing on a) a sketchy genealogical reconstruction of conceptualisations and uses of space in social work and counselling; b) a search for theoretical resources to articulate new spaces, and c) data...... from a long-standing collaboration with the social workers. Beside the classical disciplinary and pastoral spaces, we find spaces of attunement, spaces of production, and public spaces as forms of spatialisations which might be taken as prototypical in attempts to develop social work and counselling....

  2. The effect of spacing regularity on visual crowding.

    Science.gov (United States)

    Saarela, T P; Westheimer, G; Herzog, M H

    2010-08-18

    Crowding limits peripheral visual discrimination and recognition: a target easily identified in isolation becomes impossible to recognize when surrounded by other stimuli, often called flankers. Most accounts of crowding predict less crowding when the target-flanker distance increases. On the other hand, the importance of perceptual organization and target-flanker coherence in crowding has recently received more attention. We investigated the effect of target-flanker spacing on crowding in multi-element stimulus arrays. We show that increasing the average distance between the target and the flankers does not always decrease the amount of crowding but can even sometimes increase it. We suggest that the regularity of inter-element spacing plays an important role in determining the strength of crowding: regular spacing leads to the perception of a single, coherent, texture-like stimulus, making judgments about the individual elements difficult.

  3. Branes in supergorups

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas

    2009-06-15

    In this thesis we initiate a systematic study of branes in Wess-Zumino-Novikov-Witten models with Lie supergroup target space. We start by showing that a branes' worldvolume is a twisted superconjugacy class and construct the action of the boundary WZNW model. Then we consider symplectic fermions and give a complete description of boundary states including twisted sectors. Further we show that the GL(1 vertical stroke 1) WZNW model is equivalent to symplectic fermions plus two scalars. We then consider the GL(1 vertical stroke 1) boundary theory. Twisted and untwisted Cardy boundary states are constructed explicitly and their amplitudes are computed. In the twisted case we find a perturbative formulation of the model. For this purpose the introduction of an additional fermionic boundary degree of freedom is necessary. We compute all bulk one-point functions, bulk-boundary two-point functions and boundary three-point functions. Logarithmic singularities appear in bulk-boundary as well as pure boundary correlation functions. Finally we turn to world-sheet and target space supersymmetric models. There is N=2 superconformal symmetry in many supercosets and also in certain supergroups. In the supergroup case we find some branes that preserve the topological A-twist and some that preserve the B-twist. (orig.)

  4. [Reflections on physical spaces and mental spaces].

    Science.gov (United States)

    Chen, Hung-Yi

    2013-08-01

    This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.

  5. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  6. Targeting bacterial toxins.

    Science.gov (United States)

    Ivarsson, Mattias E; Leroux, Jean-Christophe; Castagner, Bastien

    2012-04-23

    Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Marked metric measure spaces

    CERN Document Server

    Depperschmidt, Andrej; Pfaffelhuber, Peter

    2011-01-01

    A marked metric measure space (mmm-space) is a triple (X,r,mu), where (X,r) is a complete and separable metric space and mu is a probability measure on XxI for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I. It arises as state space in the construction of Markov processes which take values in random graphs, e.g. tree-valued dynamics describing randomly evolving genealogical structures in population models. We derive here the topological properties of the space of mmm-spaces needed to study convergence in distribution of random mmm-spaces. Extending the notion of the Gromov-weak topology introduced in (Greven, Pfaffelhuber and Winter, 2009), we define the marked Gromov-weak topology, which turns the set of mmm-spaces into a Polish space. We give a characterization of tightness for families of distributions of random mmm- spaces and identify a convergence determining algebra of functions, called polynomials.

  8. Saccadic search performance: the effect of element spacing.

    Science.gov (United States)

    Vlaskamp, Björn N S; Over, Eelco A B; Hooge, Ignace Th C

    2005-11-01

    In a saccadic search task, we investigated whether spacing between elements affects search performance. Since it has been suggested in the literature that element spacing can affect the eye movement strategy in several ways, its effects on search time per element are hard to predict. In the first experiment, we varied the element spacing (3.4 degrees -7.1 degrees distance between elements) and target-distracter similarity. As expected, search time per element increased with target-distracter similarity. Decreasing element spacing decreased the search time per element. However, this effect was surprisingly small in comparison to the effect of varying target-distracter similarity. In a second experiment, we elaborated on this finding and decreased element spacing even further (between 0.8 degrees and 3.2 degrees). Here, we did not find an effect on search time per element for element spacings from 3.2 degrees to spacings as small as 1.5 degrees . It was only at distances smaller than 1.5 degrees that search time per element increased with decreasing element spacing. In order to explain the remarkable finding that search time per element was not affected for such a wide range of element spacings, we propose that irrespective of the spacing crowding kept the number of elements processed per fixation more or less constant.

  9. Issues in Target Tracking

    Science.gov (United States)

    2010-05-01

    the CUSUM (Page) test yields the quickest detection of a change of distribution for the case of i.i.d. observations [3]. In fact, in a (highly...11. Autocorrelation of the CUSUM increments, sn, under H1 (target present). Issues in Target Tracking RTO-EN-SET-157(2010...restrictive condition that the increments of the cumulative sum, sn, be i.i.d. [3], [22]. Fig. 11 plots the autocorrelation of the CUSUM increments as a

  10. Screening closing scenarios for tactical targets

    Science.gov (United States)

    Sefcik, Jason A.; Lee, Harry C.; Olson, Teresa L. P.

    2002-07-01

    The first step in an automatic image target acquisition system is determining the location of candidate objects. Screening for targets must also be done within a tactical scenario timeframe. The screening process must only require a portion of the processing workload since other algorithms must execute in the same time frame. The detection of these candidate objects is allocated to two functions within the same algorithm. The first is a pre-screener and other is a clutter rejection component that will categorize the object nomination into target or non-target classes. This paper describes a screener that meets the necessary requirements for tactical operations. It uses the magnitude and direction of the image gradient. Locations are nominated by looking at local neighborhoods in this gradient space. Regions of interest are then selected and various features are extracted. These features are selected both for their information content and their ease of calculation. Using a Bayes approach, target candidates are selected as plausible targets of interest.

  11. An ISOLDE target unit

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A good dozen different targets are available for ISOLDE, made of different materials and equipped with different kinds of ion-sources, according to the needs of the experiments. Each separator (GPS: general purpose; HRS: high resolution) has its own target. Because of the high radiation levels, robots effect the target changes, about 80 times per year. In the standard unit shown in picture _01, the target is the cylindrical object in the front. It contains uranium-carbide kept at a temperature of 2200 deg C, necessary for the isotopes to be able to escape. At either end, one sees the heater current leads, carrying 700 A. The Booster beam, some 3E13 protons per pulse, enters the target from left. The evaporated isotope atoms enter a hot-plasma ion source (the black object behind the target). The whole unit sits at 60 kV potential (pulsed in synchronism with the arrival of the Booster beam) which accelerates the ions (away from the viewer) towards one of the 2 separators.

  12. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  13. Exploring Space Physics Concepts Using Simulation Results

    Science.gov (United States)

    Gross, N. A.

    2008-05-01

    The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.

  14. Inform@ed space

    DEFF Research Database (Denmark)

    Bjerrum, Peter; Olsen, Kasper Nefer

    2001-01-01

    Inform@ed space Sensorial Perception And Computer Enchancement - bidrag til Nordisk Arkitekturforskningsforenings IT-konference, AAA april 2001.......Inform@ed space Sensorial Perception And Computer Enchancement - bidrag til Nordisk Arkitekturforskningsforenings IT-konference, AAA april 2001....

  15. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  16. Chinese Space Insurance Opportunities

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2005-01-01

    Jiang Tai Insurance Broker Co., Ltd and China Pacific Insurance (group) Co., Ltd jointly held a conference on Space and Space Insurance on January 13 and 14, 2005. About 50 representatives from 30 domestic insurance companies attended the event.

  17. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  18. Space, time, matter

    CERN Document Server

    Weyl, Hermann

    1999-01-01

    Excellent introduction probes deeply into Euclidean space, Riemann's space, Einstein's general relativity, gravitational waves and energy, and laws of conservation. "A classic of physics." - British Journal for Philosophy and Science.

  19. Space as interface

    DEFF Research Database (Denmark)

    Lykke-Olesen, Andreas

    2006-01-01

    of interactive systems through the Ph.D. project, I have identified different significant aspects in the relation between space and interface. Based on empirical work, I distill a fragment of work concerned with cameras as the interface for bridging the gap between physical and digital space. By looking across...... multiple projects spanning over fields such as tangible user interfaces, augmented reality, and mobile computing, a conceptual framework characterizing camera-based mixed interaction spaces is developed. To show the applicability of the framework, it is deployed on one of the presented cases and discussed...... to conceptualize space as more than the physical container for human activity. I do this by investigating space as interface. Based on a theory of space and place set forth by Tuan (Tuan, 1977), and informed by an explorative research approach, I make the distinction between space and place as a Euclidian space...

  20. Habitats in Space

    Science.gov (United States)

    O'Neill, Gerard K.

    1977-01-01

    Student visions of large human communities in space are illustrated and explained. Space between the Earth and moon was utilized and several designs for stations as Earthlike as possible were suggested. A bibliography is included. (AJ)

  1. Probabilistic metric spaces

    CERN Document Server

    Schweizer, B

    2005-01-01

    Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.

  2. Occupational Space Medicine

    Science.gov (United States)

    Tarver, William J.

    2012-01-01

    Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.

  3. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  4. Reutilizing Existing Library Space.

    Science.gov (United States)

    Davis, Marlys Cresap

    1987-01-01

    This discussion of the reutilization of existing library space reviews the decision process and considerations for implementation. Two case studies of small public libraries which reassigned space to better use are provided, including floor plans. (1 reference) (MES)

  5. Logic for physical space

    DEFF Research Database (Denmark)

    Aiello, Marco; Bezhanishvili, Guram; Bloch, Isabelle

    2012-01-01

    of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones in the logical representation of space and investigate current trends. In doing so......, we do not only consider classical logic, but we indulge ourselves with modal logics. These present themselves naturally by providing simple axiomatizations of different geometries, topologies, space-time causality, and vector spaces....

  6. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  7. Amarts on Riesz Spaces

    Institute of Scientific and Technical Information of China (English)

    Wen Chi KUO; Coenraad C.A.LABUSCHAGNE; Bruce A.WATSON

    2008-01-01

    The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math., 15 (2004), 435-451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced.

  8. Space, composition, vertical wall ...

    OpenAIRE

    Despot, Katerina; Sandeva, Vaska

    2016-01-01

    The space in which it is an integral segment of our life is nourished with many functional and decorative elements. One aspect for consideration of vertical walls or The vertical gardens and their aesthetic impact in space called function. Vertical gardens bordering the decoration to totally functional garden in areas where there is little oxygen and space, ideal for residential buildings and public spaces where missing greenery, special place occupies in interior design where their expres...

  9. Topological Test Spaces

    OpenAIRE

    Wilce, Alexander

    2004-01-01

    A test space is the set of outcome-sets associated with a collection of experiments. This notion provides a simple mathematical framework for the study of probabilistic theories -- notably, quantum mechanics -- in which one is faced with incommensurable random quantities. In the case of quantum mechanics, the relevant test space, the set of orthonormal bases of a Hilbert space, carries significant topological structure. This paper inaugurates a general study of topological test spaces. Among ...

  10. Space Fence Overview

    Science.gov (United States)

    Haimerl, J.; Fonder, G.

    Space is no longer a vast, empty void. Unprecedented quantities of new satellites, derelict satellites, and debris litter the skies, posing an imminent threat to America's space assets. The Space Fence System is a ground-based system of S-band radars designed to greatly enhance the Air Force Space Surveillance network. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. Space Fence capabilities will revolutionize space situational awareness. Space Fence includes up to two minimally-manned radar sites and the Space Fence Operations Center. Each radar site features a design with closely-spaced, but separate, Transmit and Receive Arrays that are mission-optimized for high availability and low lifetime support costs, including prime power. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence offers assured surveillance coverage for improved custody and features the capability to develop long arc tracks for accurate orbit determination, while simultaneously maintaining a persistent surveillance volume. Space Fence allows operators to reconstruct recent events such as collisions or satellite break-ups and accurately predict future events. For high-interest objects, a micro fence can be electronically constructed to gather more track data, focusing radar resources specifically on that object, providing more timely and accurate information. The Space Fence System is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users such as JSpOC and coordinating handoffs to other SSN sites. Space Fence is a robust, flexible, advanced end-to-end system that will meet the warfighters

  11. Superanalysis on quantum spaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexander [Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig (Germany); Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universitaet, Theresienstr. 37, D-80333 Munich (Germany); Wachter, Hartmut [Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig (Germany); Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universitaet, Theresienstr. 37, D-80333 Munich (Germany)

    2006-01-15

    Attention is focused on antisymmetrised versions of quantum spaces that are of particular importance in physics, i.e. Manin plane, q-deformed euclidean space in three or four dimensions as well as q-deformed Minkowski space. For each of these quantum spaces we provide q-analogs for elements of superanalysis, i.e. Grassmann integrals, Grassmann exponentials, Grassmann translations and braided products with supernumbers.

  12. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  13. Venturing Further Into Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China launches a prototype space module as a precursor to a manned space station China’s first unmanned space module Tiangong-1,or Heavenly Palace-1,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China’s Gansu Province on September 29. "The successful launch of the 8.5-ton

  14. Function spaces, 1

    CERN Document Server

    Pick, Luboš; John, Oldrich; Fucík, Svatopluk

    2012-01-01

    This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volum

  15. Dependent Probability Spaces

    Science.gov (United States)

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  16. Maintaining Space Superiority

    Science.gov (United States)

    2014-02-01

    owned by the Iridium Corpora- tion. That event sparked international concern as issues of on-orbit safety became a hot topic for international... Attacks on Space Systems," Space and De- fense 4, no. 1 (Winter 2010): 10, http:/ /www.usafa.edu/df/dfe/dfer/centers/ecsds/docs /Space_and_Defense_

  17. New Special Finsler Spaces

    CERN Document Server

    Youssef, Nabil L

    2016-01-01

    The pullback approach to global Finsler geometry is adopted. Some new types of special Finsler spaces are introduced and investigated, namely, Ricci, generalized Ricci, projectively recurrent and m-projectively recurrent Finsler spaces. The properties of these special Finsler spaces are studied and the relations between them are singled out.

  18. Symmetric Spaces in Supergravity

    CERN Document Server

    Ferrara, Sergio

    2008-01-01

    We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.

  19. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the successful launch of Tiangong-1 (Heavenly Palace-1) unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China’s manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The

  20. On Real Operator Spaces

    Institute of Scientific and Technical Information of China (English)

    Zhong Jin RUAN (Zhong-Jin Ruan)

    2003-01-01

    During the last ten to fifteen years , a lot of progress has been achieved in the study ofcomplex operator spaces. In this paper, we show that a corresponding theory can be developed forreal operator spaces. With some appropriate modifications, many complex results still hold for realoperator spaces.

  1. On generalized topological spaces

    OpenAIRE

    Piȩkosz, Artur

    2009-01-01

    In this paper a systematic study of the category GTS of generalized topological spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous mappings begins. Some completeness and cocompleteness results are achieved. Generalized topological spaces help to reconstruct the important elements of the theory of locally definable and weakly definable spaces in the wide context of weakly topological structures.

  2. New Window to Space

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ground has been broken for a new space launch complex in Hainan Province china on September 14 began building a space launch center on tropical Hainan Island and continued to construct the foundations for the nation’s sophisticated space program.

  3. OneSpace

    DEFF Research Database (Denmark)

    Ledo, David; Aseniero, Bon Adriel; Greenberg, Saul

    2013-01-01

    Video conferencing commonly employs a video portal metaphor to connect individuals from remote spaces. In this work, we explore an alternate metaphor, a shared depth-mirror, where video images of two spaces are fused into a single shared, depth-corrected video space. We realize this metaphor in O...

  4. Augmented Spinor Space

    Institute of Scientific and Technical Information of China (English)

    Xiuhong FENG; Lin ZHU; Yanlin YU

    2007-01-01

    In this paper, based on the Pauli matrices, a notion of augmented spinor space is introduced, and a uniqueness of such augmented spinor space of rank n is proved. It may be expected that this new notion of spaces can be used in mathematical physics and geometry.

  5. The Sinuous Target

    Energy Technology Data Exchange (ETDEWEB)

    Zwaska, R. [Fermilab

    2015-06-01

    We report on the concept for a target material comprised of a multitude of interlaced wires of small dimension. This target material concept is primarily directed at high-power neutrino targets where the thermal shock is large due to small beam sizes and short durations; it also has applications to other high-power targets, particularly where the energy deposition is great or a high surface area is preferred. This approach ameliorates the problem of thermal shock by engineering a material with high strength on the micro-scale, but a very low modulus of elasticity on the meso-scale. The low modulus of elasticity is achieved by constructing the material of spring-like wire segments much smaller than the beam dimension. The intrinsic bends of the wires will allow them to absorb the strain of thermal shock with minimal stress. Furthermore, the interlaced nature of the wires provides containment of any segment that might become loose. We will discuss the progress on studies of analogue materials and fabrication techniques for sinuous target materials.

  6. Production Target Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  7. Targeted assets risk analysis.

    Science.gov (United States)

    Bouwsema, Barry

    2013-01-01

    Risk assessments utilising the consolidated risk assessment process as described by Public Safety Canada and the Centre for Security Science utilise the five threat categories of natural, human accidental, technological, human intentional and chemical, biological, radiological, nuclear or explosive (CBRNE). The categories of human intentional and CBRNE indicate intended actions against specific targets. It is therefore necessary to be able to identify which pieces of critical infrastructure represent the likely targets of individuals with malicious intent. Using the consolidated risk assessment process and the target capabilities list, coupled with the CARVER methodology and a security vulnerability analysis, it is possible to identify these targeted assets and their weaknesses. This process can help emergency managers to identify where resources should be allocated and funding spent. Targeted Assets Risk Analysis (TARA) presents a new opportunity to improve how risk is measured, monitored, managed and minimised through the four phases of emergency management, namely, prevention, preparation, response and recovery. To reduce risk throughout Canada, Defence Research and Development Canada is interested in researching the potential benefits of a comprehensive approach to risk assessment and management. The TARA provides a framework against which potential human intentional threats can be measured and quantified, thereby improving safety for all Canadians.

  8. Least square regularized regression in sum space.

    Science.gov (United States)

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  9. The Extended Relativity Theory in Clifford Spaces

    CERN Document Server

    Castro, C

    2004-01-01

    A brief review of some of the most important features of the Extended Relativity theory in Clifford-spaces ( $C$-spaces) is presented whose " point" coordinates are noncommuting Clifford-valued quantities and which incoporate the lines, areas, volumes, .... degrees of freedom associated with the collective particle, string, membrane, ... dynamics of the $p$-loop histories (closed p-branes) living in target $D$-dimensional spacetime backgrounds. $C$-space Relativity naturally incoporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, superluminal propagation, higher derivative gravity with torsion and variable dimensions/signatures that allows to study the dynamics of all (closed ) p-branes, for all values of $ p $, in a unified footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows along with the study of the inva...

  10. The Extended Relativity Theory in Clifford Spaces

    CERN Document Server

    Castro, C

    2004-01-01

    A brief review of some of the most important features of the Extended Relativity theory in Clifford-spaces ($C$-spaces) is presented whose " point" coordinates are noncommuting Clifford-valued quantities and which incorporate the lines, areas, volumes,.... degrees of freedom associated with the collective particle, string, membrane,... dynamics of $p$-loops (closed p-branes) living in target $D$-dimensional spacetime backgrounds. $C$-space Relativity naturally incorporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, higher derivative gravity with torsion and variable dimensions/signatures that allows to study the dynamics of all (closed) p-branes, for all values of $ p $, on a unified footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows along with the study of the invariance group of symmetry transformations ...

  11. Challenges of In Space Robotic Servicing

    Science.gov (United States)

    Roberts, Brian John

    2015-01-01

    As future space missions extend beyond the friendly confines of low earth orbit, robots are becoming an increasingly vital component on flight manifests. While the main focus to-date has been on satellite servicing due to its high commercial potential, robots are also being considered for orbital debris removal, space construction, and asteroid sample retrieval. The robotic technologies and automation required to carry out these missions represent a significant advancement beyond the manipulation technology used previously on the Space Shuttle, the International Space Station, and planetary rovers. While higher demands are being driven by the more ambitious nature of the tasks, the handling of uncooperative targets such as satellites and asteroids, present a greater challenge.

  12. Assessment of Vision-Based Target Detection and Classification Solutions Using an Indoor Aerial Robot

    Science.gov (United States)

    2014-09-01

    thresholded to be an edge, there are a finite number of lines that the point may fall on, which when plotted turns out to be a trigonometric relationship ...points. 3.3.7 Pose and Location Estimation: The Transformation Matrix The relationship between the 3D coordinates of a point in a space and the...feature space for target. Fiduciary mark- ers or a more complex target feature space will both present interesting alternatives for the methodology of

  13. Venturing Further Into Space

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2011-01-01

    China's first unmanNed space module Tiangong-Ⅰ,or Heavenly Palace-Ⅰ,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China's Gansu Province on September 29."The successful launch of the 8.5-ton prototype space laboratory has opened the gates for China's deep space exploration program," said Qi Faren,former chief designer of China's Shenzhou spacecraft.“It is a decisive leap forward for the Chinese space industry and will bring about the rapid development of space science and related techologies."

  14. At Home in Space

    Institute of Scientific and Technical Information of China (English)

    Yin Pumin

    2011-01-01

    CHINA'S first unmanned space module Tiangong-1,or Heavenly Palace-1,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China's Gansu Province on September 29."The successfullaunch of the 8.5-ton prototype space laboratory has opened the gates for China's deep space exploration program," said Qi Faren,former chief designer of China's Shenzhou spacecraft."It is a decisive leap forward for the Chinese space industry and will bring about the rapid development of space science and related technologies."

  15. Uniformly Convex Metric Spaces

    OpenAIRE

    Kell Martin

    2014-01-01

    In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit a generalized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simple proof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology called co-convex topology agrees with the usualy weak topology in Banach spaces. An example of a $CAT(0)$-spaces with weak topology which is not Hausdorff is given. This answers questions raised b...

  16. Space Acquired Photography

    Science.gov (United States)

    ,

    2008-01-01

    Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.

  17. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  18. Space vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  19. Skeletally Dugundji spaces

    OpenAIRE

    2012-01-01

    We introduce and investigate the class of skeletally Dugundji spaces as a skeletal analogue of Dugundji space. The main result states that the following conditions are equivalent for a given space $X$: (i) $X$ is skeletally Dugundji; (ii) Every compactification of $X$ is co-absolute to a Dugundji space; (iii) Every $C^*$-embedding of the absolute $p(X)$ in another space is strongly $\\pi$-regular; (iv) $X$ has a multiplicative lattice in the sense of Shchepin \\cite{s76} consisting of skeletal ...

  20. Compactness in Metric Spaces

    Directory of Open Access Journals (Sweden)

    Nakasho Kazuhisa

    2016-09-01

    Full Text Available In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces.

  1. Price-level Targeting versus Inflation Targeting: A Free Lunch?

    OpenAIRE

    Svensson, Lars E O

    1996-01-01

    Price-level targeting (without base drift) and inflation targeting (with base drift) are compared under commitment and discretion, with persistence in unemployment. Price-level targeting is often said to imply more short-run inflation variability and thereby more employment variability than inflation targeting. Counter to this conventional wisdom, under discretion a price-level target results in lower inflation variability than an inflation target (if unemployment is at least moderately persi...

  2. Optimization Research of Urban Space Configuration Based on Space Syntax

    Institute of Scientific and Technical Information of China (English)

    Zhu Qing; Wang Jingwen

    2005-01-01

    In this paper, a new method based on the space syntax is presented to optimize the urban space configuration. Space syntax theory is used to detect systematically whether one urban space configuration is optimal or not from four aspects including traffic space, cognition space, land use space and culture space. After introducing the computational and cognitive aspects of space syntax for the research of urban space, a framework of urban space optimization based on space syntax is proposed, then the integration with GIS and the extension to third dimension are discussed. Finally, a case study for Kanmen town of Zhejiang province of P.R.China is illustrated by using Axwoman tool.

  3. Musical space synesthesia: automatic, explicit and conceptual connections between musical stimuli and space.

    Science.gov (United States)

    Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai

    2014-08-01

    In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quantum Spaces are Modular

    CERN Document Server

    Freidel, Laurent; Minic, Djordje

    2016-01-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrodinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrodinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and...

  5. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  6. Targeted Phototherapy (newer phototherapy

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-04-01

    Full Text Available Conventional phototherapy uses a whole body cabinet or body part machine such as hand, foot or scalp machines. They have many disadvantages due to which new phototherapy technique was then developed to overcome this situation. This new technique is called targeted phototherapy which includes excimer laser, intense pulse light system (IPL, photodynamic therapy and ultraviolet (UV light source with a sophisticated delivery system which is easy to be operated by hands. The mechanisms of action of targeted phototherapy systems are similar to those in conventional UVB/UVA therapy. They have many advantages like less chances of side effects, avoidance of exposure of unnecessary sites, faster response, shortening of the duration of treatments. But they have disadvantages like high costs and inability to use for extensive areas. This review article discusses targeted phototherapy in considerable to the mechanism of actions and advantages and disadvantages in comparison to the conventional phototherapy.

  7. AA antiproton production target

    CERN Multimedia

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling. In this picture, the 26 GeV high-intensity beam from the PS enters from the right, where a scintillator screen, with circles every 5 mm in radius, permits precise aim at the target centre. See also 7903034 and 7905094.

  8. Targeting peroxiredoxins against leukemia.

    Science.gov (United States)

    Liu, Chuan-Xu; Zhou, Hu-Chen; Yin, Qian-Qian; Wu, Ying-Li; Chen, Guo-Qiang

    2013-01-15

    Peroxiredoxins (Prx), a family of small non-seleno peroxidases, are important regulators for cellular reactive oxygen species (ROS), which contribute to many signaling pathways and pathogenesis of diseases. Targeting redox homeostasis is being developed as a promising therapeutic strategy for many diseases such as cancers. This mini-review attempts to focus on our recent discoveries on adenanthin as the first natural molecule to specifically target the resolving cysteines of Prx I and Prx II and thus inhibit their peroxidase activities, and its role in differentiation induction in vitro and in vivo of acute myeloid leukemic cells.

  9. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available , Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results Optimal Exploration Target Zones Pravesh Debba1, Emmanual M.J. Carranza2, Alfred Stein2, Freek D. van der Meer2 1CSIR, Logistics... and Quantitative Methods, CSIR Built Environment 2International Institute for Geo-Information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500AA Enschede, The Netherlands Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer...

  10. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  11. Autonomous Target Ranging Techniques

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2003-01-01

    For the deep space asteroid mission, Bering, the main goal is the detection and tracking of near Earth objects (NEOs) and asteroids. One of the key science instruments is the 0.3-m telescope used for imaging and tracking of the detected asteroidal objects. For efficient use of the observation time...

  12. [Space medicine and life sciences in space].

    Science.gov (United States)

    Gerstenbrand, F; Muigg, A

    1993-01-01

    The examination of pathophysiological disturbances and the process of adaptation in man during space flight is not for optimizing of the biological systems during the training of cosmonauts and astronauts for their stay in space only. These results are also important for medical application on patients. In real microgravity disturbances of motor performances, coordination of movements, accuracy of movements, muscle function as well as structural changes in muscles is found in real microgravity. Spinal reflexes and the control of vestibular system on eye movements are also afflicted. Higher brain functions, especially associative reactions, critical abilities, memory, as well as high brain function like space orientation, body scheme control, geometric and arithmetic analysis and its reproduction, at last speech production, writing and reading are decreased. Vegetative disorders, bone decalcification, primary muscular atrophy occur as well as changes in sleep--wake regulation and diminishing of vigility. Disturbances of blood and body fluid circulation and biologic radiation damage are further effects of man space flight. Several problems of space adaptation can be studied with the methods of the simulated microgravity using the dry water immersion, examination and the bed rest model in special laboratories. The routine medicine is learning from the scientific results of the research in real and simulated microgravity.

  13. TRANSVERSE PHASE SPACE PAINTING FOR SNS ACCUMULATOR RING INJECTION.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.

    1999-03-29

    The result of investigation and comparison of a series of transverse phase space painting schemes for the injection of SNS accumulator ring [1] is reported. In this computer simulation study, the focus is on the creation of closed orbit bumps that give desired distributions at the target. Space charge effects such as tune shift, emittance growth and beam losses are considered. The results of pseudo end-to-end simulations from the injection to the target through the accumulator ring and Ring to Target Beam Transfer (RTBT) system [2] are presented and discussed.

  14. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  15. Space Qualified Heterogeneous Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to develop a radiation hardened, monolithic, heterogeneous processor for space imaging and radar systems. High performance processors are needed...

  16. Quantum spaces are modular

    Science.gov (United States)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2016-11-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrödinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and rotation invariance. We also discuss how the usual classical notion of space comes out as a form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

  17. INFORMATION SPACE– EDUCATIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Monica LIA

    2015-11-01

    Full Text Available This paper has set the objective of researching how education is influenced by the information society. The first step was to define more precisely the information space. The second step was to identify how information space intersects with the family space and institutional space educational levels represented by pre-school / school and pre-university (kindergarten, at elementary / middle school / high school. Interrelationship between the above mentioned areas was another objective of the research. All these elements have been investigated through the original intention to identify how the information space can become an educational tool to support the family space, education and institutional space. Also, the aim of this research is to offer some solutions in this regard. Often the educational efforts appear to be blocked by the existence of this space. But this paper demonstrates that Informational space can be an enemy of the educational system or can support systems if we knew the internal structure and mechanisms. We can make the Informational Space to work in order to accomplish the educational scope.

  18. Pappus in optical space.

    Science.gov (United States)

    Koenderink, Jan J; van Doorn, Andrea J; Kappers, Astrid M L; Todd, James T

    2002-04-01

    Optical space differs from physical space. The structure of optical space has generally been assumed to be metrical. In contradistinction, we do not assume any metric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two lines a unique point). (The incidence relations have generally been assumed implicitly by earlier authors.) The condition that makes such an incidence structure into a projective space is the Pappus condition. The Pappus condition describes a projective relation between three collinear triples of points, whose validity can--in principle--be verified empirically. The Pappus condition is a necessary condition for optical space to be a homogeneous space (Lobatchevski hyperbolic or Riemann elliptic space) as assumed by, for example, the well-known Luneburg theory. We test the Pappus condition in a full-cue situation (open field, broad daylight, distances of up to 20 m, visual fields of up to 160 degrees diameter). We found that although optical space is definitely not veridical, even under full-cue conditions, violations of the Pappus condition are the exception. Apparently optical space is not totally different from a homogeneous space, although it is in no way close to Euclidean.

  19. Kinematic space and wormholes

    Science.gov (United States)

    Zhang, Jian-dong; Chen, Bin

    2017-01-01

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  20. ISOLDE back on target

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Today, Friday 1 August, the ISOLDE installation, supplied by the beams of the PS Booster, restarted its physics programme. After a shutdown of almost a year and a half, there was a real buzz in the air as the first beam of protons hit the target of the first post-LS1 ISOLDE experiment.   One of the new target-handling robots installed by ISOLDE during LS1. Many improvements have been made to the ISOLDE installation during LS1. One of the main projects was the installation of new robots for handling the targets (see photo 1). “Our targets are bombarded by protons from the PS Booster’s beams and become very radioactive,” explains Maria Jose Garcia Borge, spokesperson for the ISOLDE collaboration. “They therefore need to be handled carefully, which is where the robots come in. The robots we had until now were already over 20 years old and were starting to suffer from the effects of radiation. So LS1 was a perfect opportunity to replace them with more moder...

  1. Active Target Simulation

    Science.gov (United States)

    Smith, Nathan; Draznik, Peter; Frank, Nathan

    2012-10-01

    We have simulated an existing experimental design to determine the resolution improvement upon energy measurements of neutron unbound nuclei. A number of experiments of this type have been performed at the National Superconducting Cyclotron Laboratory (NSCL), located at Michigan State University. An excited nucleus is typically produced with a radioactive beam interacting with a passive Beryllium target. Many different nuclei are produced in experiment, each of which immediately decays into a charged particle and neutron. The charged particles are detected and the neutrons interact in scintillation detectors such as the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). In our simulation, we have constructed an active target that provides additional information such that the point of nuclear interaction within the target may be determined. This information improves the resolution in decay energy measurements of neutron unbound isotopes. This presentation will cover some aspects of the simulation process, as well as showing some of the results that demonstrate the simulated improvement over a passive target.

  2. Target chambers for gammashpere

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G. [and others

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  3. Microenvironmental targets in sarcoma

    Directory of Open Access Journals (Sweden)

    Monika eEhnman

    2015-11-01

    Full Text Available Sarcomas are rare malignant tumors affecting all age groups. They are typically classified according to their resemblance to corresponding normal tissue. Their heterogeneous features, for example in terms of disease-driving genetic aberrations and body location, complicate both disease classification and development of novel treatment regimens. Many years of failure of improved patient outcome in clinical trials has lead to the conclusion that novel targeted therapies are likely needed in combination with current multimodality regimens. Sarcomas have not, in contrast to the common carcinomas, been the subject for larger systematic studies on how tumor behavior relates to characteristics of the tumor microenvironment. There is consequently an urgent need for identifying suitable molecular targets, not only in tumor cells, but also in the tumor microenvironment. This review discusses preclinical and clinical data about potential molecular targets in sarcomas. Studies on targeted therapies involving the tumor microenvironment are prioritized. A greater understanding of the biological context is expected to facilitate more successful design of future clinical trials in sarcoma.

  4. Major Targets for 2010

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ This year, the main targets we have set for economic and social development are: increasing GDP by approximately 8 percent, creating jobs for more than 9 million people, keeping the urban registered unemployment rate no higher than 4.6 percent, holding the rise in consumer prices to around 3 percent, and improving the balance of payments.

  5. Cancer immunotherapy targeting neoantigens.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-02-01

    Neoantigens are antigens encoded by tumor-specific mutated genes. Studies in the past few years have suggested a key role for neoantigens in cancer immunotherapy. Here we review the discoveries of neoantigens in the past two decades and the current advances in neoantigen identification. We also discuss the potential benefits and obstacles to the development of effective cancer immunotherapies targeting neoantigens.

  6. Targeted Therapy for Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas [Alphamed, Jackson, TN (United States); Moore, Herbert [Alphamed, Jackson, TN (United States)

    2016-12-05

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  7. Deterministic Ethernet for Space Applications

    Science.gov (United States)

    Fidi, C.; Wolff, B.

    2015-09-01

    Typical spacecraft systems are distributed to be able to achieve the required reliability and availability targets of the mission. However the requirements on these systems are different for launchers, satellites, human space flight and exploration missions. Launchers require typically high reliability with very short mission times whereas satellites or space exploration missions require very high availability at very long mission times. Comparing a distributed system of launchers with satellites it shows very fast reaction times in launchers versus much slower once in satellite applications. Human space flight missions are maybe most challenging concerning reliability and availability since human lives are involved and the mission times can be very long e.g. ISS. Also the reaction times of these vehicles can get challenging during mission scenarios like landing or re-entry leading to very fast control loops. In these different applications more and more autonomous functions are required to fulfil the needs of current and future missions. This autonomously leads to new requirements with respect to increase performance, determinism, reliability and availability. On the other hand side the pressure on reducing costs of electronic components in space applications is increasing, leading to the use of more and more COTS components especially for launchers and LEO satellites. This requires a technology which is able to provide a cost competitive solution for both the high reliable and available deep-space as well as the low cost “new space” markets. Future spacecraft communication standards therefore have to be much more flexible, scalable and modular to be able to deal with these upcoming challenges. The only way to fulfill these requirements is, if they are based on open standards which are used cross industry leading to a reduction of the lifecycle costs and an increase in performance. The use of a communication network that fulfills these requirements will be

  8. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  9. Interplanetary Space Weather and Its Planetary Connection

    Science.gov (United States)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul

    2008-01-01

    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  10. Layout optimization for multilayer overlay targets

    Science.gov (United States)

    Binns, L. A.; Smith, N. P.; Ausschnitt, C. P.; Morningstar, J.; Muth, W.; Schneider, J.; Yerdon, R.

    2006-03-01

    A novel overlay target developed by IBM and Accent Optical Technologies, Blossom, allows simultaneous overlay measurements of multiple layers (currently, up to 28) with a single target. This is achieved by a rotationally symmetric arrangement of small (4 micron) targets in a 50 micron square area, described more fully in a separate paper. In this paper, we examine the lessons learned in developing and testing the Blossom design. We start by examining proximity effects; the spacing of adjacent targets means that both the precision-like Total Measurement Uncertainty (TMU) and accuracy of a measurement can be affected by proximity of features. We use a mixture of real and modelled data to illustrate this problem, and find that the layout of Blossom reduces the proximity-induced bias. However, we do find that in certain cases proximity effects can increase the TMU of a particular measurement. The solution is to ensure that parts of the target that interact detrimentally are maximally separated. We present a solution to this, viewing the problem as a constrained Travelling Salesman Problem. We have imposed some global constraints, for example printing front-end and back-end layers on separate targets, and consistency with the overlay measurement strategy. Initially, we assume that pairwise measurements are either critical or non-critical, and optimize the layout so that the critical layers are both not placed adjacent to any prior or intermediate-layer features. We then build upon this structure, to consider the effect of low-energy implants (that cannot be seen once processed) and site re-use possibilities. Beyond this, we also investigate the impact of more strategic optimizations, for example, tuning the number of features on each layer. In each case, we present on-product performance data achieved, and modelled data on some additional target variants / extreme cases.

  11. Future System Science Mission Targets for Heliophysics

    Science.gov (United States)

    Spann, James; Christensen, Andrew B.; SaintCyr, O. C.; Giles, Barbara I.; Posner, Arik

    2009-01-01

    Heliophysics is a discipline that investigates the science at work from the interface of Earth and space, to the core of the Sun, and to the outer edge of our solar system. This solar-interplanetary-planetary system is vast and inherently coupled on many spatial, temporal and energy scales. The Sun's explosive energy output creates complicated field and plasma structures that when coupled without terrestrial magnetized space, generates an extraordinary complex environment that has practical implications for humanity as we are becoming increasingly dependent on space-based assets. The immense volume of our cosmic neighborhood is the domain of heliophysics. Understanding this domain and the dominant mechanisms that control the transfer of mass and energy requires a system approach that addresses all aspects and regions of the system. The 2009 NASA Heliophysics Roadmap presents a science-focused strategic approach to advance the goal of heliophysics: why does the Sun vary; how do the Earth and heliosphere respond; and what are the impacts on humanity? This talk will present the top 6 prioritized science targets to understand the coupled heliophysics system as presented in the 2009 NASA Heliophysics Roadmap. An exposition of each science target and how it addresses outstanding questions in heliophysics will be discussed.

  12. Prioritized System Science Targets for Heliophysics

    Science.gov (United States)

    Spann, James Frederick; Christensen, Andrew B.; SaintCyr, Orville Chris; Posner, Arik; Giles, Barbara L.

    2009-01-01

    Heliophysics is a discipline that investigates the science at work from the interface of Earth and space, to the core of the Sun, and to the outer edge of our solar system. This solar-interplanetary-planetary system is vast and inherently coupled on many spatial, temporal and energy scales. The Sun's explosive energy output creates complicated field and plasma structures that when coupled with our terrestrial magnetized space, generates an extraordinary complex environment that has practical implications for humanity as we are becoming increasingly dependent on space-based assets. This immense volume of our cosmic neighborhood is the domain of heliophysics. Understanding this domain and the dominant mechanisms that control the transfer of mass and energy requires a system approach that addresses all aspects and regions of the system. The 2009 NASA Heliophysics Roadmap presents a science-focused strategic approach to advance the goal of heliophysics: why does the Sun vary; how do the Earth and heliosphere respond; and what are the impacts on humanity? This talk will present the top 6 prioritized science targets to understand the coupled heliophysics system as presented in the 2009 NASA Heliophysics Roadmap. An exposition of each science target and how it addresses outstanding questions in heliophysics will be discussed.

  13. Gymnastics in Phase Space

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  14. Art and Architectural Space

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    art and architectural space museums and other exhibition spaces or how artists learn to love architects Over the last two decades, innumerable new museums, art galleries and other exhibition spaces have been built and opened all over the globe. The most extreme growth happened in China, where...... historically considered even the mother of all arts) - but more relevant: what are appropriate architectural spaces for presenting, exhibiting, contemplating, reflecting, meditating, discussing, enjoying, dissenting, debating creations of art. Simplified, this is a question about the relation between package...... and its content. The urban and spatial question goes far beyond museums and other buildings for art: how in democratic societies should public spaces be supported by art and how can public art support ´cityness´ and meaning versus spaces of consumerism. Famous but egocentric buildings with the main...

  15. A Space Apart

    Directory of Open Access Journals (Sweden)

    Lisa Lynch

    2017-01-01

    Full Text Available This article examines how the preschool child is enabled to withdraw from the peer group and create a private, individual space within the institutional collective. The question under consideration is, “What factors are necessary to enable a child to create and maintain a withdrawal space in the preschool?” Data were collected through ethnographic fieldwork at two Montessori schools in the south of Sweden. Analysis of the results reveals that a child is enabled through a combination of two elements: a level of opportunity to create a space and a level of defense of a created space. These two factors are dependent on the teachers’ ability to correctly identify space creation, alongside their desire for the child’s space creation effort to be successful.

  16. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  17. Cyber space bullying

    Directory of Open Access Journals (Sweden)

    Popović-Ćitić Branislava

    2009-01-01

    Full Text Available Cyber space bullying is a relatively new phenomenon that has received increased attention by scientists, researchers and practitioners in recent years. It is usually defined as an intentionally and repeatedly expression of aggression towards other people through information and communication technologies. Cyber space bullying is characterized by all the primary characteristics of traditional bullying and some specifics ones that clearly differ it from other forms of bullying. In addition to the analysis of characteristics and specifics of cyber space bullying, the paper describes the basic forms of cyber space bullying (flaming, harassment, denigration, impersonation, outing, trickery, exclusion, stalking and happy slapping, as well as, the types of cyber space bullies (vengeful angel, power-hungry, revenge of the nerd, mean girls and inadvertent. The main goal of this paper is to provide initial theoretical guidelines for designing future empirical research on the complex phenomenon of cyber space bullying.

  18. Space Propulsion and Power

    Science.gov (United States)

    2013-03-08

    uniform dense plasmas ? Distribution A: Approved for public release; distribution is unlimited Space Propulsion and Power - New Research Areas Non ...interactions of the Matters in Space Propulsion Systems Space Propulsion and Power Portfolio Coupled Materials and Plasma Processes Far From...primary electron  1 • Effective secondary electron emission * accounts for non - Maxwellian effects * > 1 * < 1 ~4 MHz Sheath Beams of SEE

  19. Tilings in topological spaces

    Directory of Open Access Journals (Sweden)

    F. G. Arenas

    1999-01-01

    pairwise-disjoint interiors. Tilings of ℝ2 have received considerable attention (see [2] for a wealth of interesting examples and results as well as an extensive bibliography. On the other hand, the study of tilings of general topological spaces is just beginning (see [1, 3, 4, 6]. We give some generalizations for topological spaces of some results known for certain classes of tilings of topological vector spaces.

  20. Space between us

    OpenAIRE

    Twigg, Christopher

    2011-01-01

    Work shown as part of the Erasure exhibition at Stoke City Museum and Art Gallery, January - May 2011. The theme of the exhibition focused on the idea of removing or erasing something, to create something new. 'Space Between Us' is a graphic exposition of the spaces we construct in the built environment. The exhibition formed an open and participatory investigation into space and how it may relate to the human condition as lived within it.

  1. Aging and space travel

    Science.gov (United States)

    Mohler, S. R.

    1982-01-01

    The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.

  2. *-products on quantum spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, H.; Wohlgenannt, M. [Sektion Physik der Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2002-04-01

    In this paper we present explicit formulas for the *-product on quantum spaces which are of particular importance in physics, i.e., the q-deformed Minkowski space and the q-deformed Euclidean space in 3 and 4 dimensions, respectively. Our formulas are complete and formulated using the deformation parameter q. In addition, we worked out an expansion in powers of h=ln q up to second order, for all considered cases. (orig.)

  3. Learning Space Service Design

    OpenAIRE

    Elliot Felix

    2011-01-01

    Much progress has been made in creating informal learning spaces that incorporate technology and flexibly support a variety of activities. This progress has been principally in designing the right combination of furniture, technology, and space. However, colleges and universities do not design services within learning spaces with nearly the same level of sophistication or integration. Nor do they adequately assess their services. This paper calls for a focus on designing services to facilitat...

  4. The past and space

    DEFF Research Database (Denmark)

    Lund, Christian

    2013-01-01

    of legitimate forms of land control, complex combinations of claims emerge. The ubiquity of ‘the past’ in African politics and the increasing competition over space suggest that the naturalness with which some refer to the past and others conceive of space should be under constant scrutiny. Based on work...... that competing social elite groups instrumentalize. Each group sees its interests best served by a particular reading of the past and a particular conception of space....

  5. Discourses of space

    CERN Document Server

    Ajtony, Zsuzsanna

    2013-01-01

    Ever since the emergence of the spatial turn in several scientific discourses, special attention has been paid to the surrounding space conceived as a construct created by the dynamics of human activity. The notion of space assists us in describing the most varied spheres of human existence. We can speak of various physical, metaphysical, social and cultural, and communicative spaces, as structuring components providing access to various literary, linguistic, social and cultural phenomena, th...

  6. Loops in Twistor Space

    CERN Document Server

    Bena, I; Kosower, D A; Roiban, R; Bena, Iosif; Bern, Zvi; Kosower, David A.; Roiban, Radu

    2004-01-01

    We elucidate the one-loop twistor-space structure corresponding to momentum-space MHV diagrams. We also discuss the infrared divergences, and argue that only a limited set of MHV diagrams contain them. We show how to introduce a twistor-space regulator corresponding to dimensional regularization for the infrared-divergent diagrams. We also evaluate explicitly the `holomorphic anomaly' pointed out by Cachazo, Svrcek, and Witten, and use the result to define modified differential operators which can be used to probe the twistor-space structure of one-loop amplitudes.

  7. Constructing Healthcare Spaces

    DEFF Research Database (Denmark)

    Harty, Chris; Holm Jacobsen, Peter; Tryggestad, Kjell

    2015-01-01

    The aim of this paper is to inquire into the role of project visualisations in shaping healthcare spaces and practices. The study draws upon an ethnographic field study from a large on-going hospital construction project in Denmark, and focuses on the early phases of on-boarding the design team...... process), 2.Organisational space (work processes and their spatial-temporal dimension) and; 3. Economic space (cost estimations and budgets). In practice, our findings show that the visualisations of different yet connected project spaces and the development of future clinical practices is related...

  8. Sweeping the State Space

    DEFF Research Database (Denmark)

    Mailund, Thomas

    The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...

  9. Space Shuttle Cockpit exhibit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  10. Space Shuttle Cockpit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

  11. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  12. Our Future in Space

    Science.gov (United States)

    Impey, Chris David

    2017-06-01

    The Space Age is half a century old. Its early successes were driven by a fierce superpower rivalry between the Soviet Union and the United States, which tended to obscure the fact that exploration and risk-taking is built into human DNA. Decades after we last set foot on the Moon, and years after the Space Shuttle was retired, the space activity is finally leaving the doldrums. A vibrant private sector led by SpaceX, Blue Origins, and Virgin Galactic plans to launch supplies cheaply into Earth orbit and give anyone the chance of a sub-orbital joy ride. New materials are being developed that could lead to space elevators and transform the economics of space travel. Fighting gravity will always be difficult but engineers are rethinking rockets and developing new propulsion technologies. Permanent bases on the Moon and Mars are now within reach, and a new Space Race is brewing, with China ascendant. Medical advances might even allow us to reach for the stars. The talk will review the history and landmarks of the international space program, give a snapshot of the current dynamic situation, and plot the trajectory of the future of space travel. The time has come to envision our future off-Earth.

  13. Finding industrial space

    DEFF Research Database (Denmark)

    Riesto, Svava

    2011-01-01

    Spaces marked by industrial rationalities are easily overseen or rejected without further consideration during urban redevelopment processes. This is striking in an era where urban space is often seen as a cornerstone for the future city. This article investigates different concepts of open space...... that have been operative in the redevelopment of the so-called Carlsberg Square in Copenhagen between 2006-2009. It concludes with general remarcs on dealing with the complex matter open space in the practices of design and heritage management in urban redevelopment processes....

  14. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  15. Space Weather Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Space Weather Analysis archives are model output of ionospheric, thermospheric and magnetospheric particle populations, energies and electrodynamics

  16. Space vs. Place

    DEFF Research Database (Denmark)

    Zimmerman, Chris; Madsen, Rene; Hammer Eliassen, Henrik

    2016-01-01

    of Importance’. Second, we elaborate on methods deployed for collecting both mobile GPS and social media traces that the smart phone generates in physical spaces. Third, we compare and contrast the automatically geocoded presence in space and at events with the intentionally socially tagged consumption...... of these spaces and events as place-based experiences. In doing so, these two layers of space-based movements and place-based experiences reveal the appropriation of affordances and choices of aesthetic appreciation by the crowd at large of what is subjectively and relatively meaningful, actionable, and valuable....

  17. Multimegawatt space power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  18. Kinematic Space and Wormholes

    CERN Document Server

    Zhang, Jian-dong

    2016-01-01

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincar\\'e disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincar\\'e disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the $SL(2,\\mathbb{R})$ leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore...

  19. Quantisation on general spaces

    CERN Document Server

    Patwardhan, A

    2002-01-01

    Quantisation on spaces with properties of curvature, multiple connectedness and non orientablility is obtained. The geodesic length spectrum for the Laplacian operator is extended to solve the Schroedinger operator. Homotopy fundamental group representations are used to obtain a direct sum of Hilbert spaces, with a Holonomy method for the non simply connected manifolds.The covering spaces of isometric and hence isospectral manifolds are used to obtain the representation of states on orientable and non orientable spaces. Problems of deformations of the operators and the domains are discussed.Possible applications of the geometric and topological effects in physics are mentioned.

  20. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  1. Learning Space Service Design

    Directory of Open Access Journals (Sweden)

    Elliot Felix

    2011-12-01

    Full Text Available Much progress has been made in creating informal learning spaces that incorporate technology and flexibly support a variety of activities. This progress has been principally in designing the right combination of furniture, technology, and space. However, colleges and universities do not design services within learning spaces with nearly the same level of sophistication or integration. Nor do they adequately assess their services. This paper calls for a focus on designing services to facilitate better learning experiences. It describes the fundamentals of service design practice, a selection of exemplary spaces, and the implications for design, budgeting, and staffing.

  2. Sweeping the State Space

    DEFF Research Database (Denmark)

    Mailund, Thomas

    The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...

  3. Collective space and urbanity

    DEFF Research Database (Denmark)

    Kajita, Masashi

    2015-01-01

    of evolving urbanity. The focus is on the essential and iconic collective space of the building 8TALLET- ramps and open stairs. How could space beyond private domain contribute to nurture social interactions among the residents but also enhance their relations to urban environments, while protecting...... the privacy of individual households? Envisaging potential functions and uses of the shared access route, this paper discusses the importance of continuous reflections of two perspectives: 1) architects’ logic (opportunistic attempt) of space making and 2) residents’ consideration and appropriation of spaces....

  4. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  5. [A target-highlighting method in multispectral remote sensing].

    Science.gov (United States)

    Wang, Qin-jun; Lin, Qi-zhong; Li, Ming-xiao; Wang, Li-ming; Tian, Qing-jiu

    2009-04-01

    In order to highlight target in multispectral remote sensing and overcome the human error caused by threshold, a new method is proposed here. Image of target similarity is firstly calculated by spectral energy level matching (SEM) algorithm and as a band added to original image; Then, band normalization is performed on the new image to reduce the effects caused by the order of magnitude in different bands; Finally, a false color image that highlights the target is made by RGB composed of the first three bands (3, 2, 1) in MNF transformation. Results from the experiment of highlighting the main rock-type tuffaceous siltstone in Hatu area, Xinjiang province, China show that (1) the new method can highlight target for the increment of target's information and weights during the process of transformation by adding a band representing target's similarity to the original image. Therefore, it overcomes the shortcomings existing in the common transformations on space information-although different objects corresponding to special information space are distinguished, targets the authors wanted can not be highlighted yet; (2) The new method can distinguish more objects than original maximum noise fraction (MNF) transformation because it unifies the tone for the same object's type by suppressing none target information using SEM method; (3) In addition to highlighting tuffaceous siltstone in the study area, the new method can be used widely in other fields such as soil, concrete, altered mineral etc.

  6. Penetration Dynamics of Earth Penetration Warhead into Composite Target Media

    Directory of Open Access Journals (Sweden)

    P. K. Roy

    1987-07-01

    Full Text Available Attempts have been made to develop a suitable computer code that can find solutions to the axi-symmetric penetration of an Earth Penetrating Warhead yielding complete space-time histories of the resistive force offered by the target medium. The consequent warhead deceleration and velocity reduction, the resulting axial compressive stress developed in warhead casing as the penetration process progresses into the composite target media consisting of hard concrete of specified thickness followed by earth soil have been discussed.

  7. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  8. Commercialization of the Space Frontier

    Science.gov (United States)

    Piland, William M.

    1997-01-01

    This paper discusses the current outlook for space business, how growing space business will improve the quality of life for all, and identified strategies for better relating international space research, technology, and space system operations to commercial interests in space. By drawing on recent assessments of the future potential for business in space, opportunities will be defined for encouraging the growth of business uses of space and regaining the public's awareness and support for expanding the space frontier.

  9. Intuitionistic supra fuzzy topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.E. E-mail: sabbas73@yahoo.com

    2004-09-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space.

  10. Gene Targeting in Neuroendocrinology.

    Science.gov (United States)

    Candlish, Michael; De Angelis, Roberto; Götz, Viktoria; Boehm, Ulrich

    2015-09-20

    Research in neuroendocrinology faces particular challenges due to the complex interactions between cells in the hypothalamus, in the pituitary gland and in peripheral tissues. Within the hypothalamus alone, attempting to target a specific neuronal cell type can be problematic due to the heterogeneous nature and level of cellular diversity of hypothalamic nuclei. Because of the inherent complexity of the reproductive axis, the use of animal models and in vivo experiments are often a prerequisite in reproductive neuroendocrinology. The advent of targeted genetic modifications, particularly in mice, has opened new avenues of neuroendocrine research. Within this review, we evaluate various mouse models used in reproductive neuroendocrinology and discuss the different approaches to generate genetically modified mice, along with their inherent advantages and disadvantages. We also discuss a variety of versatile genetic tools with a focus on their potential use in reproductive neuroendocrinology.

  11. Foucault on targets.

    Science.gov (United States)

    Lynch, John

    2004-01-01

    This paper seeks to gain an insight into the behavior of a large NHS trust, in its attempt to meet a 90 percent patient access target, in a week long national audit in March 2003. Why did individuals act in dramatically different ways to their norm over this period. The work of Michel Foucault is used to explore these issues. The discourses of power, knowledge, discipline and governmentality are identified as key foucaudian themes that offer an alternative interpretation of how individuals behave in their place of work. The importance of the historical context of discourse within the NHS cannot be underestimated in shaping the behavior of individuals and groups today. Power and knowledge permeate NHS organizations through disciplinary practices and dressage. Governmentality seeks to maintain the status quo through disciplinary processes such as national healthcare targets. The natural response of NHS organizations is therefore, to seek order and conformity rather than disorder and conflict.

  12. Recognizing occluded MSTAR targets

    Science.gov (United States)

    Bhanu, Bir; Jones, Grinnell, III

    2000-08-01

    This paper presents an approach for recognizing occluded vehicle targets in Synthetic Aperture Radar (SAR) images. Using quasi-invariant local features, SAR scattering center locations and magnitudes, a recognition algorithm is presented that successfully recognizes highly occluded versions of actual vehicles from the MSTAR public data. Extensive experimental results are presented to show the effect of occlusion on recognition performance in terms of Probability of Correct Identification, Receiver Operating Characteristic (ROC) curves and confusion matrices. The effect of occlusion on performance of this recognition algorithm is accurately predicted. Combined effects such as occlusion and measured positional noise, as well as occlusion and other observed extended operating conditions (e.g., articulation) are also addressed. Although excellent forced recognition results can be achieved at very high (70%) occlusion, practical limitations are found due to the similarity of unoccluded confuser vehicles to highly occluded targets.

  13. Targeting biodefense markets.

    Science.gov (United States)

    Olinger, Gene Garrard

    2009-10-01

    The "World Vaccine Congress 2009" held in Washington D.C. (April 20-23, 2009) sponsored several sessions focused on the vaccine market targeting biodefense. On day one of the congress, a panel discussion outlined the federal progress in medical countermeasure preparedness that included emerging infections, influenza, and biodefense focuses. The second day, a session focused on the biodefense vaccine market with both government and industry members discussing the opportunities and challenges associated with the budding market.

  14. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results Optimal Exploration Target Zones Pravesh Debba1, Emmanual M.J. Carranza2, Alfred Stein2, Freek D. van der Meer2 1... Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results Outline 1 Introduction to Remote Sensing 2 Background and Objective of the study 3 Methodology 4 Results Optimal...

  15. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  16. Cognitive neuroscience in space.

    Science.gov (United States)

    De la Torre, Gabriel G

    2014-07-03

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  17. Europe's fight for space - a new challenge

    Directory of Open Access Journals (Sweden)

    Ana Baltazar

    2011-01-01

    Full Text Available The present article examines the challenge Europe faces with regard to space exploration. It advances some technical concepts associated with space exploration and key concepts for our understanding of International Relations – particularly Astropolitics - in a milieu that many see as placatory, but where competition and cooperation go hand in hand, and where military and civilian capacities are often blurred.Indeed, on the one hand space has its specific characteristics – natural resources, artificial resources (for instance, satellites, dimension, and range with regard to the earth – which makes it a target for commercial and military dispute and may lead to inevitable escalating space armament. On the other hand, there is a need for cooperation and agreement to enable the development of extremely complex technology, which requires vast human, material, and financial resources.Whether associated with military space capacities or civil space capacities, one observes that today’s e dependence on those resources leads to the need to ensure their security. Control of space, the same as with control of sea, land, and air resources, can be vital to guarantee national security, in the first place, and, consequently, international security. How the European Union is doing it, or will be able to do it, is included in the study undertaken in the present essay. To this effect, it is necessary to know Europe’s space capacities, policies and strategies.The following question is raised at the end of this article: How does Europe’s space exploration interfere with international security?

  18. The Extended Relativity Theory in Clifford Spaces

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-04-01

    Full Text Available An introduction to some of the most important features of the Extended Relativity theory in Clifford-spaces (C-spaces is presented whose “point” coordinates are non-commuting Clifford-valued quantities which incorporate lines, areas, volumes, hyper-volumes. . . degrees of freedom associated with the collective particle, string, membrane, p-brane. . . dynamics of p-loops (closed p-branes in target D-dimensional spacetime backgrounds. C-space Relativity naturally incorporates the ideas of an invariant length (Planck scale, maximal acceleration, non-commuting coordinates, supersymmetry, holography, higher derivative gravity with torsion and variable dimensions/signatures. It permits to study the dynamics of all (closed p-branes, for all values of p, on a unified footing. It resolves the ordering ambiguities in QFT, the problem of time in Cosmology and admits superluminal propagation (tachyons without violations of causality. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows and the study of the invariance group of symmetry transformations in phase-space allows to show why Planck areas are invariant under acceleration-boosts transformations. This invariance feature suggests that a maximal-string tension principle may be operating in Nature. We continue by pointing out how the relativity of signatures of the underlying n-dimensional spacetime results from taking different n-dimensional slices through C-space. The conformal group in spacetime emerges as a natural subgroup of the Clifford group and Relativity in C-spaces involves natural scale changes in the sizes of physical objects without the introduction of forces nor Weyl’s gauge field of dilations. We finalize by constructing the generalization of Maxwell theory of Electrodynamics of point charges to a theory in C-spaces that involves extended charges coupled to antisymmetric tensor fields of arbitrary rank. In the concluding remarks we outline briefly

  19. Follicular penetration and targeting.

    Science.gov (United States)

    Lademann, Jürgen; Otberg, Nina; Jacobi, Ute; Hoffman, Robert M; Blume-Peytavi, Ulrike

    2005-12-01

    In the past, intercellular penetration was assumed to be the most important penetration pathway of topically applied substances. First hints that follicular penetration needs to be taken into consideration were confirmed by recent investigations, presented during the workshop "Follicular Penetration and Targeting" at the 4th Intercontinental Meeting of Hair Research Societies", in Berlin 2004. Hair follicles represent an efficient reservoir for the penetration of topically applied substances with subsequent targeting of distinct cell populations, e.g., nestin-expressing follicular bulge cells. The volume of this reservoir can be determined by differential stripping technology. The follicular penetration processes are significantly influenced by the state of the follicular infundibulum; recent experimental investigations could demonstrate that it is essential to distinguish between open and closed hair follicles. Topically applied substances can only penetrate into open hair follicle. Knowledge of follicular penetration is of high clinical relevance for functional targeting of distinct follicular regions. Human hair follicles show a hair-cycle-dependent variation of the dense neuronal and vascular network. Moreover, during hair follicle cycling with initiation of anagen, newly formed vessels occur. Thus, the potential of nestin-expressing hair follicle stem cells to form neurons and blood vessels was investigated.

  20. Implementing Target Value Design.

    Science.gov (United States)

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  1. Space Resource Roundtable Rationale

    Science.gov (United States)

    Duke, Michael

    1999-01-01

    Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That

  2. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  3. SharedSpaces mingle

    NARCIS (Netherlands)

    Handberg, L.; Gullström, C.; Kort, J.; Nyström, J.

    2016-01-01

    SharedSpaces is a WebRTC design prototype that creates a virtual media space where people can mingle and interact. Although you are in different locations, you appear side by side in front of a chosen backdrop. This interactive installation addresses spatial and social connectedness, stressing the

  4. Changing spaces for sports

    DEFF Research Database (Denmark)

    Kural, René

    2010-01-01

    The author argues that the fundamental values associated with sports seem to have changed. Accordingly spaces for sports are also undergoing change.The essay gives a number of examples of these new sports spaces. Their common denominator lies in their urban proximity, the combination of previously...

  5. Space perception in pictures

    NARCIS (Netherlands)

    Van Doorn, A.J.; Wagemans, J.; De Ridder, H.; Koenderink, J.J.

    2011-01-01

    A "picture" is a at object covered with pigments in a certain pattern. Human observers, when looking "into" a picture (photograph, painting, drawing, . . . say) often report to experience a three dimensional "pictorial space." This space is a mental entity, apparently triggered by so called pictori

  6. Technology Enhanced Learning Spaces

    NARCIS (Netherlands)

    Specht, Marcus

    2016-01-01

    Today’s tools and learning environments are often not designed for supporting situated, social, and mobile learning experiences and linking them to real world experiences. The talk will discuss some of the approaches for linking information space and real world space with new technology. By linking

  7. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  8. NASA's Space Radiation Laboratory

    Institute of Scientific and Technical Information of China (English)

    Shelley Canright; 陈功

    2004-01-01

    @@ Imagine a human spacecraft crew voyaging through space. A satellite sends a warning; energetic particles are being accelerated from the Sun's corona①,sending dangerous radiation toward the spacecraft, but the crewmembers aren't worried. Long before their journey, researchers on Earth conducted experiments to accurately measure the hazards of space radiation and developed new materials and countermeasures to protect them.

  9. Space Focus Lead Report

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    The Space Focus team is tasked with the definition of the Space Focused Science Topics, and with the review and ranking of the CSES proposals received in all the program areas. This is achieved by dedicated meetings or a series of informal discussions and/or e-mail reviews.

  10. Dedicated Space | Poster

    Science.gov (United States)

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and external collaborations.

  11. A Space for Memory

    Science.gov (United States)

    Charman, Karen

    2015-01-01

    In this article I examine the possibilities of reparation in an era of privatisation and de-industrialisation. I examine the effect of a recent project Sunshine Memory Space, a space, designed to evoke memories of a de-industrialised urban Melbourne suburb Sunshine. This project offered the opportunity for the effects of industrial change to be…

  12. Scale Space Hierarchy

    NARCIS (Netherlands)

    Kuijper, Arjan; Florack, L.M.J.; Viergever, M.A.

    2002-01-01

    We investigate the deep structure of a scale space image. We concentrate on scale space critical points - points with vanishing gradient with respect to both spatial and scale direction. We show that these points are always saddle points. They turn out to be extremely useful, since the iso-intensity

  13. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  14. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  15. Fuzzy Linguistic Topological Spaces

    CERN Document Server

    Kandasamy, W B Vasantha; Amal, K

    2012-01-01

    This book has five chapters. Chapter one is introductory in nature. Fuzzy linguistic spaces are introduced in chapter two. Fuzzy linguistic vector spaces are introduced in chapter three. Chapter four introduces fuzzy linguistic models. The final chapter suggests over 100 problems and some of them are at research level.

  16. Trajectories For Space Ambulance

    Science.gov (United States)

    Nelson, Walter C.; Furakawa, Shiro

    1988-01-01

    Report presents concept for space ambulance that moves as quickly and economically as possible between orbits. Describes variety of rendezvous maneuvers between space stations in geocentric orbits at altitudes ranging from 200 km to geosynchronous altitude. Analyzes minimum times to complete rendezvous with orbiting medical station.

  17. Space big book

    CERN Document Server

    Homer, Charlene

    2007-01-01

    Our Combined resource includes all necessary areas of Space for grades five to eight. Get the big picture about the Solar System, Galaxies and the Universe as your students become fascinated by the interesting information about the Sun, Earth, Moon, Comets, Asteroids Meteoroids, Stars and Constellations. Also, thrill your young astronomers as they connect Earth and space cycles with their daily life.

  18. Lubrication of space systems

    Science.gov (United States)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  19. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  20. Space for personal hygiene

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    2010-01-01

    This paper focuses on spaces used for personal hygiene in housing over the last hundred years. The paper begins with a description of the hygienic movement in the late 19th century. At that time urinating took place in semi-public spaces outside the dwelling. Today, the WC has moved well...... into the dwelling, and in many dwellings the bathroom has developed into being the most private space. Thus, the bathroom can be regarded as the last domain of privacy in today's housing, and in a number of new dwellings this quality is exploited in new ways. The development of ‘space for hygiene’ in the 20th...... century will be studied by analysing the spatial organisation of dwellings: Where and how has the space for hygiene been situated and designed in housing in different periods over the last hundred years?...