WorldWideScience

Sample records for supercooled pure water

  1. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  2. Thermodynamic geometry of supercooled water

    Science.gov (United States)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  3. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    Science.gov (United States)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  4. Dynamics of deeply supercooled interfacial water.

    Science.gov (United States)

    Swenson, Jan; Cerveny, Silvina

    2015-01-28

    In this review we discuss the relaxation dynamics of glassy and deeply supercooled water in different types of systems. We compare the dynamics of such interfacial water in ordinary aqueous solutions, hard confinements and biological soft materials. In all these types of systems the dielectric relaxation time of the main water process exhibits a dynamic crossover from a high-temperature non-Arrhenius temperature dependence to a low-temperature Arrhenius behavior. Moreover, at large enough water content the low-temperature process is universal and exhibits the same temperature behavior in all types of systems. However, the physical nature of the dynamic crossover is somewhat different for the different types of systems. In ordinary aqueous solutions it is not even a proper dynamic crossover, since the water relaxation decouples from the cooperative α-relaxation of the solution slightly above the glass transition in the same way as all secondary (β) relaxations of glass-forming materials. In hard confinements, the physical origin of the dynamic crossover is not fully clear, but it seems to occur when the cooperative main relaxation of water at high temperatures reaches a temperature where the volume required for its cooperative motion exceeds the size of the geometrically-confined water cluster. Due to this confinement effect the α-like main relaxation of the confined water seems to transform to a more local β-relaxation with decreasing temperature. Since this low-temperature β-relaxation is universal for all systems at high water content it is possible that it can be considered as an intrinsic β-relaxation of supercooled water, including supercooled bulk water. This possibility, together with other findings for deeply supercooled interfacial water, suggests that the most accepted relaxation scenarios for supercooled bulk water have to be altered.

  5. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  6. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  7. Transport properties of supercooled confined water

    Science.gov (United States)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  8. Entropy-driven liquid-liquid separation in supercooled water

    OpenAIRE

    Holten, V.; Anisimov, M.A.

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water a...

  9. Supercooled water in austral summer in Prydz Bay,Antarctica

    Institute of Scientific and Technical Information of China (English)

    SHI Jiuxin; CHENG Yaoyao; JIAO Yutian; HOU Jiaqiang

    2011-01-01

    Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39--34.46, respectively,the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at ~100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.

  10. Thermodynamics and dynamics of supercooled water

    Science.gov (United States)

    Mazza, Marco G.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of the thermodynamic and dynamic behavior of liquid water. As liquid water is cooled down into the supercooled state, some regions of the sample show correlated molecular motion. Previously, only the translational motion has been the object of investigation. Given the importance of orientational dynamics for water, a question that naturally arises is whether the rotational molecular motion also shows heterogeneous dynamics. We show that the most rotationally mobile molecules tend to form clusters, "rotational heterogeneities", and we study their dependence upon observation time and temperature. Further, we show evidence that molecules belonging to dynamic heterogeneities are involved in bifurcated bonds. Since the presence of dynamic heterogeneities is increasingly important as the temperature is lowered, one would expect a signature of this phenomenon in dynamical quantities. We study the effect of dynamic heterogeneities on the origin of the breakdown of the Stokes--- Einstein and Stokes---Einstein---Debye relations for water. These relations link the diffusivity to temperature and viscosity. We study the separation of time scales of dynamic heterogeneities and the diffusive regime. We also consider different sets of mobility, slowest and fastest, for both translational and rotational heterogeneities. A long-standing problem in biology is the seemingly universal loss of biological activity of all biomolecules, a phenomenon termed the "protein glass transition". We explore the connection between the hypothesized liquid-liquid phase transition of water, and the protein glass transition. We find that the protein glass transition coincides with the crossing of the Widom line of hydration water. Many different scenarios have been proposed to rationalize water's thermodynamic anomalies. We study a tell model for water using the Wolff' cluster algorithm, which permits

  11. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    OpenAIRE

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two...

  12. Peculiar thermodynamics of the second critical point in supercooled water.

    Science.gov (United States)

    Bertrand, C E; Anisimov, M A

    2011-12-08

    On the basis of the principle of critical-point universality, we examine the peculiar thermodynamics of the liquid-liquid critical point in supercooled water. We show that the liquid-liquid criticality in water represents a special kind of critical behavior in fluids, intermediate between two limiting cases: the lattice gas, commonly used to model liquid-vapor transitions, and the lattice liquid, a weakly compressible liquid with an entropy-driven phase separation. While the ordering field in the lattice gas is associated with the chemical potential and the order parameter with the density, in the lattice liquid the ordering field is the temperature and the order parameter is the entropy. The behavior of supercooled water is much closer to lattice-liquid behavior than to lattice-gas behavior. Using new experimental data recently obtained by Mishima [J. Chem. Phys. 2010, 133, 144503], we have revised the parametric scaled equation of state, previously suggested by Fuentevilla and Anisimov [Phys. Rev. Lett. 2006, 97, 195702], and obtain a consistent description of the thermodynamic anomalies of supercooled water by adjusting linear backgrounds, one critical amplitude, and the critical pressure. We also show how the lattice-liquid description affects the finite-size scaling description of supercooled water in confined media.

  13. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    Directory of Open Access Journals (Sweden)

    P. M. Rowe

    2013-07-01

    Full Text Available Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI of water. Although conventional algorithms employ a temperature independent assumption (TIA, recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m−2 (in cold regions, while top-of-atmosphere fluxes are higher by as much as 3.4 W m−2 (in warm regions. Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  14. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    Directory of Open Access Journals (Sweden)

    P. M. Rowe

    2013-12-01

    Full Text Available Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI of water. Although conventional algorithms employ a temperature-independent assumption (TIA, recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m−2 (in cold regions, while top-of-atmosphere fluxes are higher by as much as 3.4 W m−2 (in warm regions. Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  15. Volume analysis of supercooled water under high pressure

    OpenAIRE

    Duki, Solomon F.; Tsige, Mesfin

    2016-01-01

    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  16. Slow dynamics of supercooled water confined in nanoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States); Faraone, A [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan (China); Yen, C-W [Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan (China); Chen, S-H [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States)

    2004-11-17

    We review our incoherent quasielastic neutron scattering (QENS) studies of the dynamics of supercooled water confined in nanoporous silica materials. QENS data were analysed by using the relaxing cage model (RCM) previously developed by us. We first use molecular dynamics (MD) simulation of the extended simple point charge model (SPC/E) for bulk supercooled water to establish the validity of the RCM, which applies to both the translational and rotational motion of water molecules. We then assume that the dynamics of water molecules in the vicinity of a hydrophilic surface is similar to a bulk water at an equivalent lower supercooled temperature. This analogy was experimentally demonstrated in previous investigations of water in Vycor glasses and near hydrophilic protein surfaces. Studies were made of supercooled water in MCM-41-S (pore sizes 25, 18, and 14 A) and MCM-48-S (pore size 22 A) using three QENS spectrometers of respective energy resolutions 1, 30, and 60 {mu}eV, covering the temperature range from 325 to 200 K. Five quantities are extracted from the analysis: they are {beta}, the stretch exponent characterizing the {alpha}-relaxation; {beta}{gamma}, the exponent determining the power-law dependence of the relaxation time on Q; <{tau}{sub 0}>, the Q-independent pre-factor for the average translational relaxation time; <{tau}{sub R{sub 1}}>, the relaxation time for the first-order rotational correlation function; and <{tau}{sub R{sub 3}}>, the relaxation time for the second-order rotational correlation function. We discuss the temperature dependence of these parameters and note that, in particular, the dynamics is rapidly slowing down at temperature around 220 K, signalling the onset of a structural arrest transition of liquid water into an amorphous solid water.

  17. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  18. Entropy-driven liquid-liquid separation in supercooled water

    CERN Document Server

    Holten, V

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.1...

  19. Dynamical properties of confined supercooled water: an NMR study

    Science.gov (United States)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  20. Dynamical properties of confined supercooled water: an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Broccio, Matteo [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Corsaro, Carmelo [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Faraone, Antonio [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Liu Li [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Chen, S-H [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2006-09-13

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 A. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at T{sub L} = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature T{sub L}.

  1. Hydrodynamic states in water below the temperature of the density maximum: the limit to supercooling

    NARCIS (Netherlands)

    van der Elsken, J.; van Boom, L.; Bot, A.

    1988-01-01

    Spectra of fluctuations in the total intensity of laser light deflected by supercooled water show that even under carefully controlled conditions large samples give convection when cooled below -0%. This is in agreement with the Rayleigh versus Prandtlnumber relation for supercooled water.

  2. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  3. Simulation study of water and sugar dynamics in supercooled mixtures

    Science.gov (United States)

    Molinero, Valeria; Cagin, Tahir; Goddard, William A.

    2003-03-01

    Water dynamics in concentrated carbohydrate solutions is of utmost importance in food and pharmaceutical technology, where low water mobility is desirable to slow down chemical degradation and preserve biomolecules. We have studied the microscopic mechanism of water diffusion in binary and polydisperse malto-oligosaccharides and water mixtures by means of molecular dynamics simulations. The computations were performed with a coarse grain model (M3B), derived from atomistic simulations of water and malto-oligosaccharides. The use of the M3B model permits simulations of the order of 0.1 microsecond, thus allowing us to explore water dynamics from the liquid to the deep supercooled regime. The dynamics of water confined in the sugar matrix is slowed down with respect to bulk water. We found that at low moisture content and low temperature, ranslational diffusion of water and glucose rotation proceed through a hopping-diffusion mechanism. Moreover, we found water mobility to be heterogeneous: there is a broad distribution of time scales for different water molecules in the mixtures. We discuss whether there is a relationship between the heterogeneous structure of these mixtures in the sub-nanometer scale and the heterogeneous dynamics of water molecules.

  4. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water

    Science.gov (United States)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-08-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  5. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H{sub 2}O-NaCl and H{sub 2}O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  6. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  7. Dynamics of hydrogen bonds in water and consequences for the unusual behaviour of supercooled water

    Indian Academy of Sciences (India)

    José Teixeira

    2008-10-01

    The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in order to discriminate hydrogen bond life-time from molecular dynamics. The results indicate a possible issue for the puzzle of the behaviour of supercooled water.

  8. Pure Water From a Pure Genius

    Science.gov (United States)

    2002-01-01

    Ammonium perchlorate is widely used throughout the aerospace, munitions, and pyrotechnics industries as a primary ingredient in solid rocket and missile propellants, fireworks, and explosive charges. This highly soluble salt has tainted soils and water sources all over the world, and is believed to be an endocrine disrupter, adversely affecting the growth patterns of a fetus or a young child. UMPQUA Research Company (URC), once a small drinking water testing laboratory and a research and development contractor for NASA's manned spaceflight applications, has evolved to become a leader in water purification and analysis. With a total of 11 patents issued for new technologies created by URC under NASA SBIR contracts and a 25-year commitment to water recycling, the company clearly possessed the qualifications necessary to tackle the presence of perchlorate in water. An SBIR contract with NASA's Marshall Space Flight Center that concentrated on the stringent water quality requirements of long-term, manned spaceflight was the source for URC's process and catalyst to facilitate the destruction of perchlorate and nitrate in water. URC licensed the rights of its unique reduction reaction process to Calgon Carbon Corporation for use with the company's perchlorate/nitrate remediation process, otherwise known as ISEP(R).

  9. Chosen thermodynamic experiments: depression of the freezing point of water with salt and supercooled water

    OpenAIRE

    Krnc, Katja

    2014-01-01

    The diploma thesis presents two interesting thermodynamic experiments which were executed and described by Joseph Black in 18th Century. These are: depression of the freezing point of water with salt and supercooled water. We meet water in three states of matter in nature: in the state of ice, liquid water, and water steam. Phase crossing from water to ice (and vice versa from ice to water) is done with normal air pressure with the state temperature of 0°C. If we add certain matters to wat...

  10. The water supercooled regime as described by four common water models

    CERN Document Server

    Malaspina, David C; Pereyra, Rodolfo G; Szleifer, Igal; Carignano, Marcelo A

    2013-01-01

    The temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models a temperature rescaling is necessary. In this paper we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime. Although all the models show the same general qualitative behavior, the TIP5P-Ew appears as the best representation of the supercooled regime when the rescaled temperature is used. We also analyze, using thermodynamic arguments, the critical nucleus size for ice growth. Finally, we speculate on the possible reasons why atomistic models do not usually crystalize while the coarse grained mW model do crystallize.

  11. Radiometric Observations of Supercooled Liquid Water within a Split Front over the Sierra Nevada.

    Science.gov (United States)

    Heggli, Mark F.; Reynolds, David W.

    1985-11-01

    A storm bearing close structural resemblance to a katafront was observed from the ground with microwave radiometry and a vertically pointing Ka-band radar over the Sierra Nevada of California. The onset and duration of supercooled liquid water was determined and matched to a split front model used to describe the synoptic features of a katafront. Results indicate that prior to the passage of the upper front no supercooled liquid water was observed. This portion of the storm provided the deepest cloud and coldest cloud tops. Supercooled liquid water was most prevalent after the upper front passage, and persisted until the suspected surface front passage. The duration of measured supercooled water was 16 hours.This information broadens the knowledge regarding the presence of supercooled liquid water, and thus possible seeding potential, within winter storms so that treatment can be confined to the period of storms amenable to cloud seeding. Future studies may well confirm the ease with which these periods can be predicted on an operational basis in the Sierra Nevada.

  12. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined...

  13. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...

  14. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  15. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  16. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    Science.gov (United States)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  17. Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Khedir, Khedir R.; Kannarpady, Ganesh K.; Ishihara, Hidetaka; Woo, Justin; Asar, Madhu P. [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR, 72204 (United States); Ryerson, Charles [Terrestrial and Cryospheric Sciences Branch Cold Regions, Research and Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, NH 03755-1290 (United States); Biris, Alexandru S., E-mail: asbiris@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR, 72204 (United States)

    2013-08-15

    The bouncing mechanism of warm and supercooled water droplets with temperatures ranging from 20 °C to −10 °C on the surface of superhydrophobic (SHP) tungsten nanorods (WNRs), held at a constant temperature of −10 °C, was investigated. The measurements were carried out inside a chamber kept at a low relative humidity of 20%. A considerable energy loss was observed mainly due to the increase in the viscous forces of the supercooled water droplet. The increase in the values of the capillary number, as a result of the variation in both viscosity and surface energy of the supercooled water droplet, has confirmed the significant role of viscous forces in the dissipation of bouncing energy. However, the contact time and contact line evolution of the supercooled water droplet on the surface remained unaffected by the decrease in its temperature at constant humidity. The calculations of the bouncing restitution and dissipated energy at various water droplet temperatures, using classical mechanics, were also carried out.

  18. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    Science.gov (United States)

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-09-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure.

  19. Liquid–liquid transition in supercooled water suggested by microsecond simulations

    OpenAIRE

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-01-01

    The putative liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid–liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the ...

  20. Solidification of supercooled water in the vicinity of a solid wall

    Science.gov (United States)

    Schremb, Markus; Tropea, Cameron

    2016-11-01

    An experimental approach utilizing a Hele-Shaw cell for the investigation of the solidification of a supercooled liquid in contact with a solid wall is presented. The setup is based on an idea presented by Marín et al. [A. G. Marín et al., Phys. Rev. Lett. 113, 054301 (2014), 10.1103/PhysRevLett.113.054301], who investigated the planar freezing of a sessile drop without supercooling. This apparatus overcomes optical distortions present when observing the freezing of sessile drops, arising due to reflections and refraction of light on the drop surface. The facility is used to investigate the freezing process of water drops, supercooled down to -20∘C , and to qualitatively demonstrate that the growth behavior is uninfluenced by the use of the Hele-Shaw cell. Different features during freezing, which are known for sessile water drops, are also observed with the Hele-Shaw cell. The growth morphology within the first phase of solidification is categorized according to the initial drop supercooling. Furthermore, freezing velocities within this phase are related to data available in the literature for the growth of single ice dendrites.

  1. Evidence of the existence of the low-density liquid phase in supercooled, confined water

    OpenAIRE

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-01-01

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the bui...

  2. The Violation of Stokes-Einstein Relation in Supercooled Water

    OpenAIRE

    Chen, Sow-Hsin; Mallamace, Francesco; Mou, Chung-Yuan; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li

    2006-01-01

    By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature TH ~ 235 K. In particular, the dynamical parameters of water can be measured down to 180 K approaching the suggested glass transition temperature Tg ~ 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport...

  3. Evidence of the existence of the low-density liquid phase in supercooled, confined water.

    Science.gov (United States)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-09

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

  4. Liquid-liquid transition in supercooled water suggested by microsecond simulations.

    Science.gov (United States)

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-07-23

    The putative liquid-liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid-liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the supercooled regime with the critical point at ~207 K and 50 MPa. Normal water is high-density liquid (HDL). Low-density liquid (LDL) emerges at lower temperatures. The LDL phase has a density only slightly larger than that of the ice-Ih and shows more long-range order than HDL. However, the transformation from LDL to HDL is spontaneous across the first-order phase transition line, suggesting the LDL configuration is not poorly formed nanocrystalline ice. It has been demonstrated in the past that the WAIL potential provides reliable predictions of water properties such as melting temperature and temperature of maximum density. Compared with other simple water potentials, WAIL is not biased by fitting to experimental properties, and simulation with this potential reflects the prediction of a high-quality first-principle potential energy surface.

  5. Optical Kerr effect of liquid and supercooled water: The experimental and data analysis perspective

    Science.gov (United States)

    Taschin, A.; Bartolini, P.; Eramo, R.; Righini, R.; Torre, R.

    2014-08-01

    The time-resolved optical Kerr effect spectroscopy (OKE) is a powerful experimental tool enabling accurate investigations of the dynamic phenomena in molecular liquids. We introduced innovative experimental and fitting procedures, that enable a safe deconvolution of sample response function from the instrumental function. This is a critical issue in order to measure the dynamics of liquid water. We report OKE data on water measuring intermolecular vibrations and the structural relaxation processes in an extended temperature range, inclusive of the supercooled states. The unpreceded data quality makes possible a solid comparison with few theoretical models: the multi-mode Brownian oscillator model, the Kubo's discrete random jump model, and the schematic mode-coupling model. All these models produce reasonable good fits of the OKE data of stable liquid water, i.e., over the freezing point. The features of water dynamics in the OKE data becomes unambiguous only at lower temperatures, i.e., for water in the metastable supercooled phase. We found that the schematic mode-coupling model provides the more rigorous and complete model for water dynamics, even if its intrinsic hydrodynamic approach does not give a direct access to the molecular information.

  6. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water.

    Science.gov (United States)

    Wikfeldt, K T; Huang, C; Nilsson, A; Pettersson, L G M

    2011-06-07

    We present extensive simulations on the TIP4P∕2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (T(W)) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)] are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing T(W), consistent with a recent determination of the critical pressure of TIP4P∕2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P∕2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching T(W). Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  7. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun

    2006-01-01

    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  8. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  9. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  10. Two-Dimensional Nucleation of Ice from Supercooled Water

    Science.gov (United States)

    Seeley, L. H.; Seidler, G. T.

    2001-03-01

    Heterogeneous nucleation is the initial formation of a stable phase from a metastable phase in the presence of a catalyzing surface. This ubiquitous process has consequences ranging from metallurgy to the formation of kidney stones. Heterogeneous nucleation of ice plays a central role in cloud formation, suggesting one possible connection between anthropogenic pollutants and global climate. A key topic in the theory of nucleation is the geometry of the critical nucleus. Standard nucleation theories generally predict a compact critical nucleus with a surface of roughly constant curvature. We report measurements of the temperature dependent nucleation rate of ice from water samples supporting aliphatic alcohol Langmuir films. We use classical nucleation theory to extract thermodynamic parameters from the measured nucleation rates. From these parameters we conclude that both the effective free energy barrier and the molecular kinetics of nucleation are dominated by the physics at the interface. Our results give self-consistent evidence that the geometry of the critical nucleus in this system is essentially two-dimensional.

  11. Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models

    Science.gov (United States)

    De Marzio, M.; Camisasca, G.; Rovere, M.; Gallo, P.

    2016-05-01

    We present recent simulation results on the dynamics of supercooled water with the TIP4P/2005 potential. We find that the dynamical behaviour of the translational motion of the molecules is well interpreted in terms of the Mode Coupling Theory, as it was found for supercooled TIP4P water. We compare the results of the two models and in particular we find also in TIP4P/2005 a crossover from a fragile to a strong regime. We connect this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point.

  12. Measuring ice and liquid water content in moderately supercooled clouds with Cloudnet

    Science.gov (United States)

    Bühl, Johannes; Seifert, Patric; Myagkov, Alexander; Albert, Ansmann

    2016-04-01

    The interaction between ice nuclei and clouds is an important topic in weather and climate research. Recent laboratory experiments and field in-situ field campaigns present more and more detailed measurements of ice nucleating particles (INP) at temperatures close to 0°C. This brings moderately supercooled mixed-phase clouds into the focus of current cloud research. One current example is the European Union BACCHUS project. A major goal of BACCHUS is the analysis of the anthropogenic impact on ice nucleation. Within this project, we use the Leipzig Aerosol Cloud Remote Observations System (LACROS) and the Cloudnet framework in order to get quantitative insight into the formation of ice in mixed-phase layered clouds with cloud top temperature (CTT) from -40 to 0°C. Depolarization measurements from lidar and radar show a clear dependence between particle shape and the temperature under which the particles have been formed. The special focus of this work is on the CTT range from -10 to 0°C. An algorithm is presented to decide between ice and liquid water precipitation falling from the clouds showing that between 10% and 30% of all layered clouds show ice precipitation with CTT between -5 and 0°C. For these slightly supercooled clouds an average ice-water-content between 10e-7 and 10e-8 [kg per cubic meter] is found.

  13. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuntao; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Greg A.

    2016-12-12

    Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, this has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed laser heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, i.e. deep within water’s “no man’s land.” The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both crossover to Arrhenius (“strong”) behavior with a large activation energy in “no man’s land.” The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K. However the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in “no man’s land.

  14. Supercooled Water.

    Science.gov (United States)

    1983-03-01

    53) study by Egelstaff et al Emulsion samples have also been briefly studied but background difficulties have made resolution of the results...Angell, L., Angell, C. A. ., Phys. Chem. (to be published) 52. Bosio, L., Chen, S.-H., Teixeira, 3. Phys. Rev. A (in press) 53. Egelstaff , P. A., Polo, 3

  15. Studies of a dynamic type ice storage system using supercooled water; Kareikyakusui riyo dainamikku gata shochikunetsu shisutemu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Hashimoto, A.; Miura, N. [Kanagawa Inst. of Tech., Kanagawa (Japan); Ikemoto, Y.

    1999-11-25

    An ice storage system using supercooled water was constructed and the performance was tested. The system was consisted of a storage tank with the volume of 1.2 m{sup 3} in which slurry-ice was stared, a spiral double-tube heat exchanger 22 m long for making supercooled water by brine, a refrigerating machine of the rated capacity of 2.2 kW, reservoirs for cold and hot brine, heaters, and pumps. The system was able to be operated for more than 5 hours without freezing mostly if the degree of supercooling was less than about 2 degree C. The COPs based on the power of the refrigerating machine and system were about 1.3 and 0.7, respectively. (author)

  16. Volume and structural analysis of super-cooled water under high pressure

    Science.gov (United States)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  17. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2009-10-01

    Full Text Available We investigated the relative roles of volume and surface nucleation in the freezing of water droplets. Nucleation experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled liquid water aerosols with radii between about 1 and 3 μ m. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rate between 234.8 and 236.2 K are derived with help of a microphysical model from aerosol compositions and size distributions based on infrared extinction measurements in the aerosol flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process and has implications for the parameterization of homogeneous ice nucleation in numerical models.

  18. Water and its relatives: the stable, supercooled and particularly the stretched, regimes

    CERN Document Server

    Meadley, Stacey L

    2014-01-01

    While the water molecule is simple, its condensed phase liquid behavior is so complex that no consensus description has emerged despite three centuries of effort. Here we identify features of its behavior that are the most peculiar, hence suggest ways forward. We examine the properties of water at the boundaries of common experience, including stable states at high pressure, the supercooled state at normal and elevated pressure, and the stretched ("negative pressure") state, out to the limits of mechanical stability. The familiar anomalies at moderate pressures (viscosity and density (TMD) behavior, etc.), are not explained by H-bond breaking, according to common bond-breaking criteria. A comparison of data on the TMD, at both positive and negative pressures, with the predictions of popular pair potential models, shows dramatic discrepancies appearing in the stretched liquid domain. This prompts questions on the second critical point (TC2) hypothesis that has been guiding much current thinking. We turn to rel...

  19. Evaporative supercooling characteristics of single water droplet in ice-slurry production system with evaporative supercooled water%蒸发式过冷水制冰中单个水滴的蒸发过冷特性

    Institute of Scientific and Technical Information of China (English)

    闫俊海; 张小松

    2012-01-01

    To analyze the evaporation characteristics of single water droplet in low temperature and low humidity ratio air in ice production system with evaporative supercooled water, a mathematical model of evaporative supercooling process of single water droplet was proposed. The evaporation process of droplet in supercooling stage was simulated with theoretical model and the results are basically consistent with the experiment on suspended single water droplet, so it is feasible to predict the evaporative supercooling characteristics of small water droplet by the mathematical model. The influence of initial diameter and temperature of water droplet, air temperature, humidity ratio of air, and air velocity on the temperature of water droplet during its evaporative supercooling process was analyzed. The numerical results show that smaller diameter and lower temperature of water droplet and larger air velocity can increase the cooling rate of water droplet and shorten the supercooling time reaching steady state evaporation stage. Additionally, lowering the temperature or humidity ratio of air can not only improve the cooling rate of water droplet, but also increase the supercooling degree of water droplet reaching steady state evaporation stage. The investigation of evaporative supercooling process of water droplet can provide a foundation for improving the efficiency of ice production and optimal design for ice-making system with evaporative supercooled water.%为分析蒸发式过冷水制冰中单个水滴在此低温低湿空气环境中的蒸发特性,建立了水滴蒸发过冷过程的数理模型.通过悬挂水滴实验与模拟结果的对比,验证了模型的有效性.因此利用该数学模型预测微小直径水滴的蒸发特性是可行的.通过模拟计算获得了水滴初始直径、初始水温、空气温度、空气含湿量和空气流速对水滴蒸发过冷过程的影响.结果表明,水滴初始直径越小、温度越低或空气流速越大,

  20. Realisation of dynamic ice-making by supercooled water%过冷水动态制冰的研究

    Institute of Scientific and Technical Information of China (English)

    曲凯阳; 江亿

    2001-01-01

    Further studies based on the authors' earlier researches the conditions under which no fpeezing occur in the supercooler while sufficient supercooling of water is guaranteed.Establishes a stably opepeting experimental assembly. Water temperature at the entrance of the supercooler reaches as low as 0.45 ℃, and the water temperature drop in supercooler isabout 1℃.%在作者前期研究的基础上,进一步研究了保证过冷水动态制冰系统中过冷却器不发生结冰的条件,建立了能够稳定运行的过冷水动态制冰实验装置。水在过冷却器入口的最低温度为0.45℃,在过冷却器中的温降约为1.0℃。

  1. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  2. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.

  3. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Zhang, Min; Wang, Tianhe; Kawamoto, Kazuaki; Chen, Siyu; Zhang, Beidou

    2017-02-01

    Based on 8 years of (January 2008-December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view

  4. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    Science.gov (United States)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  5. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  6. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions

    Science.gov (United States)

    Biddle, John W.; Singh, Rakesh S.; Sparano, Evan M.; Ricci, Francesco; González, Miguel A.; Valeriani, Chantal; Abascal, José L. F.; Debenedetti, Pablo G.; Anisimov, Mikhail A.; Caupin, Frédéric

    2017-01-01

    One of the most promising frameworks for understanding the anomalies of cold and supercooled water postulates the existence of two competing, interconvertible local structures. If the non-ideality in the Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the "two-structure equation of state" (TSEOS) based on this concept have shown remarkable agreement with both experimental data for metastable, deeply supercooled water and simulations of molecular water models. However, existing TSEOSs were not designed to describe the negative pressure region and do not account for the stability limit of the liquid state with respect to the vapor. While experimental data on supercooled water at negative pressures may shed additional light on the source of the anomalies of water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005, one of the most accurate classical water models available. We have used recently published simulation data, and performed additional simulations, over a broad range of positive and negative pressures, from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005 with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation of the thermodynamic anomalies of water based on a "retracing spinodal," the liquid-vapor spinodal in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not giving rise to density extrema and other thermodynamic anomalies.

  7. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.

    Science.gov (United States)

    Buhariwalla, Connor R C; Bowles, Richard K; Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H

    2015-05-01

    The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

  8. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  9. Supercooled liquids for pedestrians

    Science.gov (United States)

    Cavagna, Andrea

    2009-06-01

    When we lower the temperature of a liquid, at some point we meet a first order phase transition to the crystal. Yet, under certain conditions it is possible to keep the system in its metastable phase and to avoid crystallization. In this way the liquid enters in the supercooled phase. Supercooled liquids have a very rich phenomenology, which is still far from being completely understood. To begin with, there is the problem of how to prevent crystallization and how deeply the liquid can be supercooled before a metastability limit is hit. But by far the most interesting feature of supercooled liquids is the dynamic glass transition: when the temperature is decreased below a certain point, the relaxation time increases so much that a dramatic dynamical arrest intervenes and we are unable to equilibrate the system within reasonable experimental times. The glass transition is a phenomenon whose physical origin has stirred an enormous interest in the last hundred years. Why does it occur? Is it just a conventional reference point, or does it have a more profound physical meaning? Is it a purely dynamical event, or the manifestation of a true thermodynamic transition? What is the correlation length associated to the sharp increase of the relaxation time? Can we define a new kind of amorphous order? A shared theory of supercooled liquids and the glass transition does not yet exist and these questions are still largely open. Here, I will illustrate in the most elementary fashion the main phenomenological traits of supercooled liquids and discuss in a very partial way a few theoretical ideas on the subject.

  10. Liquid-liquid coexistence and crystallization in supercooled ST2 water

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Debenedetti, Pablo; Car, Roberto

    2014-03-01

    We have computed the free energy landscape of ST2 water in the supercooled regime (228.6 K and 2.4 kbar) using several state-of-the-art computational techniques, including umbrella sampling and metadynamics. Such results conclusively demonstrate coexistence between two liquid phases, a high-density liquid (HDL) and a low-density liquid (HDL), which are metastable with respect to cubic ice. We show that the three phases have distinct structural features characterized by the local structure index and ring statistics. We also find that ice nucleation, should it occur, does so from the low-density liquid. Interestingly, we find that the number of 6-member rings increases monotonically along the path from HDL to LDL, while non-monotonic behavior is observed near the saddle point along the LDL-ice Ic path. This behavior indicates a complex re-arrangement of the H-bond network, followed by progressive crystallization. DOE: DE-SC0008626 (F. M. and R.C.)

  11. Unraveling the microscopic pathway of homogeneous water crystallization at supercooled conditions from direct simulations

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto

    By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.

  12. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  13. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.

    Science.gov (United States)

    Klameth, F; Henritzi, P; Vogel, M

    2014-04-14

    We perform molecular dynamics simulations to study static and dynamic length scales in molecular supercooled liquids, in particular, water. For a determination of these scales, we use equilibrium configurations and pin appropriate subsets of molecules so as to obtain random matrices, cylindrical pores, and slit confinements. Static length scales ξ(s) are determined by analyzing overlap correlation functions for various fractions of pinned molecules or distances to the confining walls. For water in all confinements and for propylene oxide trimers in random geometry, a linear increase of ξ(s) with inverse temperature is found. Dynamic length scales ξ(d) are determined by analogous analysis of fraction-dependent or position-resolved correlation times of structural relaxation. While ξ(d) continuously grows upon cooling in the cylindrical and slit confinements, we find no evidence for a temperature dependence in random matrices, implying that molecular dynamics in parsed volumes is qualitatively different from that in bulk liquids. Finally, we study possible connections between the growth of the static and dynamic length scales and the slowdown of the structural relaxation of the supercooled bulk liquids. For water, we observe a linear relation between ln τ(α) and ξ(s)²/T in the whole accessible range down to the critical temperature of mode-coupling theory, T(c). In the weakly supercooled regime, the same relation holds also for ξ(d), as obtained from cylindrical and slit confinements, but deviations from this behavior are observed near T(c). The results are discussed in connection with random first-order theory and experimental studies of liquid dynamics in nanoscopic confinements and binary mixtures.

  14. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water

    OpenAIRE

    Mallamace, F.; Corsaro, C.; Broccio, M.; Branca, C.; González-Segredo, N.; Spooren, J.; Chen, S. -H.; Stanley, H. E.

    2008-01-01

    Using NMR, we measure the proton chemical shift δ, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because δ is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative −(∂ ln δ/∂T)P should behave roughly as the constant pressure specific heat CP(T), and we confirm this argument by detailed comparisons with literature values of CP(T) in the range 290–370 K. We fin...

  15. Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance

    Science.gov (United States)

    Tong, Haijie; Pope, Francis D.; Kalberer, Markus

    2014-05-01

    Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G

  16. The Gibbs-Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water

    Science.gov (United States)

    Johari, G. P.

    1997-12-01

    Calculations for the Gibbs-Thomson effect and the intergranular melting of the ice droplets in (water) emulsions at temperatures below 273.16 K show that water and ice coexist at thermodynamic equilibrium in an apparently frozen emulsion. The fraction of water at this equilibrium increases on heating, which alters further the thermodynamic properties of the emulsion. As some of the ice in the emulsion has already melted, the increase in the enthalpy, H, and heat capacity, Cp, and the decrease in the volume measured on the normal melting at 273.16 K, are less than the values anticipated. The ratio of this increase in H, or Cp, on melting of the emulsion to the corresponding value for pure ice, underestimates the emulsion's water content which, when used for scaling the difference between the Cp of the unfrozen and frozen emulsion at lower temperatures, as in earlier studies, leads to a larger Cp of supercooled water than the actual value. Similar scaling of the corresponding difference between the volume leads to higher volume, or lower density, than the actual value. A formalism for this premelting effect is given for both the adiabatic and differential scanning calorimetry (DSC), and its magnitude is calculated. New experiments show that the rise in the DSC signal, or equivalently in the apparent Cp observed on heating the frozen emulsion, occurs over a temperature range much wider than the Gibbs-Thomson effect and intergranular melting predict, for which reasons are given. It is shown that Cp of the dispersant phase is also affected by the melting of ice droplets. There are four consequences of the premelting effects for all finely dispersed materials, for frozen water emulsions below 273.16 K: (i) water and ice coexist in the emulsion, (ii) its apparent Cp will increase with increase in the heat input used to measure it, (iii) the apparent Cp will increase with decrease in the average size of the droplets, and (iv) the apparent Cp will decrease on annealing the

  17. Nature of the anomalies in the supercooled liquid state of the mW model of water

    CERN Document Server

    Holten, Vincent; Molinero, Valeria; Anisimov, Mikhail A

    2013-01-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this particular model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for fitting the power laws implied by weak crystallization theory is found not to be physically meaningful. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological e...

  18. A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity

    Science.gov (United States)

    Ruberto, S.; Reutzsch, J.; Roth, N.; Weigand, B.

    2017-05-01

    Supercooled water droplets (SWD) are present in clouds at high altitude and subjected to very low temperatures and high relative humidity. These droplets exist in a metastable state. The understanding of the evaporation of SWD at these extreme conditions is of high interest to understand rain, snow, and hail generating mechanisms in clouds. This paper focuses on the experimental results of the measurements of the evaporation rates β of supercooled water droplets. For this purpose, single SWDs are trapped by means of optical levitation. During the evaporation process, the elastically scattered light in the forward regime is recorded and evaluated. Experiments have been performed for different relative humidities φ at three constant ambient temperatures, namely, {T_∞}=268.15; 263.15; 253.15 {{K}} ({t_∞} = -5; -10; -20°C). The experimental data agrees well with direct numerical simulations (DNS) carried out with the in-house code Free Surface 3D (FS3D) and shows that the use of a simplified model is permissible for these ambient conditions.

  19. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water.

    Science.gov (United States)

    Mallamace, F; Corsaro, C; Broccio, M; Branca, C; González-Segredo, N; Spooren, J; Chen, S-H; Stanley, H E

    2008-09-02

    Using NMR, we measure the proton chemical shift delta, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because delta is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative -( partial differential ln delta/ partial differentialT)(P) should behave roughly as the constant pressure specific heat C(P)(T), and we confirm this argument by detailed comparisons with literature values of C(P)(T) in the range 290-370 K. We find that -( partial differential ln delta/ partial differentialT)(P) displays a pronounced maximum upon crossing the locus of maximum correlation length at approximately 240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that C(P)(T) displays a maximum on crossing the Widom line.

  20. Multicolor IR spectroscopy of pure liquid water

    NARCIS (Netherlands)

    Cringus, Dan; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Mostovoy, Maxim; Lindner, Jörg; Vöhringer, Peter; Corkum, P; Jonas, D; Miller, RJD; Weiner, AM

    2007-01-01

    Multicolor infrared ultrafast spectroscopy is applied to investigate the vibrational relaxation dynamics in liquid water at room temperature with both the stretching and the bending mode being photoexcited and probed. A unified model, capable of the reproduction of as much as 150 transients, yielded

  1. Vibrational relaxation of pure liquid water

    NARCIS (Netherlands)

    Lindner, J; Vohringer, P; Pshenichnikov, MS; Cringus, D; Wiersma, DA; Mostovoy, M; Vöhringer, Peter; Pshenichnikov, Maxim S.

    2006-01-01

    Multicolor infrared ultrafast spectroscopy is applied to investigate the vibrational relaxation dynamics in liquid water at room temperature. In a sequence of experiments, both the stretching and the bending mode are photoexcited and probed. A unified model, capable of the reproduction of as much as

  2. Multicolor IR spectroscopy on pure liquid water

    NARCIS (Netherlands)

    Cringus, Dan; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Mostovoy, Maxim; Lindner, Jörg; Vöhringer, Peter

    2006-01-01

    Multicolor infrared ultrafast spectroscopy is applied to investigate the vibrational relaxation dynamics in liquid water at room temperature with both the stretching and the bending mode being photoexcited and probed. A unified model, capable of the reproduction of as much as 150 transients, yielded

  3. Experimental evidence for supercooled brines, viscous liquids, and low temperature perchlorate glasses on Mars

    Science.gov (United States)

    Toner, J.; Catling, D. C.; Light, B.

    2013-12-01

    The presence of liquid water on the cold and dry surface of Mars is possible where concentrated salt solutions lower the freezing point of water. The eutectic temperature is the maximum equilibrium freezing point depression possible for a given salt solution, which ranges from near 0°C for carbonates and sulfates, to as low as -75°C for perchlorates. Although eutectic temperatures suggest a lower temperature limit for liquid water on Mars, salt solutions will typically supercool below their eutectic before crystallization occurs. We report on results investigating the magnitude of supercooling and its variation with salt composition and concentration for pure salt solutions and saturated soil solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. We measured supercooling by monitoring solution temperatures during slow cooling and warming experiments. Our results indicate that supercooling is pervasive. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions typically supercool 5-15°C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil solutions, increases in MgCl2 soil solutions, and is similar in NaCl and NaClO4 soil solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the Martian summer. Remarkably, we found that Mg(ClO4)2 and Ca(ClO4)2 solutions never crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120°C. Even if soil is added to the solutions, which will induce crystallization in most salt solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are

  4. Analysis of supercooling degree of water in ball-packed porous structure of different materials and diameters%不同材料和球径的多孔球层内水的过冷度分析

    Institute of Scientific and Technical Information of China (English)

    章学来; 刘田田; 赵群志; 梁笑阳; 徐蔚雯

    2015-01-01

    为研究多孔球层的存在对水过冷的影响,采用不同材料(铝、不锈钢、玻璃)和不同球径(5、8、11 mm)的多孔球层固体基底进行了实验研究。由于水的过冷度并非一定值,因此进行多次实验并采用统计方法进行分析。实验结果表明:多孔球层内蒸馏水的过冷度分布比纯蒸馏水分布更集中,且过冷度值比纯蒸馏水小;同材质不同球径多孔球层内水的平均过冷度整体上随着球径减小而减小;固体基底的热导率越大,多孔球层内水的过冷度分布越集中且平均过冷度也越小;固体基底的热导率较小时,易壁面成核,沿壁面由外向内缓慢结晶,相变时间明显多于均匀成核,而均匀成核一旦形成晶核,晶核就会瞬间长大,形成的冰疏松,因此工程应用中应尽量避免壁面成核。%In order to study the effects of bead-packed porous structure, balls of different materials such as aluminum, stainless steel and glass with different diameters of 5, 8 and 11 mm are added into distilled water forming porous media. Since the supercooling degree of water is not a certain value, the experiments are repeated many times at the same cooling condition and analyzed with statistical methods. The results show that the distribution of the supercooling degree of distilled water in porous media is more concentrated than that of pure distilled water and the supercooling degree of water in porous media is smaller. The average supercooling degree of distilled water decreases with decreasing diameter of the same material balls on the whole. The larger the thermal conductivity of solid substrate is, the more concentrated the distribution of supercooling degree of distilled water in porous media and the smaller the average supercooling degree. In addition, the heterogeneous nucleation is more likely to occur when the thermal conductivity of the solid substrate is small. An annulus solid ice

  5. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    , laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... in the bulk was studied by polarizing light microscopy, differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS). Colloidal dispersions with pure and mixed cholesterol ester matrices were prepared by high-pressure melt homogenization and characterized by photon correlation spectroscopy...... administration of lipophilic drugs, the cytotoxicity of selected formulations was compared with that of a clinically used colloidal fat emulsion (Lipofundin MCT) in the murine fibroblast cell line L929 using the sulforhodamine B assay. The supercooled smectic nanoparticle formulations display a good overall cell...

  6. Towards 3D prediction of supercooled liquid water for aircraft icing: Modifications of the microphysics in COSMO-EU

    Directory of Open Access Journals (Sweden)

    Felix Köhler

    2014-09-01

    Full Text Available Supercooled liquid water (SLW in the atmosphere is responsible for aircraft icing which can cause severe accidents. To date, the microphysics scheme in the model of the Deutscher Wetterdienst (DWD for the European scale (COSMO-EU; due to be replaced by ICON-EU in 2015 has been optimised to forecast precipitation on the ground but not the water phase in the atmosphere. As a consequence, prediction of SLW is rather poor, as was shown in a series of case studies by the Aeronautical Meteorology department at DWD. ADWICE – the tool used by the DWD to predict aircraft icing – therefore does not rely on COSMO model SLW output, but predicts SLW by itself using a simple parcel method. In an effort to improve ADWICE it has been found that this algorithm has its limits and that it should be replaced by SLW prediction from a 3D weather prediction model. To this end it is necessary to improve the SLW prediction in the COSMO model. In this paper we analyse the microphysics scheme of COSMO-EU with respect to SLW production and depletion and present modifications that greatly improve SLW prediction. As reference for two case studies we use radar-lidar-radiometer products from the Meteorological Observatory Lindenberg to verify the change in SLW prediction.

  7. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  8. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    Science.gov (United States)

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  9. Super-Maxwellian helium evaporation from pure and salty water.

    Science.gov (United States)

    Hahn, Christine; Kann, Zachary R; Faust, Jennifer A; Skinner, J L; Nathanson, Gilbert M

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  10. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  11. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also

  12. Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy

    Science.gov (United States)

    Lorek, A.; Wagner, N.

    2013-04-01

    Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to -70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m2 g-1, up to 9.4% w/w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w/w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice) and a strong low frequency process due to counter ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the ith process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to -70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.

  13. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    Science.gov (United States)

    Lorek, A.; Wagner, N.

    2013-12-01

    Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to -70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g-1, up to 9.4% w / w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w / w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high-frequency processes (bound or hydrated water as well as ice) and a strong low-frequency process due to counter-ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to -70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  14. The violation of the Stokes–Einstein relation in supercooled water

    OpenAIRE

    Chen, Sow-Hsin; Mallamace, Francesco; Mou, Chung-Yuan; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li

    2006-01-01

    By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature TH≈ 235 K. In particular, the dynamical parameters of water can be measured down to 180 K, approaching the suggested glass transition temperature Tg≈ 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport ...

  15. Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Lorek

    2013-04-01

    Full Text Available Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to −70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m2 g−1, up to 9.4% w/w gravimetric water content and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g−1, up to 7.4% w/w. Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice and a strong low frequency process due to counter ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the ith process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to −70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.

  16. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Lorek

    2013-12-01

    Full Text Available Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to −70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g−1, up to 9.4% w / w gravimetric water content and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g−1, up to 7.4% w / w. Three soil-specific relaxation processes are observed in the investigated frequency–temperature range: two weak high-frequency processes (bound or hydrated water as well as ice and a strong low-frequency process due to counter-ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to −70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  17. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.

    Science.gov (United States)

    Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M

    2011-02-10

    The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.

  18. The violation of the Stokes-Einstein relation in supercooled water.

    Science.gov (United States)

    Chen, Sow-Hsin; Mallamace, Francesco; Mou, Chung-Yuan; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li

    2006-08-29

    By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature T(H) approximately equals 235 K. In particular, the dynamical parameters of water can be measured down to 180 K, approaching the suggested glass transition temperature T(g) approximately equals 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport properties (the self-diffusion coefficient and the average translational relaxation time), which implies the breakdown of the Stokes-Einstein relation. We further show that such a non-monotonic decoupling reflects the characteristics of the recently observed dynamic crossover, at approximately 225 K, between the two dynamical behaviors known as fragile and strong, which is a consequence of a change in the hydrogen bond structure of liquid water.

  19. From the Cover: The violation of the Stokes-Einstein relation in supercooled water

    Science.gov (United States)

    Chen, Sow-Hsin; Mallamace, Francesco; Mou, Chung-Yuan; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li

    2006-08-01

    By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature TH 235 K. In particular, the dynamical parameters of water can be measured down to 180 K, approaching the suggested glass transition temperature Tg 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport properties (the self-diffusion coefficient and the average translational relaxation time), which implies the breakdown of the Stokes-Einstein relation. We further show that such a non-monotonic decoupling reflects the characteristics of the recently observed dynamic crossover, at 225 K, between the two dynamical behaviors known as fragile and strong, which is a consequence of a change in the hydrogen bond structure of liquid water. decoupling of transport properties | dynamic crossover | MCM-41

  20. The violation of the Stokes–Einstein relation in supercooled water

    Science.gov (United States)

    Chen, Sow-Hsin; Mallamace, Francesco; Mou, Chung-Yuan; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li

    2006-01-01

    By confining water in nanopores, so narrow that the liquid cannot freeze, it is possible to explore its properties well below its homogeneous nucleation temperature TH≈ 235 K. In particular, the dynamical parameters of water can be measured down to 180 K, approaching the suggested glass transition temperature Tg≈ 165 K. Here we present experimental evidence, obtained from Nuclear Magnetic Resonance and Quasi-Elastic Neutron Scattering spectroscopies, of a well defined decoupling of transport properties (the self-diffusion coefficient and the average translational relaxation time), which implies the breakdown of the Stokes–Einstein relation. We further show that such a non-monotonic decoupling reflects the characteristics of the recently observed dynamic crossover, at ≈225 K, between the two dynamical behaviors known as fragile and strong, which is a consequence of a change in the hydrogen bond structure of liquid water. PMID:16920792

  1. Volume of supercooled water under pressure and the liquid-liquid critical point.

    Science.gov (United States)

    Mishima, Osamu

    2010-10-14

    The volume of water (H(2)O) was obtained at about 200-275 K and 40-400 MPa by using emulsified water. The plot of volume against temperature showed slightly concave-downward curvature at pressures higher than ≈200 MPa. This is compatible with the liquid-liquid critical-point hypothesis, but hardly with the singularity-free scenario. When the critical point is assumed to exist at ≈50 MPa and ≈223 K, the experimental volume and the derived compressibility are qualitatively described by the modified Fuentevilla-Anisimov scaling equation.

  2. Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics

    Science.gov (United States)

    Schirò, G.; Cupane, A.

    2016-05-01

    Proteins, the nano-machines of living systems, are highly dynamic molecules. The time-scale of functionally relevant motions spans over a very broad range, from femtoseconds to several seconds. In particular, the pico- to nanoseconds region is characterized by side-chain and backbone anharmonic fluctuations that are responsible for many biological tasks like ligand binding, substrate recognition and enzymatic activity. Neutron scattering on hydrated protein powders reveals two main activations of anharmonic dynamics, characterized by different onset temperature and amplitude. Here we review our work on synthetic polypeptides, native proteins, and single amino acids to identify the physical origin of the two onsets -one involving water-independent local dynamics of methyl groups and, to a minor extent, of aromatic side-chains, and the other one, known as "protein dynamical transition", concerning large scale functional protein fluctuations, most likely induced by a crossover in the structure and dynamics of hydration water connected with the second critical point hypothesis.

  3. An Investigation of Freezing of Supercooled Water on Anti-Freeze Protein Modified Surfaces

    Institute of Scientific and Technical Information of China (English)

    Thibaut V J Charpentier; Anne Neville; Paul Millner; Rob Hewson; Ardian Morina

    2013-01-01

    This work investigates how functionalization ofaluminium surfaces with natural type Ⅲ Anti-Freeze Protein (AFP) affects the mechanism of heterogeneous ice nucleation.First the bulk ice nucleation properties of distilled water and aqueous solution of AFP were evaluated by differential scanning calorimetry.Then the modified surface was characterized by Secondary Ions Mass Spectroscopy (SIMS),Fourier Transform InfraRed (FTIR) spectroscopy and contact angle measurement.Freezing experiments were then conducted in which water droplets underwent a slow controlled cooling.This study shows that compared to uncoated aluminium,the anti-freeze proteins functionalized surfaces exhibit a higher and narrower range of freezing temperature.It was found that these proteins that keep living organisms from freezing in cold environment act in the opposite way once immobilized on surfaces by promoting ice nucleation.Some suggestions regarding the mechanism of action of the observed phenomena were proposed based on the Classical Nucleation Theory (CNT).

  4. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures.

    Science.gov (United States)

    Kanno, H; Kajiwara, K; Miyata, K

    2010-05-21

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (Rtemperatures (different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  5. Supercooled Water Droplet Impacting Superhydrophobic Surfaces in the Presence of Cold Air Flow

    Directory of Open Access Journals (Sweden)

    Morteza Mohammadi

    2017-01-01

    Full Text Available In the present work, an investigation of stagnation flow imposed on a supercooled water drop in cold environmental conditions was carried out at various air velocities ranging from 0 (i.e., still air to 10 m/s along with temperature spanning from −10 to −30 °C. The net effect of air flow on the impacting water droplet was investigated by controlling the droplet impact velocity to make it similar with and without air flow. In cold atmospheric conditions with temperatures as low as −30 °C, due to the large increase of both internal and contact line viscosity combined with the presence of ice nucleation mechanisms, supercooled water droplet wetting behavior was systematically affected. Instantaneous pinning for hydrophilic and hydrophobic surfaces was observed when the spread drop reached the maximum spreading diameter (i.e., no recoiling phase. Nevertheless, superhydrophobic surfaces showed a great repellency (e.g., contact time reduction up to 30% where air velocity was increased up to 10 m/s at temperatures above the critical temperature of heterogeneous ice nucleation (i.e., −24 °C. However, the freezing line of the impacting water droplet was extended up to 2-fold at air velocity up to 10 m/s where substrate temperature was maintained below the aforementioned critical temperature (e.g., −30 °C.

  6. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    Science.gov (United States)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  7. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  8. Super-cooled liquid water topped sub-arctic clouds and precipitation - investigation based on combination of ground-based in-situ and remote-sensing observations

    Science.gov (United States)

    Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami

    2017-04-01

    In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).

  9. Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K; Farzaneh, M [NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada); Yamaguchi, S [Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Nagaoka, 940-0821 (Japan); Tsuji, H [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, 816-8580 (Japan)], E-mail: kazuto.ueno@uqac.ca

    2010-04-15

    Little is known about morphological instability of a solidification front during the crystal growth of a thin film of flowing supercooled liquid with a free surface: for example, the ring-like ripples on the surface of icicles. The length scale of the ripples is nearly 1 cm. Two theoretical models for the ripple formation mechanism have been proposed. However, these models lead to quite different results because of differences in the boundary conditions at the solid-liquid interface and liquid-air surface. The validity of the assumption used in the two models is numerically investigated and some of the theoretical predictions are compared with experiments.

  10. Induction of Marangoni convection in pure water drops

    Science.gov (United States)

    Kita, Yutaku; Askounis, Alexandros; Kohno, Masamichi; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-10-01

    We report on experimental observations/visualization of thermocapillary or Marangoni flows in a pure water drop via infrared thermography. The Marangoni flows were induced by imposing a temperature gradient on the drop by locally heating the substrate directly below the center with a laser. Evidently, a temperature gradient along the liquid-air interface of ca. 2.5 °C was required for the Marangoni flows to be initiated as twin vortices and a subsequent gradient of ca. 1.5 °C to maintain them. The vortices exhibited an oscillatory behavior where they merged and split in order for the drop to compensate for the non-uniform heating and cooling. The origin of these patterns was identified by comparing the dimensionless Marangoni and Rayleigh numbers, which showed the dominance of the Marangoni convection. This fact was further supported by a second set of experiments where the same flow patterns were observed when the drop was inverted (pendant drop).

  11. Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant

    OpenAIRE

    Ellenberger, Christine Spada

    1999-01-01

    WATER QUALITY IMPACTS OF PURE CHLORINE DIOXIDE PRETREATMENT AT THE ROANOKE COUNTY (VIRGINIA) WATER TREATMENT PLANT by Christine S. Ellenberger Dr. Robert C. Hoehn, Chairman (ABSTRACT) Chlorine dioxide (ClO2) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO2 generation system ...

  12. Liquid-liquid transition in supercooled aqueous solution involving a low-temperature phase similar to low-density amorphous water

    CERN Document Server

    Woutersen, Sander; Zhao, Zuofeng; Angell, C Austen

    2016-01-01

    The striking anomalies in physical properties of supercooled water that were discovered in the 1960-70s, remain incompletely understood and so provide both a source of controversy amongst theoreticians, and a stimulus to experimentalists and simulators to find new ways of penetrating the "crystallization curtain" that effectively shields the problem from solution. Recently a new door on the problem was opened by showing that, in ideal solutions, made using ionic liquid solutes, water anomalies are not destroyed as earlier found for common salt and most molecular solutes, but instead are enhanced to the point of precipitating an apparently first order liquid-liquid transition. The evidence was a spike in apparent heat capacity during cooling that could be fully reversed during reheating before any sign of ice crystallization appeared. Here, we use decoupled-oscillator infrared spectroscopy to define the structural character of this phenomenon using similar down and upscan rates as in the calorimetric study. Th...

  13. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  14. What am I? Supercooled droplet or ice?

    CERN Document Server

    Antonini, Carlo; Maitra, Tanmoy; Tiwari, Manish K; Poulikakos, Dimos

    2013-01-01

    In this fluid dynamics video we show the trick played by a supercooled liquid water drop against a superhydrophobic surface. The water drop shows a double personality, impacting onto the surface the first time while still in the liquid state, and then re-impacting as a frozen ice crystal.

  15. Nonisothermal reactors for the production of pure water from peritoneal dialysis waste waters.

    Science.gov (United States)

    Diano, N; Ettari, G; Grano, V; Gaeta, F S; Rossi, S; Bencivenga, U; D'Alterio, C; Ruocco, G; Mita, L; De Santo, N G; Canciglia, P; Mita, D G

    2007-01-01

    The diffusion of peritoneal dialysis (PD) at home is somewhat restricted by the difficulty of transport and storage of a large amount of dialytic solutions. This problem is exacerbated in the case of hemodialysis. With the aim of producing pure water to be used in preparing the solution for peritoneal dialysis, or for hemodialysis in general, as one example, we purified the spent dialysate solution from PD. Experiments were carried out with 24 dialysate solutions taken from 8 patients. Pure water was obtained by means of a thermodialysis process in a hollow fiber reactor operating under nonisothermal conditions. Results show that the yield of the nonisothermal process is dependent on the temperature difference applied across the hydrophobic membranes. The production of pure water per square meter of membrane and per hour was equal to 0.55 or 1.2 or 2.0 liters, with a temperature difference of 11 degrees C or 21 degrees C or 28 degrees C, respectively. These results encourage the use of the thermodialysis process in the production of pure water for clinical uses.

  16. 单个水滴蒸发过冷过程的特性分析%Characteristic analysis of single water droplet in evaporative supercooled process

    Institute of Scientific and Technical Information of China (English)

    闫俊海; 张小松; 周斌

    2012-01-01

    To analyze the movement and evaporation characteristics of single water droplet in low temperature and low humidity ratio air, a mathematical model of water droplet heat and mass transfer and movement process was proposed. The evaporation process of droplet in supercooled stage was simulated through theoretical model, results from modeling basically tally with experiment of hanging single water droplet. The temperature, diameter, velocity and trajectory of water droplet during evaporation and motion process and the influence of the initial parameters of droplet and air velocity were investigated. The numerical results show that at a certain spray angle and with same dropping height the smaller droplet diameter can shorten movement distance at horizontal direction and the super-cooled time of water droplet, meanwhile decrease the corresponding velocity of water droplet faster. The lower initial temperature of water droplet or the higher velocity of air can improve the cooling rate of water droplet and the water droplet can be cooled to supercooled state in a very short dropping height. In addition, the higher the initial temperature of water droplet and the air velocity are, the faster the diameter of water droplet reduces. Thus, the precooled water droplets can not only improve the ice-making efficiency but also reduce the evaporative loss of water droplet.%为分析单个水滴在低温、低湿空气中的运动和蒸发特性,建立了描述整个传热传质及运动过程的数学模型,并通过对悬挂水滴的蒸发冷却实验验证了该模型的有效性.通过模拟计算获得了水滴温度、直径、速度和运动轨迹的变化规律,以及水滴初始参数和空气速度对制冰效率的影响.结果表明,水滴在某一喷射角度下,直径越小,同样的下落高度水滴水平飞行的距离越短,而相应的速度衰减则越快,同时水滴蒸发过冷所需的时间越短.另外,水滴初始温度越低和逆流空气速度越高,

  17. Decisive influence of the ionization strength of cosmic rays on the cavitation characteristics of pure water

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The experiment result in this article shows that the initial and critical cavitation pressure of pure water are both increasing along with the increase of height above sea level,and the ionization strength of cosmic rays in the lower aerosphere is the crucial factor which influences the cavitation pressure of pure water.The author concludes the relationship between the cavitaion pressure of pure water and the height above sea level.Moreover,air particles in water caused by the radiation of cosmic rays can exist in the water for a long time and will not escape.

  18. Decisive influence of the ionization strength of cosmic rays on the cavitation characteristics of pure water

    Institute of Scientific and Technical Information of China (English)

    CHANG JinShi

    2009-01-01

    The experiment result in this article shows that the initial and critical cavitation pressure of pure water are both increasing along with the increase of height above sea level, and the ionization strength of cosmic rays in the lower aerosphere is the crucial factor which influences the cavitation pressure of pure water. The author concludes the relationship between the cavitaion pressure of pure water and the height above sea level. Moreover, air particles in water caused by the radiation of cosmic rays can exist in the water for a long time and will not escape.

  19. Statistical relation between particle contaminations in ultra pure water and defects generated by process tools

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Wortelboer, Ronald; Mud, Auke

    2007-01-01

    Ultra pure water supplied inside the Fab is used in different tools at different stages of processing. Data of the particles measured in ultra pure water was compared with the defect density on wafers processed on these tools and a statistical relation is found Keywords— Yield, defect density,

  20. Surface Initiated Polymerizations via e-ATRP in Pure Water

    NARCIS (Netherlands)

    Hosseiny, Seyed Schwan; van Rijn, Patrick

    2013-01-01

    Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP) initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlle

  1. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    Science.gov (United States)

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  2. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  3. Supercooled Liquids and Glasses

    OpenAIRE

    1999-01-01

    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  4. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  5. A discovery of an ultra-pure water detection method based on water mark

    Science.gov (United States)

    Cao, Hui-Wen; Jing, Yu-Peng; Zhao, Shi-Rui; Xu, Xin-Wei; Tian, He; Xin, Xin; Li, Xiao-Ning; Liu, Bo; Liu, Rui-Tao; Wang, Gang; Ge, Jie; Cai, Hua-Lin; Yang, Yi; Ren, Tian-Ling

    2015-02-01

    The purity evaluation of deionized (DI) water is highly desirable for VLSI or ULSI industry, as the traditional "reverse osmosis filter" cannot always meet the requirement towards the DI water. The filtered DI water may still contain many contaminations which are not up to the standard for the wet cleaning of wafer surface. A novel method is presented by analyzing the residues of a water droplet after the low-temperature evaporation. The contamination contained in the water will remain during the gasification. By analyzing the residual contamination's morphology, the purity of the DI water can be estimated by employing merely a 3D laser microscope. Compared to the traditional fluorescence detecting system for water quality monitoring, it is simpler and has a lower cost. The paper describes an excellent water detection method which is meaningful for preparing ultra-pure water. Experimental results have shown that the deionized distilled (DID) water can repeatedly get a higher purity using this detection method. The DID water can be applied to the wet cleaning of wafer surface, preparation of chemical reagents and many other aspects.

  6. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny

    2013-10-01

    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  7. Virtual Breakdown Mechanism: Field-Driven Splitting of Pure Water for Hydrogen Production

    CERN Document Server

    Wang, Yifei; Wu, Wei

    2016-01-01

    Due to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells for the electrolysis of pure water. At such nanometer scale, the field-driven pure water splitting exhibits a completely different mechanism from the macrosystem. We have named this process 'virtual breakdown mechanism' that results in a series of fundamental changes and more than 10^5-fold enhancement of the equivalent conductivity of pure water. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. Based on our nanogap electrochemical cells, the electrolysis current from pure water is comparable to or even larger than the current from 1 mol/L sodium hydroxide solution, indicating the high-efficiency of pure water splitting as a potential f...

  8. The iterative self-consistent reaction-field method: The refractive index of pure water

    DEFF Research Database (Denmark)

    Sylvester-Hvid, Kristian O.; Mikkelsen, K. V.; Ratner, M.A.

    2011-01-01

    We present different microscopic models for describing electromagnetic properties of condensed phases and the models involve iterative self-consistent procedures for calculating the properties. We report calculations of the frequency-dependent refractive index of pure water. We investigate...

  9. Modeling of water droplet in super-cooling water evaporative system for ice slurry production%蒸发式过冷水制冰液滴蒸发结晶的模拟

    Institute of Scientific and Technical Information of China (English)

    马善军; 李鹏辉; 孔令健; 李少华; 韩吉田

    2016-01-01

    Ice storage technology is considered as one of the most promising options to achieve the so-called “peak load leveling of power system” and to relieve the contradiction between the supply and demand of peak power currently encountered in China. Among the ice-producing methods being developed around the world, the evaporative supercooling water ice-making one is a new and efficient way for ice slurry production of large scale without ice blockage. Therefore, it is of significant importance to investigate the heat and mass transfer characteristics during the cooling and crystallization process of water droplets in the evaporative supercooling water ice-making chamber to the development of practical ice-making system. In order to analyze the heat and mass transfer characteristics of water droplets in an evaporative super-cooling water system for ice slurry production, we proposed a mathematical model for the cooling and crystallization process of a single water droplet falling in the evaporation chamber with large space, which comprehensively took into account the three different zones of entire liquid phase, solid-liquid interphase and entire solid phase during the cooling and crystallization process of a water droplet. The developed mathematical model was then validated by use of the theoretical and experimental results presented in the available literature and satisfactory agreement was achieved in between the model simulation results and the research ones reported in the literature, indicating the correctness of the mathematical model. The parameter variations of the water droplet with changes in some of the key system operating variables, such as the inlet size and temperature of water droplet, the flow rate and relative humidity of the cold air, were numerically determined by solving the developed mathematical model. Effects of the inlet size and temperature of water droplet, inlet temperature, flow rate and relative humidity of the cold air in the

  10. Positron Lifetimes in Pure and Doped Ice and in Water

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Mogensen, O.; Trumpy, Georg

    1972-01-01

    for the other components show a complex behavior. The spectra for mono- and polycrystalline light ice and for polycrystalline heavy ice are identical. For water long lifetime components attributed to ortho-Ps are 1.86 nsec, 27% for H2O and 2.01 nsec, 22% for D2O. Theoretical explanations are suggested. Fast......Positron lifetime spectra were measured in mono- and polycrystalline light ice, polycrystalline heavy ice, doped light ice, as well as in light and heavy water. All spectra were resolved into three components. At temperatures between −196° and −100°C the lifetimes and relative intensities...... of the spectra are found by heating above approximately −120°C. Measurements on a number of fast frozen aqueous solutions of acids, bases, and salts are reported, none of them showing as strong influence on the ortho-Ps lifetime as HF. ©1972 The American Institute of Physics...

  11. Kinetics of Methane Hydrate Formation in Pure Water and Inhibitor Containing Systems

    Institute of Scientific and Technical Information of China (English)

    QIUJunhong; GUOTianmin

    2002-01-01

    Kinetic data of methane hydrate formation in the presence of pure water,brines with single salt and mixed salts,and aqueous solutions of ethylene glycol(EG) and salt+EG were measured.A new kinetic model of hydrate formation for the methane+water systems was developed based on a four-step formation mechanism and reaction kinetic approach.The proposed kinetic model predicts the kinetic behavior of methane hydrate formation in pure water with good accuracy.The feasibility of extending the kenetic model of salt(s) and EG containing systems was explored.

  12. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    Science.gov (United States)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}Widom line for water supporting the liquid-liquid transition hypothesis.

  13. Studies of Water V. Five Phonons in Protonic Semiconductor Lattice Model of Pure Liquid Water

    Science.gov (United States)

    Jie, Binbin; Sah, Chihtang

    2017-07-01

    We report physics based confirmation (~1% RMS deviation), by existing experimental data, of proton-prohol (proton-hole) ion product (pH) and mobilities in pure liquid water (0-100{}{{o}}C, 1-atm pressure) anticipated from our melted-ice Hexagonal-Close-Packed (H{}2O){}4 Lattice Model. Five phonons are identified. (1) A propagating protonic phonon (520.9 meV from lone-pair-blue-shifted stretching mode of isolated water molecule) absorbed to generate a proton-prohol pair or detrap a tightly-bound proton. (2) Two (173.4 and 196.6 meV) bending-breathing protonic-proholic or protonic phonons absorbed during de-trapping-limited proton or proton-prohol mobilities. (3) Two propagating oxygenic-wateric Debye-Dispersive phonons (30.3 and 27.5 meV) absorbed during scattering-limited proton or proton-prohol mobilities. Summer School in Theoretical Physics funded by the National Natural Science Foundation of China, on Soft Materials Physics, hosted by the Physics Department of Xiamen University, China, during August 1 to 14, 2016. This was also just presented at the 2017 March Meeting (March 14 to 16) of the American Physical Society in New Orleans, USA.

  14. Mechanism of supercooled droplet freezing on surfaces

    Science.gov (United States)

    Jung, Stefan; Tiwari, Manish K.; Doan, N. Vuong; Poulikakos, Dimos

    2012-01-01

    Understanding ice formation from supercooled water on surfaces is a problem of fundamental importance and general utility. Superhydrophobic surfaces promise to have remarkable 'icephobicity' and low ice adhesion. Here we show that their icephobicity can be rendered ineffective by simple changes in environmental conditions. Through experiments, nucleation theory and heat transfer physics, we establish that humidity and/or the flow of a surrounding gas can fundamentally switch the ice crystallization mechanism, drastically affecting surface icephobicity. Evaporative cooling of the supercooled liquid can engender ice crystallization by homogeneous nucleation at the droplet-free surface as opposed to the expected heterogeneous nucleation at the substrate. The related interplay between droplet roll-off and rapid crystallization is also studied. Overall, we bring a novel perspective to icing and icephobicity, unveiling the strong influence of environmental conditions in addition to the accepted effects of the surface conditions and hydrophobicity.

  15. Calculating pure rotational transitions of water molecule with a simple Lanczos method

    Indian Academy of Sciences (India)

    Pranab Sarkar

    2001-04-01

    We have calculated pure rotational transitions of water molecule from a kinetic energy operator (KEO) with the -axis perpendicular to the molecular plane. We have used rotational basis functions which are linear combinations of symmetric top functions so that all matrix elements are real. The calculated spectra agree well with the observed values.

  16. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    Science.gov (United States)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  17. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid.

    Science.gov (United States)

    Glass, Samuel V; Park, Seong-Chan; Nathanson, Gilbert M

    2006-06-22

    Vacuum evaporation and molecular beam scattering experiments have been used to monitor the loss of water and dissolution of HCl and HBr in deuterated sulfuric acid at 213 K containing 0 to 100 mM hexanol. The addition of 1-hexanol to the acid creates a surface film of hexyl species. This film becomes more compact with decreasing acidity, ranging from approximately 62% to approximately 68% of maximum packing on 68 to 56 wt % D(2)SO(4), respectively. D(2)O evaporation from 68 wt % acid remains unaltered by the hexyl film, where it is most porous, but is impeded by approximately 20% from 56 and 60 wt % acid. H --> D exchange experiments further indicate that the hexyl film on 68 wt % acid enhances conversion of HCl and HBr into DCl and DBr, which is interpreted as an increase in HCl and HBr entry into the bulk acid. For this permeable hexyl film, the hydroxyl groups of surface hexanol molecules may assist uptake by providing extra sites for HCl and HBr hydrogen bonding and dissociation. In contrast, HCl --> DCl exchange in 60 wt % D(2)SO(4) at first rises with hexyl surface coverage but then drops back to the bare acid value as the hexyl species pack more tightly. HCl entry is actually diminished by the hexyl film on 56 wt % acid, where the film is most compact. These experiments reveal a transition from a porous hexanol film on 68 wt % sulfuric acid that enhances HCl and HBr uptake to one on 56 wt % acid that slightly impedes HCl and D(2)O transport.

  18. Electrical Mobility of Protons and Proton-Holes in Pure Water Characterized by Physics-Based Water Model

    Science.gov (United States)

    Jie, Binbin; Sah, Chihtang

    Pure water has been characterized empirically for nearly a century, as dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. Last March, we reported that the ~40 year experimental industrial standard of chemical equilibrium reaction constant, the ion product, can be accounted for by a statistical-physics-based concentration product of two electrical charge carriers, the positively charged protons, p+, and the negatively charged proton holes or prohols, p-, with a thermal activation energy or proton trapping well depth of Ep + / p - = 576 meV, in the 0-100OC pure liquid water. We now report that the empirically fitted industrial standard experimental data (1985, 1987, 2005) of the two dc ion mobilities in liquid water, can also be accounted for by trapping-limited drift of protons and prohols through proton channels of lower proton electrical potential valleys, Ep+/0 Pauling statistical model using the 1933 Bernal-Fowler water rule.

  19. Experimental evidence for two distinct deeply supercooled liquid states of water – Response to “Comment on ‘Water's second glass transition”’, by G.P. Johari, Thermochim. Acta (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Seidl, M. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Gainaru, C. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Fuentes-Landete, V.; Amann-Winkel, K.; Handle, P.H. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Köster, K.W.; Nelson, H. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Böhmer, R., E-mail: roland.bohmer@tu-dortmund.de [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Loerting, T., E-mail: thomas.loerting@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria)

    2015-10-10

    Highlights: • Two samples of amorphous ices quench-recovered from 140 K to 0.07 GPa are compared. • Calorimetry, X-ray diffraction, dielectric spectroscopy and volumetry are employed. • The two samples are distinct and cannot both be termed “pressure-densified glassy water”. • One route of preparation leads to high- (HDA), and the other to low-density amorphous ice (LDA). • Two distinct glass transitions are observed and interpreted to indicate two liquid H{sub 2}O phases. - Abstract: Recently, our earlier data which led us to conclude that deeply supercooled water displays a second glass transition (Amann-Winkel et al., 2013) was reinterpreted (Johari, 2015). In particular, the increase in heat capacity observed for high-density amorphous ice (HDA) samples at 116 K was reinterpreted to indicate sub-T{sub g} features of low-density amorphous ice's (LDA's) glass transition. We reply to the criticism in detail and report an experiment triggered by the comment on our work. This experiment unequivocally confirms our original interpretation of the observations and reinforces the case for water's second glass transition, its polyamorphism, and the observation of two distinct ultraviscous states of water differing by about 25% in density.

  20. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua;

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... the supercooled sodium acetate water mixture was 194 kJ/kg of sodium acetate water mixture in the first test cycles dropping to 179 kJ/kg in the later test cycles. Instability of the supercooling occurred when the charging periods were short and in the last test cycles where the tube connecting the module...

  1. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J. [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB) – Universidade Nova de Lisboa (UNL), Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, 5 Portugal (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Soeiro, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Gaffney, V.; Almeida, C. [Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia da Universidade de Lisboa (FFUL), Av. Prof. Gama Pinto, 1600-049 Lisboa (Portugal); Cardoso, V. Vale; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Águas Livres, S.A., Direcção de Controlo de Qualidade da Água, Laboratório Central, Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); and others

    2013-01-15

    Highlights: ► Direct UV photolysis of 3 pharmaceuticals in pure and waste water was investigated. ► Ketoprofen has higher photodegradion kinetics, followed by diclofenac and atenolol. ► MP/UV photodegradation products were identified for the 3 compounds. ► Photodegradation pathways were proposed to explain the obtained products. ► The persistent photoproducts were identified for each compound. -- Abstract: Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.

  2. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    Science.gov (United States)

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  3. Supercooling across first-order phase transitions in vortex matter

    Indian Academy of Sciences (India)

    P Chaddah; S B Roy

    2000-06-01

    Hysteresis in cycling through first-order phase transitions in vortex matter, akin to the well-studied phenomenon of supercooling of water, has been discussed in literature. Hysteresis can be seen while varying either temperature or magnetic field (and thus the density of vortices). Our recent work on phase transitions with two control variables shows that the observable region of metastability of the supercooled phase would depend on the path followed in - space, and will be larger when is lowered at constant compared to the case when is lowered at constant . We discuss the effect of isothermal field variations on metastable supercooled states produced by field-cooling. This path dependence is not a priori applicable to metastability caused by reduced diffusivity or hindered kinetics.

  4. Monitoring of glucose, salt and pure water in human whole blood: An in vitro study.

    Science.gov (United States)

    Imran, Muhammad; Ullah, Hafeez; Akhtar, Munir; Sial, Muhammad Aslam; Ahmed, Ejaz; Durr-E-Sabeeh; Ahmad, Mukhtar; Hussain, Fayyaz

    2016-07-01

    Designing and implementation of non-invasive methods for glucose monitoring in blood is main focus of biomedical scientists to provide a relief from skin puncturing of diabete patient. The objective of this research work is to investigate the shape deformations and the aggregation of red blood cells (RBCs) in the human blood after addition of three different analytes i) (0mM-400mM: Range) of glucose (C(6)H(12)O(6)), ii) (0mM-400mM: range) of pure salt (NaCl) and iii) (0mM- 350mM: range) of pure water (H(2)O). We have observed that the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose, salts and pure water. This demonstration also provides a base line to facilitate diabetes during partial diagnosis and monitoring of the glucose levels qualitatively both in research laboratories and clinical environment.

  5. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    Science.gov (United States)

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114

  6. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2016-06-01

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  7. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line.

    Science.gov (United States)

    Ni, Yicun; Skinner, J L

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  8. Temperature measurement of supercooled droplet in icing phenomenon by means of dual-luminescent imaging

    Science.gov (United States)

    Tanaka, M.; Morita, K.; Mamori, H.; Fukushima, N.; Yamamoto, M.

    2017-08-01

    The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.

  9. Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion

    Science.gov (United States)

    Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier

    2014-12-01

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  10. A pathway of nanocrystallite fabrication by photo-assisted growth in pure water

    Science.gov (United States)

    Jeem, Melbert; bin Julaihi, Muhammad Rafiq Mirza; Ishioka, Junya; Yatsu, Shigeo; Okamoto, Kazumasa; Shibayama, Tamaki; Iwasaki, Tomio; Kato, Takahiko; Watanabe, Seiichi

    2015-01-01

    We report a new production pathway for a variety of metal oxide nanocrystallites via submerged illumination in water: submerged photosynthesis of crystallites (SPSC). Similar to the growth of green plants by photosynthesis, nanocrystallites shaped as nanoflowers and nanorods are hereby shown to grow at the protruded surfaces via illumination in pure, neutral water. The process is photocatalytic, accompanied with hydroxyl radical generation via water splitting; hydrogen gas is generated in some cases, which indicates potential for application in green technologies. Together with the aid of ab initio calculation, it turns out that the nanobumped surface, as well as aqueous ambience and illumination are essential for the SPSC method. Therefore, SPSC is a surfactant-free, low-temperature technique for metal oxide nanocrystallites fabrication. PMID:26076674

  11. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    Science.gov (United States)

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals.

  12. POST-EXERCISE REHYDRATION WITH DIFFERENT BEVERAGES: PURE WATER, SPORTS DRINK, AND ROSELLE TEA

    OpenAIRE

    María de Lourdes Mayol Soto; Luis Fernando Aragón Vargas

    2002-01-01

    The purpose of the present study was to assess the suitability of roselle tea (Hibiscus Sabdariffa L.) for post-exercise rehydration, compared with pure water and a sports drink. Roselle tea is a beverage widely consumed in Mexico and highly regarded because of its purported diuretic properties. Sixteen physically active male students from the University of Costa Rica, aged 17 to 23 years old, drank each one of the three treatments on different days, the same day of the week, in random order....

  13. Mesospheric water vapor sounding using earth-limb pure-rotational emission in the LWIR

    Science.gov (United States)

    Adler-Golden, Steven; de, Piali; Smith, Donald; D'Agati, Anthony

    1993-08-01

    Limb sounding of mesospheric water vapor using pure rotational emission in the long-wavelength IR region has been demonstrated using data from the ELC-1 rocket experiment, launched in October, 1983. By simultaneously analyzing H2O emission at 23-29 microns and CO2 emission in the nu2 band region, effects due to uncertainties in the atmospheric temperature and instrument calibration are minimized. The H2O profile obtained from ELC-1 is consistent with other fall to early-winter measurements. Given accurate line-of-sight pointing information, this approach will be feasible for global mesospheric H2O sounding from limb-viewing satellites.

  14. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater.

    Science.gov (United States)

    Salgado, R; Pereira, V J; Carvalho, G; Soeiro, R; Gaffney, V; Almeida, C; Vale Cardoso, V; Ferreira, E; Benoliel, M J; Ternes, T A; Oehmen, A; Reis, M A M; Noronha, J P

    2013-01-15

    Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.

  15. Aviation-oriented Micromachining Technology-Micro-ECM in Pure Water

    Institute of Scientific and Technical Information of China (English)

    Bao Huaiqian; Xu Jiawen; Li Ying

    2008-01-01

    This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a series of test setups and tests are devised and performed under different conditions. These tests explain the need for technological conditions realizing PW-ECM, and further explore the technological principles. The results from the tests demonstrate a successful removal of electrolytic slime by means of ultrasonic vibration of the workpiece. To ensure the stability and reliability of PW-ECM process, a new combined rnachining method of PW-ECM assisted with ultrasonic vibration (PW-ECM/USV) is devised. Trilateral and square cavities and holes as well as a group of English alphabets are worked out on a stainless steel plate. It is eonfirmed that PW-ECM will be probably an efficient new aviation precision machining method.

  16. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    Science.gov (United States)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  17. Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Dannemand, Mark; Kong, Weiqiang

    2015-01-01

    Sodium acetate trihydrate and graphite powder mixtures have been evaluated to investigate the influence of the graphite powder on the stability of supercooling. A sodium acetate and water mixture mixed with graphite powder was successfully supercooled at ambient indoor temperatures for five month...

  18. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures

    Science.gov (United States)

    GENG, Ming; DUAN, Zhenhao

    2010-10-01

    A thermodynamic model is presented to calculate the oxygen solubility in pure water (273-600 K, 0-200 bar) and natural brines containing Na +, K +, Ca 2+, Mg 2+, Cl -, SO 42-, over a wide range of temperature, pressure and ionic strength with or close to experimental accuracy. This model is based on an accurate equation of state to calculate vapor phase chemical potential and a specific particle interaction model for liquid phase chemical potential. With this approach, the model can not only reproduce the existing experimental data, but also extrapolate beyond the data range from simple aqueous salt system to complicated brine systems including seawater. Compared with previous models, this model covers much wider temperature and pressure space in variable composition brine systems. A program for this model can be downloaded from the website: http://www.geochem-model.org.

  19. DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems

    Directory of Open Access Journals (Sweden)

    Marleen Häring

    2015-03-01

    Full Text Available In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA. Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding β-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated.

  20. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis leaf blades.

    Directory of Open Access Journals (Sweden)

    Masaya eIshikawa

    2015-01-01

    Full Text Available Wintering Sasa senanensis, dwarf bamboo, has been known to employ deep supercooling as the mechanism of cold hardiness in its most of the tissues from leaves to rhizomes. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels increased from August (LT20: –11 °C to December (LT20: –20 °C, which coincided with the initiation temperature of low temperature exotherms (LTE detected in differential thermal analyses. When leaf blades were stored at –5 °C for 1-14 days, there was no nucleation of the supercooled tissue units compartmentalized by the longitudinal and transverse veins either in summer or winter. However, only summer leaves suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20 °C, a longer storage period (1-7 days increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units, which was not correlated with the leaf water content. LTE were shifted to higher temperatures (2-5 °C after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. We discussed these mechanisms in regard to ecological and physiological significance in winter survival.

  1. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    Science.gov (United States)

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance.

  2. Habitability of waterworlds: runaway greenhouses, atmospheric expansion and multiple climate states of pure water atmospheres

    CERN Document Server

    Goldblatt, Colin

    2015-01-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds". I map these as a function of solar constant for planets ranging in size from Mars size to 10 Earth-mass. The states are: globally ice covered (Ts< 245K), cold and damp (270 < Ts< 290K), hot and moist (350< Ts< 550K) and very hot and dry (Ts< 900K). No stable climate exists for 290< Ts < 350K or 550 < Ts < 900K. The union of hot moist and cold damp climates describe the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong non-linearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surfa...

  3. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    Directory of Open Access Journals (Sweden)

    Kubiliūtė R

    2013-07-01

    Full Text Available Reda Kubiliūtė,1,2 Ksenia A Maximova,3 Alireza Lajevardipour,1 Jiawey Yong,1 Jennifer S Hartley,1 Abu SM Mohsin,1 Pierre Blandin,3 James WM Chon,1 Marc Sentis,3 Paul R Stoddart,1 Andrei Kabashin,3 Ričardas Rotomskis,2 Andrew HA Clayton,1,4 Saulius Juodkazis1,4 1Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences Swinburne University of Technology, Hawthorn, VIC, Australia; 2Laboratory of Biomedical Physics, Vilnius University Institute of Oncology, Baublio, Vilnius, Lithuania; 3Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS, Lasers, Plasmas and Photonics Processing Laboratory, Campus de Luminy, Marseille, France; 4The Australian National Fabrication Facility, Victoria node, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia Abstract: Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1 fairly stable and poly size-dispersed; or (2 very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. Keywords: nanotechnologies applications, methods of nanofabrication and processing, materials for nanomedicine

  4. SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water

    Science.gov (United States)

    Verma, Mahendra P.

    2011-04-01

    An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.

  5. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, V.; Da Silveira, E. F. [Departamento de Fisica/Laboratorio do Acelerador Van de Graaff, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de S. Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Lv, X. Y.; Domaracka, A.; Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie), CIMAP-CIRIL-GANIL, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Seperuelo Duarte, E., E-mail: vbordalo@fis.puc-rio.br [Grupo de Fisica e Astronomia, Instituto Federal do Rio de Janeiro, Rua Lucio Tavares 1045, 26530-060 Nilopolis, RJ (Brazil)

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  6. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, P. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Corradini, D.; Rovere, M., E-mail: rovere@fis.uniroma3.it [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  7. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl.

    Science.gov (United States)

    Gallo, P; Corradini, D; Rovere, M

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  8. Supercooling and cold energy storage characteristics of nano-media in ball-packed porous structures

    Directory of Open Access Journals (Sweden)

    Zhao Qunzhi

    2015-04-01

    Full Text Available The presented experiments aimed to study the supercooling and cold-energy storage characteristics of nanofluids and water-based nano-media in ball-packed porous structures (BPS. Titanium dioxide nanoparticles (TiO2 NPs measuring 20nm and 80nm were used as additives and sodium dodecyl benzene sulphonate (SDBS was used as anionic surfactant. The experiments used different concentrations of nanofluid, distilled with BPS of different spherical diameter and different concentrations of nano-media, and were conducted 20 times. Experimental results of supercooling were analysed by statistical methods. Results show that the average and peak supercooling degrees of nanofluids and nano-media in BPS are lower than those of distilled water. For the distilled water in BPS, the supercooling degree decreases on the whole with the decrease of the ball diameter. With the same spherical diameter (8mm of BPS, the supercooling degree of TiO2 NPs measuring 20nm is lower than the supercooling degree of distilled water in BPS. Step-cooling experiments of different concentrations of nanofluids and nano-media in BPS were also conducted. Results showed that phase transition time is reduced because of the presence of TiO2 NPs. The BPS substrate and the NPs enhance the heat transfer. Distilled water with a porous solid base and nanoparticles means the amount of cold-energy storage increases and the supercooling degree and the total time are greatly reduced. The phase transition time of distilled water is about 3.5 times that of nano-media in BPS.

  9. The electric double layer at a metal electrode in pure water

    Science.gov (United States)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  10. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  11. POST-EXERCISE REHYDRATION WITH DIFFERENT BEVERAGES: PURE WATER, SPORTS DRINK, AND ROSELLE TEA

    Directory of Open Access Journals (Sweden)

    María de Lourdes Mayol Soto

    2002-06-01

    Full Text Available The purpose of the present study was to assess the suitability of roselle tea (Hibiscus Sabdariffa L. for post-exercise rehydration, compared with pure water and a sports drink. Roselle tea is a beverage widely consumed in Mexico and highly regarded because of its purported diuretic properties. Sixteen physically active male students from the University of Costa Rica, aged 17 to 23 years old, drank each one of the three treatments on different days, the same day of the week, in random order. They arrived in the laboratory euhydrated and, after a standardized breakfast and a brief rest, exercised intermittently on a stationary bicycle in a climate-controlled room (30-35°C and 85% RH until reaching 2.3% body mass loss dehydration. After a 30-min rest at room temperature, they drank a volume equivalent to 150% of their body mass loss of the drink assigned to that day, within 45 minutes. At the end of rehydration (0 min urine collection was performed and repeated every 30 min for a total of 3 hours. Each sample was measured for volume, color and density. Sample volumes were analyzed as percentage of ingested fluid. Data were analyzed with descriptive statistics and  two-way ANOVAs (repeated measures on both factors. While there were no statistically significant differences in total urine output (p = 0.084, an interaction was found between urine output, density, and color, with time (p < 0.001. Post-hoc analysis showed urine output to be higher initially with the sports drink, but it was significantly lower at time points  150 and 180 min. In addition, urine was significantly darker and denser at 0, 150, and 180 min with this drink, suggesting greater fluid conservation. From the results it is possible to conclude that roselle tea did not show a diuretic effect 3 hours after consumption, in exercise-dehydrated subjects. While it seems like rehydration is almost identical with the three drinks, urine composition and output dynamics is

  12. Fundamental study of green EUV lithography using natural polysaccharide for the use of pure water in developable process

    Science.gov (United States)

    Takei, Satoshi

    2016-10-01

    The eco-conscious lithography processes of using pure water instead of spin coating organic solvent and alkaline developer were described for extreme-ultraviolet and electron beam techniques of advanced photomask manufactural application. Natural polysaccharide was obtained by the esterification of the hydroxyl groups of the polysaccharide resulting in improved resolution and resist profiles after the purewater developing processes. The 100, 200, and, 300 nm line and space width, and straight profiles of polysaccharide-based resist material on hardmask underlayer were resolved at the doses of 30 μC/cm2. In addition to the superior resolution in the pure-water developing processes, the resist material containing the polysaccharide derivatives for these lithography showed good resist profiles and step filling performance on substrates.

  13. Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water.

    Science.gov (United States)

    Sui, Yi; Liu, Jinghai; Zhang, Yuewei; Tian, Xike; Chen, Wei

    2013-10-07

    Developing new methods to improve the photocatalytic activity of graphitic carbon nitride (g-C₃N₄) for hydrogen (H₂) evolution has attracted intensive research interests. Here, we report that the g-C₃N₄ exhibits photocatalytic activity for H₂ evolution from pure water. And, the activity is dramatically improved by loading highly dispersed conductive polymer nanoparticles. The H₂ evolution rate increases up to 50 times for g-C₃N₄ with 1.5 wt% polypyrrole (PPy) nanoparticles on the surface. The reaction proceeding in a pure water system excludes the need for sacrificial agents. The role of the highly conductive PPy in enhancing H₂ evolution is as a surface junction to increase the number of photoinduced electrons, and to facilitate electron transfer to the interface.

  14. Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Liu Li [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chen, S-H [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Faraone, Antonio [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States); Yen, C-W [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Kolesnikov, Alexander I [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Mamontov, Eugene [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States); Leao, Juscelino [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States)

    2006-09-13

    We investigated, using quasi-elastic and inelastic neutron scattering, the slow single-particle dynamics of water confined in laboratory synthesized nanoporous silica matrices, MCM-41-S, with pore diameters ranging from 10 to 18 A. Inside the pores of these matrices, the freezing process of water is strongly inhibited down to 160 K. We analysed the quasi-elastic part of the neutron scattering spectra with a relaxing-cage model and determined the temperature and pressure dependence of the Q-dependent translational relaxation time and its stretch exponent {beta} for the time dependence of the self-intermediate scattering function. The calculated Q-independent average translational relaxation time shows a fragile-to-strong (FS) dynamic crossover for pressures lower than 1600 bar. Above this pressure, it is no longer possible to discern the characteristic feature of the FS crossover. Identification of this end point with the predicted second low-temperature critical point of water is discussed. A subsequent inelastic neutron scattering investigation of the librational band of water indicates that this FS dynamic crossover is associated with a structural change of the hydrogen-bond cage surrounding a typical water molecule from a denser liquid-like configuration to a less-dense ice-like open structure.

  15. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang;

    2016-01-01

    unit was tested with 116.3 kg SAT with 0.5% Xanthan rubber as a thickening agent and 4.4% graphite powder. The heat exchange capacity rate during charge was significantly lower for the unit with SAT and Xanthan rubber compared to the unit with SAT and extra water. This was due to less convection......Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  16. Study of lubrication behavior of pure water for hydrophobic friction pair

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon was found that low friction coefficients of 0.02―0.08 were obtained when the friction pair was lubricated with only a water droplet. Whereas, when the friction pair was encircled with large amount of water or fully immersed in water, the friction coefficient was higher than that under a droplet lubrication. A mechanism of water droplet lubrication was proposed that the surface tension caused by the solid-liquid-air three-phase interface makes water molecules enter into the contact zone, which separates the two friction surfaces and provides a low friction coefficient. However, water film can hardly form when more water encircles the friction pair, due to the attraction between water molecules.

  17. Northern Regions of Russia as Alternative Sources of Pure Water for Sustainable Development: Challenges and Solutions

    Science.gov (United States)

    Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.

    The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.

  18. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    Science.gov (United States)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  19. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  20. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    Directory of Open Access Journals (Sweden)

    Nicholas Bryan Weingartner

    2016-11-01

    Full Text Available A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as predicted by this new classical theory and its earlier quantum counterpart, we find with the aid of a small dimensionless constant that varies in size from sim 0.05-0.12 , a universal (16 decade collapse of the viscosity data as a function of temperature. The collapse appears in all known types of glass forming supercooled liquids (silicates, metallic alloys, organic systems, chalcogenide, sugars, and water.

  1. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    Science.gov (United States)

    Weingartner, Nicholas; Nogueira, Flavio; Pueblo, Chris; Kelton, Kenneth; Nussinov, Zohar

    2016-11-01

    A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as predicted by this new classical theory and its earlier quantum counterpart, we find with the aid of a small dimensionless constant that varies in size from ˜ 0.05-0.12, a universal (16 decade) collapse of the viscosity data as a function of temperature. The collapse appears in all known types of glass forming supercooled liquids (silicates, metallic alloys, organic systems, chalcogenide, sugars, and water).

  2. Supercooling Suppression of Microencapsulated n-Alkanes by Introducing an Organic Gelator

    Institute of Scientific and Technical Information of China (English)

    ZHU Kong-ying; WANG Shuang; QI Heng-zhi; LI Hui; ZHAO Yun-hui; YUAN Xiao-yan

    2012-01-01

    Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens.This phenomenon can interfere with heat transfer and is necessary to further overcome.In this study,melamine-formaldehyde microcapsules containing two n-alkane PCMs,namely,n-dodecane(C12) or n-tetradecane(C14)were prepared by in situ polymerization.A small amount of n-hexatriacontane(C36) was introduced as an organic gelator into the core of microcapsules to cope with the supercooling problem.Analyses demonstrate that supcrcooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36,without changing the spherical morphology and dispersibility.It could be also found that the enthalpy of microencapsulated C12 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36,whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes,suggesting the remarkable suppression ability of the organic gelator on supercooling.

  3. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend...... to suffer from phase separation which is the phenomenon where anhydrous salt settles to the bottom over time. This happens especially in supercooled state. The heat released from the crystallization of supercooled sodium acetate trihydrate with phase separation will be lower than the heat released from...... sodium acetate trihydrate without phase separation. Possible ways of avoiding or reducing the problem of phase separation were investigated. A wide variety of composites of sodium acetate trihydrate with additives including extra water, thickening agents, solid and liquid polymers have been...

  4. Hot and cold water as a supercritical solvent

    Science.gov (United States)

    Fuentevilla, Daphne Anne

    incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.

  5. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  6. Simulation of the solidification of pure nickel via the phase-field method

    Directory of Open Access Journals (Sweden)

    Alexandre Furtado Ferreira

    2006-12-01

    Full Text Available The Phase-Field method was applied to simulate the solidification of pure nickel dendrites and the results compared with those predicted by the solidification theory and with experimental data reported in the literature. The model's behavior was tested with respect to some initial and boundary conditions. For an initial condition without supercooling, the smooth interface of the solid phase nucleated at the edges of the domain grew uniformly into the liquid region, without branching. In an initially supercooled melt, the interface became unstable under 260 K supercooling, generating ramifications into the liquid region. The phase-field results for dendrite tip velocity were close to experimental results reported in the literature for supercooling above 50 K, but they failed to describe correctly the nonlinear behavior predicted by the collision-limited growth theory and confirmed by experimental data for low supercooling levels.

  7. Quantitative self-assembly of a purely organic three-dimensional catenane in water

    Science.gov (United States)

    Li, Hao; Zhang, Huacheng; Lammer, Aaron D.; Wang, Ming; Li, Xiaopeng; Lynch, Vincent M.; Sessler, Jonathan L.

    2015-12-01

    Self-assembly by means of coordinative bond formation has opened up opportunities for the high-yield synthesis of molecules with complex topologies. However, the preparation of purely covalent molecular architectures in aqueous media has remained a challenging task. Here, we present the preparation of a three-dimensional catenane through a self-assembly process that relies on the formation of dynamic hydrazone linkages in an acidic aqueous medium. The quantitative synthesis process and the mechanically interlocked structure of the resulting catenane were established by NMR spectroscopy, mass spectrometry, X-ray crystallography and HPLC studies. In addition, the labile hydrazone linkages of the individual [2]catenane components may be ‘locked’ by increasing the pH of the solution, yielding a relatively kinetically stable molecule. The present study thus details a simple approach to the creation and control of complex molecular architectures under reaction conditions that mimic biological milieux.

  8. Notes on the path and wake of a gas bubble rising in pure water

    NARCIS (Netherlands)

    de Vries, A.W.G.; Biesheuvel, A.; van Wijngaarden, L.; van Wijngaarden, L.

    2002-01-01

    This paper is concerned with the structure of the wake behind gas bubbles rising at high Reynolds numbers in highly purified water. It describes a schlieren optics technique to visualise the wake. The technique does not contaminate the water, and so does not affect the zero-stress condition at the

  9. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press......In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures...... of pure enantiomers and their 50–50 equimolar mixture in the metastable supercooled liquid state. Crystallization kinetic studies revealed that at the same isochronal conditions the behavior of the S-enantiomer and R,S-racemic mixture of ketoprofen is entirely different. This was examined in the context...

  10. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Science.gov (United States)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  11. On the estimation of water pure compound parameters in association theories

    DEFF Research Database (Denmark)

    Grenner, Andreas; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2007-01-01

    Determination of the appropriate number of association sites and estimation of parameters for association (SAFT-type) theories is not a trivial matter. Building further on a recently published manuscript by Clark et al., this work investigates aspects of the parameter estimation for water using two...... different association theories. Their performance for various properties as well as against the results presented earlier is demonstrated....

  12. Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

    Energy Technology Data Exchange (ETDEWEB)

    MOWRY,CURTIS DALE; BLAIR,DIANNA S.; MORRISON,DENNIS J.; REBER,STEPHEN D.; RODACY,PHILIP J.

    2000-02-15

    An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.

  13. Real-time microwave sensor system for detection of polluting substances in pure water

    Science.gov (United States)

    Neves, A. L.; Georget, E.; Cochinaire, N.; Sabouroux, P.

    2017-08-01

    In the present work, a real-time coaxial sensor for detecting foreign substances in aqueous solutions was developed and tested. This tool, based on a coaxial propagation line for determining the electromagnetic parameters of materials, was updated into a liquid permittivity monitoring sensor of continuous flow. A few solutions of different nature were tested, and while adding a liquid or electrolyte substance, named "pollutant," variations in the base solution were documented. Ethanol and water mixtures were used as reference, while the ability of the system to detect emulsions (such as oil in water solutions) was also evaluated. The system shows great potential for the quantification and qualification of liquid mixtures, having a threshold of reduced volume/volume fractions of foreign substances or pollutants, a property which is shown to be extremely useful in an analogue of high glycaemia (diabetes disease)—thus, opening the possibilities of monitoring biological liquids.

  14. Redox cycling for electrolysis of pure water in a thin layer cell

    OpenAIRE

    李, 春艳

    2013-01-01

    The redox cycling can achieve in thin layer cell because products of electrode reactions diffuse in opposite directions across the thin layer to the electrodes where they can react again. This redox cycling can enhance the current, and hence improve the sensitivity and selectivity. The redox cycling can make the current be under steady state in thin layer electrolysis. The aim of this thesis is to get controlling factors of redox cycling in electrolysis of water. the factors include not only ...

  15. Cellulose gel dispersion: From pure hydrogel suspensions to encapsulated oil-in-water emulsions.

    Science.gov (United States)

    Napso, Sofia; Rein, Dmitry M; Khalfin, Rafail; Kleinerman, Olga; Cohen, Yachin

    2016-01-01

    Cellulose hydrogel particles were fabricated from molecularly-dissolved cellulose/IL solutions. The characteristics of the formed hydrogels (cellulose content, particles' size and porosity) were determined as a function of cellulose concentration in the precursor solutions. There is a significant change in the hydrogel structure when the initial cellulose solution concentration increases above about 7-9%wt. These changes include increase of the cellulose content in the hydrogel, and decrease in its pore size. The finest cellulose particle dispersions can be obtained using low concentration cellulose/IL solutions (cellulose concentration in dispersion less than 2%wt.) or hydrogels (concentration less than 1%wt.) in a dispersing medium consisting of IL with no more than 20%wt. water. Stable paraffin oil-in-water emulsions are achieved by mixing oil and water with cellulose/IL solutions. The optimal conditions for obtaining the finest particles (about 20μm in diameter) are attained using cellulose solutions of concentration between 0.7 and 4%wt. at temperature of 70°C and oil/cellulose mass ratios between 1 and 1.5.

  16. Steam tables for pure water as an ActiveX component in Visual Basic 6.0

    Science.gov (United States)

    Verma, Mahendra P.

    2003-11-01

    The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.

  17. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    Science.gov (United States)

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-01

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  18. Development of ion chromatography methods for the determination of trace anions in ultra pure water from power plants

    Directory of Open Access Journals (Sweden)

    DRAGANA CICKARIC

    2005-07-01

    Full Text Available A suppressed ion chromatography (IC technique, using a carbonate/hydrogen carbonate or a hydroxide eluent, has been evaluated as a monitoring tool for the detection ofmajor anions (F-, Cl-, NO3-, PO4 3- and SO4 2- in ultra pure water and condensed steam from thermal power plants. An electrical conductivity detector with an anion-exchange column (IonPac AS14, an auto self-regenerating suppressor (ASRS, and an isocratic high-pressure pump system were used for the detection of low concentrations of inorganic anions. It was shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in power plants. The detection limits of the method for the anions of interest were < 0.3 mg/L.

  19. Mechanism of supercooling in flower bud of Camellia oleifea

    Institute of Scientific and Technical Information of China (English)

    苏维埃; 潘良文

    1995-01-01

    It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that freezing order of the flower organs is bud axis, scale, petal, pistil and stamen. It is coincident with the direction of ice development from bud axes to flower organs upwards. The corresponding results from MRI and freezing-fixation showed that the water translocation from flower organs to axes and scales is carried on in the course of bud freezing. ’H spectral measurement of NMR was used to follow the decrease of unfrozen water in the buds during the cooling.

  20. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range.

    Science.gov (United States)

    Serov, E A; Koshelev, M A; Odintsova, T A; Parshin, V V; Tretyakov, M Yu

    2014-12-21

    New experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature. The signal-to-noise ratio of the observed spectra allowed investigating their evolution, when water vapour was diluted by atmospheric air with partial pressure from 0 up to 540 Torr. Analysis of the obtained spectra permitted determining the dimerization constant as well as the hydrogen bond dissociation energy and the dimer spectral parameters, including the average coefficient of collisional broadening of individual lines by water vapour and air. The manifestation of metastable states of the dimer in the observed spectra is assessed. The contribution of three possible pair states of water molecules to the second virial coefficient is evaluated over the broad range of temperatures. The work supports the significant role of the water dimer in atmospheric absorption and related processes.

  1. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating.

  2. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    Science.gov (United States)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter

    2012-01-01

    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  3. Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water

    Energy Technology Data Exchange (ETDEWEB)

    Frugier, P., E-mail: pierre.frugier@cea.f [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Chave, T. [ICSM Site de Marcoule, DEN/MAR/ICSM/LSFC, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Gin, S. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Lartigue, J.-E. [CEA Cadarache, DEN/CAD/DTN/SMTM/LMTE, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2009-08-01

    Based on a review of the current state of knowledge concerning the aqueous alteration of SON68 nuclear glass we have proposed a mechanistic model, GRAAL (Glass Reactivity with Allowance for the Alteration Layer) [P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J.E. Lartigue, P. Jollivet, A. Ayral, L. De Windt, G. Santarini, J. Nucl. Mater. 380 (2008) 8]. This article describes how the GRAAL model hypotheses are solved using a calculation code coupling chemistry and transport. The geochemical solution of this model combines three major phenomena: chemical equilibria in solution, water and ion transport by convection or diffusion, and element diffusion through the passivating reactive interphase. The model results are compared with experimental data for SON68 glass leached in initially pure water both in a closed system and in renewed media. The comparison shows the model very satisfactorily accounts for variations in the pH and the element concentrations in solution as a function of time, the glass surface area in contact with solution, and the solution renewal rate. This success is due to the fact that the diffusion of elements through the alteration gel is taken into account in the model. This mechanism cannot be disregarded under most experimental conditions - if only to predict the solution pH - and must therefore be an integral part of the geochemical model.

  4. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

    Directory of Open Access Journals (Sweden)

    Brunella Perito

    2016-03-01

    Full Text Available Silver nanoparticles (AgNPs have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns or picosecond (ps PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC values in

  5. Structural and Optical Properties of Ultra-high Pure Hot Water Processed Ga2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Subramani SHANMUGAN

    2016-05-01

    Full Text Available Thin film based gas sensor is an advanced application of thin film especially Ga2O3 (GO thin film gas sensor is useful for high temperature gas sensor. The effect of moisture or environment on thin film properties has more influence on gas sensing properties. Radio Frequency sputtered Ga2O3 thin film was synthesized and processed in ultra-high pure hot water at 95 °C for different time durations. The structural properties were verified by the Xray Diffraction technique and the observed spectra revealed the formation of hydroxyl compound of Gallium (Gallium Oxide Dueterate – GOD on the surface of the thin film and evidenced for structural defects as an effect of moisture. Decreased crystallite size and increased dislocation density was showed the crystal defects of prepared film. From the Ultra Violet – Visible spectra, decreased optical transmittance was noticed for various processing time. The formation of needle like GOD was confirmed using Field Emission Secondary Electron Microscope (FESEM images.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7186

  6. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, Stefano, E-mail: stefano.zanini@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: riccardi@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy)

    2015-09-15

    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  7. Bubble Dynamics for Nucleate Pool Boiling of Water, Ethanol and Methanol Pure Liquids under the Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    samane hamzekhani

    2015-01-01

    Full Text Available Bubble dynamics is the most important sub-phenomenon, which basically affects the nucleate pool boiling heat transfer coefficient. In this research, bubble departure diameter values were experimentally measured for heat fluxes up to 110 kW.m-2. Experiments were carried out for pool boiling of pure liquids, including water, ethanol and methanol on a horizontal smoothed cylinder, at atmospheric pressure. For ethanol and methanol, rigid spherical bubbles with small contact area were observed. The spherical shapes seem to be because of small diameters.For all test fluids, experimental results show that bubble diameter increases with increasing heat flux. Most predictions have a similar trend for increasing bubble diameter versus increasing heat flux. Also, the existing well-known and most common used correlations are comparatively discussedwith the present experimental data. Finally, a new model for the prediction of vapor bubble departure diameter, based on Buckingham theory, in nucleate boiling is proposed, which predicts the experimental data with a satisfactory accuracy.

  8. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mei-Qiang [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Materials and Thermochemistry Laboratory; Graduate School of the Chinese Academy of Sciences, Beijing (China); Xu, Fen; Sun, Li-Xian [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Materials and Thermochemistry Laboratory

    2007-09-15

    In this paper, a series of Al-based materials were prepared by ball milling and/or melting. The XRD, SEM and TG-DTA techniques were used for sample analyses. Effects of different metals such as Zn, Ca, Ga, Bi, Mg, In and Sn on the hydrogen generation through hydrolysis of the Al alloy were evaluated in pure water. The results showed that mechanical milling was more favorable than the melting method to synthesize the Al alloys containing some metals with lower melting point and easier vaporization in the melting process. Addition of Bi and Sn could more significantly enhance Al reactivity with water in Al alloy than other metals such as Zn, Ca and Ga. Especially Al-Bi alloy had a faster hydrolysis rate than Al-Sn alloy at room temperature. For Al-Bi alloy, the addition of Zn and Ga accelerated the alloy hydrolysis while the effect of addition of other metals (Sn, In, Mg) on the hydrolysis of the alloy was reverse. Furthermore, the effect of some compounds (NaCl, MgCl{sub 2}, CaH{sub 2}) on the hydrolysis of the Al-Bi alloy was explored. It showed that the milling Al-Bi alloy together with the compounds could accelerate the formation of its mico-galvanic cell between the anode (Al) and cathode (Bi). The alloy composition was therefore optimized to be Bi, Zn, Ga, CaH{sub 2} and Al. The optimized Al alloy demonstrated a high hydrogen generation rate and theoretic hydrogen yields. (author)

  9. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    Science.gov (United States)

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  10. Industrial application of green chromatography--I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase.

    Science.gov (United States)

    Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris

    2011-03-15

    In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment.

  11. The Common Occurrence of Highly Supercooled Drizzle and Rain near the Coastal Regions of the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.; Sullivan, Ryan C.; Rasmussen, R M.; McDonough, Frank; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf; Suski, Kaitlyn; Cazorla, Alberto; Prather, Kimberly

    2013-09-05

    The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle in their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these

  12. Application of Department Pure Water Treatment System in Laboratory%实验室中央纯水处理系统在检验科的应用

    Institute of Scientific and Technical Information of China (English)

    郑蕴欣

    2012-01-01

    中央纯水系统是取代检验科传统的每个使用点独立产水、用水、维护和管理的用水方式.由于统一产水,通过管道分配直接到用水点,避免了纯水在储存过程的二次污染,降低了使用风险,具有整体提高实验室纯水应用标准和完善实验室全面质量管理水平的优点.文章通过具体实践和相关文献检阅,根据国内实验室用水和纯水的分级标准,阐述了项目的实施步骤和应用情况.系统设计20个用水点,实际开放13个点,连接生化室、临检、门诊、免疫室、微生物室等各区域.日用纯水量约2~3吨,水质日检合格,系统稳定.%Central water purification system is replacing traditional laboratory independent of each point of produce and use water, maintenance, and management of the water used way, due to the unified water production, distribution directly through the pipeline to the water point, avoiding secondary pollution of water storage process, reduce the risk of use, with its overall improvement of laboratory pure water standards and sound laboratory comprehensive advantages of quality management standards. Articles by specific practices and related literature review, according to the classification standard of domestic water and pure water for laboratory, explained the project's implementation procedures and applications. System design of water for 20 points, actual opened 13 points, connecting biochemical, clinical testing, outpatient, laboratory of Immunology, micro-organisms and other regions. Daily approximately 2~3 tons of pure water, water quality inspection qualified, system stability.

  13. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures

    DEFF Research Database (Denmark)

    Dannemand, Mark; Dragsted, Janne; Fan, Jianhua;

    2016-01-01

    was filled with 220 kg SAT mixture thickened with 1% carboxymethyl cellulose. The heat exchange capacity rate during the charging of the unit with the extra water was significantly higher than for the unit with the thickening agent due to the different levels of convection. The SAT mixtures in the units were......Laboratory tests of two heat storage units based on the principle of stable supercooling of sodium acetate trihydrate (SAT) mixtures were carried out. One unit was filled with 199.5 kg of SAT with 9% extra water to avoid phase separation of the incongruently melting salt hydrate. The other unit...

  14. Notes on the exposure of several species of fish to sudden changes in the hydrogen-ion concentration of the water and to an atmosphere of pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.

    1931-01-01

    Several species of fish have been subjected to higher concentrations of dissolved oxygen when an atmosphere of pure oxygen was maintained over the surface of the water and also with a super-stratum of pure oxygen under pressure. Several species of fish have been subjected to sudden transfers from low O/sub 2/ to high O/sub 2/ and the reverse. (5.6 p.p.M. to 40.33 p.p.M. and from 41.0 to 7.3 p.p.M.) The results show (a) that different sizes of several species of fish tolerate large and sudden changes in the concentration of O/sub 2/ in either direction, (b) that these fish can live in water containing a large excess of dissolved oxygen with a super-stratum of pure oxygen over the surface (c) that several species of fish can stand pressure of 10 to 13 lbs. for a period of 24 hours and pressures from 15 to 19 lbs for shorter periods. The increase in dissolved oxygen is followed by a slowing down of the respiratory movements. No instances of exophthalmus, opaqueness of the lens, and of the accumulation of gas bubbles were observed. No fish were observed to lose their equilibrium except in the pressure experiment where depression occurred too rapidly. That exposure to a high concentration of dissolved oxygen with a super-stratum of pure oxygen at atmospheric pressures and under small pressure is not harmful is inferred from the small number of fish lost and from the length of time they survived the experiment. The data presented here suggest that they may by applicable to the problem of handling fish in transportation.

  15. Technological and hygiene-sanitary aspects of using biologically pure process waste watern in the systems of technical water supply

    OpenAIRE

    Ushakov, Vasily Yakovlevich; Solodov, G. А.

    2007-01-01

    According to sanitary-toxicological factors biologically purified waste water of chemical enterprise are referred to low-toxic substances, are not allergens, do not posses irritant action on mucous tunics and skin and are suitable for recycling water system makeup. Crucial factors of reusing these waters are their corrosive activity, susceptibility to mineral salt accumulation and bioaccretion.

  16. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    Science.gov (United States)

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  17. The transient behavior of Peltier junctions pulsed with supercooling

    Science.gov (United States)

    Mao, J. N.; Chen, H. X.; Jia, H.; Qian, X. L.

    2012-07-01

    There exists the transient thermoelectric supercooling effect that can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the Joule heating effect and Fourier heat conduction effect arriving at the cold junction, in which a transient cold spike can be produced by superimposing an additional shaped current pulse of a large magnitude on the original steady-state optimum value. Most previous work on the transient supercooling mainly focused on the minimum supercooling temperature achievable and separately analyzed the beneficial or detrimental effects on the transient supercooling performance, which was not clarified quantitatively to what extent the interactional effects were on the enhancement of the transient supercooling performance. In this work, we systematically investigate a numerical solution involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and cold-junction temperature distribution to the pulse operation parameters during the periods of pulse start-up, pulse-on time, and pulse-off time, which is served as a theoretical basis for exploiting the coupling interaction of the thermoelectric effects on the heat diffusion from or to the cold junction interrelated with the amount of the availably electrical conversion in the short time scale. Additionally, the advantage of certain pulse forms over others is described. The results indicate that Peltier supercooling capacity shows a decreasing monotonic trend in proportion to the total amount of electrical conversion, and the maximum coefficient of performance for cooling state is about 0.5 to be achieved at steady state. Taking advantage of the temporary Peltier effect focused electrical conversion as the additional cooling for a period long enough against the earlier arrival of the excessively Joule heating dominated heat accumulation is the key parameter

  18. On the potential energy landscape of supercooled liquids and glasses

    DEFF Research Database (Denmark)

    Rodney, D.; Schrøder, Thomas

    2011-01-01

    The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies...... around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession...... of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation....

  19. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    Science.gov (United States)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  20. Determination of Uric Acid in Human Urine by Ion-exclusion Chromatography with UV Detection Using Pure Water as Mobile Phase

    Institute of Scientific and Technical Information of China (English)

    侯升杰; 杨成对; 王辉; 田中一彦; 丁明玉

    2012-01-01

    A simple, rapid and accurate ion-exclusion chromatographic method coupled with a UV detector for the determination of uric acid in human urine samples has been developed. The separation was carried out on an ion-exclusion column using only pure water as mobile phase. The detection wavelength was 254 nm and urine sample was injected directly without any pretreatment. Furthermore, the retention behavior of uric acid on the ion-exclusion column was researched when pure water and 1 mmol·L-1 HCI were used as mobile phase, respectively. The stability of uric acid was also further investigated within 28 days, In this method, the linear range of the calibration curve for uric acid was 0.25--100 mg·L-1, and the detection limit calculated at S/N=3 was 0.02mg·L-1 The proposed ion-exclusion chromatographic method has been used for the determination of uric acid in human urine.

  1. Suzuki-Miyaura cross-coupling coupling reactions with low catalyst loading: A green and sustainable protocol in pure water

    KAUST Repository

    Fihri, Aziz

    2011-01-01

    The Suzuki-Miyaura coupling reaction represents one of the most important synthetic transformations developed in the 20th century. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance, and benign water as a reaction medium was found to be highly effective to overcome some of these issues. In the present manuscript, we described Suzuki-Miyaura coupling reactions in neat water, without using any phase transfer reagent. Notably, this protocol also works with ultra-low loading of catalyst with high turnover numbers and also able to couple challenging substrates like aryl chlorides. © 2011 The Royal Society of Chemistry.

  2. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Torzo, Giacomo [ICIS-CNR and Physics Department of Padova University, Padova (Italy); Soletta, Isabella [Liceo Scientifico Fermi, Alghero (Italy); Branca, Mario [Chemical Department of Sassari University, Sassari (Italy)

    2007-05-15

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  3. Using Peltier cells to study solid liquid vapour transitions and supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-05-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid solid and liquid vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  4. The influence of water jet diameter and bone structural properties on the efficiency of pure water jet drilling in porcine bone

    NARCIS (Netherlands)

    Den Dunnen, S.; Tuijthof, G.J.M.

    2014-01-01

    Using water jets in orthopedic surgery to drill holes in bones can be beneficial due to the absence of thermal damage and the always sharp cut. To minimize operating time and the volume of water that is used, the efficiency (volume of removed bone per added volume of water) of the water jet should

  5. The corrosion of copper in pure oxygen-free water; Korrosion av koppar i ren syrefritt vatten

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Kenneth [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)

    2012-02-15

    The overall objective of this study was to investigate whether further growth of copper oxides occurred during the 19 years the test tube with copper wires was stored at SP. Further more detailed analyzes have been added during the investigation. These assays have not only been focused on the copper wires but also the palladium closure plate, the test tube and the water in the test tube have come to be analyzed by a variety of techniques.

  6. Hopping in a supercooled binary Lennard-Jones liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    1998-01-01

    A binary Lennard–Jones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function...

  7. Entropy calculations for a supercooled liquid crystalline blue phase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U [Physics Department, University of the West Indies, PO Box 64, Bridgetown (Barbados)

    2007-01-15

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example involving entropy calculations for an irreversible transition.

  8. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    Science.gov (United States)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m-1 and 4.1 mN · m-1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.

  9. Changes in transepidermal water loss and the composition of epidermal lecithin after applications of pure fatty acid triglycerides to skin of essential fatty acid-deficient rats.

    Science.gov (United States)

    Hartop, P J; Prottey, C

    1976-09-01

    The importance of various unsaturated fatty acid triglycerides to the repair of faulty skin barrier function was studied in essential fatty acid-deficient rats. Following cutaneous application of the pure triglycerides for up to 5 days, the hitherto high rate of transepidermal water loss, characteristic of essential fatty acid deficiency in rats, was reduced by the triglycerides of linoleic and gamma-linolenic acids. Incorporation of the applied fatty acids into the lecithin of the epidermis accompanied these changes in water loss, indicating that cutaneously applied triglycerides may be metabolized by the skin and incorporated into complex lipids. Other fatty acid triglycerides, including alpha-linolenic, dihomo-gamma-linolenic, arachidonic and omega-7-heneicosatrienoic acid, did not lower the rate of transepidermal water loss, although all were incorporated into epidermal structural lipids. The non-essential oleic acid also had no effect upon the rate of transepidermal water loss. These data suggest that of the two main essential fatty acids that occur in skin, linoleic acid and arachidonic acid, the former specifically plays an important role in regulating barrier function whereas the later may have a separate function, such as serving as a precursor of prostaglandins.

  10. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    National Research Council Canada - National Science Library

    Nutakki Tirumala Uday Kumar; Andrew R Martin

    2017-01-01

    ... (POU) water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks...

  11. Effect of high hydrostatic pressure processing on norovirus infectivity and genome stability in strawberry puree and mineral water.

    Science.gov (United States)

    Kovač, Katarina; Diez-Valcarce, Marta; Raspor, Peter; Hernández, Marta; Rodríguez-Lázaro, David

    2012-01-03

    We report an evaluation of the effect of various combinations of pressures and times on the inactivation of norovirus (NoV) in two types of matrices that are important in NoV transmission: water and soft fruits. The human NoV surrogate murine norovirus was used as the model virus. The effect of HHP on the viral genome was evaluated by using RT real-time PCR (RT-qPCR), and infectivity assay was used to assess effects on the ability of the virus to attach to and replicate in cells. HHP treatments of 400 MPa for 2.5 min proved to be sufficient for efficient inactivation of NoV (>99.9% reduction). The efficacy of viral inactivation was highly dependent on the matrix in which the virus was present. Therefore, the effect of HHP should be carefully studied in all matrices to which HHP could potentially be applied. Finally, we found no consistent correlation between RT-qPCR and virus infectivity results, and consequently RT-qPCR is not a satisfactory tool for predicting risks to human health.

  12. Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-Ew model water.

    Science.gov (United States)

    Paschek, Dietmar; Rüppert, Andreas; Geiger, Alfons

    2008-12-22

    We explore the phase diagram of the metastable TIP4P-Ew liquid model water from 360 K down to 150 K at densities ranging from 0.950 to 1.355 g cm(-3). In addition to the low-density/high-density (LDL/HDL) liquid-liquid transition, we observe a structural high-density/very high-density (HDL/VHDL) transformation for the lowest temperatures at 1.30 g cm(-3). The characteristics of the isobars and isotherms suggest the presence of a stepwise HDL/VHDL transition with first-order-like appearance. In addition, we also identify an apparent pretransition at 1.24 g cm(-3), which suggests that the experimentally detected LDA/VHDA transformation might evolve into a multiple-step process with different local structures representing local minima in the free-energy landscape. Such a scenario is supported by a pronounced correlation between the isothermal density dependence of the pressure, with a stepwise increase of the oxygen coordination number, due to the appearance of interstitial water molecules.

  13. Intergranular stress corrosion cracking of type 304 stainless steels treated with inhibitive chemicals in high temperature pure water

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, T.K. [Nuclear Science and Technology Development Center, National Tsing-Hua Univ. Taiwan (China); Lee, M.Y.; Tsai, C.H. [Department of Engineering and System Science, National Tsing-Hua Univ. Taiwan (China)

    2002-07-01

    Electrochemical potentiodynamic polarizations, electrochemical corrosion potential (ECP) measurements and slow strain rate tensile (SSRT) tests were conducted to investigate the intergranular stress corrosion cracking (IGSCC) characteristics of Type 304 stainless steels treated with inhibitive chemicals in simulated boiling water reactor (BWR) environments. A number of thermally sensitized specimens were prepared and were pre-oxidized in a 288 C environment with the presence of 300 ppb dissolved oxygen for 360 hours. Most of the specimens were then treated with various chemicals including powdered zirconium oxide (ZrO{sub 2}), powdered titanium oxide (TiO{sub 2}), and zirconyl nitrate [ZrO(NO{sub 3}){sub 2}] via static immersion at 90 C, 150 C, and 200 C. Test environments were specifically designed in a circulation loop to create a dissolved oxygen concentration of 300 ppb. Test results showed that the corrosion current densities of all treated specimens were lower than that of the untreated, pre-oxidized specimen at ambient temperature in a solution mixed with 1 mM K{sub 3}Fe(CN){sub 6} and 1 mM K{sub 4}Fe(CN){sub 6}. The ECPs of the treated specimens could be lower or higher than that of the pre-oxidized one at 288 C, depending upon the type of treating chemical and the treating temperature. In addition, IGSCC was observed on all specimens (treated or untreated) in the same environment. However, the untreated specimen exhibited lower elongation, shorter failure time, and more secondary cracks on the side surfaces. It was therefore suggested that inhibitive chemicals such as ZrO{sub 2}, TiO{sub 2}, and ZrO(NO{sub 3}){sub 2} did provide a certain degree of enhancement in improving the mechanical behavior of the treated specimens and in prolonging the IGSCC initiation time. (authors)

  14. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.

  15. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    Science.gov (United States)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  16. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    CERN Document Server

    Style, Robert W; Cocks, Alan C F; Wettlaufer, John S

    2011-01-01

    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good ...

  17. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  18. Improvements of the experimental apparatus for measurement of the surface tension of supercooled liquids using horizontal capillary tube

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2016-01-01

    Full Text Available An experimental apparatus with a horizontal capillary tube for measurement of the surface tension of supercooled liquids, i.e. liquids in a metastable state below the equilibrium freezing point, was designed and tested in the previous study [V. Vinš et al., EPJ Web Conf. 92, 02108 (2015]. In this work, recent modifications of both the experimental setup and the measurement analysis are described. The main aim is to improve the accuracy and the reproducibility of measured surface tension and to achieve higher degrees of supercooling. Temperature probes measuring the temperature of cooling medium near the horizontal capillary tube were calibrated in the relevant temperature range from – 31 °C to + 45 °C. An additional pressure transducer was installed in the helium distribution setup at the position close to the capillary tube. The optical setup observing the liquid meniscus at the open end of the horizontal capillary tube together with the video analysis were thoroughly revised. The red laser illuminating the liquid meniscus, used at the original apparatus, was replaced by a fiber optic light source, which significantly improved the quality of the meniscus image. The modified apparatus was used for the measurement of surface tension of supercooled water at temperatures down to – 11 °C. The new data have a lower scatter compared to the previous horizontal measurements and show a good agreement with the other data obtained with a different measurement technique based on the modified capillary rise method.

  19. Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud

    Science.gov (United States)

    Hirst, E.; Kaye, P. H.; Greenaway, R. S.; Field, P.; Johnson, D. W.

    Preliminary experimental results are presented from an aircraft-mounted probe designed to provide in situ data on cloud particle shape, size, and number concentration. In particular, the probe has been designed to facilitate discrimination between super-cooled water droplets and ice crystals of 1-25 μm size within mixed-phase clouds and to provide information on cloud interstitial aerosols. The probe acquires spatial light scattering data from individual particles at throughput rates of several thousand particles per second. These data are logged at 100 ms intervals to allow the distribution and number concentration of each particle type to be determined with 10 m spatial resolution at a typical airspeed of 100 m s -1. Preliminary results from flight data recorded in altocumulus castellanus, showing liquid water phase, mixed phase, and ice phase are presented to illustrate the probe's particle discrimination capabilities.

  20. Shear-accelerated crystallization in a supercooled atomic liquid.

    Science.gov (United States)

    Shao, Zhen; Singer, Jonathan P; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S; Schroers, Jan; Osuji, Chinedum O

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.

  1. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  2. 甲烷水合物在纯水和抑制剂体系中的生成动力学%Kinetics of Methane Hydrate Formation in Pure Water and Inhibitor Containing Systems

    Institute of Scientific and Technical Information of China (English)

    裘俊红; 郭天民

    2002-01-01

    Kinetic data of methane hydrate formation in the presence of pure water, brines with single salt and mixed salts, and aqueous solutions of ethylene glycol(EG) and salt+EG were measured. A new kinetic model of hydrate formation for the methane-Fwater systems was developed based on a four-step formation mechanism and reaction kinetics approach. The proposed kinetic model predicts the kinetic behavior of methane hydrate formation in pure water with good accuracy. The feasibility of extending the kinetic model to salt(s) and EG containing systems was explored.

  3. Effects of oil-water mixed frying and pure-oil frying on the quality characteristics of soybean oil and chicken chop

    Directory of Open Access Journals (Sweden)

    Ruixue MA

    2016-01-01

    Full Text Available Abstract The effects of oil-water mixed frying (OWF and pure-oil frying (POF on changes in quality characteristics of soybean oil and chicken chop during six days of frying were comparatively investigated. The results showed that the changes in specific extinction coefficients, p-anisidine value, carbonyl value, viscosity and color of soybean oil were more pronounced in the case of POF, indicating that oil oxidative and polymeric degradation was retarded by OWF. Concerning fat content of chicken chop, lower (p<0.05 values were observed in the last three days in the case of OWF than POF. Meanwhile, OWF led to lower acrylamide formation in chops during the six days. Sensory evaluation showed that OWF provided chops with five attributes similar to those of chops fried by POF on the first day. As frying days increased, the decreases in scores for color, odor, flavor and overall acceptability were less in the case of OWF. In conclusion, OWF could be a worthwhile alternative for retarding oil deterioration and producing healthier and higher quality fried meat products.

  4. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus

    Directory of Open Access Journals (Sweden)

    J. Crosier

    2010-08-01

    Full Text Available Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1 was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.

    The mid-level stratus cloud was vertically thin (~400 m, horizontally extensive (covering 100 s of km and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively. No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei.

    Precipitation from the mid-level stratus evaporated before reaching the surface, whereas rates of up to 1 mm h−1 were observed below the convective feature. There is strong evidence for the Hallett-Mossop (HM process of secondary ice particle production leading to the formation of the precipitation observed. This includes (1 Ice concentrations in the convective feature were more than an order of magnitude greater than the concentration of primary ice in the overlaying stratus, (2 Large concentrations of small pristine columns were observed at the ~−5

  5. 昆山市64所学校桶装纯净水卫生质量调查%Investigation on hygienic quality of barreled pure water in 64 schools in Kunshan City

    Institute of Scientific and Technical Information of China (English)

    陈璐; 朱振华; 赵建翔

    2013-01-01

    目的 了解昆山市学校桶装纯净水的卫生质量,以便进一步规范学校饮用桶装水的管理,为卫生监督管理提供科学依据.方法 随机选择62所学校作为研究对象,从中随机抽检62批次桶装纯净水进行实验室检测.结果 抽检的62批次桶装纯净水中合格52批次,合格率83.9%;菌落总数、霉菌和酵母菌合格批次分别是55和60,合格率分别是88.7%和96.8%;电导率合格数是56批次,合格率90.3%.结论 桶装纯净水卫生质量良好,但然需进一步改善,特别是微生物超标是影响桶装饮用水卫生质量的主要问题,应加强桶装纯净水生产单位的卫生监管,确保桶装纯净水卫生安全.%[Objective] To understand hygienic quality of barreled pure water in schools of Kunshan City,so as to further standardize the management of barreled pure water in school,and provide scientific basis for health supervision and management.[Methods] A total of 62 school were randomly selected as study objects,62 batch samples of barreled pure water were randomly collected for laboratory detection.[Results] Of 62 batch samples,52 (83.9%) were qualified;55 (88.7%) and 60 (96.8%)were qualified for total plate count,molds and yeasts,respectively; 56 (90.3%) were electrical conductivity qualified.[Conclusion] The hygiene condition of barreled pure water is well,but still need to be further improved,especially for microbial over stand the major problem affecting the hygienic quality of barreled pure water.Surveillance on barreled pure water manufactures must be strengthened to ensure the hygienic quality of barreled pure water in schools.

  6. Unbiased Photocatalytic Hydrogen Generation from Pure Water on Stable Ir-treated In 0.33 Ga 0.67 N Nanorods

    KAUST Repository

    Ebaid, Mohamed

    2017-05-11

    InGaN-based nanostructures have recently been recognized as promising materials for efficient solar hydrogen generation. This is due to their chemical stability, adjustable optoelectronic properties, suitable band edge alignment, and large surface-to-volume ratio. The inherent high density of surface trapping states and the lack of compatible conductive substrates, however, hindered their use as stable photo-catalysts. We have designed, synthesized and tested an efficient photocatalytic system using stable In0.33Ga0.67N-based nanorods (NRs) grown on an all-metal stack substrate (Ti-Mo) for a better electron transfer process. In addition, we have applied a bifunctional ultrathin thiol-based organic surface treatment using 1,2-ethanedithiol (EDT), in which sulfur atoms protected the surface from oxidation. This treatment has dual functions, it passivates the surface (by the removal of dangling bonds) and creates ligands for linking Ir-metal ions as oxygen evolution centers on top of the semiconductor. This treatment when applied to In0.33Ga0.67N NRs resulted in a photo-catalyst that achieved 3.5% solar-to-hydrogen (STH) efficiency, in pure water (pH~7, buffer solution) under simulated one-sun (AM1.5G) illumination and without electrical bias. Over the tested period, a steady increase of the gas evolution rate was observed from which a turnover frequency of 0.23s-1 was calculated. The novel growth of InGaN-based NRs on a metal as well as the versatile surface functionalization techniques (EDT-Ir) have a high potential for making stable photo-catalysts with adjustable band gaps and band edges to harvest sun light.

  7. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    it expands and will cause a pressure built up in a closed chamber which might compromise stability of the supercooling. This can be avoided by having an air volume above the phase change material connected to an external pressure less expansion tank. Supercooled sodium acetate trihydrate at 20 °C stores up...

  8. Supercooling of rapidly expanding quark-gluon plasma

    CERN Document Server

    Zabrodin, E E; Csernai, László P; Stöcker, H; Greiner, W

    1998-01-01

    We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter $\\lambda_Z$. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3-6%, then it is reheated, and the hadronization is completed within 6-10 fm/c, i.e. 5-10 times faster than it was estimated earlier, in a strongly nonequilibrium way.

  9. Hopping in a supercooled binary Lennard-Jones liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    1998-01-01

    A binary Lennard–Jones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function....... To examine the dynamics of the system, we consider transitions between the inherent structures (local minima in the potential energy) along the trajectory. We conclude that the plateau in the mean square displacement found at lower temperatures is indeed a result of particles being trapped in local "cages...

  10. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  11. Successful vitrification of mouse ovaries using less-concentrated cryoprotectants with Supercool X-1000 supplementation.

    Science.gov (United States)

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; Liu, Guifen; Cheng, Haijian; Wan, Fachun

    2012-02-01

    The purpose of our study was to investigate the feasibility of using less-concentrated cryoprotectants supplemented with ice blocker Supercool X-1000 to vitrify ovarian tissues. Mouse ovaries were cryopreserved in different concentrations of vitrification solution alone or with Supercool X-1000, and fresh non-frozen ovaries were used as control. The proportions of morphological normality of follicles, normal GCs in follicular fluids and developing to blastocysts were higher in 12.5% ethylene glycol (EG) + 12.5% dimethylsulfoxide (DMSO) with Supercool X-1000 than those of treated in 10% EG + 10% DMSO or 15% EG + 15% DMSO alone or with Supercool X-1000. In conclusion, the inclusion of Supercool X-1000 in less-concentrated vitrification solution was effective to improve the efficiency and efficacy of cryopreservation of ovarian tissues.

  12. Sixth form pure mathematics

    CERN Document Server

    Plumpton, C

    1968-01-01

    Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

  13. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    KAUST Repository

    Style, Robert W.

    2011-10-14

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates. © 2011 American Physical Society.

  14. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  15. 利用反渗透技术的 RO -SPC超纯水系统的设计%On RO-SPC Ultra Pure Water System Using Reverse Osmosis Technology

    Institute of Scientific and Technical Information of China (English)

    黄京

    2014-01-01

    随着超纯水技术在各个行业的应用日益广泛,对超纯水的要求也越来越高,各种先进检测分析仪器也就应运而生。本文详述了如何利用反渗透技术制备超纯水的工作原理及工艺流程,在该系统中增加控制电路并采用PLC控制系统运行来监测水质。%With ultra pure water technology being applied in various industries ,requirements for the ultra pure water are increasingly high ,thus all kinds of advanced detection analy-sis instrument emerge as the times require .This paper describes the working procedure of producing ultra pure water by using reverse osmosis technology ,and explains how to moni-tor water quality by using control circuit and PLC control system .

  16. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection

    Science.gov (United States)

    Pfaller, Kristian; Wagner, Johanna

    2016-01-01

    Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365

  17. 生产纯净水废水培养螺旋藻技术%The Technology of Cultivation Spirulina sp. in Wasterwater of Production Pure Water

    Institute of Scientific and Technical Information of China (English)

    赵文越; 王雪青; 何晓萍

    2013-01-01

    Cultivation Spirulina platensis 869 in the wastewater from production of pure water under different nutrient conditions was studied, for comprehensive utilization of waste water. The experiment results showed that Spirulina platensis 869 cultured in wastewater did not survival, however inoculated in the improved wastewater (1) and (2), growed well, when per liter of the wastewater was modified with 0.5 g K2HPO4,8 g NaHCO3, 0.15μg vitamin B12, as improved wastewater (1), and referring to the formula of AB medium, added As and PIV solution, to the improved wastewater (1), as improved wastewater (2). When the culture conditions of light intensity, temperature, the cycle of light-dark were: 4 000 lx, 24.8 ℃, 12 h ∶ 12 h, respectively, for 7 days, The absorbance value of the Spirulina platensis medium can be achieved, respectively, 1.713 and 1.866, the corresponding biomass is respectively 1.601g (DW)/L and 1.766 g(DW)/L. While the Spirulina Cultured in AB medium under the same conditions, absorbance of the medium is 1.802, the biomass is 1.688 g(DW)/L, which indicating the feasibility of cultivation of Spirulina by wastewater.%  以钝顶螺旋藻(Spirulina platensis)869藻株为实验材料,在不同营养条件下,用纯净水生产废水培养螺旋藻,同时和AB培养基作对照比较.实验结果显示:在每升纯净水生产废水中添加0.5g K2HPO4,8 g NaHCO3、VB 12浓度为0.15μg/L,作为改良废水(1),在改良废水(1)的基础上,再按照AB培养基配方添加As液和PIV液,作为改良废水废水(2),在光强强度4000 lx、温度24.8℃,光暗周期为12 h∶12 h的条件下培养7 d,钝顶螺旋藻液的吸光度值分别能够达到1.713和1.886,此时对应的生物量是1.601 g(DW)/L和1.766 g(DW)/L.同样条件下用AB培养基进行培养,藻液的吸光度为1.802,生物量是1.688 g(DW)/L,显示出用废水培养螺旋藻的可行性.

  18. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    OpenAIRE

    Kim, Yiseul; Hong, Geun-Pyo

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the ...

  19. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuntao [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Dibble, Collin J. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Petrik, Nikolay G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Smith, R. Scott [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Joly, Alan G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Tonkyn, Russell G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Kay, Bruce D. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Kimmel, Greg A. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109 K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  20. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    Acquired reading problems caused by brain injury (alexia) are common, either as a part of an aphasic syndrome, or as an isolated symptom. In pure alexia, reading is impaired while other language functions, including writing, are spared. Being in many ways a simple syndrome, one would think...... that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia...... in the reviewed studies, have associated deficits like agraphia or aphasia and thus do not strictly conform to the diagnosis. Few studies report clear and generalisable effects of training, none report control data, and in many cases the reported findings are not supported by statistics. We can, however...

  1. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......Acquired reading problems caused by brain injury (alexia) are common, either as a part of an aphasic syndrome, or as an isolated symptom. In pure alexia, reading is impaired while other language functions, including writing, are spared. Being in many ways a simple syndrome, one would think...... in the reviewed studies, have associated deficits like agraphia or aphasia and thus do not strictly conform to the diagnosis. Few studies report clear and generalisable effects of training, none report control data, and in many cases the reported findings are not supported by statistics. We can, however...

  2. 2H NMR studies of supercooled and glassy aspirin

    Science.gov (United States)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  3. Dynamical Instability Causes the Demise of a Supercooled Tetrahedral Liquid

    Science.gov (United States)

    Gautam, Arvind Kumar; Pingua, Nandlal; Goyal, Aashish; Apte, Pankaj A.

    2017-09-01

    We investigate the relaxation mechanism of a supercooled tetrahedral liquid at its limit of stability using isothermal isobaric ( NPT) Monte Carlo simulations. In similarity with systems which are far from equilibrium but near the onset of jamming (O'Hern et al. in Phys Rev Lett 93:165702, 2004), we find that the relaxation is characterized by two time-scales: the decay of long-wavelength (slow) fluctuations of potential energy is controlled by the slope [partial (G/N)/partial φ ] of the Gibbs free energy ( G) at a unique value of per particle potential energy φ = φ _{{\\tiny mid}}. The short-wavelength (fast) fluctuations are controlled by the bath temperature T. The relaxation of the supercooled liquid is initiated with a dynamical crossover after which the potential energy fluctuations are biased towards values progressively lesser than φ _{{\\tiny mid}}. The dynamical crossover leads to the change of time-scale, i.e., the decay of long-wavelength potential energy fluctuations (intermediate stage of relaxation). Because of the condition [partial ^2 (G/N)/partial φ ^2 = 0] at φ = φ _{{\\tiny mid}}, the slope [partial (G/N)/partial φ ] has a unique value and governs the intermediate stage of relaxation, which ends just after the crossover. In the subsequent stage, there is a relatively rapid crystallization due to lack of long-wavelength fluctuations and the instability at φ _{{\\tiny mid}}, i.e., the condition that G decreases as configurations with potential energies lower than φ _{{\\tiny mid}} are accessed. The dynamical crossover point and the associated change in the time-scale of fluctuations is found to be consistent with the previous studies.

  4. Project design of the ultra pure water for solar cell production%浅谈太阳能电池生产用超纯水的工程设计

    Institute of Scientific and Technical Information of China (English)

    陈旭; 顾小红; 赵军; 倪明; 徐志清

    2015-01-01

    One Yixing solar cel production plant use the municipal tap-water as ultra pure water for solar cel production. The project by ultrafiltration ( UF) ,reverse osmosis ( RO) and electric desalination ( EDI) based ful membrane process,the operation 3 years indicate that,the system performance is stable,the water quality was greatly superior to solar cel production water quality standard,can reach the standard of ultra pure water.%宜兴某太阳能电池生产厂以市政自来水作为太阳能电池生产用的纯水水源,该工程以超滤( UF )、反渗透( RO)和电除盐( EDI)的全膜法工艺为主,投产运行3年的结果表明,系统性能稳定,出水水质大大优于太阳能电池生产用水水质标准,可达到超纯水水质标准。

  5. Practical Use Study of the Direct Conveyance and Cooling System for Iced Water by the Propylene Glycol Solutio

    Science.gov (United States)

    Seki, Mitsuo; Ninomiya, Tohru; Matsubara, Kazuo; Aikawa, Keisuke; Ikoma, Kenji

    In a cold storage warehouse, by developing the thermal energy storage technique using cheap electric powerin the night, it is necessary to construct a high-efficient and energy-saving-type refrigeration system in which air conditioning is possible at 0 degrees c. We created a brine iced water (ice slurry) cooled under 0 degreesc by a closed supercooling ice making method. For a practical application, the brine iced water was directly sent to the load side, and it was utilized as the secondary refrigerant for the heat exchange. As a result, by replacing the pure water with a marketed propylene glycol solution, it was proven that the conventional closed supercooling ice making method could be similarly utilized for the ice making. However, it is necessary to control the evaporation temperature in the refrigerator, because the freezing temperature changes with the brine concentration. In the refrigerator entrance, it is necessary to heat at a constant temperature so that the inflow brine may not freeze. In case of the brine iced water, the fluidity of the brine iced water is high, and the ice particle is carried away by the flow. Therefore, it is necessary to prevent runoff of the ice particle from an intake of the thermal storage tank in case of thebrine water. This proposal system was confirmed that there was practically no problem by an operation of a 15kW refrigerator system.

  6. 太阳能水纯化热水一体化装置性能分析与试验%Performance analysis and experiment of solar hot water and pure water co-production system

    Institute of Scientific and Technical Information of China (English)

    周希正; 马春元; 张立强; 王鹏

    2014-01-01

    为了提高太阳能水纯化热水一体化的集热性能及产水率,该文介绍了系统的工作原理,建立太阳能水纯化热水一体化能量转化和传递模型。采用双真空热管集热,设计了蒸发、冷凝水箱及蓄热水箱,建造了Φ58 mm×1.8 m×24玻璃双真空热管集热试验装置。运用软件Matlab数值运算与试验对比,结果表明:蓄热温度从50℃到70℃,系统产水率及性能系数先随着蓄热温度升高而增大,至60℃左右最大,然后随着蓄热温度升高而减小。60℃定温蓄热比60℃定量蓄热日产水量高847.9 mL,总性能系数增加0.102,产水率增加0.056。此外试验研究了不蓄热工况的系统性能,产水量为5978.4 mL,系统总性能系数1.2498,产水率0.468,比60℃定温蓄热工况下性能系数低0.3979,产水率减小0.219。该文的研究为太阳能热水系统与海水淡化相结合具有参考和利用价值。%In this paper, the solar hot water and pure water co-production system was built and the mathematical model of energy conversion and transmission was established based on the system’s operation, which aimed to improve the thermal performance and water productivity of the system experimentally and theoretically. The double evacuated tube solar collector was integrated into the desalination stills to ensure the continuity production of distillate. The evaporation-condensation tank and the heat storage water tank were designed and built with aφ58 mm×1.8 m×24 double evacuated heat pipe, a hot water tank capacity of 109.2 L, an evaporation area of 0.6235 m2, a condensation water tank capacity of 124.8 L, a condensation area of 0.7092 m2, and a heat storage water tank of 200 L. The governing energy balance equations were solved analytically with Matlab software and compared with the experimental results. The results indicated that water productivity and performance coefficient increased first and then decreased with

  7. Matemathical description of solidification cooling curves of pure metals

    Directory of Open Access Journals (Sweden)

    Arno Müller

    1998-10-01

    Full Text Available The introduction of an "incubation time" to the Schwarz classical mathematical description of metals solidification, resulted in a new model called Modified Schwarz Model. By doing so it was possible to identify and quantify the "delay time" that separates the two heat waves traveling independently in a casting during the solidification: the Supercooled / Superheated Liquid and the Solid / Liquid. The thermal shock produced in the initial stage of the undercooling generation process, can be used as an important parameter in the forecasting of the solidification's behavior of pure metals and alloys, when changing mold's materials, pouring and ambient temperatures. The hypercooling proneness degree of metals and alloys, can also be calculated.

  8. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    CERN Document Server

    Weingartner, Nicholas B; Nogueira, Flavio S; Kelton, K F; Nussinov, Zohar

    2016-01-01

    A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore...

  9. Microphysical Effects of Cloud Seeding in Supercooled Stratiform Clouds Observed from NOAA Satellite

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15μm, while that within the cloud track ranged from 15 to 26 μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7 μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds,and the maximum temperature differences reached 4.2 and 3.9℃ at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃ of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track.The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22min after seeding. The formation of a cloud track in the supercooled stratiform clouds was

  10. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    Science.gov (United States)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  11. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus

    Directory of Open Access Journals (Sweden)

    J. Crosier

    2011-01-01

    Full Text Available Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1 was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.

    The mid-level stratus cloud was vertically thin (~400 m, horizontally extensive (covering 100 s of km and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively. No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1<D<3.0 μm were measured above and below cloud in concentrations of ~25 cm−3. Ice crystal concentrations in the cloud were constant at around 0.2 L−1. It is estimated that entrainment of aerosol particles into cloud cannot replenish the loss of ice nuclei from the cloud layer via precipitation.

    Precipitation from the mid-level stratus evaporated before reaching the surface, whereas rates of up to 1 mm h−1 were observed below the convective feature. There is strong

  12. Pure-tone Audiometer

    Science.gov (United States)

    Kapul, A. A.; Zubova, E. I.; Torgaev, S. N.; Drobchik, V. V.

    2017-08-01

    The research focuses on a pure-tone audiometer designing. The relevance of the study is proved by high incidence of an auditory analyser in older people and children. At first, the article provides information about subjective and objective audiometry methods. Secondly, we offer block-diagram and basic-circuit arrangement of device. We decided to base on STM32F407VG microcontroller and use digital pot in the function of attenuator. Third, we implemented microcontroller and PC connection. C programming language is used for microcontroller’s program and PC’s interface. Fourthly, we created the pure-tone audiometer prototype. In the future, we will implement the objective method ASSR in addition to pure-tone audiometry.

  13. Toxicological evaluation of pure hydroxytyrosol.

    Science.gov (United States)

    Auñon-Calles, David; Canut, Lourdes; Visioli, Francesco

    2013-05-01

    Of all the phenolic constituents of olives and extra virgin olive oil, hydroxytyrosol is currently being actively exploited as a potential supplement or preservative to be employed in the nutraceutical, cosmeceutical, and food industry. In terms of safety profile, hydroxytyrosol has only been investigated as the predominant part of raw olive mill waste water extracts, due to the previous unavailability of appropriate quantities of the pure compound. We report the toxicological evaluation of hydroxytyrosol and, based on the results, propose a No Observed Adverse Effects Level (NOAEL) of 500mg/kg/d.

  14. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  15. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  16. A quantitative test of infrared optical constants for supercooled sulphuric and nitric acid droplet aerosols

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2003-05-01

    Full Text Available In situ Fourier transform infrared (FTIR extinction spectra of supercooled H2SO4/H2O and HNO3/H2O solution droplets were recorded in the large coolable aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere of Forschungszentrum Karlsruhe for a range of aerosol compositions and at temperatures extending down to 192 K. The measured spectra were quantitatively analysed in terms of aerosol composition and mass concentration by using Mie theory in combination with published refractive index data as input parameters. Simultaneously, total sulphuric acid and nitric acid mass concentrations from filter analysis and total water concentrations measured with the Lyman-a hygrometer of Forschungszentrum Jülich were used to calculate the aerosol composition at thermodynamic equilibrium inside the aerosol chamber. By comparing these measured aerosol parameters with those retrieved from the analysis of the FTIR spectra, the accuracy of the literature data sets of refractive indices could be assessed. In summary, four data sets were tested in the H2SO4/H2O system as well as two data sets in the HNO3/H2O system, partly revealing significant discrepancies in the retrieved aerosol properties. Potential explanations for these differences are discussed in this paper.

  17. Measurements of electric charge separated during the formation of rime by the accretion of supercooled droplets

    Directory of Open Access Journals (Sweden)

    E. E. Avila

    2009-11-01

    Full Text Available In these experiments, the electric charge carried by single particles ejected from the surface of a graupel particle growing by riming was measured. Simulated graupel pellets were grown by accretion of supercooled water drops, at temperatures ranging from −2 to −10°C in a wind tunnel at air velocities between 5 and 10 m s−1, with the goal of studying the charging of graupel pellets under conditions of secondary ice crystal production (Hallett-Mossop mechanism. The graupel, and induction rings upstream and downstream of the graupel, were connected to electrometers and analyzing circuits of sufficient sensitivity and speed to measure, correlate and display individual charging events. The results suggest that fewer than 1% of the ejected particles carry a measurable electric charge (>2 fC. Further, it was observed that the graupel pellets acquire a positive charge and the average charge of a single splinter ejected is −14 fC. This mechanism of ejection of charged particles seems adequate to account for a positive charge of around 1 pC that individual precipitation particles of mm-size could acquire in the lower part of the cloud, which in turn could contribute to the lower positive charge region of thunderstorms.

  18. Laser-induced plasma from pure and doped water-ice at high fluence by ultraviolet and infrared radiation - art. no. 70050X

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, A.; Rodrigo, Katarzyna Agnieszka

    2008-01-01

    Ice made of ultrapure water or water doped with 1 % polymer (polyethylene glycol, "PEG") was irradiated by laser light with fluences between 2 and 80 J/cm(2) in the ultraviolet (UV) regime at 355 nm and in the infrared (IR) regime at 1064 nm in vacuum. In the UV regime there is a threshold for pl...

  19. Spatiotemporal heterogeneity of local free volumes in highly supercooled liquid

    Science.gov (United States)

    Shiba, Hayato; Kawasaki, Takeshi

    2013-11-01

    We discuss the spatiotemporal behavior of local density and its relation to dynamical heterogeneity in a highly supercooled liquid by using molecular dynamics simulations of a binary mixture with different particle sizes in two dimensions. To trace voids heterogeneously existing with lower local densities, which move along with the structural relaxation, we employ the minimum local density for each particle in a time window whose width is set along with the structural relaxation time. Particles subject to free volumes correspond well to the configuration rearranging region of dynamical heterogeneity. While the correlation length for dynamical heterogeneity grows with temperature decrease, no growth in the correlation length of heterogeneity in the minimum local density distribution takes place. A comparison of these results with those of normal mode analysis reveals that superpositions of lower-frequency soft modes extending over the free volumes exhibit spatial correlation with the broken bonds. This observation suggests a possibility that long-ranged vibration modes facilitate the interactions between fragile regions represented by free volumes, to induce dynamical correlations at a large scale.

  20. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  1. Thermodynamic scaling of molecular dynamics in supercooled ibuprofen.

    Science.gov (United States)

    Adrjanowicz, K; Wojnarowska, Z; Paluch, M; Pionteck, J

    2011-04-28

    It was shown recently that ibuprofen revealed a strong tendency to form hydrogen bonded aggregates such as dimers and trimers of either cyclic or linear geometry, which somehow seems to control molecular mobility of that drug [Brás et al. J. Phys. Chem. B2008, 112 (35), 11 087-11 099]. For such hydrogen-bonded liquids, superpositioning of dynamics under various temperature T, pressure P, and volume V conditions, when plotted versus the scaling function of T(-1)V(-γ) (where γ is a material constant), may not always be satisfying. In the present work, we have tested the validity of this scaling for supercooled ibuprofen. In order to do that, pressure-volume-temperature (PVT) measurements combined with isobaric and isothermal dielectric relaxation studies (pressure up to 310 MPa) were carried out. The scaling properties of the examined drug were derived from the fitting of the τ(α)(T,V) dependences to the modified Avramov equation and by analyzing in double logarithmic scale the T(g)(V(g)) dependences, where the glass transition temperature T(g) and volume V(g) were defined for various relaxation times. In view of the obtained results, we conjecture that for ibuprofen the thermodynamic scaling idea works but not perfectly. The slight departure from the scaling behavior is discussed in the context of the hydrogen bonding abilities of the examined system and compared with the results reported for other strongly associated liquids.

  2. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  3. Purely Functional Structured Programming

    OpenAIRE

    Obua, Steven

    2010-01-01

    The idea of functional programming has played a big role in shaping today's landscape of mainstream programming languages. Another concept that dominates the current programming style is Dijkstra's structured programming. Both concepts have been successfully married, for example in the programming language Scala. This paper proposes how the same can be achieved for structured programming and PURELY functional programming via the notion of LINEAR SCOPE. One advantage of this proposal is that m...

  4. Purely Cortical Anaplastic Ependymoma

    Directory of Open Access Journals (Sweden)

    Flávio Ramalho Romero

    2012-01-01

    Full Text Available Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

  5. Purely tetrahedral quadruple systems

    Institute of Scientific and Technical Information of China (English)

    JI Lijun

    2006-01-01

    An oriented tetrahedron is a set of four vertices and four cyclic triples with the property that any ordered pair of vertices is contained in exactly one of the cyclic triples. A tetrahedral quadruple system of order n (briefly TQS(n)) is a pair (X,B), where X is an nelement set and B is a set of oriented tetrahedra such that every cyclic triple on X is contained in a unique member of B. A TQS(n) (X, B) is pure if there do not exist two oriented tetrahedra with the same vertex set. In this paper, we show that there is a pure TQS(n) if and only if n≡2,4(mod 6),n>4,or n≡1,5(mod 12). One corollary is that there is a simple two-fold quadruple system of order n if and only if n≡2,4 (mod 6) and n>4, or n≡1, 5 (mod 12).Another corollary is that there is an overlarge set of pure Mendelsohn triple systems of order n for n≡1,3(mod 6),n>3, or n≡0,4 (mod 12).

  6. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    Science.gov (United States)

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  7. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    Science.gov (United States)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Joly, Alan G.; Tonkyn, Russell G.; Kay, Bruce D.; Kimmel, Greg A.

    2016-04-01

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ˜1010 K/s for temperature increases of ˜100-200 K are obtained. Subsequent rapid cooling (˜5 × 109 K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ˜±2.7% leading to a temperature uncertainty of ˜±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  8. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO2 nanostructures in functional ionic liquid/water

    Science.gov (United States)

    Shahi, Satwant Kaur; Kaur, Navneet; Singh, Vasundhara

    2016-01-01

    In this paper, pure rutile and anatase-rutile TiO2 nanoparticles have been successfully synthesised via a green route by hydrolysis of titanium tetrachloride with room temperature acidic ionic liquid 3-methyl-1-(3-sulfonylpropyl) imidazolium trifluoromethanesulfonate [HO3S(CH2)3MIM][CF3SO3] in aqueous medium. The influence of pH of the solution by varying molar ratio of substrate and ionic liquid has been investigated in both sol⿿gel and hydrothermal synthesis of TiO2 with significant variation in phase, phase composition (ratio of rutile to anatase) and morphology as indicated by various structural analysis such as XRD, TEM, BET, Raman and UV⿿vis absorption spectroscopy. The results indicate formation of a bunch of aligned thin flaky nano-rods of TiO2 which look like nano-flowers with a crystal size of 3⿿5 nm by sol⿿gel method, while in case of hydrothermal method well-defined rutile solid nanorods of TiO2 were formed with variable length in the range of 120⿿170 nm and 20⿿24 nm in width. The photocatalytic activity of the prepared TiO2 samples has been determined by the photodegradation of methyl orange dye (20 ppm) under UV light. Best photocatalytic activity was exhibited by sample S-2 prepared via sol⿿gel method.

  9. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    Science.gov (United States)

    Zhang, Chen; Liu, Hong

    2016-06-01

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  10. Liquid Supercoolability and Synthesis Kinetics of Quinary Refractory High-entropy Alloy

    Science.gov (United States)

    Wang, W. L.; Hu, L.; Yang, S. J.; Wang, A.; Wang, L.; Wei, B.

    2016-11-01

    The high-entropy configuration of equiatomic multicomponent alloys opens an effective access to the development of advanced materials. Here we report the synthesis of a new quinary refractory WMoTaNbZr high-entropy alloy under electrostatic levitation condition. It showed a high liquidus temperature of 2686 K and achieved a maximum supercooling of 640 K (0.24 TL) at molten state. The containerless measurements revealed a linear increasing tendency for both its liquid state density and the specific heat to emissivity ratio versus alloy supercooling. A high-entropy body-centered cubic (HEB) phase dominated its phase constitution despite the formation of a negligible amount of solid solution (Zr) phase. The dendritic growth of HEB phase always governed the crystallization process, attained a fastest growth velocity of 13.5 m/s and displayed a power function relation to alloy supercooling. The high speed videographic research of recalescence phenomenon indicated Johnson-Mehl-Avrami type transition kinetics for its rapid solidification process. As supercooling increases, the microstructures of primary HEB phase were refined conspicuously and exhibited an obvious solute trapping effect of the segregative Zr component. Meanwhile, the Vickers hardness of HEB phase displayed the rising tendency with supercooling.

  11. Droplet-Sizing Liquid Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  12. PURE DRIVE GT

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    在2004年奥林匹克赛事中,中国的李婷,孙甜甜取得了中国网球第一个金牌一女子双打冠军。忘记不了当时李婷挥动着她的BABOLAT(百保力)网拍Pure Drive Zylon 360°激动地拥抱着孙甜甜吵闹着,幸福地哭着的情景。

  13. Pure de Sitter Supergravity

    CERN Document Server

    Bergshoeff, Eric A; Kallosh, Renata; Van Proeyen, Antoine

    2015-01-01

    Using superconformal methods we derive an explicit de Sitter supergravity action invariant under spontaneously broken local ${\\cal N}=1$ supersymmetry. The supergravity multiplet interacts with a nilpotent goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the fermionic fields, gravitino and goldstino, no scalars. In the global limit when supergravity multiplet decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where goldstino vanishes we recover pure supergravity with the positive cosmological constant. The classical equations of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.

  14. An investigation on supercooling directional solidification process of Cu-Ni single phase alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Supercooling directional solidification (SDS) is put forward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully. The results are as follows: (ⅰ) The primary arm spacing is about 30 m m, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 m m/s), the primary stems are straight, fine and completed, with an inclination angle of about 5.8o. (ⅱ) A semi-quantitative T-T model is brought forward to describe the dendrite growth rate V vs. undercooling D T. The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by D T-V-x relation of T-T model.

  15. New approach based on solid-phase extraction for the assessment of organic compound pollutions in so-called pharmaceutically pure water.

    Science.gov (United States)

    Staniszewska, Marta; Wolska, Lidia; Namieśnik, Jacek

    2008-07-01

    The application of a new kind of technique involving solid-phase extraction coupled with thermal desorption (SPE-TD) to the qualitative analysis of water used in pharmaceutical products was evaluated. Comparative analyses performed by the purge and trap (PT) technique were also conducted. The application of this SPE-TD technique resulted in the isolation of a large number of compounds from the water sample. The SPE-TD technique is applied to less volatile compounds, whereas the PT technique is used for more volatile and nonpolar ones. These two techniques should be applied in order to achieve complete identification and quantitative determination. Additionally, an attempt to identify organic compounds in pharmaceutical products was also conducted. The compounds present in such products include aldehydes, ketones, hydrocarbons, alcohols, esters. The influence of storage on the quality of water was also investigated. For samples characterized by a longer storage time, qualitatively richer chromatograms were obtained, which confirmed that components were released from the packaging (especially polyethylene) which entered the stored product.

  16. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    Utilizing stable supercooling of sodium acetate trihydrate makes it possible to store thermal energy partly loss free. This principle makes seasonal heat storage in compact systems possible. To keep high and stable energy content and cycling stability phase separation of the storage material must...... to 230 kJ/kg. TRNSYS simulations of a solar combi system including a storage with four heat storage modules of each 200 kg of sodium acetate trihydrate utilizing stable supercooling achieved a solar fraction of 80% for a low energy house in Danish climatic conditions....

  17. Effect of total and pair configurational entropy in determining dynamics of supercooled liquids over a range of densities

    Science.gov (United States)

    Banerjee, Atreyee; Nandi, Manoj Kumar; Sastry, Srikanth; Bhattacharyya, Sarika Maitra

    2016-07-01

    In this paper, we present a study of supercooled liquids interacting with the Lennard Jones potential and the corresponding purely repulsive (Weeks-Chandler-Andersen) potential, over a range of densities and temperatures, in order to understand the origin of their different dynamics in spite of their structures being similar. Using the configurational entropy as the thermodynamic marker via the Adam Gibbs relation, we show that the difference in the dynamics of these two systems at low temperatures can be explained from thermodynamics. At higher densities both the thermodynamical and dynamical difference between these model systems decrease, which is quantitatively demonstrated in this paper by calculating different parameters. The study also reveals the origin of the difference in pair entropy despite the similarity in the structure. Although the maximum difference in structure is obtained in the partial radial distribution function of the B type of particles, the rdf of AA pairs and AB pairs gives rise to the differences in the entropy and dynamics. This work supports the observation made in an earlier study [A. Banerjee et al., Phys. Rev. Lett. 113, 225701 (2014)] and shows that they are generic in nature, independent of density.

  18. Determination of Trace Nitrite and Bromate in Pure Water Samples by Ion Chroma Tography%离子色谱法测定饮用水中亚硝酸盐和溴酸盐含量的变化

    Institute of Scientific and Technical Information of China (English)

    李舒

    2011-01-01

    [目的]探讨饮用水中亚硝酸盐(NO2-)和溴酸盐(BrO3-)含量的变化.[方法]利用ICS-2000离子色谱法检测了3种饮用水中亚硝酸盐和溴酸盐在不同条件下的含量.[结果]在自来水、桶装纯净水、桶装矿泉水3种水中,亚硝酸盐含量随时间的增加有所增加,加热也未降低亚硝酸盐含量;纯水、自来水中未检测出溴酸盐,桶装矿泉水中测得的溴酸盐均随着时间的增加而增加,加热后能够较大程度上降低桶装矿泉水中溴酸盐的浓度.该方法检测的NO2-浓度在0~2 mg/L范围内有良好的线性关系(r=0.999 95),最小检测值为0.000 1 mg/L,实样加标回收率在97.34% ~ 108.61%;BrO3-浓度在0~2 mg/L范围内也有良好的线性关系(r=0.999 97),最小检测值为0.000 2 mg/L,实样加标回收率在95.93%~101.04%.[结论]该方法精密度高、操作简便、易推广.%[Objective] Changes of trace nitrite and bromate in pure water samples were explored. [ Method ] Contents of trace nitrite and bromate in three kinds of pure water samples under different conditons were determined by using ICS-2000 ion chromatography. [Result]The contents of nitrite in three samples of tap water,bottled water and bottled mineral water increased with the increase of time,but didn' t decrease under the treatment of heating. There was no bromate in pure water and tap water; the content of bromate in bottled mineral water also increased with the increase of time,and could be decreased to a much greater extent after healing. Nitrite showed good linear relationship within 0-2 mg/L (r = 0.999 95); the minimum detection value was 0.000 1 mg/L; and the sample standard addition was 97.34% - 108. 61%. Bromate also showed good linear relationship within 0 ~ 2 mg/L ( r = 0.999 97); the minimum detection value was 0.000 2 mg/L; and the sample standard addition was 95.93% ~ 101.04%. [ Conclusion]The method has high accuracy,simple operation and application.

  19. Atomic-Scale Origin of Long-Term Stability and High Performance of p-GaN Nanowire Arrays for Photocatalytic Overall Pure Water Splitting.

    Science.gov (United States)

    Kibria, Md Golam; Qiao, Ruimin; Yang, Wanli; Boukahil, Idris; Kong, Xianghua; Chowdhury, Faqrul Alam; Trudeau, Michel L; Ji, Wei; Guo, Hong; Himpsel, F J; Vayssieres, Lionel; Mi, Zetian

    2016-10-01

    The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN.

  20. Pure waterjet drilling of articular bone

    OpenAIRE

    Biskup, Christian; Dunnen, Steven den; Kraaij, Gert; Kerkhoffs, Gino M. M. J.; Tuijthof, Gabrielle J. M.

    2015-01-01

    The clinical application of waterjet technology for machining tough human tissues, such as articular bone, has advantages, as it produces clean sharp cuts without tissue heating. Additionally, water supply is possible via flexible tubing, which enables minimally invasive surgical access. This pilot study investigates whether drilling bony tissue with pure waterjets is feasible. Water pressures between 20 and 120 MPa with an orifice of 0.6 mm were used to create waterjets to drill blind boring...

  1. Pure laparoscopic augmentation ileocystoplasty.

    Science.gov (United States)

    Rebouças, Rafael B; Monteiro, Rodrigo C; Souza, Thiago N S de; Aragão, Augusto J de; Burity, Camila R T; Nóbrega, Júlio C de A; Oliveira, Natália S C de; Abrantes, Ramon B; Dantas Júnior, Luiz B; Cartaxo Filho, Ricardo; Negromonte, Gustavo R P; Sampaio, Rafael da C R; Britto, Cesar A

    2014-01-01

    Guillain-Barre syndrome is an acute neuropathy that rarely compromises bladder function. Conservative management including clean intermittent catheterization and pharmacotherapy is the primary approach for hypocompliant contracted bladder. Surgical treatment may be used in refractory cases to improve bladder compliance and capacity in order to protect the upper urinary tract. We describe a case of pure laparoscopic augmentation ileocystoplasty in a patient affected by Guillain-Barre syndrome. A 15-year-old female, complaining of voiding dysfunction, recurrent urinary tract infection and worsening renal function for three months. A previous history of Guillain-Barre syndrome on childhood was related. A voiding cystourethrography showed a pine-cone bladder with moderate post-void residual urine. The urodynamic demonstrated a hypocompliant bladder and small bladder capacity (190 mL) with high detrusor pressure (54 cmH2O). Nonsurgical treatments were attempted, however unsuccessfully.

  2. Pure Parsimony Xor Haplotyping

    CERN Document Server

    Bonizzoni, Paola; Dondi, Riccardo; Pirola, Yuri; Rizzi, Romeo

    2010-01-01

    The haplotype resolution from xor-genotype data has been recently formulated as a new model for genetic studies. The xor-genotype data is a cheaply obtainable type of data distinguishing heterozygous from homozygous sites without identifying the homozygous alleles. In this paper we propose a formulation based on a well-known model used in haplotype inference: pure parsimony. We exhibit exact solutions of the problem by providing polynomial time algorithms for some restricted cases and a fixed-parameter algorithm for the general case. These results are based on some interesting combinatorial properties of a graph representation of the solutions. Furthermore, we show that the problem has a polynomial time k-approximation, where k is the maximum number of xor-genotypes containing a given SNP. Finally, we propose a heuristic and produce an experimental analysis showing that it scales to real-world large instances taken from the HapMap project.

  3. Pure parsimony xor haplotyping.

    Science.gov (United States)

    Bonizzoni, Paola; Della Vedova, Gianluca; Dondi, Riccardo; Pirola, Yuri; Rizzi, Romeo

    2010-01-01

    The haplotype resolution from xor-genotype data has been recently formulated as a new model for genetic studies. The xor-genotype data is a cheaply obtainable type of data distinguishing heterozygous from homozygous sites without identifying the homozygous alleles. In this paper, we propose a formulation based on a well-known model used in haplotype inference: pure parsimony. We exhibit exact solutions of the problem by providing polynomial time algorithms for some restricted cases and a fixed-parameter algorithm for the general case. These results are based on some interesting combinatorial properties of a graph representation of the solutions. Furthermore, we show that the problem has a polynomial time k-approximation, where k is the maximum number of xor-genotypes containing a given single nucleotide polymorphisms (SNP). Finally, we propose a heuristic and produce an experimental analysis showing that it scales to real-world large instances taken from the HapMap project.

  4. Purely based on character

    NARCIS (Netherlands)

    Verdult, E.

    2011-01-01

    In Epe, the Veluwe Water Board is pioneering a new generation of sewage water purification. The Nereda granular sludge technology saves around a quarter of the energy, while taking up just a quarter of the space. “In ten year’s time, this will be the standard.”

  5. Purely based on character

    NARCIS (Netherlands)

    Verdult, E.

    2011-01-01

    In Epe, the Veluwe Water Board is pioneering a new generation of sewage water purification. The Nereda granular sludge technology saves around a quarter of the energy, while taking up just a quarter of the space. “In ten year’s time, this will be the standard.”

  6. A comparison of the stress corrosion cracking susceptibility of commercially pure titanium grade 4 in Ringer's solution and in distilled water: a fracture mechanics approach.

    Science.gov (United States)

    Roach, Michael D; Williamson, R Scott; Thomas, Joseph A; Griggs, Jason A; Zardiackas, Lyle D

    2014-01-01

    From the results of laboratory investigations reported in the literature, it has been suggested that stress corrosion cracking (SCC) mechanisms may contribute to early failures in titanium alloys that have elevated oxygen concentrations. However, the susceptibility of titanium alloys to SCC in physiological environments remains unclear. In this study, a fracture mechanics approach was used to examine the SCC susceptibility of CP titanium grade 4 in Ringer's solution and distilled de-ionized (DI) water, at 37°C. The study duration was 26 weeks, simulating the non-union declaration of a plated fracture. Four wedge loads were used corresponding to 86-95% of the alloy's ligament yield load. The longest cracks were measured to be 0.18 mm and 0.10 mm in Ringer's solution and DI water, respectively. SEM analysis revealed no evidence of extensive fluting and quasi-cleavage fracture features which, in literature reports, were attributed to SCC. We thus postulate that the Ringer's solution accelerated the wedge-loaded crack growth without producing the critical stresses needed to change the fracture mechanism. Regression analysis of the crack length results led to a significant best-fit relationship between crack growth velocity (independent variable) and test electrolyte, initial wedge load, and time of immersion of specimen in electrolyte (dependent variables).

  7. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    Science.gov (United States)

    Medina-Velazquez, D. Y.; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M.; Morales-Ramirez, A. de J.; Garfias-Garcia, E.; Garcia-Murillo, A.; Falcony, C.

    2016-12-01

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu3+ MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30-60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  8. A thermodynamic insight into the recognition of hydrophilic and hydrophobic amino acids in pure water by aza-scorpiand type receptors.

    Science.gov (United States)

    Blasco, Salvador; Verdejo, Begoña; Bazzicalupi, Carla; Bianchi, Antonio; Giorgi, Claudia; Soriano, Concepción; García-España, Enrique

    2015-01-21

    Interactions of different hydrophilic (His, Asp, Glu,) and hydrophobic (Ala, Phe, Tyr, Trp) amino acids in water with a scorpiand aza-macrocycle (L1) containing a pyridine group in the ring and its derivative (L2) bearing a naphthalene group in the tail have been analysed by potentiometric and calorimetric measurements. Theoretical calculations corroborate that major attractive forces that hold the adduct together are hydrogen bonds and salt-bridges, even though other interactions such as π-stacking or NH(+)⋯π may contribute in the case of hydrophobic amino acids and L2. Calorimetric measurements indicate that the interactions between L1 and the different amino acids are principally driven by entropy, often associated with solvation/desolvation processes.

  9. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, A; Andreozzi, J; Davis, S [Thayer School of Engineering, Dartmouth College, NH (United States); Zhang, R [Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States); Fox, C; Gladstone, D [Dartmouth Hitchcock Medical Center, Lebanon, NH (Lebanon); Pogue, B [Thayer School of Engineering, Dartmouth College, NH (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  10. Solar light driven pure water splitting of B-doped BiVO{sub 4} synthesized via a sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Lian-wei, E-mail: Shlw0531@163.com [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang (China); Wang, Gui-lin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Suriyaprakash, Jagadeesh [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang (China); Li, Dan; Liu, Li-zhu; Dong, Li-min [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China)

    2015-07-05

    Graphical abstract: The lower part of VBs mainly consists of O 2p orbitals and the hybridizations between O 2p and V 3d for BiVO{sub 4} as shown in figure a. The UV–vis diffuse reflectance spectra of BiVO{sub 4} with different boron doping level showed that these samples have almost no difference in the band gap energy which demonstrated there is less probability of substitutional B entering into Bi, V and O sites in the BiVO{sub 4} lattice. At the same time the boron doping reduces obviously the electrochemical impedance and results a remarkable increasing of photocurrent for BiVO{sub 4} photoanode. As displayed in figure d, some weak chemical bonds form between the doped boron ions and corners of VO{sub 4} tetrahedrons. Thus the interstitial boron doping plays a key role in improve the poor electron transport properties to obtain desire photocurrent. In addition, we suggest that the other small ions (e.g. Li, Be ions) would be another possible way to enhance the photocatalytic performance of BiVO{sub 4} by interstitial doping among VO{sub 4} tetrahedrons. - Highlights: • Proper boron doping level reduces obviously electrochemical impedance of photoanode. • Boron doping results a remarkable photocurrent increasing of BiVO{sub 4} photoanode. • The interstitial boron forms weak chemical bonds with corners of VO{sub 4} tetrahedrons. • Weak chemical bonds improves electron transport properties among VO{sub 4} tetrahedrons. • We suggest that Li and Be ions could be considered as interstitial doping species. - Abstract: The most promising process to convert solar energy into chemical energy is photoelectrochemical (PEC) water splitting, which has received a significant attention in recent years. BiVO{sub 4} has been regarded as a promising material for photocatalytic water splitting process. Owing to its poor carrier transport properties, BiVO{sub 4} is not a high potential candidate for this process. In order to overcome the inadequacy, we have successfully

  11. Pure Laparoscopic Augmentation Ileocystoplasty

    Directory of Open Access Journals (Sweden)

    Rafael B. Rebouças

    2014-12-01

    Full Text Available Introduction Guillain-Barre syndrome is an acute neuropathy that rarely compromises bladder function. Conservative management including clean intermittent catheterization and pharmacotherapy is the primary approach for hypocompliant contracted bladder. Surgical treatment may be used in refractory cases to improve bladder compliance and capacity in order to protect the upper urinary tract. We describe a case of pure laparoscopic augmentation ileocystoplasty in a patient affected by Guillain-Barre syndrome. Presentation A 15-year-old female, complaining of voiding dysfunction, recurrent urinary tract infection and worsening renal function for three months. A previous history of Guillain-Barre syndrome on childhood was related. A voiding cystourethrography showed a pine-cone bladder with moderate post-void residual urine. The urodynamic demonstrated a hypocompliant bladder and small bladder capacity (190mL with high detrusor pressure (54 cmH2O. Nonsurgical treatments were attempted, however unsuccessfully. The patient was placed in the exaggerated Trendelenburg position. A four-port transperitoneal technique was used. A segment of ileum approximately 15-20cm was selected and divided with its pedicle. The ileal anastomosis and creation of ileal U-shaped plate were performed laparoscopically, without staplers. Bladder mobilization and longidutinal cystotomy were performed. Enterovesical anastomosis was done with continuous running suture. A suprapubic cystostomy was placed through a 5mm trocar. Results The total operative time was 335 min. The blood loss was minimal. The patient developed ileus in the early days, diet acceptance after the fourth day and was discharged on the seventh postoperative day. The urethral catheter was removed after 2 weeks. At 6-month follow-up, a cystogram showed a significant improvement in bladder capacity. The patient adhered well to clean intermittent self-catheterization and there was no report for febrile infections

  12. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.

    Science.gov (United States)

    Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A

    2014-07-01

    The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Controllable hydrogen generation performance from Al/NaBH4 composite activated by La metal and CoCl2 salt in pure water

    Institute of Scientific and Technical Information of China (English)

    LIU Jianbo; FEI Yong; PAN Hua; FAN Meiqiang; WANG Liangliang; YAO Jun

    2012-01-01

    A novel composition of Al/NaBH4 mixture activated by La and CoCl2 in water for hydrogen generation was investigated.The composition had good stability at 298 K with high La content and low CoCl2 content,but presented good hydrogen generation performance with increasing global temperature.For example,The Al-15 wt.%La-5 wr.%CoCl2/NaBH4 mixture (mass ratio of 1∶1)yielded 1664 ml hydrogen/1 g mixture with 100% efficiency within 60 min at 333 K.The hydrogen generation rate and amount could be regulated by changing composition design,hydrolytic condition,etc.There existed a synergistic effect of La and CoCl2.Increasing La content was helpful to decrease crystal size of the mixture,but its hydrolysis byproduct La(OH)3 deposited on Al surface and had side effect on Al hydrolysis.Increased CoCl2 content was attributed to the producing of more actively catalytic sites Co2B/Al(OH)3 formed in the hydrolytic process.Co2B had dual catalytic effect on Al/NaBH4 hydrolysis.It deposited on Al surface and acted as a cathode of a micro galvanic cell.Co2B/Al(OH)3 was also a good promoter to NaBH4 hydrolysis.Therefore,the Al/NaBH4 mixture activated by La and CoCl2 may be applied as hydrogen generation material and the experimental data lays a foundation for designing practical hydrogen generators.

  14. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low...

  15. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Lin; SHAN De-Bin; MA Ming-Zhen; GUO Bin

    2008-01-01

    The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high ternperatures.

  16. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom;

    2013-01-01

    asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  17. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine;

    2016-01-01

    We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  18. Influence of Nanoparticles and Graphite Foam on the Supercooling of Acetamide

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2014-01-01

    Full Text Available Acetamide is a promising phase change materials (PCMs for thermal storage,but the large supercooling during the freezing process has limited its application. In this study, we prepared acetamide-SiO2 composites by adding nano-SiO2 into acetamide. This modified PCM was then impregnated into the porous graphite foam forming acetamide-SiO2-graphite foam form-stable composites. These composites were subjected to melting-solidification cycles 50 times; the time-temperature curves were tracked and recorded during these cycles. The time-temperature curves showed that, for the acetamide containing 2 wt. % SiO2, the supercooling phenomenon was eliminated and the material’s performance was stable for 50 cycles. The solidification temperature of the acetamide-SiO2-graphite foam samples was 65°C and the melting temperature was lowered to 65°C. The samples exhibited almost no supercooling and the presence of SiO2 had no significant effect on the melting-solidification temperature. The microscopic supercooling of the acetamide-SiO2 composite was measured using differential scanning calorimetry (DSC. The results indicated that when the content of SiO2 was 1 wt. to 2 wt. %, the supercooling could be reduced to less than 10°C and heat was sufficiently released during solidification. Finally, a set of algorithms was derived using MATLAB software for simulating the crystallization of samples based on the classical nucleation theory. The results of the simulation agreed with the experiment results.

  19. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    Science.gov (United States)

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  20. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; Kay, Bruce D.

    2012-03-15

    Experimental measurements of the properties supercooled liquids at temperatures near their respective glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg making such measurements difficult to nearly impossible. In this perspective we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  1. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  2. Bringing Planctomycetes into pure culture

    Directory of Open Access Journals (Sweden)

    Olga Maria Lage

    2012-12-01

    Full Text Available Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi at the beginning of the twentieth century (1924, although the first axenic cultures were only obtained in the 1970s. Since then, eleven genera with fourteen species have been validly named and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bacteria have also been discovered. However, Planctomycetes diversity is much broader than these numbers indicate, as shown by environmental molecular studies. In recent years the authors have attempted to isolate and cultivate additional strains of Planctomycetes. This paper provides a summary of the isolation work that was carried out to obtain in pure culture Planctomycetes from several environmental sources. The following strains and planctomycetes have been successfully isolated: two freshwater strains from the sediments of an aquarium, which were described as a new genus and species, Aquisphaera giovannonii; several Rhodopirellula strains from the sediments of a water treatment recycling tank of a marine fish farm; and more than 140 planctomycetes from the biofilm community of macroalgae. This collection comprises several novel taxa that are being characterized and described. Improvements in the isolation methodology were made in order to optimize and enlarge the number of Planctomycetes isolated from the macroalgae. The existence of an intimate and an important relationship between planctomycetes and macroalgae reported before by molecular studies is therefore supported by culture dependent methods.

  3. Visual processing in pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Habekost, Thomas; Gerlach, Christian

    2010-01-01

    Whether pure alexia is a selective disorder that affects reading only, or if it reflects a more general visual disturbance, is highly debated. We have investigated the selectivity of visual deficits in a pure alexic patient (NN) using a combination of psychophysical measures, mathematical modelling...

  4. Glass-forming ability of TeO{sub 2} and temperature induced changes on the structure of the glassy, supercooled, and molten states

    Energy Technology Data Exchange (ETDEWEB)

    Kalampounias, A. G., E-mail: angelos@chemeng.upatras.gr [Department of Chemistry, University of Ioannina, GR-45110 Ioannina (Greece); Institute of Chemical Engineering Sciences (FORTH-ICE/HT), Foundation for Research and Technology Hellas, P.O. Box 1414, GR-26504 Patras (Greece); Tsilomelekis, G.; Boghosian, S. [Department of Chemical Engineering, University of Patras, P.O. Box 1414, GR-26504 Patras (Greece); Institute of Chemical Engineering Sciences (FORTH-ICE/HT), Foundation for Research and Technology Hellas, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-04-21

    Polarized (VV) and depolarized (VH) Raman spectra are obtained for glassy, supercooled, and molten TeO{sub 2} at temperatures up to 1000 K in order to elucidate the temperature evolution of the pertinent structural and vibrational properties. The intrinsic tendency of the system for crystallization is avoided by means of a newly applied protocol, thereby enabling the recording of Raman spectra of pure TeO{sub 2} on going from the molten to the supercooled liquid and to the room temperature glass states. Following an appropriate fitting procedure, the revealed bands are assigned to specific modes of structural polymorphs. A weak polarised band at ∼880 cm{sup −1} is assigned to Te=O terminal stretching in agreement with the literature ab initio molecular orbital calculations. Subtle changes to the relative band intensities within the 550-900 cm{sup −1} stretching region are caused by temperature increase. The network-like structure of the glass/melt is composed by TeO{sub 4} trigonal bipyramid and TeO{sub 3} trigonal pyramid units. With increasing temperature, TeO{sub 4} units convert to TeO{sub 3} units with a concurrent increase in the number of Te=O sites resulting from cleavages within the network structure. The fraction of such terminal oxygen atoms has been directly estimated from the spectroscopic data. The relative populations of the basic building blocks and the average number of O atoms around Te have been estimated for a wide temperature range directly from the Raman spectra, implying a gradual transformation of TeO{sub 4/2} to TeO{sub 2/2}(= O) trigonal pyramid units. The results are discussed in the context of the current phenomenological and theoretical status of the field.

  5. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  6. Supercooling transition in phase separated manganite thin films: An electrical transport study

    Science.gov (United States)

    Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Tyagi, Pawan Kumar; Singh, H. K.

    2014-05-01

    The impact of variation in the relative fractions of the ferromagnetic metallic and antiferromagnetic/charge ordered insulator phases on the supercooling/superheating transition in strongly phase separated system, La5/8-yPryCa3/8MnO3 (y ≈ 0.4), has been studied employing magnetotransport measurements. Our study clearly shows that the supercooling transition temperature is non-unique and strongly depends on the magneto-thermodynamic path through which the low temperature state is accessed. In contrast, the superheating transition temperature remains constant. The thermo-magnetic hysteresis, the separation of the two transitions and the associated resistivity, all are functions of the relative fraction of the coexisting phases.

  7. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    Science.gov (United States)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  8. Study on Supercooling Point and Freezing Point in Floral Organs of Apricot

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, they turned brown after thawing.

  9. Quark-gluon plasma freeze-out from a supercooled state?

    CERN Document Server

    Csörgö, T

    1994-01-01

    The quark-gluon plasma, formed in the first 3 fm/c of the heavy ion collisions at RHIC and LHC, supercooles due to nucleation and develops soon a negative pressure in the bag model. The negative pressure yields mechanical instability which may lead to a sudden timelike deflagration to a (super)heated hadron gas. The resulting freeze-out times are shorter than those of the standard nucleation scenario.

  10. Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film

    Institute of Scientific and Technical Information of China (English)

    Zhang Fang; Zhang Guo-Feng; Dong Shuang-Li; Sun Jian-Hu; Chen Rui-Yun; Xiao Lian-Tuan; Jia Suo-Tang

    2009-01-01

    The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glycerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel-Fulcher-Tammann-Hesse (VFTH) law is also presented experimentally.

  11. An airborne microwave radiometer and measurements of cloud liquid water

    Institute of Scientific and Technical Information of China (English)

    LEI Hengchi; JIN Dezhen; WEI Chong; SHEN Zhilai

    2003-01-01

    A single-channel (9.5 mm) airborne microwave radiometer with one antenna is developed. The retrieval methods and primary observation results of cloud liquid water and super-cooled cloud liquid water are discussed. The aircraft experiments show that the cloud liquid water and super-cooled liquid water can be sensitively monitored at some level of accuracy by the radiometer. The results of cloud liquid water content are reasonable and correspond well with the surface radar echo intensity. The design of the airborne radiometer and its retrieval methods are feasible, giving it application value.

  12. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    Science.gov (United States)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-01-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier. PMID:28255173

  13. [Anomalous Properties of Water and Aqueous Solutions at Low Temperatures].

    Science.gov (United States)

    Matsumoto, Masakazu

    2015-01-01

    Water has many anomalous properties below the room temperature. The temperature range overlaps with that of the Earth's atmosphere and also with that natural life forms favor. We review the origin of the anomalous properties of water and aqueous solutions in association with the hypothetical second critical point and liquid-liquid phase separation of water hidden in the supercooled state of liquid water.

  14. The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers.

    Science.gov (United States)

    Semjonov, Kristian; Kogermann, Karin; Laidmäe, Ivo; Antikainen, Osmo; Strachan, Clare J; Ehlers, Henrik; Yliruusi, Jouko; Heinämäki, Jyrki

    2017-01-15

    Amorphous solid dispersions (SDs) are a promising approach to improve the dissolution rate of and oral bioavailability of poorly water-soluble drugs. In some cases multi-phase, instead of single-phase, SD systems with amorphous drug are obtained. While it is widely assumed that one-phase amorphous systems are desirable, two-phase systems may still potentially exhibit enhanced stability and dissolution advantages over undispersed systems. The objective of the present study was to understand the solid-state properties of two-phase SDs with amorphous drug and their relation to physical stability. Two different types of excipients for SD formation were used, one being a polymer and the other a small molecule excipient. The supercooled molten SDs of a poorly water-soluble indomethacin (IND) with a graft copolymer, Soluplus® (SOL) and sugar alcohol, xylitol (XYL) were prepared. Supercooled molten SDs of IND with SOL were two-phase glassy suspension in which the amorphous drug was dispersed in an amorphous polymer matrix. A short-term aging of the SDs led to the formation of glassy suspensions where the crystalline drug was dispersed in an amorphous polymer matrix. These were physically stable at room temperature for the time period studied (RT, 23±2°C), but aging at high-humidity conditions (75% RH) recrystallization to metastable α-IND occurred. Interestingly, the SDs with XYL were two-phase amorphous precipitation systems in which the drug was in an amorphous form in the crystalline sugar alcohol matrix. The SDs of IND and XYL exhibited fast drug recrystallization. In conclusion, the preparation method of two-phase systems via co-melting in association with the rapid quench cooling is a feasible method for the formulation of poorly water-soluble drugs. The physical stability of these two-phase systems, however, is dependent on the carrier material and storage conditions.

  15. Mutarotation in biologically important pure L-fucose and its enantiomer

    Science.gov (United States)

    Wlodarczyk, P.; Cecotka, A.; Adrjanowicz, K.; Kaminski, K.; Paluch, M.

    2013-09-01

    The sugar specific mutarotation reaction in biologically important L-fucose and its enantiomer in the pure, anhydrous, supercooled liquid state has been studied. Kinetics measurements in the temperature range 313-328 K at ambient pressure have been performed by means of dielectric spectroscopy, a method widely used for studying the molecular dynamics of glass-forming liquids. The kinetic curves have been obtained by tracking the equilibration process in sugar melted and quenched to the desired temperature. Thereafter, an activation energy equal to Ea = 140 kJ mol-1 for D-fucose and Ea = 123 kJ mol-1 for L-fucose has been derived from the Arrhenius fit of temperature dependent rate constants. It was also shown that the kinetics curves at the lowest temperatures studied have sigmoidal shape, which was connected to the high concentration of furanosidic forms.

  16. Mutarotation in biologically important pure L-fucose and its enantiomer.

    Science.gov (United States)

    Wlodarczyk, P; Cecotka, A; Adrjanowicz, K; Kaminski, K; Paluch, M

    2013-09-18

    The sugar specific mutarotation reaction in biologically important L-fucose and its enantiomer in the pure, anhydrous, supercooled liquid state has been studied. Kinetics measurements in the temperature range 313-328 K at ambient pressure have been performed by means of dielectric spectroscopy, a method widely used for studying the molecular dynamics of glass-forming liquids. The kinetic curves have been obtained by tracking the equilibration process in sugar melted and quenched to the desired temperature. Thereafter, an activation energy equal to Ea = 140 kJ mol(-1) for D-fucose and Ea = 123 kJ mol(-1) for L-fucose has been derived from the Arrhenius fit of temperature dependent rate constants. It was also shown that the kinetics curves at the lowest temperatures studied have sigmoidal shape, which was connected to the high concentration of furanosidic forms.

  17. Application of preparation process of high pure chlorine dioxide by electrolysis method in water treatment%电解法制高纯二氧化氯工艺在水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    刘艳霞; 韩瑞雄; 赵红; 周俊波

    2011-01-01

    为了开发经济实用的二氧化氯消毒工艺,对电解法制备高纯二氧化氯工艺在水处理中的运用进行了研究.在最佳条件下,电解氯酸盐自动催化循环制备的二氧化氯纯度可达98%左右.通过二氧化氯杀菌除藻试验,讨论了二氧化氯用量以及原水pH对细菌、叶绿素a、藻类的去除率的影响.结果表明,二氧化氯用量在2 mg/L以上时,3者的去除率均达到90%以上.当二氧化氯用量为2 mg/L、原水pH为6~9时,3者的去除率不发生显著变化,并且二氧化氯的剩余质量浓度均控制在0.5 mg/L以下.消毒成本:生产1 kg二氧化氯成本可以控制在6元以内,当二氧化氯用量在0.5 ~2 mg/L时,1 t水的消毒成本为0.003~ 0.012元.%To develop an economical and practical disinfection technology of chlorine dioxide, the application of preparation process of high pure chlorine dioxide by electrolysis method in water treatment was studied. Under the best conditions, the purity of chlorine dioxide, which was prepared by electrolysis of chlorate solution with auto-catalytic cycling,can reach about 98% . Through the experiments of algae removal and sterilization,the influences of concentration of chlorine dioxide and pH of raw water on the removal rate of bacteria,chlorophyll A ,and algal were discussed. Results showed that when the mass concentration of chlorine dioxide was above 2 mg/L, the removal rates of bacteria, chlorophyll A, and algal could all reached above 90% . When the mass concentration of chlorine dioxide was 2 mg/L and pH of raw water was at 6 ~9,the removal rates of them could not occur significant change, and the mass concentration of residual chlorine dioxide was all under 0. 5 mg/L. Though accounting for the cost of water disinfection, the cost of per kilogram chlorine dioxide in the process can be controlled less than RMB 6 Yuan. When the invested amount of chlorine dioxide was at 0.5 ~2 mg/L,and the cost of per ton water disinfection

  18. Laboratory Test of a Cylindrical Heat Storage Module with Water and Sodium Acetate Trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Johansen, Jakob Berg;

    2016-01-01

    Cylindrical heat storage modules with internal heat exchangers have been tested in a laboratory. The modules were filled with water and sodium acetate trihydrate with additives. The testing focused on the heat content of the storage material and the heat exchange capacity rate during charge...... of the module. For the tests with the phase change materials, the focus was furthermore on the stability of supercooling and cycling stability. Testing the module with sodium acetate trihydrate and 6.4% extra water showed that phase separation increased and the heat released after solidification of supercooled...... phase change material was reduced over 17 test cycles. The heat released after solidification of the supercooled sodium acetate trihydrate with thickening agent and graphite was stable over the test cycles. Stable supercooling was obtained in 7 out of 17 test cycles with the module with sodium acetate...

  19. Relativity of pure states entanglement

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Bengtsson, Ingemar

    2002-01-01

    Entanglement of any pure state of an N times N bi-partite quantum system may be characterized by the vector of coefficients arising by its Schmidt decomposition. We analyze various measures of entanglement derived from the generalized entropies of the vector of Schmidt coefficients. For N >= 3 they generate different ordering in the set of pure states and for some states their ordering depends on the measure of entanglement used. This odd-looking property is acceptable, since these incomparable states cannot be transformed to each other with unit efficiency by any local operation. In analogy to special relativity the set of pure states equivalent under local unitaries has a causal structure so that at each point the set splits into three parts: the 'Future', the 'Past' and the set of noncomparable states.

  20. Clinical comparative study of nasogastric rice water and pure water in treating patients with hypernatremia caused by acute braininjury%米汤和清水鼻饲治疗急性脑损伤高钠血症的临床疗效

    Institute of Scientific and Technical Information of China (English)

    武道荣; 宋秋鸣; 孔翎

    2015-01-01

    Objective To compare the clinical results of three methods treating hypernatremia caused by acute brain injury-nasogas-tric rice water or pure water,or intravenous infusion - in relieving severe hypernatremia symptom. Methods 44 patients suffering from hy-pernatremia symptom caused by acute brain injury were divided into three treatment groups:18 patients were treated by nasogastric gavage of rice water,15 patients by nasogastric gavage of pure water,and the other 11 patients by intravenous infusion. The blood sodium levels,recov-ery time for normal sodium levels and bowel sounds,occult blood in stomach contents,mortality rate and complications caused by nasogastric gavage among the three groups were compared. Results The sodium level recovery time in the rice water group(88. 11 ± 7. 14)h was not statistically different with that in the pure water group(93. 07 ± 8. 09)h(P ﹥ 0. 05),but they were shorter than that in the intravenous infu-sion group(179. 36 ± 13. 51)h(P ﹤ 0. 05). The bowel sounds recovery time in the rice water group(32. 17 ± 5. 78)h was shorter than those in the pure water group(90. 00 ± 7. 93)h and the intravenous infusion group(384. 91 ± 35. 71)h(P ﹤ 0. 05). The occult blood of stomach contents in the rice water group was more common than the pure water group,but was less than the intravenous infusion group(P ﹤0. 05). The complications caused by nasogastric gavage in the rice water group were fewer than the pure water group(P ﹤ 0. 05),and the mortality rate in the intravenous infusion group was higher than the other two groups(P ﹤ 0. 05). Conclusion Nasogastric gavage is a sim-ple and safe therapy to treat hypernatremia,and It is worthy of clinical application to use nasogastric rice water for patients with hypernatrem-ia,which would make their bowel function recovery more faster with less complication.%目的:分别通过米汤、清水鼻饲和静脉输液治疗急性脑损伤高钠血症,比较3种方法纠正重症高钠

  1. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    Yanliang Huang; Xiaoxia Jiang; Sizuo Li

    2000-12-01

    The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

  2. "Pure" cutaneous histiocytosis-X.

    Science.gov (United States)

    Wolfson, S L; Botero, F; Hurwitz, S; Pearson, H A

    1981-11-15

    The case histories of two young children who experienced skin rashes involving various areas of the body are reported. The diagnosis of pure cutaneous histiocytosis-X was established after extensive studies revealed no other organ involvement. The patients were treated with oral corticosteroids. Currently, both children are in good health, show no evidence of disease, and have been followed over a four-to-five-year period. Therapy with corticosteroids may not be indicated with pure cutaneous histiocytosis-X unless there is evidence of extracutaneous dissemination or rapid progression of the disease.

  3. Pure Spinors for General Backgrounds

    CERN Document Server

    Fre', Pietro

    2008-01-01

    We show the equivalence of the different types of pure spinor constraints geometrically derived from the Free Differential Algebras of N=2 d=10 supergravities. Firstly, we compute the general solutions of these constraints, using both a G_2 and an SO(8) covariant decomposition of the 10d chiral spinors. Secondly, we verify that the number of independent degrees of freedom is equal to that implied by the Poincare' pure spinor constraints so-far used for superstrings, namely twenty two. Thirdly, we show the equivalence between the FDA type IIA/B constraints among each other and with the Poincare' ones.

  4. Pure robotic retrocaval ureter repair

    Directory of Open Access Journals (Sweden)

    Ashok k. Hemal

    2008-12-01

    Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.

  5. In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si

    Science.gov (United States)

    Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.

    2005-01-01

    While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.

  6. Slow dynamics and local quasi-equilibrium-relaxation in supercooled colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    RubI, J M; SantamarIa-Holek, I; Perez-Madrid, A [Department de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2004-06-09

    We present a Fokker-Planck description of supercooled colloidal systems exhibiting slow relaxation dynamics. Assuming the existence of a local quasi-equilibrium state during the relaxation of the system, we derive a non-Markovian Fokker-Planck equation for the non-stationary conditional probability. A generalized Stokes-Einstein relation containing the temperature of the system at local quasi-equilibrium instead of the temperature of the bath is obtained. Our results explain experiments showing that the diffusion coefficient is not proportional to the inverse of the effective viscosity at frequencies related to the diffusion timescale.

  7. Effects of hydrogen-bond environment on single particle and pair dynamics in liquid water

    Indian Academy of Sciences (India)

    Amalendu Chandra; Snehasis Chowdhuri

    2001-10-01

    We have performed molecular dynamics simulations of liquid water at 298 and 258 K to investigate the effects of hydrogen-bond environment on various single-particle and pair dynamical properties of water molecules at ambient and supercooled conditions. The water molecules are modelled by the extended simple point charge (SPC/E) model. We first calculate the distribution of hydrogen-bond environment in liquid water at both temperatures and then investigate how the selfdiffusion and orientational relaxation of a single water molecule and also the relative diffusion and relaxation of the hydrogen-bond of a water pair depend on the nature of the hydrogen-bond environment of the tagged molecules. We find that the various dynamical quantities depend significantly on the hydrogen-bond environment, especially at the supercooled temperature. The present study provides a molecular-level insight into the dynamics of liquid water under ambient and supercooled conditions.

  8. 基于CFLP模型的物流配送中心选址问题研究——以石河子XX纯净水公司为例%Study on the Logistics Distribution Center Location Based on the CFLP Model --Take Shihezi XX Pure Water Co., Ltd as A Case

    Institute of Scientific and Technical Information of China (English)

    马雪鸿; 李光明

    2012-01-01

    如何建立一个有效的纯净水商业流通系统,是众多中小型饮用纯净水公司未来发展的关键,而配送中心的选址及网点建设又是其重点之一。新疆的桶装饮用纯净水市场在近几年已得到快速发展,但产品同质化严重、行业整体利润较低。纯净水公司应运用科学合理的方法构建选址模型,建立合适有效的配送网点,完善公司配送网点的建设工作,提高配送效率,促进纯净水公司自身发展,从而增加企业的经济收益。%How to establish an effective commercial circulation system for pure water is the key to the future development of many small and medium-sized drinking pure water enterprises, while the site selection of distribution center and net construction is the key point among them. The market of barreled pure drinking water has developed rapidly recent years in Xinjiang, but products homogeneity is serious and whole industry is in a low profit. The Pure Water Enterprises should use scientific and reasonable methods to build the site selection model and establish effective and appropriate distribution network, so as to perfect the construction of distribution network, to improve the distribution efficiency, to promote the company's development, thereby to increase the economic benefits of the enterprise.

  9. Manifolds of interconvertible pure states

    OpenAIRE

    Sinolecka, Magdalena M.; Zyczkowski, Karol; Kus, Marek

    2001-01-01

    Local orbits of a pure state of an N x N bi-partite quantum system are analyzed. We compute their dimensions which depends on the degeneracy of the vector of coefficients arising by the Schmidt decomposition. In particular, the generic orbit has 2N^2 -N-1 dimensions, the set of separable states is 4(N-1) dimensional, while the manifold of maximally entangled states has N^2-1 dimensions.

  10. Manifolds of interconvertible pure states

    CERN Document Server

    Sinolecka, M M; Kus, M; Sinolecka, Magdalena M.; Zyczkowski, Karol; Kus, Marek

    2002-01-01

    Local orbits of a pure state of an N x N bi-partite quantum system are analyzed. We compute their dimensions which depends on the degeneracy of the vector of coefficients arising by the Schmidt decomposition. In particular, the generic orbit has 2N^2 -N-1 dimensions, the set of separable states is 4(N-1) dimensional, while the manifold of maximally entangled states has N^2-1 dimensions.

  11. Multimedia programming with pure data

    CERN Document Server

    Chung, Bryan

    2013-01-01

    A quick and comprehensive tutorial book for media designers to jump-start interactive multimedia production with computer graphics, digital audio, digital video, and interactivity, using the Pure Data graphical programming environment.An introductory book on multimedia programming for media artists/designers who like to work on interactivity in their projects, digital art/design students who like to learn the first multimedia programming technique, and audio-visual performers who like to customize their performance sets

  12. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    Science.gov (United States)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  13. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids

    Indian Academy of Sciences (India)

    Biman Jana; Biman Bagchi

    2007-09-01

    Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.

  14. Nature of large aggregates in supercooled aqueous solutions of sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I. (Purdue Univ., West Lafayette, IN); Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1980-09-18

    Preparations of 2.0 and 5.5 wt % sodium dodecyl sulfate (SDS) in 3.5 wt % (0.6 M) aqueous NaCl are equilibrium micellar solutions above 28/sup 0/C, the Krafft point of the surfactant at this salinity. These systems can be supercooled and remain transparent for hours and days. At 25/sup 0/C at equilibrium they are biphasic, a hydrated crystal phase and an aqueous salt solution phase containing only 0.01/sub 2/ wt % SDS. Conductimetry and /sup 13/C NMR show that these transparent supercooled systems are indeed supersaturated solutions and not microdispersions of the hydrated crystal. The time lag for the onset of nucleation of the crystals depends strongly on stirring details and probably on presence of gas-liquid interface. The big nonequilibrium aggregates present in the supersaturated systems resemble micelles in conductivity and molecular motion, and are likely to be metastable micelles as is presumed by Mazer, Benedek, and Carey. 21 references, 6 figures, 1 table.

  15. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  16. Universality in pure gravity mediation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jason L.; Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Ibe, Masahiro [University of Tokyo, ICRR, Kashiwa (Japan); University of Tokyo, Kavli IPMU, TODIAS, Kashiwa (Japan); Yanagida, Tsutomu T. [University of Tokyo, Kavli IPMU, TODIAS, Kashiwa (Japan)

    2013-07-15

    If low-energy supersymmetry is realized in nature, the apparent discovery of a Higgs boson with mass around 125 GeV suggests a supersymmetric mass spectrum in the TeV or multi-TeV range. Multi-TeV scalar masses are a necessary component of supersymmetric models with pure gravity mediation or in any model with strong moduli stabilization. Here, we show that full scalar mass universality remains viable as long as the ratio of Higgs vevs, tan{beta}, is relatively small (

  17. Synthesis of Enantiomerically Pure Anthracyclinones

    Science.gov (United States)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  18. Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect.

    Science.gov (United States)

    Yu, Shu-Hui; Yang, Pu; Sun, Tao; Qi, Qian; Wang, Xue-Qing; Chen, Xiao-Ming; Feng, Ying; Liu, Bo-Wen

    2016-06-01

    The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at temperatures below -30°C. To investigate the deep supercooling ability of E. pela, transcriptomic and proteomic analyses were performed to delineate the major gene and protein families responsible for the deep supercooling ability of overwintering females. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that genes involved in the mitogen-activated protein kinase, calcium, and PI3K-Akt signaling pathways and pathways associated with the biosynthesis of soluble sugars, sugar alcohols and free amino acids were dominant. Proteins responsible for low-temperature stress, such as cold acclimation proteins, glycerol biosynthesis-related enzymes and heat shock proteins (HSPs) were identified. However, no antifreeze proteins (AFPs) were identified through sequence similarity search methods. A random forest approach identified 388 putative AFPs in the proteome. The AFP gene ep-afp was expressed in Escherichia coli, and the expressed protein exhibited a thermal hysteresis activity of 0.97°C, suggesting its potential role in the deep supercooling ability of E. pela.

  19. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus, and L...

  20. Development of Soybean Highly Pure Powdered Lecithin

    Institute of Scientific and Technical Information of China (English)

    LiGuihua; GuKeren; LiangShaohua

    2002-01-01

    This project makes use of Condensed Soybean Phospholipids(CSP)to produce highly pure powdered soybean lecithin.In the production technology,the first step is to de-oil by continuously delivered material,high effective mixing CSP with acetone and circular extraction.The second step is to centrifugally separate the lecithin miscellaneous liquid into miscellaneous oil and solid-state lecithin with acetone.Then the mixing oil can be separated into crude oil and acetone by vaporization and condensation.If the acetone contains too much water,it shoud be rectified for use circularly.Solid state lecithin with acetone can be made into highly pure powdered soybean lecithin (acetone insoluble matter >95%)under the following conditions:vacuum 750mmHg,temperature 60℃,time 20 minutes.The production not only reaches the domestic and oversea quality index,but also has favorable hydrophilic property,which makes it become natural food additive and sanitarian nurture.

  1. Pure dysarthria due to an insular infarction.

    Science.gov (United States)

    Hiraga, Akiyuki; Tanaka, Saiko; Kamitsukasa, Ikuo

    2010-06-01

    Cortical infarction presenting with pure dysarthria is rarely reported. Previous studies have reported pure dysarthria due to cortical stroke at the precentral gyrus or middle frontal gyrus. We report a 72-year-old man who developed pure dysarthria caused by an acute cortical infarction in the insular cortex. The role of the insula in language has been difficult to assess clinically because of the rarity of pure insular strokes. Our patient showed pure dysarthria without aphasia, indicating that pure dysarthria can be the sole manifestation of insular infarctions.

  2. Optical Kerr effect of liquid water: a new insight into the vibrational and structural dynamics

    CERN Document Server

    Taschin, A; Eramo, R; Righini, R; Torre, R

    2013-01-01

    The liquid and supercooled states of water show a series of anomalies whose nature is lively debated. A key role is attributed to the formation of structural aggregations induced by critical phenomena occurring deep in the supercooled region, not experimentally accessible for bulk water. This explain why, despite the numerous experimental investigations, the nature of water anomalies and the hidden critical processes remain elusive. Here we present a time-resolved optical Kerr effect investigation of the vibrational and relaxation processes in supercooled bulk water. The experiment measures the water intermolecular vibrations and the structural relaxation process in an extended temperature range, and with unpreceded data quality. A mode-coupling analysis of the experimental data allows the characterization of the intermolecular vibrational modes and of their interplay with the structural relaxation process.

  3. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  4. ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES

    Institute of Scientific and Technical Information of China (English)

    Yan Hangyu

    2011-01-01

    We first introduce the concepts of absolutely E-pure modules and Epure split modules. Then, we characterize the IF rings in terms of absolutely E-pure modules. The E-pure split modules are also characterized.

  5. Controlled synthesis and optical properties of pure gold nanoparticles

    NARCIS (Netherlands)

    Singh, A.K.; Rai, A.K.; Bicanic, D.D.

    2009-01-01

    Gold nanoparticles were synthesized by laser ablation of a gold metallic disc at wavelengths of 532 nm and 355 nm with 7 ns pulse duration in the pure water. The colloidal gold nanoparticles were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and

  6. Controlled synthesis and optical properties of pure gold nanoparticles

    NARCIS (Netherlands)

    Singh, A.K.; Rai, A.K.; Bicanic, D.D.

    2009-01-01

    Gold nanoparticles were synthesized by laser ablation of a gold metallic disc at wavelengths of 532 nm and 355 nm with 7 ns pulse duration in the pure water. The colloidal gold nanoparticles were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and fluo

  7. The glass crossover from mean-field Spin-Glasses to supercooled liquids

    Science.gov (United States)

    Rizzo, Tommaso

    2016-03-01

    Stochastic-Beta-Relaxation provides a characterisation of the glass crossover in discontinuous Spin-Glasses and supercoooled liquid. Notably it can be derived through a rigorous computation from a dynamical Landau theory. In this paper, I will discuss the precise meaning of this connection in a language that does not require familiarity with statistical field theory. I will discuss finite-size corrections in mean-field Spin-Glass models and loop corrections in finite-dimensional models that are both described by the dynamical Landau theory considered. Then I will argue that the same Landau theory can be associated to supercooled liquid described by Mode-Coupling Theory invoking a physical principle of time-scale invariance.

  8. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid.

    Science.gov (United States)

    Prestipino, Santi

    2013-04-28

    I employ the van der Waals theory of Baus and co-workers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transformed into solid as a function of undercooling and of the amount of a foreign gas that could possibly be also present in the test tube. Upon looking at the implications of thermal and mechanical insulation for the energy cost of forming a solid droplet within the liquid, I identify one situation where the onset of solidification inevitably occurs near the wall in contact with the bath.

  9. Crystallization behavior of supercooled smectic cholesteryl myristate nanoparticles containing phospholipids as stabilizers

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel; Drechsler, M;

    2005-01-01

    Supercooled smectic nanoparticles based on physiological cholesterol esters are under investigation as a potential novel carrier system for lipophilic drugs. The present study investigates the very complex crystallization behavior of such nanoparticles stabilized with the aid of phospholipids....... Phospholipid and phospholipid/bile salt stabilized cholesteryl myristate dispersions were prepared by high-pressure melt homogenization and characterized by particle size measurements, differential scanning calorimetry, X-ray diffraction and electron microscopy. To obtain fractions with very small smectic...... nanoparticles, selected dispersions were ultracentrifuged. A mixture of cholesteryl myristate and the phospholipid used for the stabilization of the dispersions was also investigated by light microscopy. The nanoparticles usually display a bimodal crystallization event which depends on the thermal treatment...

  10. Local structure of equilibrium and supercooled Ti-Zr-Ni liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. W.; Gangopadhyay, A.; Hyers, R.; Rathz, T.; Rogers, J.; Robinson, D.; Goldman, A.; Kelton, K.

    2008-05-01

    Recently, we reported the results of experimental in situ high-energy x-ray diffraction studies of electrostatically levitated equilibrium and supercooled metallic elements and alloy liquids, showing evidence for icosahedral short-range ordering (ISRO). In this paper, these studies are extended to binary Ti-Zr and ternary Ti-Zr-Ni alloys. From a cluster-based analysis of the x-ray structure factors, it is concluded that ISRO in the binary alloys becomes progressively more dominant, and the coherence length of the order becomes longer, with the addition of Ni, especially near the concentration of 21 at. % Ni. The effect of chemical interactions among Ti/Zr-Ni and the atomic size on the stabilization of the ISRO is discussed.

  11. Stable glass transformation to supercooled liquid via surface-initiated growth front.

    Science.gov (United States)

    Swallen, Stephen F; Traynor, Katherine; McMahon, Robert J; Ediger, M D; Mates, Thomas E

    2009-02-13

    Highly stable glasses of tris-naphthylbenzene transform into a liquid when annealed above the glass transition temperature T_{g}. In contrast to the predictions of standard models, the observed transformation is spatially inhomogeneous. Secondary ion mass spectrometry experiments on isotopically labeled multilayer films show that the liquid grows into the stable glass with sharp growth fronts initiated at the free surface and at the interface with the substrate. For the free surface, the growth velocity is constant in time and has the same temperature dependence as self-diffusion in the equilibrium supercooled liquid. These stable glasses are packed so efficiently that surfaces and interfaces are required to initiate the transformation to the liquid even well above T_{g}.

  12. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    Science.gov (United States)

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  13. Deformation behavior of Zr-based bulk metallic glass and composite in the supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compres-sive deformation behavior of the BMG and BMGC was investigated in the super-cooled region at different temperatures and various strain rates ranging from 8×10-4s-1 to 8×10-2s-1. It was found that both the strain rate and test temperature signifi-cantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory.

  14. Correlation between supercooled liquid relaxation and glass poisson’s ratio

    DEFF Research Database (Denmark)

    Sun, Q.J.; Hu, L.N.; Zhou, C.

    2015-01-01

    We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson’s ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson’s ratio v generally increases with an increase...... in the ratio r and this relation can be described by the empirical function v = 0.5 − A ∗ exp(−B ∗ r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation...

  15. Local order in a supercooled colloidal fluid observed by confocal microscopy

    CERN Document Server

    Gasser, U; Weitz, D A

    2003-01-01

    The local order in a supercooled monodisperse colloidal fluid is studied by direct imaging of the particles with a laser scanning confocal microscope. The local structure is analysed with a bond order parameter method, which allows one to discern simple structures that are relevant in this system. As expected for samples that crystallize eventually, a large fraction of the particles are found to sit in surroundings with dominant face-centred cubic or hexagonally close-packed character. Evidence for local structures that contain fragments of icosahedra is found, and, moreover, the icosahedral character increases with volume fraction phi, which indicates that it might play an important role at volume fractions near the glass transition.

  16. Local order in a supercooled colloidal fluid observed by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, U [Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA (United States); Schofield, Andrew [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Weitz, D A [Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA (United States)

    2003-01-15

    The local order in a supercooled monodisperse colloidal fluid is studied by direct imaging of the particles with a laser scanning confocal microscope. The local structure is analysed with a bond order parameter method, which allows one to discern simple structures that are relevant in this system. As expected for samples that crystallize eventually, a large fraction of the particles are found to sit in surroundings with dominant face-centred cubic or hexagonally close-packed character. Evidence for local structures that contain fragments of icosahedra is found, and, moreover, the icosahedral character increases with volume fraction {phi}, which indicates that it might play an important role at volume fractions near the glass transition.

  17. Surface Equation of State for Pure Phospholipid Monolayer at the Air/Water Interface%空气/水界面上的纯组分磷酯单分子膜的表面状态方程

    Institute of Scientific and Technical Information of China (English)

    曾作祥; 陈琼; 薛为岚; 聂飞

    2004-01-01

    A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation,r-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC),1,2-dipalmitoylphosphatidylglycerol (DPPG),and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.

  18. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; DeMott, Paul J.

    2017-01-01

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm-3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm-3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces

  19. Pure optical dynamical color encryption

    Science.gov (United States)

    Mosso, Fabian; Tebaldi, Myrian; Fredy Barrera, John; Bolognini, Néstor; Torroba, Roberto

    2011-07-01

    We introduce a way to encrypt-decrypt a color dynamical phenomenon using a pure optical alternative. We split the three basic chromatic channels composing the input, and then each channel is processed through a 4f encoding method and a theta modulation applied to the each encrypted frame in every channel. All frames for a single channel are multiplexed. The same phase mask is used to encode all the information. Unlike the usual procedure we do not multiplex the three chromatic channels into a single encoding media, because we want to decrypt the information in real time. Then, we send to the decoding station the phase mask and the three packages each one containing the multiplexing of a single channel. The end user synchronizes and decodes the information contained in the separate channels. Finally, the decoding information is conveyed together to bring the decoded dynamical color phenomenon in real-time. We present material that supports our concepts.

  20. 76 FR 69284 - Pure Magnesium From China

    Science.gov (United States)

    2011-11-08

    ... COMMISSION Pure Magnesium From China Determination On the basis of the record \\1\\ developed in the subject... order on pure magnesium from China would be likely to lead to continuation or recurrence of material... USITC Publication 4274 (October 2011), entitled Pure Magnesium from China: Investigation No....

  1. Dual Target Search is Neither Purely Simultaneous nor Purely Successive.

    Science.gov (United States)

    Cave, Kyle R; Menneer, Tamaryn; Nomani, Mohammad S; Stroud, Michael J; Donnelly, Nick

    2017-08-31

    Previous research shows that visual search for two different targets is less efficient than search for a single target. Stroud, Menneer, Cave and Donnelly (2012) concluded that two target colours are represented separately based on modeling the fixation patterns. Although those analyses provide evidence for two separate target representations, they do not show whether participants search simultaneously for both targets, or first search for one target and then the other. Some studies suggest that multiple target representations are simultaneously active, while others indicate that search can be voluntarily simultaneous, or switching, or a mixture of both. Stroud et al.'s participants were not explicitly instructed to use any particular strategy. These data were revisited to determine which strategy was employed. Each fixated item was categorised according to whether its colour was more similar to one target or the other. Once an item similar to one target is fixated, the next fixated item is more likely to be similar to that target than the other, showing that at a given moment during search, one target is generally favoured. However, the search for one target is not completed before search for the other begins. Instead, there are often short runs of one or two fixations to distractors similar to one target, with each run followed by a switch to the other target. Thus, the results suggest that one target is more highly weighted than the other at any given time, but not to the extent that search is purely successive.

  2. Decryption of pure-position permutation algorithms

    Institute of Scientific and Technical Information of China (English)

    赵晓宇; 陈刚; 张亶; 王肖虹; 董光昌

    2004-01-01

    Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm,we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption al-gorithm. Finally, some simulation results are shown.

  3. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  4. Breaking through the Glass Ceiling: The Correlation Between the Self-Diffusivity in and Krypton Permeation through Deeply Supercooled Liquid Nanoscale Methanol Films

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures near (100-115 K) the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited ontop of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  5. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    Science.gov (United States)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  6. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    Science.gov (United States)

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores.

  7. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dmowski, W.; Gierlotka, S.; Wang, Z.; Yokoyama, Y.; Palosz, B.; Egami, T.

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  8. Pure variation and organic stratification.

    Science.gov (United States)

    Rosanvallon, Jérôme

    2012-09-01

    The fundamental problem posed by Darwin distinguishes his theory from any transformism of the past as well as any evolutionism to come: since variation is inherent to the living, it is a question of explaining, not at all why the living varies, but instead why the living does not vary in all directions to the point of constituting a continuum of forms varying ad infinitum. What limits and stabilizes this intrinsically unlimited variation, allowing certain forms to subsist and multiply to the detriment of others, is natural selection. This double principle of intrinsic variation/extrinsic selection constitutes a vector for the unification of reality that underlies Jean-Jacques Kupiec's ontophylogenesis as well as Deleuze and Guattari's global philosophy of Nature. Therefore, everything would potentially tend to incessantly vary. The work of Kupiec and others identifies an intrinsic random variation within ontogenesis itself. For Deleuze and Guattari, it is nothing but the figure, already selected by the organic stratum, of a more fundamental or pure variation. But, in fact, nothing really varies incessantly: everything undergoes a selective pressure according to which nothing subsists as such except what manages to endure through invariance (physical stratum) or reproduction (organic stratum). Thus, organic stratification only retains from variation what ensures and augments this reproduction. In this sense, every organism stratifies, i.e. submits to its imperative of subsistence and reproduction, a body without organs that varies in itself and always tends to escape the organism, for better (intensifications of life) or worse (cancerous pathologies). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Non-contact property measurements of liquid and supercooled ceramics with a hybrid electrostatic-aerodynamic levitation furnace

    OpenAIRE

    Ishikawa, Takehiko; Yoda, Shinichi; Paradis, Paul-Francois; 石川 毅彦; 依田 真一

    2005-01-01

    The use of an hybrid pressurized electrostatic-aerodynamic levitation furnace and procedures developed by the Japan Aerospace Exploration Agency overcame the contamination problems associated with the processing of ceramics under extreme temperature conditions. This made possible property measurements over wide temperature ranges that cover the superheated as well as the supercooled states. In this study, samples of various ceramics were levitated and their densities were found as a function ...

  10. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  11. Tame Kernels of Pure Cubic Fields

    Institute of Scientific and Technical Information of China (English)

    Xiao Yun CHENG

    2012-01-01

    In this paper,we study the p-rank of the tame kernels of pure cubic fields.In particular,we prove that for a fixed positive integer m,there exist infinitely many pure cubic fields whose 3-rank of the tame kernel equal to m.As an application,we determine the 3-rank of their tame kernels for some special pure cubic fields.

  12. Dissipation-induced pure Gaussian state

    CERN Document Server

    Koga, Kei

    2011-01-01

    This paper provides some necessary and sufficient conditions for a general Markovian Gaussian master equation to have a unique pure steady state. The conditions are described by simple matrix equations, thus they can be easily applied to the so-called environment engineering for pure Gaussian state preparation. In particular, it is shown that for any given pure Gaussian state we can actually construct a dissipative process yielding that state as the unique steady state.

  13. Molecular dynamics of the supercooled pharmaceutical agent posaconazole studied via differential scanning calorimetry and dielectric and mechanical spectroscopies.

    Science.gov (United States)

    Adrjanowicz, K; Kaminski, K; Wlodarczyk, P; Grzybowska, K; Tarnacka, M; Zakowiecki, D; Garbacz, G; Paluch, M; Jurga, S

    2013-10-07

    This paper presents comprehensive studies on the molecular dynamics of a pharmaceutically important substance, posaconazole. In order to characterize relaxation dynamics in the supercooled liquid and glassy states, dielectric and mechanical spectroscopies were applied. Dielectric data have indicated multiple relaxation processes that appear above and below the glass transition temperature Tg (τα=100 s) of posaconazole. From the curvature of the dielectric log10(τα) versus inverse of temperature dependence, we determine so-called "fragility", being a very popular parameter for classifying the structural dynamics of supercooled liquids and polymers. From the calculations, we get m=150, which means that is one of the most fragile glass-forming liquids. In this paper, the relaxation dynamics of supercooled posaconazole extracted from the dielectric response function was also confronted with shear-mechanical relaxation. Finally, we have also presented a direct comparison of the fragility and the number of dynamically correlated molecules Nc determined from dynamic calorimetry curves and dielectric and mechanical spectroscopies, showing a clear deviation in the picture of glass-transition dynamics generated by calorimetric and spectroscopic techniques.

  14. Mechanism of Nano-fluorocarbon Coating Restraining Ice Blocking in Supercooled Heat Exchanger%纳米氟碳涂层抑制过冷却器冰堵的机理

    Institute of Scientific and Technical Information of China (English)

    王虹; 何国庚; 田奇琦; 杨丽媛

    2012-01-01

    Ice slurry has been widely used in many fields because of its thermal properties, and ice-making technology has become a focus of study. Dynamic ice-making with supercooled water is one of the most promising method in making ice slurries, but the major defect of this method is that the ice blocking easily take place in the supercooled heat exchanger. Based on the theory of water crystallization and the analysis of the influence factors of ice blocking, a nano-fluorocarbon coating was used to improve the surface conditions of the supercooled heat exchanger and to restrain water from freezing. It is concluded that the nano-fluorocarbon coating will effectively restrain crystallization on the wall and improve the efficiency of the ice-making unit, which results in the decrease of ice blocking and the energy consumption. The investigation will benefit in developing and improving anti-icing techniques.%冰浆由于良好的热物特性,在许多领域得到广泛的应用,其制取方式也成为关注的焦点.过冷水动态制冰是目前最有发展前途的制取冰浆方式之一,但其主要缺陷是过冷却器易发生冰堵.在此,基于水溶液结晶的机理,从影响过冷却器冰堵的因素出发,指出纳米氟碳表面改性材料可改善表面状况,有效抑制壁面结冰,减少制冰过程中的冰堵问题,提高整个系统的制冰效率,降低能耗.纳米氟碳涂层抑制过冷却器冰堵的机理对进一步深化和开发新一代防结冰技术有一定意义.

  15. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  16. Incorporation of Pure Fullerene into Organoclays : Towards C60-Pillared Clay Structures

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Georgakilas, Vasileios; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Rudolf, Petra; Gournis, Dimitrios

    2013-01-01

    In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercala

  17. Remote Sensing of Supercooled Cloud Layers in Cold Climate Using Ground Based Integrated Sensors System and Comparison with Pilot Reports and model forecasts

    Science.gov (United States)

    Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france

    2017-04-01

    In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model

  18. Freezing of water droplets colliding with kaolinite particles

    DEFF Research Database (Denmark)

    Svensson, Erik Anders; Delval, Christophe Eric Ludovic; Freiherr von Und zu Hessberg, P J H;

    2009-01-01

    Contact freezing of single supercooled water droplets colliding with kaolinite dust particles has been investigated. The experiments were performed with droplets levitated in an electrodynamic balance at temperatures from 240 to 268 K. Under dry conditions freezing 5 was observed to occur below 2...... studies to describe freezing rates are appropriate for kaolinite aerosol particles. Mechanisms for contact freezing are briefly discussed....

  19. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  20. Code for the steam tables for pure water in visual basic 6.0.; Un codigo para las tablas de vapor para agua pura en visual basic 6.0

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra P. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2002-07-01

    The thermodynamic data of the water are of extreme importance in all of the branches of science and technology; the facilitate the understanding of the natural Earth processes. Nevertheless, for the electrical industry the water plays a very important role during the generation of electrical energy process. Different heat sources such as coal, oil, natural gas, nuclear fuel or the geothermal heat boil the water that forms the steam used to move the turbines. Consequently, the steam tables (the thermodynamic water data) are vital to model thermal and mass transference and physical-chemical processes during the generation of electrical energy. [Spanish] Los datos termodinamicos del agua son de suma importancia en todas las ramas de la ciencia y tecnologia, ellos facilitan el entendimiento de los procesos naturales de la Tierra. Sin embargo, para la industria electrica el agua juega un papel muy importante durante el proceso de generacion de energia electrica. Diferentes fuentes de calor tales como carbon, aceite, gas natural, combustible nuclear o el calor geotermico calientan el agua que forma el vapor utilizado para mover las turbinas. Luego entonces, las tablas de vapor (los datos termodinamicos de agua) son vitales para modelar transferencia termica y de masa y procesos fisico-quimico durante la generacion energia electrica.

  1. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  2. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Carsten F. E., E-mail: c.schroer@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster (Germany); NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster (Germany); Heuer, Andreas, E-mail: andheuer@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster (Germany); Center of Nonlinear Science, Corresstraße 2, 48149 Münster (Germany); Center for Multiscale Theory and Computation, Corrensstraße 40, 48149 Münster (Germany)

    2015-12-14

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  3. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Woo; Kim, Soree; Jung, YounJoon, E-mail: yjjung@snu.ac.kr [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-28

    Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einstein relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.

  4. Hard rhenium–boron–cobalt amorphous alloys with a wide supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianfeng, E-mail: jfwang316@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Shijie; Wang, Liguo; Guan, Shaokang [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Li, Ran; Zhang, Tao [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-10-01

    Novel Re–B–Co amorphous alloys with compositions of Re{sub 65−x}B{sub 35}Co{sub x} (at%, x=25, 30, 35, 40, 45, and 50) were fabricated by single-roller melt spinning. These alloys were found to exhibit a clear glass transition phenomenon. The width of supercooled liquid region (ΔT{sub x}) is in the range of 52–71 K. Such a large ΔT{sub x} allows us to produce amorphous alloy bulks by thermoplastic forming. The Vickers hardness is up to 19.10 GPa for the Re{sub 40}B{sub 35}Co{sub 25} alloy, which is close to that reported for some hard covalent crystals. Thus, the present alloys with a combination of large ΔT{sub x} and high hardness are expected to be used as a new type of structural materials. Furthermore, the relationships of hardness with glass transition temperature and Young's modulus were also discussed.

  5. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    Science.gov (United States)

    Schroer, Carsten F. E.; Heuer, Andreas

    2015-12-01

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  6. Molecular dynamics of supercooled ionic liquids studied by light scattering and dielectric spectroscopy

    Science.gov (United States)

    Pabst, Florian; Gabriel, Jan; Weigl, Peter; Blochowicz, Thomas

    2017-09-01

    We investigate molecular dynamics of two supercooled room temperature ionic liquids (RTILs) above of their glass transition temperature by means of dynamic light scattering and broadband dielectric spectroscopy from nanoseconds up to ≈105s . We show that a direct comparison of the raw data of these two techniques allows us to identify the reorientation of ions in the dielectric data, giving experimental evidence to a very recently proposed model of Gainaru et al. [1], stating that the conductivity process in ionic liquids takes place through a reorientational step of ions escaping their cage formed by surrounding counterions. Within this approach we can also understand the apparent decoupling of time constants from dielectric spectroscopy and light scattering, often found in ionic liquids, in a very natural way. Furthermore, as a consequence of knowing the reorientational part of the dielectric spectrum, we are able to show that two more processes contribute to these spectra, which are due to electrode polarization effects. The relative position of all three contributions vary among the systems and may overshadow each other, thus complicating the data analysis and favor misinterpretations.

  7. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  8. The Expansion Postponement in Pure Type Systems

    Institute of Scientific and Technical Information of China (English)

    宋方敏

    1997-01-01

    The expansion postponement problem in Pure Type Systems is an open problem raised by R.Pollack in 1992.In this paper,the author presents a set of necessary and sufficient conditions for this problem and a set of sufficient conditions for it.The author also gives some properties for pure typ systems without the expansion rule.

  9. Measuring the entanglement of bipartite pure states

    CERN Document Server

    Sancho, J M

    2000-01-01

    The problem of the experimental determination of the amount of entanglement of a bipartite pure state is addressed. We show that measuring a single observable does not suffice to determine the entanglement of a given unknown pure state of two particles. Possible minimal local measuring strategies are discussed and a comparison is made on the basis of their best achievable precision.

  10. Fundamentals of the pure spinor formalism

    NARCIS (Netherlands)

    Hoogeveen, J.

    2010-01-01

    This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derive

  11. Physicochemical composition of pure and adulterated royal jelly

    Directory of Open Access Journals (Sweden)

    Luis Henrique Garcia-Amoedo

    2007-04-01

    Full Text Available The physicochemical composition of pure royal jelly as well as of some adulterated samples was analyzed by determining moisture, ash, lipids, nitrogen/proteins, carbohydrates, starch and 10- HDA (10-hydroxy-2-decenoic acid. The solubility in alkaline medium was used to detect the main frauds for adulterating royal jelly which comprise addition of yogurt, water, egg white, sweet condensed milk mixed with propolis, unripe banana and corn starch slurry.

  12. Physicochemical composition of pure and adulterated royal jelly

    OpenAIRE

    Luis Henrique Garcia-Amoedo; Ligia Bicudo de Almeida-Muradian

    2007-01-01

    The physicochemical composition of pure royal jelly as well as of some adulterated samples was analyzed by determining moisture, ash, lipids, nitrogen/proteins, carbohydrates, starch and 10- HDA (10-hydroxy-2-decenoic acid). The solubility in alkaline medium was used to detect the main frauds for adulterating royal jelly which comprise addition of yogurt, water, egg white, sweet condensed milk mixed with propolis, unripe banana and corn starch slurry.

  13. Effect of temperature on the low-frequency vibrational spectrum and relative structuring of hydration water around a single-stranded DNA.

    Science.gov (United States)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-01-07

    Molecular dynamics simulations of the single-stranded DNA oligomer (5'-CGCGAAT TCGCG-3') in aqueous solution have been carried out at different temperatures between 160 K and 300 K. The effects of temperature on the low-frequency vibrational spectrum and local structural arrangements of water molecules hydrating the DNA strand have been explored in detail. The low-frequency density of states distributions reveal that increasingly trapped transverse water motions play a dominant role in controlling the band corresponding to O⋯O⋯O bending or transverse oscillations of hydration water at supercooled temperatures. In addition, presence of a broad band around 260 (±20) cm(-1) under supercooled conditions indicates transformation from high density liquid-like structuring of hydration water at higher temperatures to that of a low density liquid at lower temperatures. It is found that long-range correlations between the supercooled hydration water molecules arise due to such local structural transition around the DNA oligomer.

  14. Pure Culture Fermentation of Brined Cucumbers.

    Science.gov (United States)

    Etchells, J L; Costilow, R N; Anderson, T E; Bell, T A

    1964-11-01

    The relative abilities of Pediococcus cerevisiae, Lactobacillus plantarum, L. brevis, and several other species of lactic acid bacteria to grow and produce acid in brined cucumbers were evaluated in pure culture fermentations. Such fermentations were made possibly by the use of two techniques, gamma radiation (0.83 to 1.00 Mrad) and hot-water blanching (66 to 80 C for 5 min), designed first to rid the cucumbers of naturally occurring, interfering, and competitive microbial groups prior to brining, followed by inoculation with the desired lactic acid bacteria. Of the nine species tested, strains of the three common to cucumber fermentations, P. cerevisiae, L. plantarum, and L. brevis, grew to the highest populations, and produced the highest levels of brine acidity and the lowest pH values in fermentations at 5.4 to 5.6% NaCl by weight; also, their sequence of active development in fermentations, with the use of a three-species mixture for inoculation, was in the species order just named. This sequence of occurrence was similar to that estimated by others for natural fermentations. The rates of growth and acid production in fermentations with a mixture of P. cerevisiae, L. plantarum, and L. brevis increased as the incubation temperature was increased from 21 to 27 to 32 C; however, the maximal populations and acidities attained were essentially the same for fermentations at each temperature. Further, these same three species were found to be the most salt tolerant of those tested; their upper limit for appreciable growth and measurable acid production was about 8% salt, whereas thermophilic species such as L. thermophilus, L. lactis, L. helveticus, L. fermenti, and L. delbrueckii exhibited a much lower salt tolerance, ranging from about 2.5 to 4.0%. However, certain strains of L. delbrueckii grew very rapidly in cucumbers brined at 2.5 to 3.0% salt, and produced sufficient acid in about 30 hr at 48 C to reduce the brine pH from above 7.0 to below 4.0. An inexpensive

  15. Why do proteins aggregate? “Intrinsically insoluble proteins” and “dark mediators” revealed by studies on “insoluble proteins” solubilized in pure water [v1; ref status: indexed, http://f1000r.es/z0

    OpenAIRE

    2013-01-01

    In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', whic...

  16. A pure-sampling quantum Monte Carlo algorithm.

    Science.gov (United States)

    Ospadov, Egor; Rothstein, Stuart M

    2015-01-14

    The objective of pure-sampling quantum Monte Carlo is to calculate physical properties that are independent of the importance sampling function being employed in the calculation, save for the mismatch of its nodal hypersurface with that of the exact wave function. To achieve this objective, we report a pure-sampling algorithm that combines features of forward walking methods of pure-sampling and reptation quantum Monte Carlo (RQMC). The new algorithm accurately samples properties from the mixed and pure distributions simultaneously in runs performed at a single set of time-steps, over which extrapolation to zero time-step is performed. In a detailed comparison, we found RQMC to be less efficient. It requires different sets of time-steps to accurately determine the energy and other properties, such as the dipole moment. We implement our algorithm by systematically increasing an algorithmic parameter until the properties converge to statistically equivalent values. As a proof in principle, we calculated the fixed-node energy, static α polarizability, and other one-electron expectation values for the ground-states of LiH and water molecules. These quantities are free from importance sampling bias, population control bias, time-step bias, extrapolation-model bias, and the finite-field approximation. We found excellent agreement with the accepted values for the energy and a variety of other properties for those systems.

  17. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂.

    Science.gov (United States)

    Xu, Xiaoxiao; Dong, Zhijun; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi

    2017-06-23

    Salt hydrates have issues of supercooling when they are utilized as phase change materials (PCMs). In this research, a new method was adopted to prepare a salt hydrate PCM (based on a mixture of calcium chloride dihydrate and calcium chloride anhydrous) as a novel PCM system to reduce the supercooling phenomenon existing in CaCl₂·6H₂O. Six samples with different compositions of CaCl₂ were prepared. The relationship between the performance and the proportion of calcium chloride dihydrate (CaCl₂·2H₂O) and calcium chloride anhydrous (CaCl₂) was also investigated. The supercooling degree of the final PCM reduced with the increase in volume of CaCl₂·2H₂O during its preparation. The PCM obtained with 66.21 wt % CaCl₂·2H₂O reduced the supercooling degree by about 96.8%. All six samples, whose ratio of CaCl₂·2H₂O to (CaCl₂ plus CaCl₂·2H₂O) was 0%, 34.03%, 53.82%, 76.56%, 90.74%, and 100% respectively, showed relatively higher enthalpy (greater than 155.29 J/g), and have the possibility to be applied in buildings for thermal energy storage purposes. Hence, CaCl₂·2H₂O plays an important role in reducing supercooling and it can be helpful in adjusting the solidification enthalpy. Thereafter, the influence of adding different percentages of Nano-SiO₂ (0.1 wt %, 0.3 wt %, 0.5 wt %) in reducing the supercooling degree of some PCM samples was investigated. The test results showed that the supercooling of the salt hydrate PCM in Samples 6 and 5 reduced to 0.2 °C and 0.4 °C respectively. Finally, the effect of the different cooling conditions, including frozen storage (-20 °C) and cold storage (5 °C), that were used to prepare the salt hydrate PCM was considered. It was found that both cooling conditions are effective in reducing the supercooling degree of the salt hydrate PCM. With the synergistic action of the two materials, the performance and properties of the newly developed PCM systems were better especially in terms of reducing

  18. Ultrapure Water System for Hemodialysis Therapy

    Science.gov (United States)

    2011-07-21

    The Change of Biomarkers CRP, CBC With the Use of Ultra Pure Water System for; Hemodialysis.; The Rate of Adverse Events Such as Hypotension During Hemodialysis Therapy With Ultra Pure Water; System as Compared to Conventional Water System.

  19. Supercool纤维牛仔面料的开发与生产实践%DEVELOPMENT AND PRODUCTION PRACTICE OF SUPERCOOL DENIM

    Institute of Scientific and Technical Information of China (English)

    成海量; 张增强

    2015-01-01

    以48.6 tex赛络纺棉纱、48.6 tex赛络纺竹节纱为经纱,33.3 tex Supercool 吸湿排汗纤维为纬纱开发吸湿排汗牛仔面料。介绍了Supercool纤维的特性, Supercool纤维牛仔面料的规格设计、生产工艺流程,及各工序重要参数的选择和关键生产技术,指出了Supercool纤维牛仔面料开发的基本思路和产品的应用前景。%Taking 48. 6 tex Siro spun yarn plus 48. 6 tex Siro spun slub yarn as warp yarn and 33. 3 tex Supercool, moisture absorption and sweat discharge fiber as weft yarn to develop and porduce the moisture absorption and sweat discharge denim fabric. The article introduced the characteristics of the Supercool fiber, the specification designing of the Supercool Denim, production process, the selection of important parameters in each process and the key to production technology , and pointed out the basic idea of developing the Supercool Denim and the application prospect of the product.

  20. Conformal pure radiation with parallel rays

    CERN Document Server

    Leistner, Thomas

    2011-01-01

    We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then we derive conditions in terms of tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give an analogous result for n-dimensional pseudo-Riemannian pp-waves.

  1. Pure red cell aplasia and associated thymoma

    Directory of Open Access Journals (Sweden)

    Cristian Rosu

    2011-04-01

    Full Text Available Pure red cell aplasia is a rare cause of anemia, caused by an absence of red blood cell precursors in the bone marrow. It is usually a paraneoplastic syndrome, associated most commonly with large-cell granular lymphocyte leukemia but also thymoma. For patients who present both pure red cell aplasia and thymoma, thymectomy leads to an initial remission of the aplasia in 30% of cases. However, sustained remission may require the addition of medications such as corticosteroids, cyclospo­rine, or cyclophosphamide. We present a case of pure red cell aplasia associated with a thymoma in an otherwise healthy 80 year-old woman.

  2. 离子色谱测试技术在火电厂水汽化学监督中的应用与进展%The Application. and Progress of lon Chromatography Usedfor Pure-High Water and Steam Monitoring in Thermal Power Plant

    Institute of Scientific and Technical Information of China (English)

    曹顺安; 谢学军; 许金莹; 钟金昌

    2001-01-01

    综述了离子色谱测试技术在火电厂高纯水和蒸汽品质分析监测中的应用和进展,展示了离子色谱这一现代微量湿化学分析技术在火电厂水汽化学监督中的显著特点,离子色谱方法必将成为电厂水汽化学品质监测的主导方法之一。%In this paper, the application and progress,remarkable characteristics,special fascination and great potentiality of ion chromatography technique used for monitoring high-pure water and steam in thermal power plant have been summarized.

  3. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.

    Science.gov (United States)

    Freed, Karl F

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition" [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  4. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Soudi, Sh; Moharramipour, S

    2011-12-01

    Elm leaf beetle, Xanthogaleruca luteola (Muller) is one of the key pests of elm trees all over the world, and survives winter in reproductive diapause in sheltered locations. Seasonal variation of whole body supercooling points (SCPs), LT50 (temperature at which 50% of the test individuals die) and survival rate after exposure to subzero temperatures were determined in field collected adults during October 2008 to May 2009 and October 2009 to May 2010. The SCP of adults decreased significantly from October (median=-13.8°C) to January (median=-20.7°C) in first year, relatively similar results was observed in the second year. The lowest LT50 was observed in overwintering adults collected in January (-16.81°C) in the first year and December (-15.59°C) in the second year. Mortality at -15°C for 24 h was >70% in early autumn in both years whereas it decreased to lower than 45% in early winter, the highest mortality (100%) was observed in adults collected in May in both years. Cold acclimated adults (30 d, 5°C) in November 2008 exhibited significantly higher SCP (-12.21±0.64°C) than nonacclimated adults (-15.57±1.35°C). A 30-d exposure to 5°C caused >20% mortality in November, while <9% mortality was observed in adults collected in December and January 2008. Overwintering adults died upon freezing and the lower lethal temperatures were within the range of SCP, indicating that X. luteola is a freeze intolerant insect.

  5. Atomic model of liquid pure Fe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a θ-θX-ray diffractometer, the liquid structure of pure Fewas investigated and the diffraction intensity, structure factor, pair distribution function as well as the coordination number and atomic distance were obtained. The experimental results showed that there was also a pre-peak on the curve of the structure factor of liquid pure Fe. The pre-peak is a mark of medium-range order in melts. According to the characteristics of pre-peak, an atomic model of liquid pure Fe is constructed, namely, the structure of liquid pure Fe is a combination of clusters consisting of bcc cells with shared vertexes and other atoms with random dense atom distribution.

  6. Laser-induced generation of pure tensile stresses

    Energy Technology Data Exchange (ETDEWEB)

    Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F. [Wellman Laboratories of Photomedicine, Harvard University, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    1997-05-01

    While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90{degree} prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to {minus}200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. {copyright} {ital 1997 American Institute of Physics.}

  7. Entropy product measure for multipartite pure states

    Institute of Scientific and Technical Information of China (English)

    CAO Wancang; LIU Dan; PAN Feng; LONG Guilu

    2006-01-01

    An entanglement measure for multipartite pure states is formulated using the product of the von Neumann entropy of the reduced density matrices of the constituents.Based on this new measure, all possible ways of the maximal entanglement of the triqubit pure states are studied in detail and all types of the maximal entanglement have been culate the degree of entanglement, and an improvement is given in the area near the zero entropy.

  8. Diphenylhydantoin-induced pure red cell aplasia.

    Science.gov (United States)

    Rusia, Usha; Malhotra, Purnima; Joshi, Panul

    2006-01-01

    Pure red cell aplasia is an uncommon complication of diphenylhydantoin therapy. It has not been reported in Indian literature. Awareness of the entity helps in establishing the cause of anaemia in these patients and alerts the physicians to the need of comprehensive haematological monitoring in these patients. A case of 58-year-old male who developed pure red cell aplasia following three months of diphenylhydantoin therapy is reported here.

  9. Expander Graphs in Pure and Applied Mathematics

    OpenAIRE

    Lubotzky, Alexander

    2011-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  10. Dark fermentation on biohydrogen production: Pure culture.

    Science.gov (United States)

    Lee, Duu-Jong; Show, Kuan-Yeow; Su, Ay

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of literature reports on the pure hydrogen-producers under anaerobic environment. Challenges and perspective of biohydrogen production with pure cultures are also outlined.

  11. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Desmond [Institute of Chemical and Engineering Sciences (Singapore); Ogawa, Keiko [Nitto Denko Co. Ltd., Medical Division (Japan); Cutler, David J.; Chan, Hak-Kim, E-mail: kimc@pharm.usyd.edu.a [University of Sydney, Advanced Drug Delivery Group, Faculty of Pharmacy, A15 (Australia); Raper, Judy A. [University of Wollongong, Vice Chancellor' s Unit (Australia); Ye Lin [University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering (Australia); Yun, Jimmy [Nanomaterials Technology Pty. Ltd. (Singapore)

    2010-06-15

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 {+-} 2.7% to 72.3 {+-} 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  12. Rehabilitation of pure alexia: A review

    Science.gov (United States)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    Acquired reading problems caused by brain injury (alexia) are common, either as a part of an aphasic syndrome, or as an isolated symptom. In pure alexia, reading is impaired while other language functions, including writing, are spared. Being in many ways a simple syndrome, one would think that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions, such as alexia severity and associated deficits. Many patients reported to have pure alexia in the reviewed studies, have associated deficits such as agraphia or aphasia and thus do not strictly conform to the diagnosis. Few studies report clear and generalisable effects of training, none report control data, and in many cases the reported findings are not supported by statistics. We can, however, tentatively conclude that Multiple Oral Re-reading techniques may have some effect in mild pure alexia where diminished reading speed is the main problem, while Tacile-Kinesthetic training may improve letter identification in more severe cases of alexia. There is, however, still a great need for well-designed and controlled studies of rehabilitation of pure alexia. PMID:23808895

  13. Supercooling of the disordered vortex lattice in Bi(2)Sr(2)CaCu(2)O(8+delta)

    Science.gov (United States)

    van Der Beek CJ; Colson; Indenbom; Konczykowski

    2000-05-01

    Time-resolved local induction measurements near the vortex lattice order-disorder transition in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) crystals show that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the coexistence of ordered and disordered vortex phases in the sample. We interpret the results as supercooling of the high-field phase and the possible first-order nature of the order-disorder transition at the "second magnetization peak."

  14. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Science.gov (United States)

    Lan, S.; Blodgett, M.; Kelton, K. F.; Ma, J. L.; Fan, J.; Wang, X.-L.

    2016-05-01

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ˜1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  15. Nokia PureView oversampling technology

    Science.gov (United States)

    Vuori, Tero; Alakarhu, Juha; Salmelin, Eero; Partinen, Ari

    2013-03-01

    This paper describes Nokia's PureView oversampling imaging technology as well as the product, Nokia 808 PureView, featuring it. The Nokia PureView imaging technology is the combination of a large, super high resolution 41Mpix with high performance Carl Zeiss optics. Large sensor enables a pixel oversampling technique that reduces an image taken at full resolution into a lower resolution picture, thus achieving higher definition and light sensitivity. One oversampled super pixel in image file is formed by using many sensor pixels. A large sensor enables also a lossless zoom. If a user wants to use the lossless zoom, the sensor image is cropped. However, up-scaling is not needed as in traditional digital zooming usually used in mobile devices. Lossless zooming means image quality that does not have the digital zooming artifacts as well as no optical zooming artifacts like zoom lens system distortions. Zooming with PureView is also completely silent. PureView imaging technology is the result of many years of research and development and the tangible fruits of this work are exceptional image quality, lossless zoom, and superior low light performance.

  16. Structural anatomy of pure and hemianopic alexia.

    Science.gov (United States)

    Leff, A P; Spitsyna, G; Plant, G T; Wise, R J S

    2006-09-01

    The two most common types of acquired reading disorder resulting from damage to the territory of the dominant posterior cerebral artery are hemianopic and pure alexia. Patients with pronounced hemianopic alexia have a right homonymous hemianopia that encroaches into central or parafoveal vision; they read individual words well, but generate inefficient reading saccades when reading along a line of text. Patients with pure alexia also often have a hemianopia but are more disabled, making frequent errors on individual words; they have sustained damage to a brain region that supports efficient word identification. To investigate the differences in lesion site between hemianopic alexia and pure alexia groups, as rehabilitative techniques differ between the two conditions. High-resolution magnetic resonance images were obtained from seven patients with hemianopic alexia and from six patients with pure alexia caused by a left occipital stroke. The boundary of each lesion was defined and lesion volumes were then transformed into a standard stereotactic space so that regional comparisons could be made. The two patient groups did not differ in terms of damage to the medial left occipital lobe, but those with pure alexia had additional lateral damage to the posterior fusiform gyrus and adjacent tissue. Clinicians will be able to predict the type of reading disorder patients with left occipital lesions have from simple tests of reading speed and the distribution of damage to the left occipital lobe on brain imaging. This information will aid management decisions, including recommendations for reading rehabilitation.

  17. Pure plate bending in couple stress theories

    CERN Document Server

    Hadjesfandiari, Ali R; Dargush, Gary F

    2016-01-01

    In this paper, we examine the pure bending of plates within the framework of modified couple stress theory (M-CST) and consistent couple stress theory (C-CST). In this development, it is demonstrated that M-CST does not describe pure bending of a plate properly. Particularly, M-CST predicts no couple-stresses and no size effect for the pure bending of the plate into a spherical shell. This contradicts our expectation that couple stress theory should predict some size effect for such a deformation pattern. Therefore, this result clearly demonstrates another inconsistency of indeterminate symmetric modified couple stress theory (M-CST), which is based on considering the symmetric torsion tensor as the curvature tensor. On the other hand, the fully determinate skew-symmetric consistent couple stress theory (C-CST) predicts results for pure plate bending that tend to agree with mechanics intuition and experimental evidence. Particularly, C-CST predicts couple-stresses and size effects for the pure bending of the ...

  18. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  19. Supercooling capacity and cold hardiness of the adults of the sycamore lace bug, corythucha ciliata (Hemiptera:Tingidae).

    Science.gov (United States)

    Ju, Rui-Ting; Wang, Feng; Xiao, Yu-Yu; Li, Bo

    2010-01-01

    Supercooling point (SCP) of female adults of Corythucha ciliata was significantly lower than that of male adults, with an average being -11.49 degrees C and -9.54 degrees C, respectively. Low temperature survival of adults of different ages indicated that there were differences in cold survival ability among age groups of adults. Nonlinear regression analysis found that the response of C. ciliata adults to exposure time under different low temperature regimes (above -5 degrees C) was best fitted by a logistic equation. Both low temperature and exposure time had significant effects on mortality of adults. Temperatures above 5 degrees C did not prevent C. ciliata adults from surviving. C. ciliata was shown to be a freeze-intolerant but chill-tolerant insect. C. ciliata could tolerate subzero temperatures by supercooling. Temperature around -8 degres C is a critical point for successful overwintering of C. ciliata adults, which can establish in the whole areas where Platanus trees are planted in China.

  20. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes

    Science.gov (United States)

    Chua, Y. Z.; Young-Gonzales, A. R.; Richert, R.; Ediger, M. D.; Schick, C.

    2017-07-01

    Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.

  1. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2016-12-01

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).

  2. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  3. Dynamic recrystallization behavior of commercial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    LI Hui-zhong; ZHANG Xin-ming; CHEN Ming-an; LIU Zi-juan

    2006-01-01

    The flow stress feature and microstructure evolvement of a commercial pure aluminum were investigated by compression on Gleeble-1500 dynamic materials test machine. Optical microscopy (OM) and transmission electron microscopy (TEM) were applied to analyze the deformation microstructure of the commercial pure aluminum.The results show that the flow stress tends to be constant after a peak value and the dynamic recovery occurs when the deformation temperatures is 220 ℃ with the strain rate of 0.01 s-1; while the dynamic recrystallization occurs when the deformation temperature is higher than 380 ℃, and the flow stress exhibits a single peak at 460 ℃ with different strain rates from 0.001 s-1 to 1 s-1, and continuous dynamic recrystallization and geometric dynamic recrystallization occur during the hot compression of the commercial pure aluminum.

  4. Conclusive discrimination among N equidistant pure states

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis; Hermann-Avigliano, Carla; Salazar, R. [Departamento de Fisica, Universidad de Concepcion, Barrio Universitario, Casilla 160-C, Concepcion (Chile); Klimov, A. B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)

    2011-07-15

    We find the allowed complex overlaps for N equidistant pure quantum states. The accessible overlaps define a petal-shaped area on the Argand plane. Each point inside the petal represents a set of N linearly independent pure states and each point on its contour represents a set of N linearly dependent pure states. We find the optimal probabilities of success of discriminating unambiguously in which of the N equidistant states the system is. We show that the phase of the involved overlap plays an important role in the probability of success. For a fixed overlap modulus, the success probability is highest for the set of states with an overlap with phase equal to zero. In this case, if the process fails, then the information about the prepared state is lost. For states with a phase different from zero, the information could be obtained with an error-minimizing measurement protocol.

  5. Pure neuritic leprosy: Current status and relevance

    Directory of Open Access Journals (Sweden)

    P Narasimha Rao

    2016-01-01

    Full Text Available Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  6. Pure neuritic leprosy: Current status and relevance.

    Science.gov (United States)

    Rao, P Narasimha; Suneetha, Sujai

    2016-01-01

    Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS) for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  7. Comparison of Diesel Engine Characteristic Using Pure Coconut Oil, Pure Palm Oil, and Pure Jatropha Oil as Fuel

    Directory of Open Access Journals (Sweden)

    Iman K. Reksowardojo

    2009-01-01

    Full Text Available Diesel engine can be operated on either pure plant oil (PPO oil or biodiesel. Biodiesel production process is expensive due to many stages of processes, while PPO has a lower cost of production, lower energy consumption, and simpler process. There are several potential biofuel resources in Indonesia such as coconut, palm, and jatropha. They are tropical plants with large amonts of their quantity. Experiment was conducted in 17 hours engine running test (endurance test with various operating cycle conditions. Test fuels are pure coconut oil (PCO, pure palm oil (PPaO, pure jatropha oil (PJO, and diesel fuel (DF as a datum. Each PPO blends with diesel fuel with composition 50%-volume. As a result, PCO has higher BSFC (10% before endurance test in comparison with diesel fuel, also PPaO (13% and PJO (27% show a similar condition. Surprisingly, all PPO have BSFC almost similar with DF after endurance test due to decreasing of engine components friction. On the other hand, PPO produces more uncompleted combustion than DF. Phosporus content has major responsibility of deposit growth. PCO, PPaO, and PJO result more engine deposits in comparison with DF, which accounts for 139,7%, 232,9%, and 288,9% respectively. Based on wear analysis, PCO has the best antiwear property among test fuels, whereas the worst is DF.

  8. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  9. Minimal covariant observables identifying all pure states

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio, E-mail: claudio.carmeli@gmail.com [D.I.M.E., Università di Genova, Via Cadorna 2, I-17100 Savona (Italy); I.N.F.N., Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku (Finland); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); I.N.F.N., Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2013-09-02

    It has been recently shown by Heinosaari, Mazzarella and Wolf (2013) [1] that an observable that identifies all pure states of a d-dimensional quantum system has minimally 4d−4 outcomes or slightly less (the exact number depending on d). However, no simple construction of this type of minimal observable is known. We investigate covariant observables that identify all pure states and have minimal number of outcomes. It is shown that the existence of this kind of observables depends on the dimension of the Hilbert space.

  10. Temperature-Independent Nuclear Quantum Effects on the Structure of Water

    Science.gov (United States)

    Kim, Kyung Hwan; Pathak, Harshad; Späh, Alexander; Perakis, Fivos; Mariedahl, Daniel; Sellberg, Jonas A.; Katayama, Tetsuo; Harada, Yoshihisa; Ogasawara, Hirohito; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005), 10.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H2O and D2O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D2O is similar to H2O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H2O and D2O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.

  11. Pure word deafness and pure anarthria in a patient with frontotemporal dementia.

    Science.gov (United States)

    Iizuka, O; Suzuki, K; Endo, K; Fujii, T; Mori, E

    2007-04-01

    A 66-year-old right-handed man developed pure anarthria following pure word deafness. In addition to language disorders, his behavior gradually changed and finally included violence against his wife. Brain magnetic resonance imagings revealed atrophy of the left perisylvian area, which included the inferior half of the precentral gyrus and the upper portion of the superior temporal gyrus, consistent with frontotemporal dementia (FTD). It has been documented as either a disorder of expressive language or as an impaired understanding of word meaning. Unlike with pure anarthria, pure word deafness is not included in the clinical diagnostic current criteria for FTD. However, a large variety of language symptoms can appear in FTD according to the distribution of pathological changes in the frontotemporal cortices. This case suggests that pure word deafness could be a prodomal symptom of FTD.

  12. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.

    Science.gov (United States)

    Neuner, Gilbert; Xu, Bingcheng; Hacker, Juergen

    2010-08-01

    Infrared differential thermal analysis (IDTA) was used to monitor the velocity and pattern of ice propagation and deep supercooling of xylem parenchyma cells (XPCs) during freezing of stems of Castanea sativa L., Morus nigra L. and Quercus robur L. that exhibit a macro- and ring-porous xylem. Measurements were conducted on the surface of cross- and longitudinal stem sections. During high-temperature freezing exotherms (HTEs; -2.8 to -9.4°C), initial freezing was mainly observed in the youngest year ring of the sapwood (94%), but occasionally elsewhere (older year rings: 4%; bark: 2%). Initially, ice propagated rapidly in the largest xylem conduits. This resulted in a distinct freezing pattern of concentric circles in C. sativa and M. nigra. During HTEs, supercooling of XPCs became visible in Q. robur stems, but not in the other species that have narrower pith rays. Intracellular freezing of supercooled XPCs of Q. robur became visible by IDTA during low-temperature freezing exotherms (<-17.4 °C). Infrared differential thermal analysis revealed the progress and the two-dimensional pattern of XPC freezing. XPCs did not freeze at once, but rather small cell groups appeared to freeze at random anywhere in the xylem. By IDTA, ice propagation and deep supercooling in stems can be monitored at meaningful spatial and temporal resolutions.

  13. Are all maximally entangled states pure?

    CERN Document Server

    Cavalcanti, D; Terra-Cunha, M O

    2005-01-01

    In this Letter we study if all maximally entangled states are pure through several entanglement monotones. Our conclusions allow us to generalize the idea of monogamy of entanglement. Then we propose a polygamy of entanglement, which express that if a general multipartite state is maximally entangled it is necessarily factorized by any other system.

  14. Implicit Reading in Chinese Pure Alexia

    Science.gov (United States)

    Shan, Chunlei; Zhu, Renjing; Xu, Mingwei; Luo, Benyan; Weng, Xuchu

    2010-01-01

    A number of recent studies have shown that some patients with pure alexia display evidence of implicit access to lexical and semantic information about words that they cannot read explicitly. This phenomenon has not been investigated systematically in Chinese patients. We report here a case study of a Chinese patient who met the criteria for pure…

  15. Pure science and the problem of progress.

    Science.gov (United States)

    Douglas, Heather

    2014-06-01

    How should we understand scientific progress? Kuhn famously discussed science as its own internally driven venture, structured by paradigms. He also famously had a problem describing progress in science, as problem-solving ability failed to provide a clear rubric across paradigm change--paradigm changes tossed out problems as well as solving them. I argue here that much of Kuhn's inability to articulate a clear view of scientific progress stems from his focus on pure science and a neglect of applied science. I trace the history of the distinction between pure and applied science, showing how the distinction came about, the rhetorical uses to which the distinction has been put, and how pure science came to be both more valued by scientists and philosophers. I argue that the distinction between pure and applied science does not stand up to philosophical scrutiny, and that once we relinquish it, we can provide Kuhn with a clear sense of scientific progress. It is not one, though, that will ultimately prove acceptable. For that, societal evaluations of scientific work are needed.

  16. Binomial Squares in Pure Cubic Number Fields

    CERN Document Server

    Lemmermeyer, Franz

    2011-01-01

    Let K = Q(\\omega) with \\omega^3 = m be a pure cubic number field. We show that the elements\\alpha \\in K^\\times whose squares have the form a - \\omega form a group isomorphic to the group of rational points on the elliptic curve E_m: y^2= x^3 - m.

  17. Nigeria Journal of Pure and Applied Physics

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics (NJPAP) is a journal dedicated to the ... Variations of surface temparature with solar activity at two stations in the tropics ... Activation energy of psuedobinary alloy of Al-Bi-Se mixed systems · EMAIL ...

  18. Evolution of Pure States into Mixed States

    CERN Document Server

    Liu, J

    1993-01-01

    In the formulation of Banks, Peskin and Susskind, we show that one can construct evolution equations for the quantum mechanical density matrix $\\rho$ with operators which do not commute with hamiltonian which evolve pure states into mixed states, preserve the normalization and positivity of $\\rho$ and conserve energy. Furthermore, it seems to be different from a quantum mechanical system with random sources.

  19. Pure Gravitational Back-Reaction Observables

    CERN Document Server

    Tsamis, N C

    2013-01-01

    After discussing the various issues regarding and requirements on pure quantum gravitational observables in homogeneous-isotropic conditions, we construct a composite operator observable satisfying most of them. We also expand it to first order in the loop counting parameter and suggest it as a physical quantifier of gravitational back-reaction in an initially inflating cosmology.

  20. A fatal case of pure metaphyseal chondroblastoma.

    Science.gov (United States)

    Binesh, Fariba; Moghadam, Reza Nafisi; Abrisham, Jalil

    2013-08-23

    The chondroblastoma (CB) is a rare cartilaginous tumour; it represents less than 1% of all bone tumours. It is mostly localised at the level of the epiphysis of long bones. We report a fatal case of pure metaphyseal CB of the tibia in a 9-year-old boy whose pulmonary metastases developed soon after operative therapy of the primary tumour.

  1. MRI of autosomal dominant pure spastic paraplegia

    DEFF Research Database (Denmark)

    Krabbe, K; Nielsen, J E; Fallentin, E

    1997-01-01

    We examined 16 patients with autosomal dominant pure spastic paraplegia (HSP) and 15 normal controls matched for age and sex using MRI of the brain and spinal cord. Images were assessed qualitatively by two independent radiologists, blinded to the clinical diagnosis. Areas of the brain and corpus...

  2. Exploring the simplest purely baryonic decay processes

    CERN Document Server

    Geng, C Q; Rodrigues, Eduardo

    2016-01-01

    We propose to search for purely baryonic decay processes at the LHCb experiment. In particular, we concentrate on the decay $\\Lambda_b^0\\to p\\bar pn$, which is the simplest purely baryonic decay mode, with solely spin-1/2 baryons involved. We predict its decay branching ratio to be ${\\cal B}(\\Lambda_b^0\\to p\\bar pn)=(2.0^{+0.3}_{-0.2})\\times 10^{-6}$, which is sufficiently large to make the decay mode accessible to LHCb. Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. Our study can be extended to the purely baryonic decays of $\\Lambda_b^0\\to p\\bar p \\Lambda$, $\\Lambda_b^0\\to \\Lambda \\bar p\\Lambda$ and $\\Lambda_b^0\\to \\Lambda\\bar \\Lambda\\Lambda$, as well as other similar anti-triplet $b$-baryon decays, such as $\\Xi_b^{0,-}$.

  3. Comparison of hydrogen storage properties of pure Mg and milled pure Mg

    Indian Academy of Sciences (India)

    Myoung Youp Song; Young Jun Kwak; Seong Ho Lee; Hye Ryoung Park

    2014-06-01

    Hydrogen storage properties of pure Mg were studied at 593 K under 12 bar H2. In order to increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive mechanical grinding, RMG) and its hydrogen storage properties were subsequently investigated. Pure Mg absorbed hydrogen very slowly. At the number of cycles () of 1, pure Mg absorbed 0.05 wt% H for 5 min, 0.08 wt% H for 10 min and 0.29 wt% H for 60 min at 593 K under 12 bar H2. Activation was completed at the fifth cycle. At = 6, pure Mg absorbed 1.76 wt% H for 5 min, 2.17 wt% H for 10 min and 3.40 wt% H for 60 min. The activation of pure Mg after RMG was completed at the sixth cycle. At = 7, pure Mg after RMG absorbed 2.57 wt% H for 5 min, 3.21 wt% H for 10 min and 4.15 wt% H for 60 min.

  4. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  5. Black Hole Attractors and Pure Spinors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-02-21

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to {Sigma}f{sub k} = Im(C{Phi}), where {Phi} is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, {Phi} = {Omega} and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation.

  6. New Perspective of High-Pure Silicon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The discovery in the middle of 1950s of the semi-con ducting properties of crystalline silicon has led to the impetu ous development of electric power facilities, the sun-power industry, and particularly, the microelectronic industry. The increasing demand for the high-pure silicon requires the production of synthetic crystals. The raw material for the syn thetic crystals, the so-called technical, or metallurgical silicon, is obtained from quartzite and quartz of superior quality by means of carbon-thermal reduction of silicon using an electric arc discharge. The complexity of the technological process, high cost of the related facilities, worsening environmental pollution, and narrow-mindedness of a raw material company are attributed to the rise in price of the final product-silicon plates, resulting in the fall in the production of high-pure silicon, normally used in sun storage batteries.

  7. Performance of broiler fed pure glycerine

    Directory of Open Access Journals (Sweden)

    Dássia Daiane Oliveira

    2014-02-01

    Full Text Available Two experiments evaluated the pure glycerin in broiler chicken diets. Experiment 1 was a metabolism test using total feces sampling method with 96 male chickens aging from 17 to 25 d when animals were fed on two treatments: diet1 = no glycerin and diet2 = 60g/kg of glycerin. The apparent metabolized energy measured 4015 kcal/kg and the apparent metabolized corrected for nitrogen balance was 3911 kcal/kg. Experiment 2 evaluated weight gains, feed intake and feed conversion in 480 chicks at 6, 20 and 34 d old fed on diets with 0, 40, 80 and 120 g/kg of glycerin. The results indicate that pure glycerin in chicken diets, as a source of energy must take into consideration the age of the animals and it may be added up to 120 g/kg, from 20 to 41 d of age.

  8. Pure and doped boron nitride nanotubes

    Directory of Open Access Journals (Sweden)

    M. Terrones

    2007-05-01

    Full Text Available More than ten years ago, it was suggested theoretically that boron nitride (BN nanotubes could be produced. Soon after, various reports on their synthesis appeared and a new area of nanotube science was born. This review aims to cover the latest advances related to the synthesis of BN nanotubes. We show that these tubes can now be produced in larger amounts and, in particular, that the chemistry of BN tubes appears to be very important to the production of reinforced composites with insulating characteristics. From the theoretical standpoint, we also show that (BN-C heteronanotubes could have important implications for nanoelectronics. We believe that BN nanotubes (pure and doped could be used in the fabrication of novel devices in which pure carbon nanotubes do not perform very efficiently.

  9. The pure relationship and below replacement fertility

    Directory of Open Access Journals (Sweden)

    David R. Hall

    2003-12-01

    interest from demographers. Despite the fact that researchers have extensively modeled recent demographic changes such as skyrocketing divorce rates, rising common-law union formation, delayed childbearing, and the decline to belowreplacement fertility levels, our understanding of the causes of these trends, and the possible connections between them remains theoretically fragmented and incomplete. The goal of this paper is to advance our understanding in this area by exploring the insights on modern family formation of prominent sociologist Anthony Giddens. Specifically, this study examines whether Giddens’ “pure relationship” concept can shed light on the trend toward very low fertility. The results of this inquiry suggest that couples in both marriages and common-law unions who conform to key aspects of Giddens pure relationship are more likely to have uncertain or below-replacement fertility intentions, and less likely to embrace above-replacement fertility goals.

  10. Compact objects in pure Lovelock theory

    CERN Document Server

    Dadhich, Naresh; Chilambwe, Brian

    2016-01-01

    For static fluid interiors of compact objects in pure Lovelock gravity (involving ony one $N$th order term in the equation) we establish similarity in solutions for the critical odd and even $d=2N+1, 2N+2$ dimensions. It turns out that in critical odd $d=2N+1$ dimensions, there can exist no bound distribution with a finite radius, while in critical even $d=2N+2$ dimensions, all solutions have similar behavior. For exhibition of similarity we would compare star solutions for $N =1, 2$ in $d=4$ Einstein and $d=6$ in Gauss-Bonnet theory respectively. We also obtain the pure Lovelock analogue of the Finch-Skea model.

  11. Effective pure states for bulk quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Chuang, I.; Laflamme, R.

    1997-11-01

    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.

  12. Development of Soybean Highly Pure Powdered Lecithin

    Institute of Scientific and Technical Information of China (English)

    Li Guihua; Gu Keren; Liang Shaohua

    2002-01-01

    This project makes use ofCondensed Soybean Phospholipids (CSP) toproduce highly pure powdered soybean lecithin.In the production technology, the first step is tode-oil by continuous y delivered mater al, higheffective mixing CSP with acetone and circularextraction. The second step is to centrifugallyseparate the lecithin miscellaneous liquid intomiscellaneous oil and solid-state lecithin withacetone. Then the mixing oil can be separatedinto crude oil and acetone by vaporization andcondensation. If the acetone contains too muchwater, it should be rectified for use circularly.Solid state lecithin with acetone can be madeinto highly pure powdered soybean lecithin(acetone insoluble matter >95% ) under thefollowing conditions: vacuum 750mmHg,temperature 60℃, time 20 minutes. Theproduction not only reaches the domestic andoversea quality index, but also has favorablehydrophilic property, which makes it becomenatural food additive and sanitarian nurture.

  13. Photoionizaton of Pure and Doped Helium Nanodroplets

    CERN Document Server

    Mudrich, M

    2014-01-01

    Helium nanodroplets, commonly regarded as the "nearly ideal spectroscopic matrix", are being actively studied for more than two decades now. While they mostly serve as cold, weakly perturbing and transparent medium for high-resolution spectroscopy of embedded molecules, their intrinsic quantum properties such as microscopic superfluidity still are subject-matter of current research. This article reviews recent work on pure and doped He nanodroplets using PI spectroscopy, an approach which has greatly advanced in the past years. While the notion of the ideal spectroscopic matrix mostly no longer holds in this context, photoionization techniques provide detailed insights into the photo-physical properties of pure and doped He nanodroplets and their relaxation dynamics following electronic excitation. Exploiting nowadays available high laser fields, even highly ionized states of matter on the nanoscale can be formed. Our particular focus lies on recent experimental progress including fs time-resolved spectroscop...

  14. How Pure Components Control Polymer Blend Miscibility

    Science.gov (United States)

    White, Ronald; Lipson, Jane; Higgins, Julia

    2012-02-01

    We present insight into some intriguing relationships revealed by our recent studies of polymer mixture miscibility. Applying our simple lattice-based equation of state, we discuss some of the patterns observed over a sample of experimental blends. We focus on the question of how much key information can one determine from a knowledge of just the pure components only, and further, on the role of separate enthalpic and entropic contributions to the miscibility behavior. One interesting correlation connects the value of the difference in pure component energetic parameters with that of the mixed segment interactions, suggesting new possibilities for predictive modeling. We also show how in some cases these two parameter groupings act as separate controls determining the entropy and enthalpy of mixing. Also discussed are the different patterns exhibited for UCST-type and LCST-type blends, these being revealed in some cases by simple examination of the underlying microscopic parameters.

  15. Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Lesher, Charles E.; Wang, Yanbin; Gaudio, Sarah; Clark, Alisha; Nishiyama, Nori; Rivers, Mark; (UCD); (UC)

    2009-06-01

    The volumetric properties of silicate glasses and supercooled liquid are examined at high pressures and temperatures using X-ray computed tomography (CT) and absorption. The high pressure X-ray microtomography (HPXMT) system at the Advanced Photon Source, Argonne National Laboratory (GeoSoilEnvironCARS 13-BM-D beamline) consists of two opposing anvils compressed within an X-ray-transparent containment ring supported by thrust bearings and loaded using a 250-ton hydraulic press. This system permits the pressure cell to rotate under the load, while collecting radiographs through at least 180{sup o} of rotation. The 13-BM-D beamline permits convenient switching between monochromatic radiation required for radiography and polychromatic radiation for pressure determination by energy dispersive diffraction. We report initial results on several refractory magnesium silicate glasses synthesized by levitation laser heating. Volume changes during room temperature compression of Mg-silicate glasses with 33 mol% and 38 mol% SiO2 up to 11.5 GPa give an isothermal bulk moduli of 93--100 GPa for a K' of 1. These values are consistent with ultrasonic measurements of more silica-rich glasses. The volumetric properties of amorphous MgSiO{sub 3} at 2 GPa were examined during annealing up to 1000 C. We consider the consequences of heating through the glass transition and the implications for thermal expansivity of supercooled liquids at high pressure. Our results illustrate the capabilities of HPXMT for studies of refractory glasses and liquids at high pressure and offer strategies for future studies of liquid densities within the melting interval for magmas in planet interiors.

  16. Pure Sensory Stroke due to Lenticulocapsular Hemorrhage

    Institute of Scientific and Technical Information of China (English)

    杨益阶; 王国瑾; 潘松青

    2003-01-01

    @@ Pure sensory stroke (PSS) caused by lenticulo-capsular hemorrhage is rare. In this article, we re-ported 4 patients with PSS due to lenticulocapsularhemorrhage, including 3 men and 1 woman (mean age,58 years; range, 54 to 65 years), whose lesions couldbe identified by head computed tomographic (CT)scan and clinical findings correlated with the radio-logical lesions. All patients except 1 had hyperten-sion.

  17. Acquired pure red cell aplasia in children

    Directory of Open Access Journals (Sweden)

    Sujata R Dafale

    2012-01-01

    Full Text Available Acquired Pure Red Cell Aplasia (PRCA is a rare occurrence in children.This is a case of an eight year old girl child who developed acquired PRCA secondary to long term intake of sodium Valproate. This case is reported to review the causes of PRCA in children and to reconsider the use of drugs of longer duration in children and adults.

  18. Les Problemes de l'alexie pure (Problems of Pure Alexia)

    Science.gov (United States)

    Kremin, Helgard

    1976-01-01

    This article reviews studies done on alexia and describes experiments designed to distinguish qualitatively between pure alexia (marked by the absence of oral and written problems) and other forms of alexia. (Text is in French.) (CLK)

  19. Global empirical potentials from purely rotational measurements

    CERN Document Server

    Dattani, Nikesh S; Sun, Ming; Johnson, Erin R; Roy, Robert J Le; Ziurys, Lucy M

    2014-01-01

    The recent advent of chirped-pulse FTMW technology has created a plethora of pure rotational spectra for molecules for which no vibrational information is known. The growing number of such spectra demands a way to build empirical potential energy surfaces for molecules, without relying on any vibrational measurements. Using ZnO as an example, we demonstrate a powerful technique for efficiently accomplishing this. We first measure eight new ultra-high precision ($\\pm2$ kHz) pure rotational transitions in the $X$-state of ZnO. Combining them with previous high-precision ($\\pm50$ kHz) pure rotational measurements of different transitions in the same system, we have data that spans the bottom 10\\% of the well. Despite not using any vibrational information, our empirical potentials are able to determine the size of the vibrational spacings and bond lengths, with precisions that are more than three and two orders of magnitude greater, respectively, than the most precise empirical values previously known, and the mo...

  20. On constructing purely affine theories with matter

    Science.gov (United States)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  1. On constructing purely affine theories with matter

    CERN Document Server

    Cervantes-Cota, Jorge L

    2016-01-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schroedinger's purely affine theory [21], where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  2. Perspective on the structure of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A., E-mail: nilsson@slac.stanford.edu [Stanford Synchrotron Radiation Lightsource, P.O. Box 20450, Stanford, CA 94309 (United States); Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Pettersson, L.G.M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2011-11-07

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: Black-Right-Pointing-Pointer Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). Black-Right-Pointing-Pointer Interconvert discontinuously and ratio depends on temperature. Black-Right-Pointing-Pointer Density fluctuations on 1 nm length scale. Black-Right-Pointing-Pointer Increasing size in supercooled region. Black-Right-Pointing-Pointer Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid-liquid critical point hypothesis in supercooled water corresponding to high

  3. Water

    Science.gov (United States)

    ... Lead Poisoning Prevention Training Center (HHLPPTC) Training Tracks Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir For information about lead in water in Flint, MI, please visit http://www.phe. ...

  4. A new nanospray drying method for the preparation of nicergoline pure nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-06-15

    Three different batches of pure nanoparticles (NPs) of nicergoline (NIC) were prepared by spray drying a water:ethanol solution by a new Nano Spray Dryer Buechi B-90. Spherical pure NPs were obtained, and several analytical techniques such as differential scanning calorimetry and X-ray powder diffractometry permitted to assess their amorphous character. A comparison of the solubility, intrinsic dissolution, and drug release of original particles and pure amorphous NPs were determined, revealing an interesting improvement of biopharmaceutical properties of amorphous NPs, due to both amorphous properties and nanosize dimensions. Since in a previous work, the high-thermodynamic stability of amorphous NIC was demonstrated, this study is addressed toward the formulation of NIC as pure amorphous NPs.

  5. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    Science.gov (United States)

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time.

  6. Pure zeolite synthesis from silica extracted from coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, N.; Querol, X.; Plana, F.; Andres, J.M.; Janssen, M.; Nugteren, H. [CSIC, Barcelona (Spain). Inst. Earth Science ' Jaume Almera'

    2002-07-01

    Pure zeolites can be synthesised from silica extracted from fly ash by alkaline leaching. If the process is optimised the solid residue arising from this extraction may also contain a relatively high content of zeolitic material mixed with residual fly ash components. Both the pure and the impure zeolitic material have a high potential for application in waste-water and flue gas-cleaning technologies. The silica extraction potential of 23 European coal fly ashes covering most of the possible fly ash types is investigated in this study. Optimisation of leaching processes, by varying temperature, time and alkali/fly ash rates, permitted extraction yields up to 140 g of SiO{sub 2} per kg using a single step process, but the extraction yields may reach up to 210 g kg{sup -1} by applying thermal pre-treatments prior to the extraction. The solid residue arising from the silica extraction experiments shows a high NaP1 zeolite content. A high Si/Al ratio of the glass matrix, the occurrence of easily soluble silica phases in the original fly ash and a high reactive surface area were found to be the major parameters influencing silica extraction. High purity 4A and X zeolitic material was obtained by combining the silica extracts from the Meirama fly ash and a waste solution from the Al-anodising industry. The results allowed conversion of the silica extraction yields to an equivalent 630 g of pure 4A-X zeolite per kg of fly ash with a cation exchange capacity of 4.7 meq g{sup -1}.

  7. Pure transperitoneal laparoscopic correction of retrocaval ureter

    Institute of Scientific and Technical Information of China (English)

    DING Guo-qing; XU Li-wei; LI Xin-de; LI Gong-hui; YU Yan-lan; YU Da-min; ZHANG Zhi-gen

    2012-01-01

    Background Retrocaval ureter is a rare congenital abnormality.Operative repair is always suggested in cases of significant functional obstruction.Laparoscopic procedures have been employed as the minimally invasive therapeutic option for retrocaval ureter.However,the laparoscopic techniques for retrocaval ureter might be technically challenging to some surgeons.The aim of this article was to present our experience and surgical techniques of pure transperitoneal laparoscopic pyelopyelostomy and ureteroureterostomy in nine patients with retrocaval ureter.Methods A total of nine patients of retrocaval ureter underwent pure laparoscopic pyelopyelostomy or ureteroureterostomy.The operation was performed with the patients placed in the 70-degree lateral decubitus position via a three port transperitoneal approach with two 10-mm and one 5-mm ports.The distal part of the dilated renal pelvis was transected at the ureteropelvic junction and the ureter was relocated anterior to the inferior vena cava.The tension-free pyeloureteral or ureteroureteral anastomosis was completed with the intracorporal freehand suturing and in situ knot-tying techniques combined with interrupted and continuous fashion.A double J ureteral stent was inserted in an antegrade manner during laparoscopy.Intravenous urography or computerized tomography and renal ultrasonography were performed after 3 months postoperatively.Results All operations were completed laparoscopically,and no open conversion was required.The mean operative time was 135 minutes (range,70-250 minutes),with minimal blood loss (less than 60 ml).No intra-operative complications or significant bleeding occurred.All patients presented mild postoperative pain and quick convalescence.The symptoms disappeared and hydronephrosis decreased substantially after surgery.Conclusions Pure transperitoneal laparoscopic correction for retrocaval ureter was associated with an excellent outcome,minimal invasiveness and short hospital stay.It is

  8. Needleless Electrospinning of Pure and Blended Chitosan

    Science.gov (United States)

    Grimmelsmann, Nils; Homburg, Sarah Vanessa; Ehrmann, Andrea

    2017-08-01

    Chitosan is a biopolymer with bactericidal, fungicidal, hemostatic and other interesting properties. It can be used, e.g., in medical products, as a filter medium, in biotechnological purposes etc. For these possible applications, nanofiber mats with a large inner surface will be most efficient. This is why in a recent project, the electrospinning properties of pure chitosan as well as chitosan blended with poly(ethylene oxide) were investigated. Using a needleless nanospinning process, the technology under examination can be upscaled from lab to industrial scale, enabling direct transfer of the gained experiences to the intended application.

  9. Pure spinor equations to lift gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Dario; Tomasiello, Alessandro [Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2014-01-31

    We rewrite the equations for ten-dimensional supersymmetry in a way formally identical to a necessary and sufficient G-structure system in N=2 gauged supergravity, where all four-dimensional quantities are replaced by combinations of pure spinors and fluxes in the internal space. This provides a way to look for lifts of BPS solutions without having to reduce or even rewrite the ten-dimensional action. In particular this avoids the problem of consistent truncation, and the introduction of unphysical gravitino multiplets.

  10. Are all maximally entangled states pure?

    Science.gov (United States)

    Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.

    2005-10-01

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  11. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  12. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  13. Quantum correlations support probabilistic pure state cloning

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)

    2014-02-01

    The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.

  14. Pure and Public, Popular and personal

    DEFF Research Database (Denmark)

    Eriksson, Birgit

    2013-01-01

    In the article I reexamine the traditional aesthetical and political critiques of popular culture and reevaluate the social and communicative potential of bestselling cultural artifacts such as highly popular television series. First, I sketch the alleged aesthetic and social problems of popular...... and the exclusions of the public sphere. I argue that the ideals of a pure aesthetic and a public sphere neglect issues that are crucial to the type of commonality at stake in popular cultural artifacts: personal issues, social conflicts, and what is pleasurable to the senses or has to do with emotions. Third, I...

  15. Pure seminoma: A review and update

    Science.gov (United States)

    2011-01-01

    Pure seminoma is a rare pathology of the young adult, often discovered in the early stages. Its prognosis is generally excellent and many therapeutic options are available, especially in stage I tumors. High cure rates can be achieved in several ways: standard treatment with radiotherapy is challenged by surveillance and chemotherapy. Toxicity issues and the patients' preferences should be considered when management decisions are made. This paper describes firstly the management of primary seminoma and its nodal involvement and, secondly, the various therapeutic options according to stage. PMID:21819630

  16. [XX 'pure' gonadal dysgenesis and XYY syndrome].

    Science.gov (United States)

    Itoh, Naoki; Tsukamoto, Taiji

    2004-02-01

    XX 'pure' gonadal dysgenesis is a disease related to Turner's syndrome. Patients of this disease are characterized by normal female external genitalia, bilateral streak gonads, amenorrhea and sexual infantilism. Recently, it has been reported that point mutations of the FSH receptor gene may be one of cause of this disease. The relationship between criminal behavior and XYY syndrome is still controversial. Increased incidence of disomic sperm in 47,XYY males has been reported by fluorescent in situ hybridization(FISH). Genetic counseling should be done when they undergo intracytoplasmic sperm injection.

  17. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  18. Powder injection molding of pure titanium

    Institute of Scientific and Technical Information of China (English)

    GUO Shibo; DUAN Bohua; HE Xinbo; QU Xuanhui

    2009-01-01

    An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.

  19. Study on pure silica core optical fibers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An optimal refractive index profile of pure silica core optical fiber (PSCF) was designed, in combination with the characters of the modified chemical vapor deposition (MCVD) process. Techniques of preform fabrication by a new furnace round heating MCVD process and fiber drawing process were reviewed. Difficulties in doping fluorine in silica, widening the depressed-index cladding and maintaining the index of fiber core were discussed. Methods used to overcome these difficulties were given at the same time. Additionally, the optimal refractive index profiles of PSCF were presented.

  20. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.