WorldWideScience

Sample records for supercooled liquid vapor

  1. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-01-01

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties

  2. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  3. Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method

    International Nuclear Information System (INIS)

    Wang Zunyao; Zeng Xiaolan; Zhai Zhicai

    2008-01-01

    The molecular geometries of 209 polybrominated diphenyl ethers (PBDEs) were optimized at the B3LYP/6-31G* level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two novel QSPR models for predicting supercooled liquid vapor pressures (P L ) and octanol/air partition coefficients (K OA ) of PBDEs based on the theoretical linear solvation energy relationship (TLSER) model, respectively. The two models achieved in this work both contain three variables: most negative atomic partial charge in molecule (q - ), dipole moment of the molecules (μ) and mean molecular polarizability (α), of which R 2 values are both as high as 0.997, their root-mean-square errors in modeling (RSMEE) are 0.069 and 0.062 respectively. In addition, the F-value of two models are both evidently larger than critical values F 0.05 and the variation inflation factors (VIF) of variables herein are all less than 5.0, suggesting obvious statistic significance of the P L and K OA predicting models. The results of Leave-One-Out (LOO) cross-validation for training set and validation with external test set both show that the two models obtained exhibited optimum stability and good predictive power. We suggest that the QSPRs derived here can be used to predict accurately P L and K OA for non-tested PBDE congeners from Mono-BDEs to Hepta-BDEs and from Mono-BDEs to Hexa-BDEs, respectively

  4. Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors.

    Science.gov (United States)

    Vikas; Chayawan

    2014-01-01

    For predicting physico-chemical properties related to environmental fate of molecules, quantitative structure-property relationships (QSPRs) are valuable tools in environmental chemistry. For developing a QSPR, molecular descriptors computed through quantum-mechanical methods are generally employed. The accuracy of a quantum-mechanical method, however, rests on the amount of electron-correlation estimated by the method. In this work, single-descriptor QSPRs for supercooled liquid vapor pressure of chloronaphthalenes and polychlorinated-naphthalenes are developed using molecular descriptors based on the electron-correlation contribution of the quantum-mechanical descriptor. The quantum-mechanical descriptors for which the electron-correlation contribution is analyzed include total-energy, mean polarizability, dipole moment, frontier orbital (HOMO/LUMO) energy, and density-functional theory (DFT) based descriptors, namely, absolute electronegativity, chemical hardness, and electrophilicity index. A total of 40 single-descriptor QSPRs were developed using molecular descriptors computed with advanced semi-empirical (SE) methods, namely, RM1, PM7, and ab intio methods, namely, Hartree-Fock and DFT. The developed QSPRs are validated using state-of-the-art external validation procedures employing an external prediction set. From the comparison of external predictivity of the models, it is observed that the single-descriptor QSPRs developed using total energy and correlation energy are found to be far more robust and predictive than those developed using commonly employed descriptors such as HOMO/LUMO energy and dipole moment. The work proposes that if real external predictivity of a QSPR model is desired to be explored, particularly, in terms of intra-molecular interactions, correlation-energy serves as a more appropriate descriptor than the polarizability. However, for developing QSPRs, computationally inexpensive advanced SE methods such as PM7 can be more reliable than

  5. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  6. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  7. Structure, thermodynamics, and dynamical properties of supercooled liquids

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-12-01

    The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs

  8. Supercooled liquid dynamics for the charged hard-sphere model

    International Nuclear Information System (INIS)

    Lai, S.K.; Chang, S.Y.

    1994-08-01

    We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs

  9. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  10. Mixing effects in the crystallization of supercooled quantum binary liquids

    International Nuclear Information System (INIS)

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-01-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH 2 ) or orthodeuterium (oD 2 ) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH 2 and oD 2 crystal growth rates, similarly to what found in our previous work on supercooled pH 2 -oD 2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites

  11. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  12. Evidence for compact cooperatively rearranging regions in a supercooled liquid

    International Nuclear Information System (INIS)

    Elenius, M; Dzugutov, M

    2009-01-01

    We examine structural relaxation in a supercooled glass-forming liquid simulated by constant-energy constant-volume (NVE) molecular dynamics. Time correlations of the total kinetic energy fluctuations are used as a comprehensive measure of the system's approach to the ergodic equilibrium. We find that, under cooling, the total structural relaxation becomes delayed as compared with the decay of the component of the intermediate scattering function corresponding to the main peak of the structure factor. This observation can be explained by collective movements of particles preserving many-body structural correlations within compact three-dimensional (3D) cooperatively rearranging regions.

  13. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    Science.gov (United States)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  14. Linking density functional and mode coupling models for supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  15. Linking density functional and mode coupling models for supercooled liquids.

    Science.gov (United States)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  16. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  17. Mechanical annealing in the flow of supercooled metallic liquid

    International Nuclear Information System (INIS)

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-01-01

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr 58.5 Cu 15.6 Al 10.3 Ni 12.8 Nb 2.8 , at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10 −1 s −1 to different strains were performed at the end of glass transition (T g-end  = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10 −1 s −1 to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model

  18. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    International Nuclear Information System (INIS)

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-01-01

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature

  19. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  20. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  1. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    Science.gov (United States)

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  2. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  3. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    Science.gov (United States)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  4. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  5. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  6. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  7. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  8. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  9. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lan, S.; Ma, J. L.; Fan, J. [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); Blodgett, M.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University One Brookings Drive, St. Louis, Missouri 63130-4899 (United States); Wang, X.-L., E-mail: xlwang@cityu.edu.hk [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China)

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  10. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  11. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom

    2013-01-01

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising...... asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  12. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  13. Density of states of colloidal glasses and supercooled liquids

    NARCIS (Netherlands)

    Ghosh, A.; Mari, R.; Chikkadi, V.; Schall, P.; Kurchan, J.; Bonn, D.

    2010-01-01

    The glass transition is perhaps the greatest unsolved problem in condensed matter physics: the main question is how to reconcile the liquid-like structure with solid-like mechanical properties. In solids, structure and mechanics are related directly through the vibrational density of states of the

  14. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei; He, Li [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Besser, Matthew F. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, Ze; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511 (United States); Kramer, Matthew J. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Voyles, Paul M., E-mail: paul.voyles@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-07-15

    Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} amorphous nanorods and Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g{sub 2}(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g{sub 2}(t) data even with low signal per frame. - Highlights: • Electron Correlation Microscopy (ECM) technique was applied to measure structural relaxation times of supercooled liquids in metallic glass. • In Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} nanowire, τ and β decreases over the measured supercooled liquid regime. • In Pd{sub 40}Ni{sub 40}P{sub 20} bulk alloy, τ decreases from T{sub g}+28 °C to T{sub g}+48 °C, then increases as the temperature approaches T{sub x}. • ECM experiment requires a length of time series at least 40 times the characteristic relaxation time and a time per diffraction pattern at most 0.1 times the relaxation time.

  15. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H{sub 2}O-NaCl and H{sub 2}O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  16. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    International Nuclear Information System (INIS)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H 2 O-NaCl and H 2 O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases

  17. Orientational ordering as a possible mechanism for viscosity-enhancement of supercooled liquids

    International Nuclear Information System (INIS)

    Dattagupta, S.

    1990-07-01

    A supercooled liquid is viewed to have regions of local orientational order which can be picturized in terms of cages that restrict single particle diffusion. The mismatch in the orientation of two locally ordered neighbouring regions causes an internal stress which is added to the stress that appears in the Maxwell model of viscoelasticity. This leads to a ''renormalized'' Maxwell time which is related to the susceptibility associated with the orientational order. Hence, when the latter becomes very large, one obtains a large enhancement of the viscosity. (author). 7 refs

  18. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    International Nuclear Information System (INIS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat

  19. Correlation between supercooled liquid relaxation and glass poisson’s ratio

    DEFF Research Database (Denmark)

    Sun, Q.J.; Hu, L.N.; Zhou, C.

    2015-01-01

    in the ratio r and this relation can be described by the empirical function v = 0.5 − A ∗ exp(−B ∗ r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation......We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson’s ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson’s ratio v generally increases with an increase...... lies in the heredity of the structural heterogeneity from liquid to glass. This work gives insights into both the microscopic mechanism of glass deformation through the SL dynamics and the complex structural evolution during liquid-glass transition....

  20. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus......, and Lame parameter), together with Debye temperature, gradually decrease with increasing temperature through the glass transition temperature as the Poisson's ratio increases. The behavior of the velocity of transverse wave vs. temperature in the supercooled liquid region could be explained by viscosity...

  1. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  2. The molecular dynamics simulation of structure and transport properties of sheared super-cooled liquid metal

    International Nuclear Information System (INIS)

    Wang Li; Liu Xiangfa; Zhang Yanning; Yang Hua; Chen Ying; Bian Xiufang

    2003-01-01

    Much more attention has been paid to the microstructure of liquid metal under non-ordinary condition recently. In this Letter, the pair correlation function (PCF), together with internal energy of sheared super-cooled liquid Co as a function of temperature has been calculated by molecular dynamics simulation based upon the embedded atom method (EAM) and analyzed compared to that under normal condition. The finding indicates that there exist three obvious peaks of PCF for liquid Co; while as the shear stress is applied to the liquid, the first and second peaks of PCF become lower, the third peak disappeared. The concentric shell structure representing short-range order of liquid still exists, however, it is weakened by the addition of shear stress, leading to the increases of disordering degree of liquid metal. The curves of energy versus temperature suggest the higher crystalline temperature compared to that under normal condition at the same cooling rate. In addition, the viscosity of super-liquid Co is calculated by non-equilibrium molecular dynamics (NEMD)

  3. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  4. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  5. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  6. Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation

    International Nuclear Information System (INIS)

    Zhou Lili; Liu Rangsu; Tian Zean; Liu Hairong; Hou Zhaoyang; Peng Ping; Zhu Xuanmin; Liu Quanhui

    2012-01-01

    The kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation process have been investigated by molecular dynamics simulations, and the microstructure evolution analyzed by the cluster-type index method (CTIM) and the tracing method. It has been found that, the dynamic features are consistently correlated with the microstructure evolution and the crystallization characteristics in the mean square displacement (MSD) and the non-Gaussian parameter (NGP): the β relaxation regime corresponds to the minor structural rearrangement because of the “cage effect”, and the atoms attempt to escape from the “cages”; the α relaxation regime is related to a more diffusive movement of atoms, and the appearance of the second plateau in MSD and the non-zero plateau in NGP corresponds to the completion of crystallization. In addition, three distinct stages of nucleation, growth of nuclei and coarsening of crystallites in the crystallization process have been clearly revealed.

  7. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  8. Measurement of Density, Sound Velocity, Surface Tension, and Viscosity of Freely Suspended Supercooled Liquids

    Science.gov (United States)

    Trinh, E. H.

    1995-01-01

    Non-contact methods have been implemented in conjunction with levitation techniques to carry out the measurement of the macroscopic properties of liquids significantly cooled below their nominal melting point. Free suspension of the sample and remote methods allow the deep excursion into the metastable liquid state and the determination of its thermophysical properties. We used this approach to investigate common substances such as water, o-terphenyl, succinonitrile, as well as higher temperature melts such as molten indium, aluminum and other metals. Although these techniques have thus far involved ultrasonic, electromagnetic, and more recently electrostatic levitation, we restrict our attention to ultrasonic methods in this paper. The resulting magnitude of maximum thermal supercooling achieved have ranged between 10 and 15% of the absolute temperature of the melting point for the materials mentioned above. The physical properties measurement methods have been mostly novel approaches, and the typical accuracy achieved have not yet matched their standard equivalent techniques involving contained samples and invasive probing. They are currently being refined, however, as the levitation techniques become more widespread, and as we gain a better understanding of the physics of levitated liquid samples.

  9. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    International Nuclear Information System (INIS)

    Li, Rong; Wu, Yongquan; Xiao, Junjiang

    2014-01-01

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms

  10. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    Science.gov (United States)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  11. Structural stability of Pd40Cu30Ni10P20 metallic glass in supercooled liquid region

    International Nuclear Information System (INIS)

    Jiang, J.Z.; Saksl, K.

    2004-01-01

    Phase separation of bulk and ribbon Pd 40 Cu 30 Ni 10 P 20 glasses, annealed in the supercooled liquid region at ambient pressure and high pressures, has been studied by means of differential scanning calorimetry (DSC) and X-ray diffraction techniques. DSC measurements show only one glass transition event in all annealed samples, indicating that no phase separation occurs in the alloy annealed in the supercooled liquid region. Phase analyses reveal at least six crystalline phases in the crystallized sample: monoclinic, tetragonal Cu 3 Pd-like, rhombohedral, fcc-Ni 2 Pd 2 P, fcc-(Ni, Pd) solid solution, and body-centered tetragonal (bct) Ni 3 P-like phases. Annealing treatments under external pressures in the vicinity of the glass transition temperature neither induce phase separation nor alter the glass transition temperature of the Pd 40 Cu 30 Ni 10 P 20 bulk glass

  12. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  13. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    Science.gov (United States)

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  14. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  15. Two-Order-Parameter Description of Liquids: Critical Phenomena and Phase Separation of Supercooled Liquids

    OpenAIRE

    Tanaka, Hajime

    1997-01-01

    Because of the isotropic and disordered nature of liquids, the anisotropy hidden in intermolecular interactions are often neglected. Accordingly, the order parameter describing a simple liquid has so far been believed to be only density. In contrast to this common sense, we propose that two order parameters, namely, density and bond order parameters, are required to describe the phase behavior of liquids since they intrinsically tend to form local bonds. This model gives us clear physical exp...

  16. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  17. Nature of the anomalies in the supercooled liquid state of the mW model of water

    Science.gov (United States)

    Holten, Vincent; Limmer, David T.; Molinero, Valeria; Anisimov, Mikhail A.

    2013-05-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  18. Nature of the anomalies in the supercooled liquid state of the mW model of water.

    Science.gov (United States)

    Holten, Vincent; Limmer, David T; Molinero, Valeria; Anisimov, Mikhail A

    2013-05-07

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  19. Fe-based bulk metallic glasses with a larger supercooled liquid region and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, K.Q. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China)], E-mail: kqqiu@yahoo.com.cn; Pang, J.; Ren, Y.L.; Zhang, H.B. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110178 (China); Ma, C.L.; Zhang, T. [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-12-20

    Bulk metallic glasses (BMGs) with compositions of Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}M{sub x} (x = 2, 3; M = Ni, Nb) were fabricated by copper mold casting using raw industrial materials. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical tester and scanning electron microscope (SEM) were employed to check the phase constituent, the thermal stability, the mechanical properties and the fracture surfaces of as-cast samples. The results indicate that the BMGs with diameters of 1.5-3 mm were fabricated for the alloys investigated. The largest supercooled liquid region (SLR) up to 76 K was found for Fe{sub 58.5}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub 3} BMG. The BMGs with Ni addition exhibit not only high fracture strengths reaching 3770 MPa for x = 2 and 3980 MPa for x = 3 alloys, respectively, but also apparently plastic strains up to 0.67% and 0.93%, respectively. The fracture surfaces of the Fe{sub 61.5-x}Co{sub 3}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 0.5}Ni{sub x} (x = 2, 3) alloys with plasticity show narrow ridges characteristic of venous patterns combining with tearing flow between the ridges. While the Nb containing alloys show not only a lower SLR below 60 K but also a lower stress below 2400 MPa, as well as almost no plastic strain before fracture.

  20. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  1. Molecular dynamics study of dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2014-10-01

    Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.

  2. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2018-03-01

    Full Text Available The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t, following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity is maximized with a characteristic length ξ_{4}, when t reaches the relaxation time τ_{α}. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t=0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ∼ξ_{4}, indicating that the static length ξ grows coherently with the dynamic one ξ_{4} upon cooling. This further suggests an intrinsic link between τ_{α} and ξ: the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ, which control dynamics in local and nonlocal manners, resulting

  3. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    Science.gov (United States)

    Tong, Hua; Tanaka, Hajime

    2018-01-01

    The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two

  4. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    Science.gov (United States)

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  5. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Science.gov (United States)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  6. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  7. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  8. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids

    Science.gov (United States)

    Zhang, Meng; Liu, Lin

    2018-06-01

    To unravel the true nature of glass transition, broader insights into glass forming have been gained by examining the stress-driven glassy systems, where strong shear thinning, i.e. a reduced viscosity under increasing shear rate, is encountered. It is argued that arbitrarily small stress-driven shear rates would ‘melt’ the glass and erase any memory of its thermal history. In this work, we report a glass transition memorized by the enthalpy-entropy compensation in strongly shear-thinned supercooled metallic liquids, which coincides with the thermal glass transition in both the transition temperature and the activation Gibbs free energy. Our findings provide distinctive insights into both glass forming and shear thinning, and enrich current knowledge on the ubiquitous enthalpy-entropy compensation empirical law in condensed matter physics.

  9. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rakesh S.; Debenedetti, Pablo G. [Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Biddle, John W.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute of Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-14

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  10. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.; Anisimov, Mikhail A.

    2016-01-01

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  11. More accurate X-ray scattering data of deeply supercooled bulk liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Neuefeind, Joerg C [ORNL; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Paschek, Dietmar [Rostock University, Rostock, Germany

    2011-01-01

    Deeply supercooled water droplets held container-less in an acoustic levitator are investigated with high energy X-ray scattering. The temperature dependence X-ray structure function is found to be non-linear. Comparison with two popular computer models reveals that structural changes are predicted too abrupt by the TIP5P model, while the rate of change predicted by TIP4P is in much better agreement with experiment. The abrupt structural changes predicted by the TIP5P model to occur in the temperature range between 260-240K as water approaches the homogeneous nucleation limit are unrealistic. Both models underestimate the distance between neighbouring oxygen atoms and overestimate the sharpness of the OO distance distribution, indicating that the strength of the H-bond is overestimated in these models.

  12. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  13. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit; Mayet, Abdulilah M.

    2014-01-01

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  14. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  15. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long time scale

    International Nuclear Information System (INIS)

    Busch, R.; Johnson, W.L.

    1998-01-01

    Viscosity and enthalpy relaxation from the amorphous state into the supercooled liquid state was investigated in the bulk metallic glass forming Zr 46.75 Ti 8.25 Cu 7.5 Ni 10 Be 27.5 alloy below the calorimetric glass transition. At different temperatures, the viscosities relax into states that obey the same Vogel endash Fulcher endash Tammann relation as the data obtained at higher temperatures in the supercooled liquid. Enthalpy recovery experiments after relaxation in the same temperature range show that the enthalpy of the material reaches values that also corresponds to the supercooled liquid state. The glass relaxes into a metastable supercooled liquid state, if it is observed on a long time scale. Equilibration is possible far below the calorimetric glass transition and very likely even below the isentropic temperature. copyright 1998 American Institute of Physics

  16. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  17. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  18. Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. S.; Gerward, Leif

    2000-01-01

    The effect of pressure on the crystallization behavior of metallic glass Fe72P11C6Al5B4Ga2 alloy with a wide supercooled liquid region has been investigated by in situ high-pressure and high-temperature x-ray diffraction measurements using synchrotron radiation. In the pressure range from 0 to 2...... mobility and changes of the Gibbs free energy of various phases with pressure. ©2000 American Institute of Physics....

  19. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.

    Science.gov (United States)

    Freed, Karl F

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition" [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  20. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute and Department of Chemistry, University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 (United States)

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, “The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition” [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  1. Air oxidation of Zr65Cu17.5Ni10Al7.5 in its amorphous and supercooled liquid states, studied by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Dhawan, A.; Sharma, S.K.; Raetzke, K.; Faupel, F.

    2003-01-01

    The oxidation behaviour of the bulk amorphous alloy Zr 65 Cu 17.5 Ni 10 Al 7.5 was studied in air at various temperatures in the temperature range 591-732 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy obeys the parabolic rate law showing two different linear regions (in the plots of mass gain versus square root of oxidation time) which are attributed to the amorphous and the supercooled liquid states of the alloy. The value of the activation energy Q for the amorphous state as calculated from the temperature dependence of the rate constants is found to be 1.80±0.1 eV and the corresponding value obtained for the supercooled liquid state is 1.20±0.1 eV. It is suggested that the rate controlling process during oxidation of the amorphous state is the back-diffusion of Ni, and possibly Cu also, while the oxidation in the supercooled liquid state is dominated by the inward diffusion of oxygen. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  3. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Hensel-Bielowka, S [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Casalini, R [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Chemistry Department, George Mason University, Fairfax, VA 22030 (United States)

    2005-06-01

    An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification. Recent advances have been made by using hydrostatic pressure as an experimental variable. These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers.

  4. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  5. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  6. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  7. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  8. Equilibrium and out-of-equilibrium thermodynamics in supercooled liquids and glasses

    International Nuclear Information System (INIS)

    Mossa, S; Nave, E La; Tartaglia, P; Sciortino, F

    2003-01-01

    We review the inherent structure thermodynamical formalism and the formulation of an equation of state (EOS) for liquids in equilibrium based on the (volume) derivatives of the statistical properties of the potential energy surface. We also show that, under the hypothesis that during ageing the system explores states associated with equilibrium configurations, it is possible to generalize the proposed EOS to out-of-equilibrium (OOE) conditions. The proposed formulation is based on the introduction of one additional parameter which, in the chosen thermodynamic formalism, can be chosen as the local minimum where the slowly relaxing OOE liquid is trapped

  9. Dynamics of supercooled liquids: excess wings, β peaks, and rotation-translation coupling

    International Nuclear Information System (INIS)

    Cummins, H Z

    2005-01-01

    Dielectric susceptibility spectra of liquids cooled towards the liquid-glass transition often exhibit secondary structure in the frequency region between the α peak and the susceptibility minimum, in the form of either an 'excess wing' or a secondary peak-the Johari-Goldstein β peak. Recently, Goetze and Sperl (2004 Phys. Rev. Lett. 92 105701) showed that a simple schematic mode coupling theory model, which incorporates rotation-translation (RT) coupling, successfully describes the nearly logarithmic decay observed in optical Kerr effect data. This model also exhibits both excess wing and β peak features, qualitatively resembling experimental dielectric data. It also predicts that the excess wing slope decreases with decreasing temperature and gradually evolves into a β peak with increasing RT coupling. We therefore suggest that these features and their observed evolution with temperature may be consequences of RT coupling

  10. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  11. Scaling parallels in the non-Debye dielectric relaxation of ionic glasses and dipolar supercooled liquids

    International Nuclear Information System (INIS)

    Sidebottom, D.L.; Green, P.F.; Brow, R.K.

    1997-01-01

    We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society

  12. On the vapor-liquid equilibrium in hydroprocessing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  13. Molecular dynamics studies of the dynamics of supercooled Lennard-Jones liquids

    International Nuclear Information System (INIS)

    De Leeuw, S.W.; Brakkee, M.J.D.

    1990-01-01

    Results are presented of molecular dynamics experiments, in which the Lennard-Jones liquid is cooled isobarically into the metastable temperature region below the freezing temperature. The variation of the density-density and transverse current correlation functions with temperature is studied. We observed a power-law behaviour for the temperature dependence of dynamical properties (viscosity and coefficienty of self-diffusion) with an exponent in good agreement with prediction of mode coupling theories and recent experimental results. (author). 23 refs, 5 figs

  14. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole.

    Science.gov (United States)

    Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M

    2015-06-14

    Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.

  15. Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling

    Science.gov (United States)

    Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho

    2017-10-01

    Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.

  16. Breaking the glass ceiling: Configurational entropy measurements in extremely supercooled liquids

    Science.gov (United States)

    Berthier, Ludovic

    Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four independent estimates of their configurational entropy. These measurements consistently indicate that the steep entropy decrease observed in experiments is found in simulations even beyond the experimental glass transition. Our numerical results thus open a new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.

  17. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole

    Energy Technology Data Exchange (ETDEWEB)

    Tarnacka, M., E-mail: mtarnacka@us.edu.pl; Madejczyk, O.; Kamiński, K.; Paluch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Adrjanowicz, K. [NanoBioMedical Centre, ul. Umultowska 85, 61-614 Poznan (Poland); Pionteck, J. [Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden (Germany); Kaminska, E. [Department of Pharmacognosy and Phytochemistry, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec (Poland)

    2015-06-14

    Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT{sub g}/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT{sub n}/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ {sub α} = 10{sup −5} s. Furthermore, we plotted the obtained relaxation times as a function of T{sup −1}v{sup −γ}, which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals’ properties of itraconazole molecule.

  18. Vapor bubble growth in highly superheated liquid

    International Nuclear Information System (INIS)

    Pavlov, P.A.

    1981-01-01

    Dynamics of the bubble growth in the volume of the uniformally superheated liquid is considered. It is supposed that its growth is hampered by heat transfer. An asymptotic expression for the bubble growth rate at high superheatings when heat hold by liquid is comparable with heat of steam formation, is found by the automodel solution of the heat transfer equation. Writing the radius square in the form of a functional applicable for the calculation of steam formation at the pressure change in superheated liquid is suggested for eveluation calculations [ru

  19. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  20. An energy landscape based approach for studying supercooled liquid and glassy thin films

    Science.gov (United States)

    Shah, Pooja; Mittal, Jeetain; Truskett, Thomas M.

    2004-03-01

    Materials in confined spaces are important in science and technology. Examples include biological fluids in membranes, liquids trapped in porous rocks, and thin-film materials used in high-resolution patterning technologies. However, few reliable rules exist to predict how the properties of materials will be affected by thin-film confinement. We have recently shown that the potential energy landscape formalism can be used to study, by both theory [1] and simulation [2], how the behavior of thin-film materials depends on sample dimensions and film-substrate interactions. Our landscape-based mean-field theory [1] can be used to study both the thermodynamic properties and the ideal glass transition of thin films. It predicts that, in the case of neutral or repulsive walls, the ideal glass transition temperature is lowered by decreasing film thickness. This is in qualitative agreement with experimental trends for the kinetic glass transition in confined fluids. Landscape-based approaches are also valuable for understanding the structural and mechanical properties of thin-film glasses. We demonstrate how the concept of an "equation of state of the energy landscape" [3] can be generalized to thin films [1, 2], where it gives insights into potential molecular mechanisms of tensile strength. [1] T. M. Truskett and V. Ganesan, J. Chem. Phys. 119, 1897-1900(2003); J. Mittal, P. Shah and T. M. Truskett, to be submitted to Langmuir. [2] P. Shah and T. M. Truskett, to be submitted to J. Phys. Chem. B. [3] S. Sastry, P. G. Debenedetti and F. H. Stillinger, Phys. Rev. E 56, 5533 (1997)

  1. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    Science.gov (United States)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  2. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  3. Combination downflow-upflow vapor-liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, John H. (Uniontown, OH); Prueter, William P. (Alliance, OH); Eaton, Andrew M. (Alliance, OH)

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  4. Combination downflow-upflow vapor-liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.H.; Prueter, W.P.; Eaton, A.M.

    1987-03-10

    An improved vapor-liquid separator is described having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end. 11 figs.

  5. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  6. Modeling of vapor-liquid-liquid equilibria in binary mixtures

    NARCIS (Netherlands)

    Tzabar, Nir; ter Brake, Hermanus J.M.

    2016-01-01

    Vapor compression and Joule–Thomson (JT) cycles provide cooling power at the boiling temperatures of the refrigerants. Maintaining a fixed pressure in the evaporator allows for a stable cooling temperature at the boiling point of a pure refrigerant. In these coolers enhanced cooling power can be

  7. Kinetics of crystal growth in amorphous solid and supercooled liquid TeSe20 using DTA and d.c. conductivity measurements

    International Nuclear Information System (INIS)

    Kotkata, M.F.; Mahmoud, E.A.; El-Mously, M.K.

    1979-07-01

    Curves of reaction rate versus temperature for constant heating rates (phi=1-10 0 C/min) constructed by analytical methods have been used to demonstrate the crystallization kinetics of amorphous solid TeSe 20 . The devitrification process takes place with predominance of random nucleation and one-dimensional growth, and is limited by combined switching and splitting of the chemical bonds. The mean value for the activation energy of the amorphous-crystal transformation, average E, is found to be 64 Kcal/mole. While, the quantity E calculated on the basis of d.c. conductivity changes during different isothermal crystallization (120-175 0 C) in supercooled liquid TeSe 20 , amounts to 11.5 Kcal/mole and suggests the existence of mixed chains in the liquid alloys. (author)

  8. Wavelength dependence of liquid-vapor interfacial tension of Ga

    International Nuclear Information System (INIS)

    Li Dongxu; Yang Bin; Rice, Stuart A.; Lin Binhua; Meron, Mati; Gebhardt, Jeff; Graber, Tim

    2004-01-01

    The wave-vector dependence of the liquid-vapor interfacial tension of Ga, γ(q), has been determined from diffuse x-ray scattering measurements. The ratio γ(q)/γ(0)=1 for q -1 decreases to 0.5 near q=0.22 Angstrom -1 , and increases strongly for larger q. The observed form for γ(q)/γ(0) is consistent with the prediction from the Mecke-Dietrich theory when the known stratified liquid-vapor interfacial density profile of Ga and a pseudopotential based pair interaction with appropriate asymptotic (r→∞) behavior are used. The detailed behavior of γ(q)/γ(0) depends on the particular forms of both the interfacial density profile and the asymptotic falloff of the atomic pair interaction

  9. Raman non-coincidence effect of boroxol ring: The interplay between repulsion and attraction forces in the glassy, supercooled and liquid state

    Science.gov (United States)

    Kalampounias, Angelos G.; Papatheodorou, George N.

    2018-06-01

    Temperature dependent Raman spectra of boric oxide have been measured in a temperature range covering the glassy, supercooled and liquid state. The shift of the isotropic band assigned to boroxol rings relative to the anisotropic component upon heating the glass is measured and attributed to the Raman non-coincidence effect. The measured shift is associated with the competition between attraction and repulsion forces with increasing temperature. The relation of dephasing and orientational relaxation times to the non-coincidence effect of the condensed phases has been examined. We discuss our results in the framework of the current phenomenological status of the field in an attempt to separate the attraction and repulsion contributions corresponding to the observed non-coincidence effect.

  10. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  11. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  12. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    Science.gov (United States)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  13. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  14. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  15. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  16. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Pequenin, Ana; Asensi, Juan Carlos; Gomis, Vicente

    2011-01-01

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  17. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  18. Modelling and numerical simulation of liquid-vapor phase transitions

    International Nuclear Information System (INIS)

    Caro, F.

    2004-11-01

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  19. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    Science.gov (United States)

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  20. Liquid-vapor coexistence by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Baranyai, Andras; Cummings, Peter T.

    2000-01-01

    We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics

  1. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  2. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  3. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state.

    Science.gov (United States)

    Adrjanowicz, K; Zakowiecki, D; Kaminski, K; Hawelek, L; Grzybowska, K; Tarnacka, M; Paluch, M; Cal, K

    2012-06-04

    Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.

  4. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  5. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  6. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  7. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities ( 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  8. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  9. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  10. Frequency and Wavevector Dependence of the Atomic Level Stress-Stress Correlation Function in a Model Supercooled Liquid

    Science.gov (United States)

    Levashov, Valentin A.; Morris, James R.; Egami, Takeshi

    2012-02-01

    Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).

  11. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  12. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  13. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  14. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; Fuente, Juan C. de la

    2011-01-01

    Research highlights: → (Vapor + liquid) equilibria of three (CO 2 + C 5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO 2 + 3-methyl-2-butanol), (CO 2 + 2-pentanol), and (CO 2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO 2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  15. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    Science.gov (United States)

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  16. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    Science.gov (United States)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  17. The Widom line of supercooled water

    International Nuclear Information System (INIS)

    Franzese, Giancarlo; Stanley, H Eugene

    2007-01-01

    Water can be supercooled to temperatures as low as -92 deg. C, the experimental crystal homogeneous nucleation temperature T H at 2 kbar. Within the supercooled liquid phase its response functions show an anomalous increase consistent with the presence of a liquid-liquid critical point located in a region inaccessible to experiments on bulk water. Recent experiments on the dynamics of confined water show that a possible way to understand the properties of water is to investigate the supercooled phase diagram in the vicinity of the Widom line (locus of maximum correlation length) that emanates from the hypothesized liquid-liquid critical point. Here we explore the Widom line for a Hamiltonian model of water using an analytic approach, and discuss the plausibility of the hypothesized liquid-liquid critical point, as well as its possible consequences, on the basis of the assumptions of the model. The present analysis allows us (i) to find an analytic expression for the spinodal line of the high-density liquid phase, with respect to the low-density liquid phase, showing that this line becomes flat in the P-T phase diagram in the physical limit of a large number of available orientations for the hydrogen bonds, as recently seen in simulations and experiments (Xu et al 2005 Proc. Natl Acad. Sci. 102 16558); (ii) to find an estimate of the values for the hypothesized liquid-liquid critical point coordinates that compare very well with Monte Carlo results; and (iii) to show how the Widom line can be located by studying the derivative of the probability of forming hydrogen bonds with local tetrahedral orientation which can be calculated analytically within this approach

  18. Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond in Vapor of Methanol-Based Liquid Solutions

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... Liquid solutions are prepared by mixing methanol with other carbon containing liquid compounds which contain a greater than one ratio of carbon to oxygen such as acetone, ethanol, and iso-propanol...

  19. Estimation of the vaporization heat of organic liquids. Pt. 3

    International Nuclear Information System (INIS)

    Ducros, M.; Sannier, H.

    1982-01-01

    In our previous publications it has been shown that the method of Benson's group permits the estimation of the enthalpies of vaporization of organic compounds. In the present paper we have applied this method for unsaturated hydrocarbons, thus completing our previous work on acyclic alkenes. For the alkylbenzenes we have changed the values of the groups C-(Csub(b))(C)(H) 2 and C-(Csub(b))(C) 2 (H) previously determined. A more accurate value for the enthalpies of vaporization of the alkylbenzenes of higher molecular weight is obtained. (orig.)

  20. Molecular interpretation of Trouton's and Hildebrand's rules for the entropy of vaporization of a liquid

    International Nuclear Information System (INIS)

    Green, James A.; Irudayam, Sheeba Jem; Henchman, Richard H.

    2011-01-01

    Research highlights: → A method to calculate a liquid's entropy of vaporization is proposed. → The entropy of vaporisation depends on force magnitudes from computer simulation. → Calculated values agree with experiment, Trouton's rule and Hildebrand's rule. → Free volumes decrease for larger molecules or those with stronger interactions. - Abstract: The entropy of vaporization at a liquid's boiling point is well approximated by Trouton's rule and even more accurately by Hildebrand's rule. A cell method is used here to calculate the entropy of vaporization for a range of liquids by subtracting the entropy of the gas from that of the liquid. The liquid's entropy is calculated from the force magnitudes measured in a molecular dynamics simulation based on the harmonic approximation. The change in rotational entropy is not accounted for except in the case of liquid water. The predicted entropies of vaporization agree well with experiment and Trouton's and Hildebrand's rules for most liquids and for water except other liquids with hydrogen bonds. This supports the idea that molecular rotation is close to ideal at a liquid's boiling point if hydrogen bonds are absent; if they are present, then the rotational entropy gain must be included. The method provides a molecular interpretation of those rules by providing an equation in terms of a molecule's free volume in a liquid which depends on the force magnitudes. Free volumes at each liquid's boiling point are calculated to be ∼1 A 3 for liquids lacking hydrogen bonds, lower at ∼0.3 A 3 for those with hydrogen bonds, and they decrease weakly with increasing molecular size.

  1. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  2. Microspheres for the Growth of Silicon Nanowires via Vapor-Liquid-Solid Mechanism

    Directory of Open Access Journals (Sweden)

    Arancha Gómez-Martínez

    2014-01-01

    Full Text Available Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. The resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  3. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  5. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    Science.gov (United States)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  6. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  7. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  8. Vapor pressure determination of liquid UO/sub 2/ using a boiling point technique

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1987-01-01

    By analogy with the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated vapor pressure curve of liquid UO/sub 2/ in the temperature range of 3500 to 4500 K. The results are represented by log rho (MPa)=5.049 - 23 042/T (K), which gives an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. In addition, spectral emissivities of liquid UO/sub 2/ were determined as a function of the temperature at the pyrometer wavelengths of 752 and 1064 nm

  9. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  10. Physical property, phase equilibrium, distillation. Measurement and prediction of vapor-liquid and liquid-liquid equilibria; Bussei / heiko / joryu. Kieki, ekieki heiko no sokutei to suisan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K. [Nihon Univ., Tokyo (Japan)

    1998-08-05

    The data on vapor-liquid equilibrium are basic data indispensable to the designing of a distillation process. The stage required for separation depends greatly upon the x-y curve, and the existence/nonexistence of an azeotropic point is also an important item to be checked. This paper describes the measurement of vapor-liquid equilibrium and liquid-liquid equilibrium, and then introduces reliable data on vapor-liquid equilibrium and parameters of an activity coefficient formula. For the prediction of vapor-liquid equilibrium, the ASOG, UNIFAC, and modified NIFAC, all being group contributive methods are utilized. The differences between these group contributive methods are based on the differences between the contributive items based on the differences in size of molecules influencing the activity coefficients and the expression of the group activity coefficient formula. The applicable number of groups of the ASOG is 43, while that of groups of the UNIFAC is 50. The modified UNIFAC covers 43 groups. The prediction of liquid-liquid equilibrium by using a group contributive method has little progressed since the of the results of the study of Magnussen et al. using the UNIFAC. 12 refs., 8 figs., 1 tab.

  11. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  12. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  13. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    International Nuclear Information System (INIS)

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  14. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions

    Science.gov (United States)

    Armas-Pérez, Julio C.; Quintana-H, Jacqueline; Chapela, Gustavo A.

    2013-01-01

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases.

  15. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  16. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  17. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  18. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  19. Prediction of the liquid-vapor equilibrium pressure using the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, A; Roccatano, D; Apol, M.E F; Berendsen, H.J.C.; Di Nola, A.

    1996-01-01

    We derived a method to evaluate the liquid-vapor equilibrium pressure, with high accuracy over a large range of temperature, using the quasi-Gaussian entropy theory. The final expression that we obtain for the equilibrium pressure as a function of the temperature can be considered as a very accurate

  20. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon ...

  1. Mechanism of supercooled droplet freezing on surfaces.

    Science.gov (United States)

    Jung, Stefan; Tiwari, Manish K; Doan, N Vuong; Poulikakos, Dimos

    2012-01-10

    Understanding ice formation from supercooled water on surfaces is a problem of fundamental importance and general utility. Superhydrophobic surfaces promise to have remarkable 'icephobicity' and low ice adhesion. Here we show that their icephobicity can be rendered ineffective by simple changes in environmental conditions. Through experiments, nucleation theory and heat transfer physics, we establish that humidity and/or the flow of a surrounding gas can fundamentally switch the ice crystallization mechanism, drastically affecting surface icephobicity. Evaporative cooling of the supercooled liquid can engender ice crystallization by homogeneous nucleation at the droplet-free surface as opposed to the expected heterogeneous nucleation at the substrate. The related interplay between droplet roll-off and rapid crystallization is also studied. Overall, we bring a novel perspective to icing and icephobicity, unveiling the strong influence of environmental conditions in addition to the accepted effects of the surface conditions and hydrophobicity.

  2. Time scales of supercooled water and implications for reversible polyamorphism

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  3. Device for sampling radioactive and aggressive liquid and vaporous media

    International Nuclear Information System (INIS)

    Przibram, E.; Halm, G.

    1974-01-01

    The equipment enables the taking of samples even of radioactive media from a main pipeline in the through-flow in a closed system. A tap device is attached to the main pipeline which branches into two parts. The one branch contains the actual tap which is closed to both sides with snap closure coupling. It is only used for taking samples. The other branch bridges the tap position as a bypass so that a representative sample is always available. Both branches join up again and lead back to the main pipeline. The sampling can be used in a nuclear power plant for the determination of O 2 , CI, SiO 2 , and Cu. A millilitre collecting cylinder and a millipore filtration device can be connected to the tap for liquid sampling and solid analysis, respectively. The system can be extended to several tap positions. Permanent measuring equipment is attached to the bypass pipe to control the sample liquid. (DG) [de

  4. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.

  5. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    Science.gov (United States)

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  6. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  7. Vaporization enthalpies of imidazolium based ionic liquids. A thermogravimetric study of the alkyl chain length dependence

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2012-01-01

    Highlights: ► Enthalpies of vaporization of ionic liquids were measured with thermogravimetry. ► We studied 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide. ► The linear alkyl chain length was 4, 6, 8, 10, 12, 14, 16, and 18 C-atoms. ► A linear dependence on the chain length of the alkyl-imidazolium cation was found. - Abstract: Vaporization enthalpies for a series of ten ionic liquids (ILs) 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide [C n mim][NTf 2 ], with the alkyl chain length n = 4, 6, 8, 10, 12, 14, 16, and 18 were determined using the thermogravimetric method. An internally consistent set of experimental data and vaporization enthalpies at 540 K was obtained. Vaporization enthalpies at 540 K have shown a linear dependence on the chain length of the alkyl-imidazolium cation in agreement with the experimental results measured previously with a quartz crystal microbalance. Ambiguity of Δ l g C pm o -values required for the extrapolation of experimental vaporization enthalpies to the reference temperature 298 K has been discussed.

  8. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emelyanenko, Vladimir N; Heintz, Andreas

    2011-11-10

    A new method for the determination of vaporization enthalpies of extremely low volatile ILs has been developed using a newly constructed quartz crystal microbalance (QCM) vacuum setup. Because of the very high sensitivity of the QCM it has been possible to reduce the average temperature of the vaporization studies by approximately 100 K in comparison to other conventional techniques. The physical basis of the evaluation procedure has been developed and test measurements have been performed with the common ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(2)mim][NTf(2)] extending the range of measuring vaporization enthalpies down to 363 K. The results obtained for [C(2)mim][NTf(2)] have been tested for thermodynamic consistency by comparison with data already available at higher temperatures. Comparison of the temperature-dependent vaporization enthalpy data taken from the literature show only acceptable agreement with the heat capacity difference of -40 J K(-1) mol(-1). The method developed in this work opens also a new way to obtain reliable values of vaporization enthalpies of thermally unstable ionic liquids.

  9. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    Science.gov (United States)

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  10. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  11. Transport properties of supercooled confined water

    International Nuclear Information System (INIS)

    Mallamace, F.; Baglioni, P.; Corsaro, C.; Spooren, J.; Stanley, H.E.; Chen, S.-H.

    2011-01-01

    We present an overview of recent experiments performed on water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We examine data generated by nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, and study water confined in nanometer-scale environments. When contained within small pores, water does not crystallize and can be supercooled well below its homogeneous nucleation temperature T H. On this basis, it is possible to carry out a careful analysis of the well-known thermodynamic anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, liquid water is a mixture of two different local structures: a low density liquid (LDL) and a high-density liquid (HDL). The LLPT line terminates at a low-T liquid-liquid critical point. We discuss the following experimental findings: 1.) the crossover from non-Arrhenius behavior at high T to Arrhenius behavior at low T in transport parameters; 2.) the breakdown of the Stokes-Einstein relation; 3.) the existence of a Widom line, which is the locus of points corresponding to a maximum correlation length in the P-T phase diagram and which ends in the liquid-liquid critical point; 4.) the direct observation of the LDL phase; and 5.) the minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results strongly support the LLPT hypothesis. All of the basic science and technology community should be impressed by the fact that, although the few ideas (apparently elementary) developed concerning water approximately 27 centuries ago have changed very little up to now, because of the current expansion in our knowledge in this area, they can begin to change in the near future.

  12. Experimental study of the spill and vaporization of a volatile liquid

    International Nuclear Information System (INIS)

    Bohl, Douglas; Jackson, Gregory

    2007-01-01

    Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0 m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60 cm long by 50 cm high and located downstream of the 16 cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics

  13. A theoretical study of the growth of large sodium vapor bubbles in liquid sodium, including the effect of noncondensables and of vapor convection

    International Nuclear Information System (INIS)

    Casadei, F.; Donne, M.D.

    1983-01-01

    The study of the dynamics of the expansion of large bubbles of hot sodium vapor in a pool of liquid sodium plays an important role in understanding the effects of a hypothetical core disruptive accident. A model of the growth of the bubble in the pool is described. The equations of the motion of the liquid and of the nonsteady heat diffusion problem are solved together with the continuity and energy equations for the vapor phase. The first set of calculations has been performed with constant evaporation and condensation coefficients. In the second set, however, due account has been taken of the effect on condensation of noncondensable fission gases and vapor convection. Due to the very high calculated vapor velocities, noncondensable gases have little effect on the condensation rate, and the percentage amount of condensed sodium is considerably higher than previously calculated by other authors

  14. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    Science.gov (United States)

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  15. A corresponding states treatment of the liquid-vapor saturation line

    International Nuclear Information System (INIS)

    Srinivasan, K.; Ng, K.C.; Velasco, S.; White, J.A.

    2012-01-01

    Highlights: → Correlations arising from the maxima of products of properties in the coexistence line. → Analysis of maxima along the vapor pressure curve. → Correlations for the maximum of the saturated vapor enthalpy curve. → Prediction of properties of the new low GWP refrigerants HFO 1234yf and HFO 1234ze (E). - Abstract: In this work we analyze correlations for the maxima of products of some liquid-vapor saturation properties. These points define new characteristic properties of each fluid that are shown to exhibit linear correlations with the critical properties. We also demonstrate that some of these properties are well correlated with the acentric factor. An application is made to predict the properties of two new low global warming potential (GWP) refrigerants.

  16. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids.

    Science.gov (United States)

    Luo, Huimin; Baker, Gary A; Dai, Sheng

    2008-08-21

    Vaporization enthalpies for two series of ionic liquids (ILs) composed of 1- n-alkyl-3-methylimidazolium cations, [Imm1+] (m=2, 3, 4, 6, 8, or 10), paired with either the bis(trifluoromethanesulfonyl)amide, [Tf2N-], or the bis(perfluoroethylsulfonyl)amide anion, [beti-], were determined using a simple, convenient, and highly reproducible thermogravimetric approach, and from these values, Hildebrand solubility parameters were estimated. Our results reveal two interesting and unanticipated outcomes: (i) methylation at the C2 position of [Imm1+] affords a significantly higher vaporization enthalpy; (ii) in all cases, the [beti-] anion served to lower the enthalpy of vaporization relative to [Tf2N-]. The widespread availability of the apparatus required for these measurements coupled with the ease of automation suggests the broad potential of this methodology for determining this critical parameter in a multitude of ILs.

  17. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  18. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  19. Theoretical approaches and experimental evidence for liquid-vapor phase transitions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Elliott, J.B.; Phair, L.; Wozniak, G.J.; Mader, C.M.; Chappars, A.

    2001-01-01

    The leptodermous approximation is applied to nuclear systems for T > 0. The introduction of surface corrections leads to anomalous caloric curves and to negative heat capacities in the liquid-gas coexistence region. Clusterization in the vapor is described by associating surface energy to clusters according to Fisher's formula. The three-dimensional Ising model, a leptodermous system par excellence, does obey rigorously Fisher's scaling up to the critical point. Multifragmentation data from several experiments including the ISiS and EOS Collaborations, as well as compound nucleus fragment emission at much lower energy follow the same scaling, thus providing the strongest evidence yet of liquid-vapor coexistence.

  20. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  1. Liquid-Vapor Argon Isotope Fractionation from the Triple Point to the Critical Point

    DEFF Research Database (Denmark)

    Phillips, J. T.; Linderstrøm-Lang, C. U.; Bigeleisen, J.

    1972-01-01

    are compared at the same molar volume. The isotope fractionation factor α for 36Ar∕40Ar between liquid and vapor has been measured from the triple point to the critical temperature. The results are compared with previous vapor pressure data, which cover the range 84–102°K. Although the agreement is within....... The fractionation factor approaches zero at the critical temperature with a nonclassical critical index equal to 0.42±0.02.〈∇2Uc〉/ρc in liquid argon is derived from the experimental fractionation data and calculations of 〈∇2Ug〉/ρg for a number of potential functions for gaseous argon....

  2. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  3. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  4. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  5. Study of the liquid vapor equilibrium in the bromine-hydrobromic acid-water system

    Science.gov (United States)

    Benizri, R.; Lessart, P.; Courvoisier, P.

    1984-01-01

    A glass ebullioscope was built and at atmospheric pressure, liquid-vapor equilibria relative to the Br2-HBr-H2O system, in the concentration range of interest for evaluation of the Mark 13 cycle was studied. Measurements were performed for the brome-azeotrope (HBr-H2O) pseudo-binary system and for the ternary system at temperatures lower than 125 C and in the bromine concentration range up to 13% wt.

  6. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  7. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  8. High flux diode packaging using passive microscale liquid-vapor phase change

    Science.gov (United States)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  9. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  10. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    Vaknin, David; Bu Wei; Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok

    2009-01-01

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  11. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  12. The processes of vaporization in the porous structures working with the excess of liquid

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2017-01-01

    Full Text Available The processes of vaporization in porous structures, working with the excess of liquid are investigated. With regard to the thermal power plants new porous cooling system is proposed and investigated, in which the supply of coolant is conducted by the combined action of gravity and capillary forces. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, alundum and glass, with wall thickness of (0.05-2•10-3 m. Visualizations of the processes of vaporization were carried out using holographic interferometry with the laser system and high speed camera. The operating conditions of the experiments were: water pressures (0.01-10 MPa, the temperature difference of sub-cooling (0-20°C, an excess of liquid (1-14 of the steam flow, the heat load (1-60•104 W/m2, the temperature difference (1-60°C and orientation of the system (± 0 - ± 90 degrees. Studies have revealed three areas of liquid vaporization process (transitional, developed and crisis. The impact of operating and design parameters on the integrated and thermal hydraulic characteristics was defined. The optimum (minimum flow rate of cooling fluid and the most effective type of mesh porous structure were also defined.

  13. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  14. Vaporization of the prototypical ionic liquid BMImNTf₂ under equilibrium conditions: a multitechnique study.

    Science.gov (United States)

    Brunetti, Bruno; Ciccioli, Andrea; Gigli, Guido; Lapi, Andrea; Misceo, Nicolaemanuele; Tanzi, Luana; Vecchio Ciprioti, Stefano

    2014-08-07

    The vaporization behaviour and thermodynamics of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf2) were studied by combining the Knudsen Effusion Mass Loss (KEML) and Knudsen Effusion Mass Spectrometry (KEMS) techniques. KEML studies were carried out in a large temperature range (398-567) K by using effusion orifices with 0.3, 1, and 3 mm diameters. The vapor pressures so measured revealed no kinetically hindered vaporization effects and provided second-law vaporization enthalpies at the mean experimental temperatures in close agreement with literature. By exploiting the large temperature range covered, the heat capacity change associated with vaporization was estimated, resulting in a value of -66.8 J K(-1) mol(-1), much lower than that predicted from calorimetric measurements on the liquid phase and theoretical calculations on the gas phase. The conversion of the high temperature vaporization enthalpy to 298 K was discussed and the value Δ(l)(g)H(m)(298 K) = (128.6 ± 1.3) kJ mol(-1) assessed on the basis of data from literature and present work. Vapor pressure data were also processed by the third-law procedure using different estimations for the auxiliary thermal functions, and a Δ(l)(g)H(m)(298 K) consistent with the assessed value was obtained, although the overall agreement is sensitive to the accuracy of heat capacity data. KEMS measurements were carried out in the lower temperature range (393-467) K and showed that the largely prevailing ion species is BMIm(+), supporting the common view of BMImNTf2 vaporizing as individual, neutral ion pairs also under equilibrium conditions. By monitoring the mass spectrometric signal of this ion as a function of temperature, a second-law Δ(l)(g)H(m)(298 K) of 129.4 ± 7.3 kJ mol(-1) was obtained, well consistent with KEML and literature results. Finally, by combining KEML and KEMS measurements, the electron impact ionization cross section of BMIm(+) was estimated.

  15. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  16. Investigation of Real-Time Two-Dimensional Visualization of Fuel Spray Liquid/Vapor Distribution via Exciplex Fluorescence.

    Science.gov (United States)

    1987-08-30

    EXCIPLEX FLUORESCENCE ~N 0FINAL REPORT 00 JAMES F. VERDIECK AND ARTHUR A. ROTUNNO UNITED TECHNOLOGIES RESEARCH CENTER 0 AND LYNN A. MELTON D I UNIVERSITY...DOCUMENTATION. "NWA 0. INVESTIGATION OF REAL-TINE TWO-DIMENSIONAL VISUALIZATION OF FUEL SPRAY LIQUID/VAPOR DISTRIBUTION VIA EXCIPLEX FLUORESCENCE FINAL...Spray Liquid/Vapor Distribution Via Exciplex Fluorescen , - 12. PERSONAL AUTHOR(S) J. F. Yeardierk. A- A. Rnriiunn-l L_ A. Millo - 13a TYPE OF REPORT

  17. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  18. Liquids - vapor and liquids - solids equilibria in the system Th(NO3)4 - UO2(NO3)2 - HNO3 - H2O

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Mamaev, S.L.; Zhirnov, Yu.P.

    1999-01-01

    Liquids - vapor and liquids - solids equilibria in the system Th(NO 3 ) 4 - UO 2 (NO 3 ) 2 - HNO 3 - H 2 O were investigated. It was established that in this system thorium nitrate hexahydrate and uranyl nitrate hexa- and trihydrate are formed. Empiric equations of solubility isotherm at 25 deg C were found. Densities of liquid phases of the system were determined. It was established that uranyl nitrates and thorium nitrates salt out nitric acid in vapor phase just as separately so in the case of mutual presence. Empiric equation fixing relationship between nitric acid concentration in condensed phase and concentrations of all components in liquid phase was found

  19. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  20. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  1. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  2. Indirect Determination of Vapor Pressures by Capillary Gas-Liquid Chromatography: Analysis of the Reference Vapor-Pressure Data and Their Treatment

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Koutek, Bohumír; Fulem, M.; Hoskovec, Michal

    2012-01-01

    Roč. 57, č. 5 (2012), s. 1349-1368 ISSN 0021-9568 R&D Projects: GA ČR GA203/09/1327 Institutional research plan: CEZ:AV0Z40550506 Keywords : vapor pressures * capillary gas–liquid chromatography * reference data * relative retention time Subject RIV: CC - Organic Chemistry Impact factor: 2.004, year: 2012

  3. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  4. X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.

    Science.gov (United States)

    Kawamoto, Eric Hitoshi

    A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent

  5. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    International Nuclear Information System (INIS)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-01-01

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  6. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  7. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  8. Experimental evidence for two distinct deeply supercooled liquid states of water – Response to “Comment on ‘Water's second glass transition”’, by G.P. Johari, Thermochim. Acta (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Seidl, M. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Gainaru, C. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Fuentes-Landete, V.; Amann-Winkel, K.; Handle, P.H. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Köster, K.W.; Nelson, H. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Böhmer, R., E-mail: roland.bohmer@tu-dortmund.de [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Loerting, T., E-mail: thomas.loerting@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria)

    2015-10-10

    Highlights: • Two samples of amorphous ices quench-recovered from 140 K to 0.07 GPa are compared. • Calorimetry, X-ray diffraction, dielectric spectroscopy and volumetry are employed. • The two samples are distinct and cannot both be termed “pressure-densified glassy water”. • One route of preparation leads to high- (HDA), and the other to low-density amorphous ice (LDA). • Two distinct glass transitions are observed and interpreted to indicate two liquid H{sub 2}O phases. - Abstract: Recently, our earlier data which led us to conclude that deeply supercooled water displays a second glass transition (Amann-Winkel et al., 2013) was reinterpreted (Johari, 2015). In particular, the increase in heat capacity observed for high-density amorphous ice (HDA) samples at 116 K was reinterpreted to indicate sub-T{sub g} features of low-density amorphous ice's (LDA's) glass transition. We reply to the criticism in detail and report an experiment triggered by the comment on our work. This experiment unequivocally confirms our original interpretation of the observations and reinforces the case for water's second glass transition, its polyamorphism, and the observation of two distinct ultraviscous states of water differing by about 25% in density.

  9. Feasibility of refreezing human spermatozoa through the technique of liquid nitrogen vapor

    Directory of Open Access Journals (Sweden)

    Sidney Verza Jr

    2004-12-01

    Full Text Available OBJECTIVE: To assess the feasibility of refreezing human semen using the technique of liquid nitrogen vapor with static phases. MATERIALS AND METHODS: Twenty samples from 16 subjects who required disposal of their cryopreserved semen were thawed, corresponding to 6 cancer patients and 10 participants in the assisted reproduction (AR program. Samples were refrozen using the technique of liquid nitrogen vapor with static phases, identical to the one used for the initial freezing, and thawed again after 72 hours. We assessed the concentration of motile spermatozoa, total and progressive percent motility and spermatic vitality, according to criteria of the World Health Organization (WHO, as well as spermatic morphology according to the strict Kruger criterion, after the first and after the second thawing. RESULTS: We observed a significant decrease in all the parameters evaluated between the first and the second thawing. Median values for the concentration of motile spermatozoa decreased from 2.0x10(6/mL to 0.1x10(6/mL (p < 0.01; total percent motility from 42% to 22.5% (p < 0.01; progressive percent motility from 34% to 9.5% (p < 0.01; vitality from 45% to 20% (p < 0.01; and morphology from 5% to 5% (p = 0.03. There was no significant difference in the spermatic parameters between the cancer and assisted reproduction groups, both after the first and after the second thawing. We observed that in 100% of cases there was retrieval of motile spermatozoa after the second thawing. CONCLUSIONS: Refreezing of human semen by the technique of liquid nitrogen vapor allows the retrieval of viable spermatozoa after thawing.

  10. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed ...

  11. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  12. The performance of simulated annealing in parameter estimation for vapor-liquid equilibrium modeling

    Directory of Open Access Journals (Sweden)

    A. Bonilla-Petriciolet

    2007-03-01

    Full Text Available In this paper we report the application and evaluation of the simulated annealing (SA optimization method in parameter estimation for vapor-liquid equilibrium (VLE modeling. We tested this optimization method using the classical least squares and error-in-variable approaches. The reliability and efficiency of the data-fitting procedure are also considered using different values for algorithm parameters of the SA method. Our results indicate that this method, when properly implemented, is a robust procedure for nonlinear parameter estimation in thermodynamic models. However, in difficult problems it still can converge to local optimums of the objective function.

  13. Equilibrium vapor-liquid-crystal in Sn-In-P system

    International Nuclear Information System (INIS)

    Ermilin, V.N.; Selin, A.A.; Khukhryanskij, Yu.P.

    1991-01-01

    Using flow method the dependence of phosphorus vapor pressure was investigated on the composition of equilibrium with indium phosphide crystal of Sn-In-P system melt (x P l ≤x In l ) and temperature (in the range 918 to 978 K). Its multiplicative character conditioned by change in phosphorus solubility in liquid phase and reconstruction of internal structure of the melt was established. It is revealed that in the considered melts phosphorus is in atomic form (possible as In n P complexes)

  14. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  15. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  16. Supercooling of natural water, heavy water and of the blends H2O-D2O

    International Nuclear Information System (INIS)

    Lafargue, C.; Babin, L.; Clausse, D.; Lere-Porte, M.; Broto, F.

    1975-01-01

    It is shown that the coherency of the results of various measurements on water freezing temperatures proves that freezing temperatures must be dependent on the structure of the supercooled liquid. Recent experiments that confirm this interpretation are described: study of the stability of supercooled water as a function of time at fixed temperature, study of the influence of various thermal treatments on the behavior of supercooled water, study of the supercooling of heavy water and of D 2 O-H 2 O blends [fr

  17. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  18. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  19. Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster

    International Nuclear Information System (INIS)

    Cheah, Kean How; Low, Kay-Soon

    2015-01-01

    This paper presents the study of a microelectromechanical system (MEMS)-scaled microthruster using ceramic as the structural material. A vaporizing liquid microthruster (VLM) has been fabricated using the high temperature co-fired ceramic (HTCC) technology. The developed microthruster consists of five components, i.e. inlet, injector, vaporizing chamber, micronozzle and microheater, all integrated in a chip with a dimension of 30 mm × 26 mm × 8 mm. In the dry test, the newly developed microheater which is deposited on zirconia substrate consumes 21% less electrical power than those deposited on silicon substrate to achieve a temperature of 100 °C. Heating temperature as high as 409.1 °C can be achieved using just 5 W of electrical power. For simplicity and safety, a functional test of the VLM with water as propellant has been conducted in the laboratory. Full vaporization of water propellant feeding at different flow rates has been successfully demonstrated. A maximum thrust of 633.5 µN at 1 µl s −1 propellant consumption rate was measured using a torsional thrust stand. (paper)

  20. Conical evaporator and liquid-return wick model for vapor anode, multi-tube AMTEC cells

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A detailed, 2-D thermal-hydraulic model for conical and flat evaporators and the liquid sodium return artery in PX-type AMTEC cells was developed, which predicts incipient dryout at the evaporator wick surface. Results obtained at fixed hot and cold side temperatures showed that the flat evaporator provided a slightly lower vapor pressure, but reached the capillary limit at higher temperature. The loss of performance due to partial recondensation over up to 20% of the wick surface of the deep conical evaporators was offset by the larger surface area available for evaporation, providing a slightly higher vapor pressure. Model results matched the PX-3A cell's experimental data of electrical power output, but the predicted temperature of the cell's conical evaporator was consistently ~50 K above measurements. A preliminary analysis indicated that sodium vapor leakage in the cell (through microcracks in the BASE tubes' walls or brazes) may explain the difference between predicted and measured evaporator temperatures in PX-3A. .

  1. Tank 241-C-103 organic vapor and liquid characterization and supporting activities, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-01-01

    The action proposed is to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site. Operations at Tank 241-C-103 are curtailed because of an unreviewed safety question (USQ) concerning flammability issues of the organic waste in the tank. This USQ must be resolved before normal operation and surveillance of the tank can resume. In addition to the USQ, Tank 241-C-103 is thought to be involved in several cases of exposure of individuals to noxious vapors. This safety issue requires the use of supplied air for workers in the vicinity of the tank. Because of the USQ, the US Department of Energy proposes to characterize the waste in the vapor space and the organic and aqueous layers, to determine the volume of the organic layer. This action is needed to: (1) assess potential risks to workers, the public, and the environment from continued routine tank operations and (2) provide information on the waste material in the tank to facilitate a comprehensive safety analysis of this USQ. The information would be used to determine if a flammable condition within the tank is credible. This information would be used to prevent or mitigate an accident during continued waste storage and future waste characterization. Alternatives to the proposed activities have been considered in this analysis

  2. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    Science.gov (United States)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  3. On the spatial stability of a liquid jet in the presence of vapor cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei; Yan, Kai; Fu, Juan; Sun, Chunhua [College of Mechanical and Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas, (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.

  4. Measurements of the vapor-liquid coexistence curve and the critical parameters for 1,1,1,2-tetrafluoroethane

    Science.gov (United States)

    Kabata, Y.; Tanikawa, S.; Uematsu, M.; Watanabe, K.

    1989-05-01

    Measurements of the vapor-liquid coexistence curve in the critical region for 1,1,1,2-tetrafluoroethane (R134a; CH2FCF3), which is currently considered as a prospective substitute for conventional refrigerant R12, have been performed by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Twenty-seven saturated densities along the vapor-liquid coexistence curve between 208 and 999 kg·m-3 have been obtained in the temperature range 343 K to the critical temperature. The experimental uncertainties in temperature and density measurements have been estimated to be within ±10mK and ±0.55%, respectively. On the basis of these measurements near the critical point, the critical temperature and the critical density for 1,1,1,2-tetrafluoroethane were determined in consideration of the meniscus disappearing level as well as the intensity of the critical opalescence. In addition, the critical exponent ß along the vapor-liquid coexistence curve has been determined in accord with the difference between the density of the saturated liquid and that of the saturated vapor.

  5. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga

    International Nuclear Information System (INIS)

    Yang Bin; Li Dongxu; Rice, Stuart A.

    2003-01-01

    We report the results of experimental studies of how the competition between two solutes to segregate in the liquid-vapor interface of a dilute ternary alloy influences the composition and structure of that interface. The system studied has small amounts of Pb and In dissolved in Ga; it differs from a previous study of dilute alloys containing small amounts of Pb and Sn dissolved in Ga by the addition of a new variable, namely, the valence difference between the solute atoms Pb and In. This valence difference influences the electron density distribution in the alloy liquid-vapor interface in proportion to the excess concentrations of the solute species in the interface, and thereby should affect the structure of the interface. We find that for a ternary PbInGa alloy that contains 0.039 at. % Pb and 6.31 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional hexagonal crystal phase that undergoes a first-order transition to a disordered phase at T=29.0±0.1 deg. C. The two-dimensional crystalline Pb forms about 0.6 of a full monolayer; the remainder of the outer stratum of the liquid-vapor interface is filled with two-dimensional liquid In. For a ternary PbInGa alloy that contains the same amount of Pb and 12.2 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional liquid down to 26.0 deg. C, the lowest temperature at which data were taken. For temperatures in excess of 29.0 deg. C two-dimensional liquid Pb and two-dimensional liquid In coexist in the interface, with the fractional occupation of the monolayer by In exceeding the fractional occupation by Pb

  6. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2014-05-15

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm{sup 2} and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm{sup 2} and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

  7. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  8. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  9. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  10. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  11. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    International Nuclear Information System (INIS)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud

    2014-01-01

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm 2 and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm 2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress

  12. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    Science.gov (United States)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  13. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  14. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  15. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, P. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Corradini, D.; Rovere, M., E-mail: rovere@fis.uniroma3.it [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  16. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-01-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm 3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  17. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    Science.gov (United States)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-06-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  18. Inhomogeneous Monte Carlo simulation of the vapor-liquid equilibrium of benzene between 300 K and 530 K

    Directory of Open Access Journals (Sweden)

    J.Janeček

    2007-09-01

    Full Text Available The inhomogeneous Monte Carlo technique is used in studying the vapor-liquid interface of benzene in a broad range of temperatures using the TraPPE potential field. The obtained values of the VLE parameters are in good agreement with the experimental values as well as with the results from GEMC simulations. In contrast to the GEMC, within one simulation box the inhomogeneous MC technique also yields information on the structural properties of the interphase between the two phases. The values of the vaporization enthalpy and the vapor pressure very well satisfy the Clausius-Clapeyron equation.

  19. (Vapor + liquid + liquid) equilibrium measurements and correlation for {1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a)} system

    International Nuclear Information System (INIS)

    Zhao, Yanxing; Gong, Maoqiong; Dong, Xueqiang; Guo, Hao; Wu, Jianfeng

    2014-01-01

    Highlights: • VLLE data for the (R134 + R600a) system at temperatures ranging from (235.311 to 241.720) K was measured. • The experiment was carried out using an apparatus based on the recirculation of vapor into liquid. • Correlation of VLE data was made using PR−HV−NRTL model. • A strong critical opalescence was observed. - Abstract: In this work, a study on the (vapor + liquid + liquid) equilibrium (VLLE) for the (R134 + R600a) system was carried out using an apparatus based on the recirculation of vapor into liquid at temperatures ranging from (235.311 to 241.720) K. The uncertainties of the composition, temperature, and pressure were less than ±0.005, ±5 mK and ±0.5 kPa, respectively. Thirty-eight experimental p–T–x data covering both branches of the binodal boundary and nineteen experimental p–T–y data were presented. Three numerical methods were used to obtain the second liquid phase compositions coexisting in equilibrium, and all the three methods lead to consistent results. Moreover, all of the experimental data were correlated by the Peng–Robinson equation of state (PR EoS) with the Huron–Vidal (HV) mixing rule involving the non-random two-liquid (NRTL) activity coefficient model. Then the vapor phase compositions were calculated. The results show good agreement with the experimental data, and the maximum deviation is less than 0.006

  20. Nonlinear permittivity spectra of supercooled ionic liquids: Observation of a "hump" in the third-order permittivity spectra and comparison to double-well potential models.

    Science.gov (United States)

    Patro, L N; Burghaus, O; Roling, B

    2017-04-21

    We have measured the third-order permittivity spectra ε 3 3 of a monocationic and of a dicationic liquid close to the glass transition temperature by applying ac electric fields with large amplitudes up to 180 kV/cm. A peak ("hump") in the modulus of ε 3 3 is observed for a mono-cationic liquid after subtraction of the dc contribution from the imaginary part of ε 3 3 . We show that the origin of this experimental "hump" is a peak in the imaginary part of ε 3 3 , with the peak height strongly increasing with decreasing temperature. Overall, the spectral shape of the third-order permittivity of both ionic liquids is similar to the predictions of a symmetric double well potential model, although this model does not predict a "hump" in the modulus. In contrast, an asymmetric double well potential model predicts a "hump," but the spectral shape of both the real and imaginary part of ε 3 3 deviates significantly from the experimental spectra. These results show that not only the modulus of ε 3 3 but also its phase is an important quantity when comparing experimental results with theoretical predictions.

  1. Vapor-liquid equilibrium for the system ethyl alcohol + ester; Equilibrio liquido-vapor para o sistema alcool etilico+ester

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Humberto Neves Maia de; Nascimento, Yuri Corsino do; Chiavone-Filho, Osvaldo [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    This work consists of the experimental determination of a series of vapor-liquid equilibrium (VLE) data, for mixtures of ethyl alcohol + ester (ethyl acetate), prepared synthetically, that may be present in the production of biodiesel. The separation of the ethyl alcohol from esters by distillation is an important stage of this process, and therefore it demands accurate data for an appropriate modelling, and later optimization via simulators. FISCHER'S ebulliometer, with digital control (Model 602), was used for measurement of VLE data for the system ethyl alcohol + ester. It consists of a recirculation cell of the both vapor and liquid phases, providing complete data, i.e., pressure, temperature and compositions of the liquid and vapor phases that were obtained by gaseous chromatography (PTxy). This apparatus is coupled to a thermostatic bath with cooling (TE-184 TECNAL) that aims to condense the coming steams of the ebullition in order to return to the mixture camera. The VLE data obtained experimentally were submitted to the test of thermodynamic consistence of the deviations, where the equation of Gibbs-Duhem is used, through the model UNIQUAC. The parameters obtained from the experimental data can be applied in the simulators of processes with the purpose of optimizing the separation of the ethyl alcohol of Ester. (author)

  2. Singularity-free interpretation of the thermodynamics of supercooled water

    International Nuclear Information System (INIS)

    Sastry, S.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E.

    1996-01-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water. copyright 1996 The American Physical Society

  3. Growth of VO2 Nano wires from Supercooled Liquid Nano droplets and E-beam Irradiation for Ultra-sensitive sensor

    International Nuclear Information System (INIS)

    Byun, Ji Won; Baik, Jeong Min; Lee, Sang Hyun; Lee, Byung Cheol

    2011-01-01

    Vanadium dioxide is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition at ∼ 68 .deg. C in the bulk, which is of great interest in sensing and catalytic applications. In this Paper, we describe the synthesis and properties of VO 2 nano wires as novel catalytic and gas sensor materials based on electron beam irradiation. High yields of single crystalline VO 2 nano wires are synthesized by atmospheric-pressure, physical vapor deposition using V 2 O 5 layer. Pd-decorated VO 2 nano wire sensors show extraordinary sensitivity towards hydrogen, an almost 3 order-of-magnitude increase in the current through the nano wire. By the Eb irradiation, the conductance of the nano wires significantly increased up to 5 times, reducing the response time by half and the operating temperature. The metal nanoparticles-VO 2 nano wire system will be very promising for high-sensitivity and high-selectivity under low temperature less than 100. deg. C

  4. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    Science.gov (United States)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  5. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  6. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  7. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    International Nuclear Information System (INIS)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations

  8. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  9. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    International Nuclear Information System (INIS)

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  10. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  11. Pattern formation of nanoflowers during the vapor-liquid-solid growth of silicon nanowires

    International Nuclear Information System (INIS)

    Bae, Joonho; Thompson-Flagg, Rebecca; Ekerdt, John G.; Shih, C.-K.

    2008-01-01

    Pattern formation of nanoflowers during the vapor-liquid-solid growth of Si nanowires is reported. Using transmission electron microscopy, scanning electron microscopy, and energy dispersive spectrometer analysis, we show that the flower consists of an Au/SiO x core-shell structure. Moreover, the growth of flower starts at the interface between the gold catalyst and the silicon nanowire, presumably by enhanced oxidation at this interface. The pattern formation can be classified as dense branching morphology (DBM). It is the first observation of DBM in a spherical geometry and at the nanoscale. The analysis of the average branching distance of this pattern shows that the pattern is most likely formed during the growth process, not the cooling process, and that the curvature of the gold droplet plays a crucial role in the frequency of branching

  12. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Directory of Open Access Journals (Sweden)

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  13. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  14. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.

    Science.gov (United States)

    Pauling, L; Robinson, A B; Teranishi, R; Cary, P

    1971-10-01

    When a human being is placed for several days on a completely defined diet, consisting almost entirely of small molecules that are absorbed from the stomach into the blood, intestinal flora disappear because of lack of nutrition. By this technique, the composition of body fluids can be made constant (standard deviation about 10%) after a few days, permitting significant quantitative analyses to be performed. A method of temperature-programmed gas-liquid partition chromatography has been developed for this purpose. It permits the quantitative determination of about 250 substances in a sample of breath, and of about 280 substances in a sample of urine vapor. The technique should be useful in the application of the principles of orthomolecular medicine.

  15. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    Science.gov (United States)

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  16. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  17. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  18. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev; Berry, Joseph D.; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2016-01-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  19. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  20. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  1. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  2. Thermal behaviour of agitated gas-liquid reactors with a vaporizing solvent/air oxidation of hydrocarbons

    NARCIS (Netherlands)

    Westerterp, K.R.; Crombeen, P.R.J.J.

    1983-01-01

    Many highly exothermic gas-liquid reactions are carried out with a vaporizing solvent, which after condensation is returned to the reactor. In this way the liberated reaction heat for a large part is absorbed by the cooling water flowing through the condenser. In order to determine the influence of

  3. Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state

    DEFF Research Database (Denmark)

    Queimada, Antonio; Miqueu, C; Marrucho, IM

    2005-01-01

    and the correct phase equilibrium of water + hydrocarbon systems already obtained from CPA. In this work, preliminary studies involving the vapor-liquid interfacial tensions of some selected associating and non-associating pure components (water, ethanol, n-butane, n-pentane, n-hexane, n-heptane) are presented...

  4. Vapor-liquid equilibrium prediction with pseudo-cubic equation of state for binary mixtures containing hydrogen, helium, or neon

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, H. (Nihon Univ.,Fukushima, (Japan). Faculty of Enineering)

    1990-03-01

    As an equation of state of vapor-liquid equilibrium, an original pseudo-cubic equation of state was previously proposed by the authors of this report and its study is continued. In the present study, new effective critical values of hydrogen, helium and neon were determined empirically from vapor-liquid equilibrium data of literature values against their critical temperatures, critical pressures and critical volumes. The vapor-liquid equilibrium relations of binary system quantum gas mixtures were predicted combining the conventinal pseudo-cubic equation of state and the new effective critical values, and without using binary heteromolecular interaction parameter. The predicted values of hydrogen-ethylene, helium-propane and neon-oxygen systems were compared with literature values. As a result, it was indicated that the vapor-liquid relations of binary system mixtures containing hydrogen, helium and neon can be predicted with favorable accuracy combining the effective critical values and the three parameter pseudo-cubic equation of state. 37 refs., 3 figs., 4 tabs.

  5. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Scheffler

    2015-04-01

    Full Text Available E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  6. Isothermal Vapor-Liquid Equilibrium in the Quaternary Water + 2-Propanol + Acetic Acid + Isopropyl Acetate System with Chemical Reaction

    Czech Academy of Sciences Publication Activity Database

    Teodorescu, M.; Aim, Karel; Wichterle, Ivan

    2001-01-01

    Roč. 46, č. 2 (2001), s. 261-266 ISSN 0021-9568 R&D Projects: GA ČR GA203/98/1446 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapor-liquid equilibrium * quaternary water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.960, year: 2001

  7. Gibbs Ensemble Simulation on Polarizable Models: Vapor-liquid Equilibrium in Baranyai-Kiss Models of Water

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2013-01-01

    Roč. 360, DEC 25 (2013), s. 472-476 ISSN 0378-3812 Grant - others:GA MŠMT(CZ) LH12019 Institutional support: RVO:67985858 Keywords : multi-particle move monte carlo * Gibbs ensemble * vapor-liquid-equilibria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  8. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells.

    Science.gov (United States)

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-04-08

    E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  9. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  10. Vaporization of protic ionic liquids derived from organic superbases and short carboxylic acids.

    Science.gov (United States)

    Ribeiro, Filipe M S; Lima, Carlos F R A C; Vaz, Inês C M; Rodrigues, Ana S M C; Sapei, Erlin; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2017-06-28

    This work presents a comprehensive evaluation of the phase behaviour and cohesive enthalpy of protic ionic liquids (PILs) composed of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) organic superbases with short-chain length (acetic, propionic and butyric) carboxylic acids. Glass transition temperatures, T g , and enthalpies of vaporization, ΔH vap , were measured for six [BH][A] (1 : 1) PILs (B = DBN, DBU; A = MeCOO, EtCOO, nPrCOO), revealing more significant changes upon increasing the number of -CH 2 - groups in the base than in the acid. The magnitude of ΔH vap evidences that liquid PILs have a high proportion of ions, although the results also indicate that in DBN PILs the concentration of neutral species is not negligible. In the gas phase, these PILs exist as a distribution of ion pairs and isolated neutral species, with speciation being dependent on the temperature and pressure conditions - at high temperatures and low pressures the separated neutral species dominate. The higher T g and ΔH vap of the DBU PILs are explained by the stronger basicity of DBU (as supported by NMR and computational calculations), which increases the extent of proton exchange and the ionic character of the corresponding PILs, resulting in stronger intermolecular interactions in condensed phases.

  11. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  12. HIGH PRESSURE VAPOR-LIQUID EQUILIBRIA OF PALM FATTY ACIDS DISTILLATES-CARBON DIOXIDE SYSTEM

    Directory of Open Access Journals (Sweden)

    Nélio T. MACHADO

    1997-12-01

    Full Text Available Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid and unsaturated (oleic+linoleic acids fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico daqueles insaturados (ácido oleico e ácido linoleico contidos no PFAD.

  13. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M A; D' Auria, R; Kuo, I W; Krisch, M J; Starr, D E; Bluhm, H; Tobias, D J; Hemminger, J C

    2008-04-23

    X-ray photoemission spectroscopy operating under ambient pressure conditions is used to probe ion distributions throughout the interfacial region of a free-flowing aqueous liquid micro-jet of 6 M potassium fluoride. Varying the energy of the ejected photoelectrons by carrying out experiments as a function of x-ray wavelength measures the composition of the aqueous-vapor interfacial region at various depths. The F{sup -} to K{sup +} atomic ratio is equal to unity throughout the interfacial region to a depth of 2 nm. The experimental ion profiles are compared with the results of a classical molecular dynamics simulation of a 6 M aqueous KF solution employing polarizable potentials. The experimental results are in qualitative agreement with the simulations when integrated over an exponentially decaying probe depth characteristic of an APPES experiment. First principles molecular dynamics simulations have been used to calculate the potential of mean force for moving a fluoride anion across the air-water interface. The results show that the fluoride anion is repelled from the interface, and this is consistent with the depletion of F{sup -} at the interface revealed by the APPES experiment and polarizable force field-based molecular dynamics simulation. Together, the APPES and MD simulation data provide a detailed description of the aqueous-vapor interface of alkali fluoride systems. This work offers the first direct observation of the ion distribution at a potassium fluoride aqueous solution interface. The current experimental results are compared to those previously obtained for saturated solutions of KBr and KI to underscore the strong difference in surface propensity between soft/large and hard/small halide ions in aqueous solution.

  14. Diffuse scattering from the liquid-vapor interfaces of dilute Bi:Ga, Tl:Ga, and Pb:Ga alloys

    International Nuclear Information System (INIS)

    Li Dongxu; Jiang Xu; Rice, Stuart A.; Lin Binhua; Meron, Mati

    2005-01-01

    As part of a study of the in-plane wave-vector (q xy ) dependence of the effective Hamiltonian for the liquid-vapor interface, H(q), the wave-vector dependences of diffuse x-ray scattering from the liquid-vapor interfaces of dilute alloys of Bi in Ga, Tl in Ga, and Pb in Ga have been measured. In these dilute alloys the solute component segregates as a monolayer that forms the outermost stratum of the liquid-vapor interfaces, and the density distribution along the normal to the interface is stratified. Over the temperature ranges that the alloy interfaces were studied, the Tl and Pb monolayers exhibit both crystalline and liquid phases while the Bi monolayer is always liquid. The diffuse scattering from the liquid-vapor interfaces of these alloys displays interesting differences with that from the liquid-vapor interface of pure Ga. The presence of a segregated monolayer of solute in the liquid-vapor interface of the alloy appears to slightly suppress the fluctuations in an intermediate wave-vector range in a fashion that preserves the validity of the macroscopic capillary wave model to smaller wavelengths than in pure liquid Ga, and there is an increase in diffuse scattering when the Tl and Pb monolayers melt. The surface intrinsic roughness from fitting the wave-vector dependence of surface tension is 5.0 pm for the Tl:Ga alloy and 1.4 pm for the Bi:Ga alloy. Also, a mode of excitation that contributes to diffuse scattering from the liquid-vapor interface of Pb in Ga, but does not contribute to diffuse scattering from the liquid-vapor interface of Ga, has been identified. It is proposed that this mode corresponds to the separation of the Pb and Ga layers in the regime 1 nm -1 ≤q xy ≤10 nm -1

  15. Charge transfer effects of ions at the liquid water/vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup −}, and I{sup −}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  16. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States); Kumar, Revati [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808 (United States)

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

  17. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures

    Science.gov (United States)

    Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans

    2009-02-01

    For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.

  18. An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun

    2014-05-01

    Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.

  19. The study of water + HCl + ethanol vapor-liquid equilibrium at 78 kPa

    International Nuclear Information System (INIS)

    Ojeda Toro, Juan Carlos; Dobrosz-Gómez, Izabela; Gómez García, Miguel Ángel

    2017-01-01

    Graphical abstract: Comparison between experimental and calculated saturation temperature of water + HCl + ethanol system using two rigorous electrolyte models. - Highlights: • Data for the water + HCl + ethanol VLE is reported at 78 kPa. • The VLE for the system water + HCl + ethanol was determined. • A new set of parameters for extended UNIQUAC model were correlated. • A new set of parameters for LIQUAC model were correlated. - Abstract: In this work, the isobaric vapor-liquid equilibrium (VLE) data obtained for the ternary system water + HCl + ethanol at 78 kPa, using an Ellis still, were studied. Two rigorous electrolyte models (extended UNIQUAC and LIQUAC) were fitted to the experimental data. Ethanol-H + , water-H + , ethanol-Cl − , water-Cl − , and Cl − -H + interaction parameters were determined. Likewise, Henry’s law constants for the volatile electrolyte were defined. A high goodness of fit was obtained for both electrolyte models; however, the extended UNIQUAC one showed better performance (AAD = 0.1326%). Two azeotropes observed in the system were accurately predicted (ethanol + water: x EtOH = 0.86 at 344.6 K; and HCl + water: x HCl = 0.11 at 375.5 K).

  20. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  1. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    International Nuclear Information System (INIS)

    Soniat, Marielle; Rick, Steven W.; Kumar, Revati

    2015-01-01

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface

  2. Generalized correlation of latent heats of vaporization of coal liquid model compounds between their freezing points and critical points

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Kobuyashi, R.; Mayee, J.W.

    1984-02-01

    Based on Pitzer's three-parameter corresponding states principle, the authors have developed a correlation of the latent heat of vaporization of aromatic coal liquid model compounds for a temperature range from the freezing point to the critical point. An expansion of the form L = L/sub 0/ + ..omega..L /sub 1/ is used for the dimensionless latent heat of vaporization. This model utilizes a nonanalytic functional form based on results derived from renormalization group theory of fluids in the vicinity of the critical point. A simple expression for the latent heat of vaporization L = D/sub 1/epsilon /SUP 0.3333/ + D/sub 2/epsilon /SUP 0.8333/ + D/sub 4/epsilon /SUP 1.2083/ + E/sub 1/epsilon + E/sub 2/epsilon/sup 2/ + E/sub 3/epsilon/sup 3/ is cast in a corresponding states principle correlation for coal liquid compounds. Benzene, the basic constituent of the functional groups of the multi-ring coal liquid compounds, is used as the reference compound in the present correlation. This model works very well at both low and high reduced temperatures approaching the critical point (0.02 < epsilon = (T /SUB c/ - T)/(T /SUB c/- 0.69)). About 16 compounds, including single, two, and three-ring compounds, have been tested and the percent root-mean-square deviations in latent heat of vaporization reported and estimated through the model are 0.42 to 5.27%. Tables of the coefficients of L/sub 0/ and L/sub 1/ are presented. The contributing terms of the latent heat of vaporization function are also presented in a table for small increments of epsilon.

  3. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    Science.gov (United States)

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  4. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  5. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S Y; Lee, H

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  6. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  7. Viscosities of cesium vapor to 1,620 K and of liquid gallium to 1,800 K

    International Nuclear Information System (INIS)

    Tippelskirch, H. v.

    1976-01-01

    The viscosity of cesium at 1,620 K and 40 bar has been determined to 41 x 10 -6 (Pa x s) by the oscillating cup method. The saturated vapor density at 1,580 K could be derived from the viscosity measurements. The viscosity of liquid gallium has been determined from 370 K to 1,800 K. The experimental results have been compared with calculations based on the Enskog hard-sphere transport theory for dense fluids. (orig.) [de

  8. Mathematical prediction of freezing times of bovine semen in straws placed in static vapor over liquid nitrogen.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-02-01

    A widespread practice in cryopreservation is to freeze spermatozoa by suspending the straws in stagnant nitrogen vapor over liquid nitrogen (N(2)V/LN(2)) for variable periods of time before plunging into liquid nitrogen (-196°C) for indefinite storage. A mathematical heat transfer model was developed to predict freezing times (phase change was considered) required for bull semen and extender packaged in 0.5ml plastic straws and suspended in static liquid nitrogen vapor. Thermophysical properties (i.e. thermal conductivity, specific heat, density, initial freezing temperature) of bovine semen and extender as a function of temperature were determined considering the water change of phase. The non-stationary heat transfer partial differential equations with variable properties (nonlinear mathematical problem) were numerically solved considering in series thermal resistances (semen suspension-straw) and the temperature profiles were obtained for both semen suspension and plastic straw. It was observed both the external heat transfer coefficient in stagnant nitrogen vapor and its temperature (controlled by the distance from the surface of liquid nitrogen to the straw) affected freezing times. The accuracy of the model to estimate freezing times of the straws was further confirmed by comparing with experimental literature data. Results of this study will be useful to select "safe" holding times of bull semen in plastic straws placed N(2)V/LN(2) to ensure that complete freezing of the sample has occurred in the nitrogen vapor and avoid cryodamage when plunging in LN(2). Freezing times predicted by the numerical model can be applied to optimize freezing protocols of bull semen in straws. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Trial of Neem Oil (Azadirachta Indica) as Basic Compound of Electric Liquid Vaporizer Against Aedes Aegypti Mortality

    OpenAIRE

    Diptyanusa, Ajib; Satoto, Tri Baskoro Tunggul; Hadianto, Tridjoko

    2017-01-01

    Dengue Hemorrhagic Fever (DHF), commonly caused by Aedes aegypti mosquito bites, has been one of the worlds major concern for progressively increasing incidence. To prevent further increase in DHF incidence, an effective yet safe vector control method is needed. One of the most common method of vector control in Indonesia is using electric liquid vaporizer. Basic compounds which are less toxic to humans and less resistance-producing to mosquitoes are preferred, without neglecting its ability ...

  10. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  11. Liquid nitrogen vapor is comparable to liquid nitrogen for storage of cryopreserved human sperm: evidence from the characteristics of post-thaw human sperm.

    Science.gov (United States)

    Hu, Jingmei; Zhao, Shidou; Xu, Chengyan; Zhang, Lin; Lu, Shaoming; Cui, Linlin; Ma, Jinlong; Chen, Zi-Jiang

    2015-11-01

    To compare the differences in the characteristics of post-thaw human sperm after storage in either liquid nitrogen (LN2; -196 °C) or LN2 vapor (-167 °C). Experimental study. University hospital. Thirty healthy volunteers who agreed to donate their normal semen samples for infertility or research were included in the study. Semen samples (n = 30) were divided into eight aliquots and frozen. Four aliquots of each human semen sample were stored in LN2 (-196 °C), and the other four aliquots were stored in LN2 vapor (-167 °C). After 1, 3, 6, or 12 months, samples were thawed and analyzed. The motility was evaluated by the manual counting method. The viability was estimated by eosin staining. The morphology was analyzed by Diff-Quik staining. The sperm DNA integrity was determined with acridine orange fluorescent staining, and acrosin activity was assayed by the modified Kennedy method. The characteristics of post-thaw human sperm, including motility, viability, morphology, DNA integrity, and acrosin activity, showed no significant difference between LN2 and LN2 vapor storage for the different time periods. LN2 vapor was comparable to LN2 in post-thaw sperm characteristics, suggesting that LN2 vapor may be substituted for LN2 for the long-term storage of human sperm. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  13. X-ray diffuse scattering study of height fluctuations at the liquid-vapor interface of gallium

    Energy Technology Data Exchange (ETDEWEB)

    Lin Binhua [CARS, University of Chicago, Chicago, IL 60637 (United States); Meron, Mati [CARS, University of Chicago, Chicago, IL 60637 (United States); Gebhardt, Jeff [CARS, University of Chicago, Chicago, IL 60637 (United States); Graber, Tim [CARS, University of Chicago, Chicago, IL 60637 (United States); Li Dongxu [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States); Yang Bin [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States); Rice, Stuart A. [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States)]. E-mail: s-rice@uchicago.edu

    2005-02-28

    We report an experimental study of wavelength dependent interfacial tension of liquid Ga using X-ray surface diffusion scattering. The observed surface tension can be explained by Mecke-Dietrich formalism derived from a microscopic density functional theory when the known stratified liquid-vapor interfacial density profile of Ga and a so-called individual local pseudo-potential for the pair-interaction potential of liquid metal are used. The quantitative behavior of the surface tension as a function of wavelength is very sensitive to the forms of both the interfacial density profile and the asymptotic part of the pair-potential, and is different from that observed from several dielectric liquids reported previously (Nature 403 (2000) 871; Phys. Rev. Lett. 90 (2003) 216101)

  14. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method.

    Science.gov (United States)

    Lu, Qing; Kim, Jaegil; Straub, John E

    2013-03-14

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  15. An empirical equation for the enthalpy of vaporization of quantum liquids

    International Nuclear Information System (INIS)

    Kuz, Victor A.; Meyra, Ariel G.; Zarragoicoechea, Guillermo J.

    2004-01-01

    An empirical equation for the enthalpy of vaporization of quantum fluids is presented. Dimensionless analysis is used to define enthalpy of vaporization as a function of temperature with a standard deviation of about 1%. Experimental data represented in these variables show two different behaviours and exhibit different maximum values of the enthalpy of vaporization, one corresponding to fluids with a triple point and the other to fluids having a lambda point. None of the existing empirical equations are able to describe this fact. Also enthalpy of vaporization of helium-3, n-deuterium and n-tritium are estimated

  16. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  17. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    International Nuclear Information System (INIS)

    Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.

    2014-01-01

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures

  18. Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Boeck, Gisela; Verevkin, Sergey P; Ludwig, Ralf

    2014-09-08

    A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA-ToF-MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419 K, EAN evaporates as contact-ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419 K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas-phase species, and show that neutral molecules dominate over ion pairs above 500 K, an observation that is in nearly prefect agreement with the experimental boiling point of 513 K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high-boiling conventional solvents, EAN exhibits no significant vapour pressure below 419 K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70 K lower. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  20. ISS modeling strategy for the numerical simulation of turbulent sub-channel liquid-vapor flows

    International Nuclear Information System (INIS)

    Olivier Lebaigue; Benoit Mathieu; Didier Jamet

    2005-01-01

    Full text of publication follows: The general objective is to perform numerical simulation of the liquid-vapor turbulent two-phase flows that occur in sub-channels of a nuclear plant assembly under nominal or incidental situations. Additional features concern nucleate boiling at the surface of fuel rods and the sliding of vapor bubbles on this surface with possible dynamic contact lines. The Interfaces and Sub-grid Scales (ISS) modeling strategy for numerical simulations is one of the possible two-phase equivalents for the one-phase LES concept. It consists in solving the two-phase flows features at the scales that are resolved by the grid of the numerical method, and to take into account the unresolved scales with sub-grid models. Interfaces are tracked in a DNS-like approach while specific features of the behavior of interfaces such as contact line physics, coalescence and fragmentation, and the smallest scales of turbulence within each phase have an unresolved scale part that is modeled. The problem of the modeling of the smallest scales of turbulence is rather simple even if the classical situation is altered by the presence of the interfaces. In a typical sub-channel situation (e.g., 15 MPa and 3.5 m.s -1 water flow in a PWR sub-channel), the Kolmogorov scale is ca. 1 μm whereas typical bubble size are supposed to be close to 150 μm. Therefore, the use of a simple sub-grid model between, e.g., 1 and 20 μm allows a drastic reduction of the number of nodes in the space discretization while it remains possible to validate by comparison to true DNS results. Other sub-grid models have been considered to recover physical phenomena that cannot be captured with a realistic discretization: they rely on physical scales from molecular size to 1 μm. In these cases, the use of sub-grid model is no longer a matter of CPU-time and memory saving only, but also a corner stone to recover physical behavior. From this point of view at least we are no longer performing true

  1. Vapor pressures of solid and liquid xanthene and phenoxathiin from effusion and static studies

    Czech Academy of Sciences Publication Activity Database

    Monte, M.J.S.; Santos, L.M.N.B.F.; Sousa, C.A.D.; Fulem, Michal

    2008-01-01

    Roč. 53, č. 8 (2008), s. 1922-1926 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * xanthene * phenoxanthiin * sublimation and vaporization enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2008

  2. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  3. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  4. Prediction of the enthalpies of vaporization for room-temperature ionic liquids: Correlations and a substitution-based additive scheme

    International Nuclear Information System (INIS)

    Kabo, Gennady J.; Paulechka, Yauheni U.; Zaitsau, Dzmitry H.; Firaha, Alena S.

    2015-01-01

    Highlights: • The available literature data on Δ l g H for ionic liquids were analyzed. • Correlation equations for Δ l g H were derived using symbolic regression. • A substitution-based incremental scheme for Δ l g H was developed. • The proposed scheme has an advantage over the existing predictive procedures. - Abstract: The literature data on the enthalpies of vaporization for aprotic ionic liquids (ILs) published by the end of May 2014 were analyzed and the most reliable Δ l g H m values were derived for 68 ILs. The selected enthalpies of vaporization were correlated with density and surface tension using symbolic regression and a number of effective correlation equations were proposed. The substitution-based incremental scheme for prediction of the enthalpies of vaporization of imidazolium, pyridinium and pyrrolidinium ILs was developed. The standard error of the regression for the developed scheme is significantly lower than that for the atom-based group-contribution schemes proposed earlier

  5. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  6. Isobaric (vapor + liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde): Experimental data and prediction

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Aznar, Martin

    2011-01-01

    Research highlights: → We report density, refraction index, and VLE for (propionaldehyde or valeraldehyde) + [emim][EtSO 4 ]. → The Peng -Robinson + Wong -Sandler + COSMO-SAC model was used to predict density and VLE. → The densities were predicted with deviations below than 2.3%. → The experimental VLE was predicted with deviations below than 1.6%. - Abstract: This paper reports the density, refraction index, and (vapor + liquid) equilibria (VLE) for binary systems {aldehyde + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO 4 ])}: {propionaldehyde + [emim][EtSO 4 ]} and {valeraldehyde + [emim][EtSO 4 ]}. The uncertainties for the temperature, pressure, and compositions measurements for the phase equilibria are ±0.1 K, ±0.01 kPa and ±0.0004, respectively. A qualitative analysis of the variation of the properties with changes in solvent and temperature was performed. The Peng-Robinson equation of state (PR EoS), coupled with the Wong-Sandler mixing rule (WS), is used to describe the experimental data. To calculate activity coefficients we used three different models: NRTL, UNIQUAC, and COSMO-SAC. Since the predictive liquid activity coefficient model COSMO-SAC is used in the Wong-Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the (vapor + liquid) equilibria have a deviation lower than 2.3% and 1.6%, respectively. The (vapor + liquid) equilibria predictions show a good description for the propionaldehyde system and only a qualitative description for the valeraldehyde system.

  7. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  8. A three-dimensional numerical study on dynamics behavior of a rising vapor bubble in uniformly superheated liquid by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Sun, Tao; Sun, Jiangang; Ang, Xueye; Li, Shanshan; Su, Xin

    2016-01-01

    Highlights: • Dynamics of vapor bubble in uniformly superheated liquid is studied by a 3D LBM. • The growth rate reaches a maximum value and then decrease until a certain value. • The vapor bubble will take place a larger deformation at high ratio of Re/Eo. • The bubble wake has a great influence on motion and deformation of vapor bubble. • Ratio of Re/Eo has an important influence on evolution of temperature field. - Abstract: In this paper, dynamics behaviors of a rising vapor bubble in uniformly superheated liquid are firstly studied by a hybrid three-dimensional lattice Boltzmann model. In order to validate this model, two test cases regarding bubble rising in an isothermal system and vapor bubble growth in a superheated liquid are performed, respectively. The test results are consistent with existing results and indicate the feasibility of the hybrid model. The hybrid model is further applied to simulate growth and deformation of a rising vapor bubble in different physical conditions. Some physical parameters of vapor bubble such as equivalent diameter and growth rate are evaluated accurately by three-dimensional simulations. It is found that the growth rate of vapor bubble changes with time and temperature gradient. It reaches a maximum value at the initial stage and then decrease until a certain value. The growth and deformation of vapor bubble at different ratios of Re/Eo are discussed. The numerical results show the vapor bubble will take place a larger deformation at high ratio of Re/Eo at the middle and final stages. In addition, the hybrid model is also applied to predict the evolution of flow and temperature fields. The bubble wake has a great influence on the motion and deformation of vapor bubble during rising process. As far as the temperature field is concerned, a ratio of Re/Eo has an important influence on heat transfer and evolution of temperature field.

  9. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave-Redlich-Kwong......The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave...... solid-liquid-vapor equilibrium and thermal property data for strongly non-ideal systems. In this work, the model is extended to aqueous salt systems containing higher alcohols. The calculations are based on an extensive database consisting of salt solubility data, vapor liquid equilibrium data...

  10. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    Science.gov (United States)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  11. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-01-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments

  12. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  13. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  14. Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A

    NARCIS (Netherlands)

    Matheis, Jan; Hickel, S.

    2018-01-01

    We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and

  15. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    Science.gov (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  16. RESUS: A code for low volatile radio-nuclide release from liquids due to vapor bubble burst induced liquid jet formation and disintegration

    International Nuclear Information System (INIS)

    Koch, M.K.; Starflinger, J.; Linnemann, Th.; Brockmeier, U.; Unger, H.; Schuetz, W.

    1995-01-01

    In the field of nuclear safety, the release of volatile and low volatile radio-nuclides from liquid surfaces into a gas atmosphere is important for aerosol source term considerations particularly in late severe accident sequences. In case of a hypothetical nuclear reactor accident involving a failure of the primary system, primary coolant and radio-nuclides may be released into the containment to frequently form a liquid pool which may be contaminated by suspended or solved fuel particles and fission products. Under this scope, the release code package REVOLS/RENONS was developed for radio-nuclide release from liquid surfaces. Assuming the absence of gas or vapor bubbles in the liquid, the evaporative release of volatile components, calculated by the REVOLS code, is governed by diffusive and convective transport processes, whereas the release of low volatiles, calculated by the RENONS code, may be governed by mechanical processes which leads to droplet entrainment in case of wavy liquid pool surface conditions into the containment atmosphere by means of convection. For many accident sequences, in which gas is injected into a pool or liquid area elsewhere, predominantly when saturation temperatures can be reached, the release of low volatile species from liquid surfaces due to bubble burst is identified as a decisive release mechanism also. Together with the liquid, the particles which are located at the pool surface or suspended in the pool, are released into the atmosphere. Consequently, the code RESUS.MOD1 (RESUSpension) is presently extended to include the calculation of the release of droplets and suspended radio-nuclide particles due to bubble burst induced liquid jet formation and disintegration above liquid surfaces. Experimental investigations indicate the influence of bubble volume and shape at the pool surface as well as bubble stabilization or destabilization, and furthermore the system pressure and temperatures as well as fluid properties, on droplet

  17. Vapor-liquid equilibrium ratio of trace furfural in water+1-butanol system; Mizu+1-butanorukei ni okeru biryo no furufuraru no kieki heikohi

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Aikou, R. [Kagoshima Univ. (Japan). Faculty of Engineering

    1997-11-01

    Vapor-liquid equilibria of a water + 1-butanol system containing a trace amount of furfural were measured at atmospheric pressure by use of a Iino-type still for systems of limited miscibility. Vapor-liquid compositions for the major components (water and 1-butanol) are shown to be nearly coincident with those of the binary system. In the partially miscible region, the vapor-liquid equilibrium ratios of the trace component (furfural) at bubble point were found to be 2.5 and 0.46. Consequently, the partition coefficient of the trace component between the two liquid phases is 5.4. The equilibrium ratio curve of the trace component is presented, in which the calculated curve within the partially miscible region is shown to be coincident with the experimental data. 5 refs., 3 figs., 1 tab.

  18. Vapor-liquid equilibrium of the Mg(NO3)2-HNO3-H2O system

    International Nuclear Information System (INIS)

    Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

    1983-06-01

    The vapor-liquid equilibrium of the Mg(NO 3 ) 2 -HNO 3 -H 2 O system in concentrations of 0 to 70 wt % Mg(NO 3 ) 2 and 0 to 75 wt % HNO 3 at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO 3 , NO 3 - , and H + ) were approximated with mole fractions. The activity coefficients of the undissociated HNO 3 and H 2 O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8 0 K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10 0 K for the bubble-point temperature

  19. Thermodynamics of Supercooled and Glassy Water

    Science.gov (United States)

    Debenedetti, Pablo G.

    1998-03-01

    The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key

  20. Surface Tension of Supercooled Water Determined by Using a Counterpressure Capillary Rise Method

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Fransen, M. A. L. J.; Hykl, Jiří; Hrubý, Jan

    2015-01-01

    Roč. 119, č. 17 (2015), s. 5567-5575 ISSN 1520-6106 R&D Projects: GA MŠk LG13056; GA ČR GJ15-07129Y Institutional support: RVO:61388998 Keywords : capillary tube * interfacial tension * metastable liquid * supercooled liquid Subject RIV: BJ - Thermodynamics Impact factor: 3.187, year: 2015 http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b00545

  1. Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor

    International Nuclear Information System (INIS)

    Apatiga, L.M.; Morales, J.

    2009-01-01

    A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 o C and is instantly evaporated. The resulting vapor mixture is transported by a carrier gas to the high-temperature reaction chamber where the diamond nucleates and grows on the substrate surface at temperatures ranging from 750 to 850 o C. The injection frequency, opening time, number of pulses and other injector parameters are controlled by a computer-driven system. The diamond film morphology and structure were characterized by scanning electron microscopy and Raman spectroscopy. The as-deposited diamond films show a ball-shaped morphology with a grain size that varies from 100 to 400 nm, as well as the characteristic diamond Raman band at 1332 cm -1 . The effects of the experimental parameters and operation principle on the diamond films quality are analyzed and discussed in terms of crystallinity, composition, structure, and morphology.

  2. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J.

    1990-01-01

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  3. Measuring and predicting the dynamic effects of a confined thin metal plate pulse heated into the liquid-vapor regime

    International Nuclear Information System (INIS)

    Baxter, R.C.

    1977-01-01

    The dynamic response of a confined thin layer of lead heated rapidly and uniformly to a supercritical state was investigated. Lead targets 0.025 mm and 0.05 mm thick were contained between a thin titanium tamping layer and a thick layer of fused quartz with several different gap widths between the lead and the confining surfaces. After being heated by an electron beam for about 50 ns, lead specimens expanded to a state of approximately half liquid and half vapor. Measurements of the stress in the quartz and the velocity of the tamper produced by the expanding lead were compared with one dimensional hydrodynamic computer program predictions. Measured and predicted peak stresses in the quartz for no gaps were approximately 12 kilobars and agreed within one kilobar. Peak stresses decreased rapidly with gap size to values, at 0.02 mm gaps, of about one kilobar for the 0.025 mm lead targets and five kilobars for the 0.05 mm targets. These values were confirmed by measurements. Predictions and measurements of tamper velocity (momentum) were within 10% only when the lead and confining walls were in close contact. The observed velocities for even very small gaps were substantially below predictions. These differences are attributed primarily to separation of the liquid and vapor phases during the expansion

  4. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    Science.gov (United States)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  5. One step growth of GaN/SiO2 core/shell nanowire in vapor-liquid-solid route by chemical vapor deposition technique

    Science.gov (United States)

    Barick, B. K.; Yadav, Shivesh; Dhar, S.

    2017-11-01

    GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.

  6. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-01-01

    Full Text Available Abstract The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%.

  7. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  8. Slow Dynamics and Structure of Supercooled Water in Confinement

    Directory of Open Access Journals (Sweden)

    Gaia Camisasca

    2017-04-01

    Full Text Available We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics.

  9. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    International Nuclear Information System (INIS)

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-01-01

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data

  10. Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure%Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    王琳; 曹丰璞; 刘珊珊; 杨浩

    2011-01-01

    High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.

  11. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  12. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  13. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications

    International Nuclear Information System (INIS)

    Feng, Ying; Chen, Ke

    2015-01-01

    We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-transferred graphene has similar properties to traditional wet-transferred graphene, characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical transport measurements. It has a sheet resistance of 1.6 ∼ 3.4 kΩ/□, hole density of (4.1 ∼ 5.3) × 10 12 cm −2 , and hole mobility of 460 ∼ 760 cm 2 V −1 s −1 without doping at room temperature. The results suggest that large-scale CVD-grown graphene can be transferred with good quality and without contaminating the target surface by any liquid. Mg/MgO/graphene tunnel junctions were fabricated using this transfer method. The junctions show good tunneling characteristics, which demonstrates the transfer technique can also be used to fabricate graphene devices on liquid-sensitive surfaces. (paper)

  14. X-ray studies of the liquid/vapor interface: Water and polymer and fatty acid monolayers on water

    International Nuclear Information System (INIS)

    Schlossman, M.L.; Schwartz, D.K.; Kawamoto, E.H.; Kellogg, G.J.; Pershan, P.S.; Ocko, B.M.; Kim, M.W.; Chung, T.C.

    1989-01-01

    X-ray specular reflectivity is used to study the liquid-vapor interface of pure water and of fatty acid and polymer monolayers at that interface. For the pure water surface the reflectivity was measured for three different spectrometer resolutions and simultaneous fits with only one free parameter to all of the data are in excellent agreement with the prediction of capillary wave theory for the RMS surface roughness. Diffuse scattering away from the specular condition, at wavevectors corresponding to those of the capillary waves, yields intensities and line shapes in agreement with theory with no significant adjustable parameters. Reflectivity from separate monolayers of co-poly 1, 2-butadiene/butyl alcohol (50% random substitution) and lignoceric acid (CH 3 (CH 2 ) 22 COOH) at the water/vapor interface are interpreted to obtain profiles of the average electron density ρ(z) as a function of distance z along the surface normal. For the polymer monolayer we find the following: (1) a local maximum in the electron density approximately 10% larger than that of the bulk polymer and (2) the RMS roughness of the vapor/polymer interface agrees with capillary wave theory predictions for the lower surface pressures. For the highest surface pressure the RMS roughness exceeds the value predicted by the capillary wave model. Measurements of reflectivity from a lignoceric acid monolayer, as a function of surface pressure throughout an isotherm (near room temperature), reveal the following behavior: (1) the overall thickness of the monolayer increases with increasing pressure and (2) the head groups occupy a progressively larger region along the surface normal as the pressure increases, indicating that they rearrange normal to the interface. 15 refs., 5 figs., 2 tabs

  15. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.

    Science.gov (United States)

    Weiss, Volker C

    2010-07-22

    One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.

  16. An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface

    International Nuclear Information System (INIS)

    Calderín, L; González, L E; González, D J

    2013-01-01

    Several static and dynamic properties of bulk liquid Cd at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported for several transport coefficients. Additional simulations have also been performed at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behavior with two different wavelengths, as the spacing between the outer and first inner layer is different from that between the other inner layers. The calculated reflectivity shows a marked maximum whose origin is related to the surface layering, along with a shoulder located at a much smaller wavevector transfer.

  17. Steady-state molecular dynamics simulation of vapor to liquid nucleation with Mc Donald's demon

    International Nuclear Information System (INIS)

    Horsch, M.; Miroshnichenko, S.; Vrabec, J.

    2009-01-01

    Grand canonical MD with McDonald's demon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapor. The idea behind the new approach is to simulate the production of clusters up to a given size for a specified supersaturation. The classical nucleation theory is found to overestimate the free energy of cluster formation and deviate by two orders of magnitude from the nucleation rate below the triple point at high supersaturations.

  18. Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos-Madrigal

    2015-01-01

    Full Text Available Existen varios modelos moleculares para el monóxido de carbono desarrollados a partir de diferentes mediciones experimentales. El objetivo de este trabajo es comparar los resultados que varios de estos modelos producen en el cálculo del equilibrio líquido-vapor en busca de recomendar qué modelo debe ser usado de acuerdo la propiedad y la fase que se desea calcular. Los modelos seleccionados corresponden a cuatro modelos no polares, con uno o dos sitios Lennard-Jones, y cuatro modelos polares, con dipolos o cargas parciales para representar la polaridad del monóxido de carbono. Simulaciones Monte Carlo en la versión Gibbs canónica (NVT-GEMC se emplearon para determinar las densidades de las fases en equilibrio, la presión de vapor y la entalpia de vaporización entre 80 y 130 K con cada uno de los modelos seleccionados. Se encontró que los modelos más complejos SVH, ANC y PGB, son los que mejor describen la densidad del líquido saturado (alrededor de 7% de desviación promedio, pero estos modelos generan desviaciones mayores al 40% para las propiedades del vapor y al 20% para la entalpia de vaporización. Por otro lado, el modelo no- polar BLF generó las menores desviaciones para la presión de saturación y la densidad del vapor (6.8 y 21.5%, respectivamente. Este modelo, al igual que el modelo HCB, produce desviaciones aceptables para la densidad del líquido y la entalpia de vaporización (entre 10 y 12%. Los modelos no polares BLF y HCB, que no requieren el cálculo de las interacciones de largo alcance, se pueden considerar como los modelos moleculares que presentan un balance satisfactorio entre desviaciones en los resultados y complejidad de cálculo.

  19. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    International Nuclear Information System (INIS)

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25 0 C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations

  20. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    Science.gov (United States)

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  1. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Directory of Open Access Journals (Sweden)

    B. K. Barick

    2015-05-01

    Full Text Available Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ̄ 0 ] direction (a-plane to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  2. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Science.gov (United States)

    Barick, B. K.; Rodríguez-Fernández, Carlos; Cantarero, Andres; Dhar, S.

    2015-05-01

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ¯ 0 ] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  3. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  4. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Energy Technology Data Exchange (ETDEWEB)

    Barick, B. K., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in; Dhar, S., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400076 (India); Rodríguez-Fernández, Carlos; Cantarero, Andres [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  5. MOLECULAR SIMULATION OF THE VAPOR-LIQUID EQUILIBRIUM OF N2-NC5 MIXTURE BY MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Florianne Castillo-Borja

    2013-12-01

    Full Text Available ABSTRACT This study used Monte Carlo simulations in the Gibbs ensemble to describe the liquid-vapor phase equilibrium of nitrogen-n-pentane system for three isotherms. The study analyzed a wide range of pressures ranging up to 25 MPa. The system was modeled using the intermolecular potential Galassi-Tildesley for nitrogen and SKS for n-pentane. Results were compared against experimental data. Far from the critical point region, analyzed models reproduce favorably shape of the curve of phase equilibrium and in the vicinity of the critical point, results tend to move away from the experimental behavior. Critical points were determined (pressure, density and composition for the three isotherms using an extrapolation method based on scaling laws, with satisfactory results. Calculated coexistence curves are adequate even if the models analyzed do not contain optimized binary interaction parameters .

  6. Modelling and numerical simulation of liquid-vapor phase transitions; Modelisation et simulation numerique des transitions de phase liquide-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Caro, F

    2004-11-15

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  7. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Yermalayeu, Andrei V; Schick, Christoph; Liu, Hongjun; Maginn, Edward J; Bulut, Safak; Krossing, Ingo; Kalb, Roland

    2013-05-30

    Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.

  8. Experimental determination of the (vapor + liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Matricarde Falleiro, Rafael M.; Meirelles, Antonio J.A.; Kraehenbuehl, Maria A.

    2010-01-01

    (Vapor + liquid) equilibrium (VLE) data for three binary mixtures of saturated fatty acids were obtained by differential scanning calorimetry (DSC). However, changes in the calorimeter pressure cell and the use of hermetic pans with holes (φ = 250 mm) in the lids were necessary to make it possible to apply this analytical technique, obtaining accurate results with smaller samples and shorter operational times. The systems evaluated in this study were: myristic acid (C 14:0 ) + palmitic acid (C 16:0 ), myristic acid (C 14:0 ) + stearic acid (C 18:0 ), and palmitic acid (C 16:0 ) + stearic acid (C 18:0 ), all measured at 50 mm Hg and with mole fractions between 0.0 and 1.0 in relation to the most volatile component of each diagram. The fugacity coefficients for the components in the vapor phase were calculated using the Hayden and O'Connell method [J.G. Hayden, J.P. O'Connell, Ind. Eng. Chem. Process Design Develop. 14 (3) (1975) 209-216] and the activity coefficients for the liquid phase were correlated with the traditional g E models (NRTL [H. Renon, J.M. Prausnitz, Aiche J. 14 (1968) 135-144], UNIQUAC [D.S. Abrams, J.M. Prausnitz, Aiche J. 21 (1975) 116-128], and Wilson [J.M. Prausnitz, N.L. Linchtenthaler, E.G. Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, River-Prentice Hall, Upper Saddle, 1999]). The sets of parameters were then compared in order to determine which adjustments best represented the VLE.

  9. Measuring probe and method for determining the oxygen content in gases, vapors, and liquids, especially in liquid metals

    International Nuclear Information System (INIS)

    Sundermann, H.; Andrae, U.

    1978-01-01

    The invention is concerned with the improvement of the measuring probe described in the main patent no. 1798002 with which the oxygen content in liquid metals, e.g. Na, is to be determined. In order to avoid the glass stopper shutting off the reference space having to be ground out it is proposed to connect the solid electrolyte firmly and hermetically with a metallic mounting support (e.g. Fe-Co-Ni alloy), having got the same thermal coefficient of expansion as the solid electrolyte (e.g. zirconium dioxide stabilized with ythium oxide or thorium dioxide). Further details of the design are very explicitly described. (HP) [de

  10. Liquid-vapor equilibrium in VOCl3-Si2OCl6 and VOCl3-CCl3COCl systems

    International Nuclear Information System (INIS)

    Tret'yakova, K.V.

    1976-01-01

    Two methods were used in a study of liquid-vapor equilibrium of VOCl 3 -Si 2 OCl 6 (1) and VOCl 3 -CCl 3 COCl (2) systems. The first, ebulliometric method was used for determining the relationship saturated vapor pressure in the range from 450-500 to 1450-1500 mm Hg and the temperature which is in the range from 100-110 to 150-160 deg C. The data on saturated vapor pressure of pure substances and their mixtures were interpreted by the least squares method according to an equations of the type lgP=A-B/T. For 760 mm Hg isobar the dependence of the b.p. of system 1 on the concentration of its components considerably deviates fron the ideal state. In this case positive azeotrope is formed (b.p. 126.5 deg C) containing 83.5% mole VOCl 3 . The Van Laar euqation was used in calculating the relative volatility. At 760 mm Hg pressure in I, Si 2 OCl 6 is more volatile, the difference between the normal b.p. of VOCl 6 (127.7 deg C) and that of the azeotropic mixture (126.5 deg C) being only 1.2 deg C. The Rayleigh distillation method was used for direct determination of the volatility of this system. The average value for αsub(Si 2 OCl 6 /VOCl 3 ) was found to be 1.44. It accords well with the value of 1.47 obtained from an extrapolation of results for pure VOCl 3 on the basis of the ebulloimetric measurements. In the case of system 2 a considerable positive deviation from the ideal state was observed within the entire range of concentrations. Calculations of the activity coefficients for the components of this system, the composition of the vapor phase and the relative volatility were made with the aid of the Dugem-Margulis equation. The value for the relative volatility αsub(CCl 3 COCl/VOCl 3 ), as extrapolated for pure VOCl 3 , was 1.8. No direct measurements of α were made in this case owing to difficulties in analysis of the two components

  11. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  12. Structure–property relationships in ionic liquids: Influence of branched and cyclic groups on vaporization enthalpies of imidazolium-based ILs

    International Nuclear Information System (INIS)

    Zaitsau, Dzmitry H.; Varfolomeev, Mikhail A.; Verevkin, Sergey P.; Stanton, Alexander D.; Hindman, Michelle S.; Bara, Jason E.

    2016-01-01

    Highlights: • Ionic liquids [Rmim][NTf_2] with iso-alkyl and cyclic substituents were synthesized. • Vaporization enthalpies were measured using quartz-crystal microbalance. • Data consistency was tested by comparison with the homomorph compounds. • Vaporization enthalpies of branched ILs are generally on the same level as for linear. • These findings are useful for the quick estimation of vaporization enthalpies. - Abstract: Ionic liquids (ILs) with branched and cyclic substituents are seldom studied in the literature, and as such there are little to no data characterizing their thermophysical properties. ILs with branched and cyclic substituents are just as convenient to synthesize and study as their counterparts with linear substituents, but the effects of these substituents on IL properties are not yet well-defined due to the preference for linear substituents. Standard molar vaporization enthalpies of six imidazolium based ionic liquids [Rmim][NTf_2] with iso-alkyl and cyclic substituents (R = iso-propyl, iso-butyl, sec-butyl, methylcyclopropyl, cyclopentyl and methylcyclohexyl) were derived from quartz-crystal microbalance (QCM) method. Enthalpies of vaporization measured at elevated temperatures have been adjusted to the reference temperature 298 K and tested for consistency by comparison with the homomorphy alkane, alkylbenzenes and alkyl-imidazoles. It was found that vaporization enthalpies of ILs with the iso-alkyl and cyclic groups are generally on the same level within (±2 to 3) kJ · mol"−"1 significantly compared to the analogous ILs with the imidazolium cation substituted with the linear alkyl substituents of the same chain length. These findings are useful for the quick estimation of vaporization enthalpies of various substituted IL cations (e.g. pyrrolidinium, ammonium, pyridinium, etc.).

  13. On the relation between the ratio of energy of vaporization to activation energy for flow and physical properties of liquid metals

    International Nuclear Information System (INIS)

    Dutt, N.V.K.; Ravikumar, Y.V.L.; Prasad, D.H.L.

    1993-01-01

    A relation between the ratio of energy of vaporization (Esub(vap) to the activation energy for flow (Esub(vis)) and the ratio of melting point (T m ) to the critical temperature (T c ) has been developed for liquid metals, and is shown to be superior to the examinations from Eyring theory. (author). 12 refs

  14. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    Science.gov (United States)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  15. Isothermal Vapor-Liquid Equilibria in the Two Binary and the Ternary Systems Composed of tert-Amyl Methyl Ether, tert-Butanol, and Isooctane

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2011-01-01

    Roč. 56, č. 4 (2011), s. 783-788 ISSN 0021-9568 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor-liquid equilibrium * experimental data * prediction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.693, year: 2011

  16. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  17. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Meirelles, A.J.A.

    2009-01-01

    In the present work a group contribution method is proposed for the estimation of the heat capacity of organic liquids as a function of temperature for fatty compounds found in edible oil and biofuels industries. The data bank used for regression of the group contribution parameters (1395 values...

  18. Vapor-liquid equilibria of the binary system 1,5-hexadiene + allyl chloride

    NARCIS (Netherlands)

    Raeissi, S.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    Knowledge of accurate vapor–liquid equilibrium data for mixtures of allyl chloride and 1,5-hexadiene is important for several industrial purposes. The bubble points of binary mixtures of allyl chloride and 1,5-hexadiene have been measured experimentally using a synthetic method. Measurements were

  19. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl...

  20. Temperature distribution in the reactive jet of water vapor and liquid sodium - contribution to wastage modelling

    International Nuclear Information System (INIS)

    Roger, F.; Park, K.Y.; Carreau, J.L.; Gbahoue, L.; Hobbes, P.

    1984-08-01

    The possibility of water vapor leaks across the wall of one or more of the heat exchanger tubes in the steam generator constitutes one of the important problems of safety of the Fast Breeder Reactors cooled by sodium. The jet thus formed can, in fact, destroy the neighbouring tubes. The hydrodynamic, chemical and thermal factors play an important role in this phenomenon and only the last-mentionned will be studied here. The use of the integral method of analysis, complemented by an experimental study, shows that the temperature profiles are Gaussian; if the maximum temperature is less than that of the boiling point of sodium, i.e. 1155 K, and for steam flow rates less than 0,5g/s, the temperature profiles can be represented by the error function, and an approximate equation gives the difference in temperature between the jet axis and the radical far-field

  1. Recovery of combustible vapors, by liquid refrigerated centrifugation, on distribution bases of loading islands; Recuperacao de vapores de combustiveis, por centrifugacao liquida refrigerada, em ilhas de carregamento das bases de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Capulli, Domenico; Saraceno, Alessandra S.P. [Capmetal Tecnologia Ambiental, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The distribution of petroleum derivates organic combustibles represents, in volume, the second liquid fluid of the planet, with distribution basis, the loading operations of trucks, railroad coaches and vessels provokes the unfastening of volatile organic compounds - VOC, in Brazil the combustible vaporized fraction is estimated 313.308 liters daily, provoking health damages in operators and environmental impacts at aerial basin, determining the obligatory disposal of organic vapors capitation and depuration systems, with use of technologies, such as thermal oxidation, activated carbon adsorption, fluids absorptions and cryogenic condensation for treatment of the emanated vapors at loading operations, so the high aggregated value of the investment, the intensive consume of energy and the high sizes, that residue treatment units have postponed the investments in function of the missing of regularization in Brazil, counter pointing the regularization of the Clean Air Act and the United States Cost Guard that introduced the evolution and the availability of the BDT - Best Demonstrated Technologies - the technological innovation of the Hydrodynamic Precipitator operating by multi venturi liquid centrifugation married with refrigeration cycles that permit the recovery of the vapors and technologies BADCT - Best Demonstrated Control Technology - to viability the large extension of the compact control units required of smaller investment and one stage operation. (author)

  2. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows

    International Nuclear Information System (INIS)

    Dong Xueqiang; Gong Maoqiong; Liu Junsheng; Wu Jianfeng

    2011-01-01

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than ±5 mK, ±0.0005 MPa, and ±0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  3. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {l_brace}1,1,1,2-tetrafluoroethane (R134a) + propane (R290){r_brace} by a recirculation apparatus with view windows

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2011-03-15

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than {+-}5 mK, {+-}0.0005 MPa, and {+-}0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  4. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    Science.gov (United States)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  5. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    Science.gov (United States)

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Stagnation of ablated metal vapor in laser fusion reactor with liquid wall

    International Nuclear Information System (INIS)

    Norimatsu, T.; Nagatomo, H.; Azechi, H.; Furukawa, H.; Shimada, Y.; Kurahashi, S.; Kunugi, T.; Kajimura, Y.

    2010-11-01

    In this paper, formation of clusters by ablated materials and those stagnation at the center of a laser fusion reactor with liquid wall are discussed using improved simulation code DECORE. We will report 1) numerical simulation on formation of clusters immediately before the stagnation, 2) preliminary results on the cluster formation at the first bounce of the stagnation, 3) experimental result on the diameter measurement of micro droplets formed in a simulation experiment with back-side irradiation of laser. (author)

  7. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  8. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    International Nuclear Information System (INIS)

    Campos, Reinaldo C.; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S.; Oliveira, Fabiana; Wasserman, Julio

    2009-01-01

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C 18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L -1 HCl, reduction was performed by a NaBH 4 solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 μg L -1 were obtained for ionic (Hg 2+ ) and HgCH 3 + , for an injection volume of 200 μL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.

  9. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Reinaldo C. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil)], E-mail: rccampos@puc-rio.br; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil); Oliveira, Fabiana; Wasserman, Julio [Institut of Geosciences, Fluminense Federal University, Av. Gal. Milton Tavares de Souza, s/n, 24.210-340, Niteroi, Rio de Janeiro (Brazil)

    2009-06-15

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C{sub 18} column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L{sup -1} HCl, reduction was performed by a NaBH{sub 4} solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 {mu}g L{sup -1} were obtained for ionic (Hg{sup 2+}) and HgCH{sub 3}{sup +}, for an injection volume of 200 {mu}L. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sedi0011men.

  10. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press...

  11. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry

    Science.gov (United States)

    2011-03-29

    Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A.; Corfield, J.-A.; Deyko, A.; Lovelock , K. R. J.; Licence, P.; Jones, R. G. Pyrrolidinium- Based Ionic...112, 11734–11742. (2) Lovelock , K. R. J.; Deyko, A.; Licence, P.; Jones, R. G. Vaporisa- tion of an Ionic Liquid Near Room Temperature. Phys. Chem...Relevance of pKa from Aqueous Solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419. (15) Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock , K

  13. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    Science.gov (United States)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  14. Dynamics of shock wave propagation and interphase process in liquid-vapor medium

    Energy Technology Data Exchange (ETDEWEB)

    Pokusaev, B.G. [Moscow State Academy of Chemical Mechanical Engineering (Russian Federation); Pribaturin, N.A. [Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    1995-09-01

    This paper considers the experimental results and physical effects on the pressure wave dynamics of a vapour-liquid two-phase medium of bubble and slug structure. The role of destruction and collapse of bubbles and slugs, phase transition (condensation and evaporation) on pressure wave dynamics is also studied. The general mechanisms of the wave formation, behavior and instability of a vapour-liquid structure under pressure waves, basic peculiarities of the interface heat transfer are obtained. In the experiments it has been shown that for the bubble medium the shock wave can be transformed into the powerful pressure pulse with an amplitude greater then the amplitude of the initial pressure wave. For the slug medium a characteristic structure of the amplificated wave is {open_quotes}comb{close_quotes} - like wave. It has been shown that the wave amplification caused by generation of secondary waves in a medium caused by destruction and collapse of bubbles and slugs. The obtained results can be useful at transient and emergency operational regimes of nuclear reactors, fuel tank, pipelines with two-phase flows and for development of safety models for chemical industry.

  15. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  16. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    Science.gov (United States)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  17. Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss.

    Science.gov (United States)

    Doctor, Allan; Al-Khadra, Eman; Tan, Puay; Watson, Kenneth F; Diesen, Diana L; Workman, Lisa J; Thompson, John E; Rose, Charles E; Arnold, John H

    2003-09-01

    High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation (n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group (P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV (P PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

  18. Solar control on the cloud liquid water content and integrated water vapor associated with monsoon rainfall over India

    Science.gov (United States)

    Maitra, Animesh; Saha, Upal; Adhikari, Arpita

    2014-12-01

    A long-term observation over three solar cycles indicates a perceptible influence of solar activity on rainfall and associated parameters in the Indian region. This paper attempts to reveal the solar control on the cloud liquid water content (LWC) and integrated water vapor (IWV) along with Indian Summer Monsoon (ISM) rainfall during the period of 1977-2012 over nine different Indian stations. Cloud LWC and IWV are positively correlated with each other. An anti-correlation is observed between the Sunspot Number (SSN) and ISM rainfall for a majority of the stations and a poor positive correlation obtained for other locations. Cloud LWC and IWV possess positive correlations with Galactic Cosmic Rays (GCR) and SSN respectively for most of the stations. The wavelet analyses of SSN, ISM rainfall, cloud LWC and IWV have been performed to investigate the periodic characteristics of climatic parameters and also to indicate the varying relationship of solar activity with ISM rainfall, cloud LWC and IWV. SSN, ISM rainfall and IWV are found to have a peak at around 10.3 years whereas a dip is observed at that particular period for cloud LWC.

  19. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  20. International Union of Theoretical and Applied Mechanics: Symposium on Adiabatic Waves in liquid-Vapor Systems Held at Goettingen (Germany, F.R.) on 28 August-1 September 1989. Abstracts of the Contributed Papers

    Science.gov (United States)

    1989-09-01

    THE LIQUID- VAPOR CRITICAL POINT" P.A. Thompson, J.E. Shepherd, H.J. Cho, S.Can Gulen (Troy). Non-euilibrium in dinamic systems , critical phenomena...IN LIQUID-VAPOR SYSTEMS G~ttingen: 28. August - 1. September 1989 Chairmen: Gerd E.A. Meier & Philip A. Thompson Secretary: Tomasz A. Kowalewski...is a great pleasure to welcome you on behalf of the Organizing Committee to the IUTAM Symposium on Adiabatic Waves in Liquid Vapor Systems . We are

  1. Evaluation of (vapor + liquid) equilibria for the binary systems (1-octanol + cyclohexane) and (1-octanol + n-hexane), at low alcohol compositions

    International Nuclear Information System (INIS)

    Ovejero, Gabriel; Dolores Romero, M.; Diez, Eduardo; Lopes, Tania; Diaz, Ismael

    2008-01-01

    Isobaric (vapor + liquid) equilibrium at p = 101.32 kPa of pressure has been determined for the systems (1-octanol + cyclohexane) and (1-octanol + n-hexane), at low alcohol mole fractions. These data were satisfactorily correlated, using ASPEN PLUS commercial software, with Wilson, NRTL, and UNIQUAC activity coefficient models to obtain the binary interaction parameters of both mixtures. Also, UNIFAC group contribution method was employed to predict the equilibrium of both mixtures. With regression values an accurate knowledge of (vapor + liquid) equilibrium for both mixtures can be reached in a range of 1-octanol mole fractions less than 0.1. UNIFAC method provides acceptable results for (1-octanol + n-hexane) system but not for (1-octanol + cyclohexane) system

  2. Vapor-liquid equilibria of a minute amount of furfural in water-methanol-ethanol system; Mizu-methanol-ethanol keichu no biryo no furfural no kieki heiko

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Uemura, Y. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1997-01-10

    Vapor-liquid equilibria of a water-methanol-ethanol system containing a minute amount of furfural were measured at atmospheric pressure by use of an Othmer-type still. The experimental results are represented by four triangular diagrams against the liquid compositions of the major components (water, methanol and ethanol), in which three diagrams show the vapor composition of the major components, respectively, and one diagram shows the equilibrium ratio of the trace component (furfural). The curved surface of the equilibrium ratio of the trace component exhibits a gentle downward slope in most areas, but shows a half-saddle face in the neighborhood of the water-ethanol side. 4 refs., 10 figs., 3 tabs.

  3. HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA FOR BINARY AND TERNARY SYSTEMS FORMED BY SUPERCRITICAL CO2, LIMONENE AND LINALOOL

    Directory of Open Access Journals (Sweden)

    MELO S. A. B. VIEIRA DE

    1999-01-01

    Full Text Available The feasibility of deterpenating orange peel oil with supercritical CO2 depends on relevant vapor-liquid equilibrium data because the selectivity of this solvent for limonene and linalool (the two key components of the oil is of crucial importance. The vapor-liquid equilibrium data of the CO2-limonene binary system was measured at 50, 60 and 70oC and pressures up to 10 MPa, and of the CO2-linalool binary system at 50oC and pressures up to 85 bar. These results were compared with published data when available in the literature. The unpublished ternary phase equilibrium of CO2-limonene-linalool was studied at 50oC and up to 9 MPa. Selectivities obtained using these ternary data were compared with those calculated using binary data and indicate that a selective separation of limonene and linalool can be achieved.

  4. Evaluation of (vapor + liquid) equilibria for the binary systems (1-octanol + cyclohexane) and (1-octanol + n-hexane), at low alcohol compositions

    Energy Technology Data Exchange (ETDEWEB)

    Ovejero, Gabriel [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de C. Quimicas, Universidsad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)], E-mail: govejero@quim.ucm.es; Dolores Romero, M.; Diez, Eduardo; Lopes, Tania; Diaz, Ismael [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de C. Quimicas, Universidsad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2008-11-15

    Isobaric (vapor + liquid) equilibrium at p = 101.32 kPa of pressure has been determined for the systems (1-octanol + cyclohexane) and (1-octanol + n-hexane), at low alcohol mole fractions. These data were satisfactorily correlated, using ASPEN PLUS commercial software, with Wilson, NRTL, and UNIQUAC activity coefficient models to obtain the binary interaction parameters of both mixtures. Also, UNIFAC group contribution method was employed to predict the equilibrium of both mixtures. With regression values an accurate knowledge of (vapor + liquid) equilibrium for both mixtures can be reached in a range of 1-octanol mole fractions less than 0.1. UNIFAC method provides acceptable results for (1-octanol + n-hexane) system but not for (1-octanol + cyclohexane) system.

  5. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.

    2010-01-01

    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....

  6. Vapor-Liquid Equilibria in the Binary and Ternary Systems Composed of 2-Methylpentane, 3-Methyl-2-Butanone and 3-Methyl-2-Butanol

    Czech Academy of Sciences Publication Activity Database

    Psutka, Štěpán; Wichterle, Ivan

    2005-01-01

    Roč. 50, č. 4 (2005), s. 1338-1342 ISSN 0021-9568 R&D Projects: GA ČR(CZ) GA104/03/1555; GA AV ČR(CZ) KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor-liquid equilibrium * binary- ternary systems * isothermal Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.610, year: 2005

  7. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2017-03-01

    The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.

  8. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    Science.gov (United States)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  9. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    International Nuclear Information System (INIS)

    Betts, S.E.

    1993-01-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON's evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA)

  10. Obtention of selective membranes for water and hydrophobic liquids by plasma enhanced chemical vapor deposition on porous substrates

    International Nuclear Information System (INIS)

    Bankovic, P.; Demarquette, N.R.; Silva, M.L.P. da

    2004-01-01

    In this work, the possibility of obtaining selective membranes for water and hydrophobic liquids by plasma enhanced chemical vapor deposition (PECVD) of hexamethyldisilazane (HMDS) or double layers of HMDS and n-hexane on porous substrates using a capacitive plasma reactor was investigated. The porous substrates used were paper filter, diatomite and polyester textiles. The films were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. The membranes obtained were characterized by the Cobb test. Their efficiency to separate hydrocarbon compounds from water was evaluated through filtration experiments and Karl-Fischer titration tests. The reagents used in the filtration experiments were: chloroform, n-hexane, n-heptane, ethyl ether, benzene and diesel. XPS analysis showed that Si, N, C and O were present at the surface of the film. C peak was dominant in the double layer film spectra. C-H n , CH 2 , Si-H, Si-CH 3 , N-H, Si-CH 2 -Si, Si-N-Si and Si-C bonds were identified in both types of the films by ATR-FTIR. The relative intensities of the corresponding peaks in the two spectra were different. The XPS and FTIR results indicated that C was most likely present in a CH n form at the surface of double layer film. The average contact angles formed by drops of water on the film surface ranged from 135 deg. to 155 deg. . Water adsorption measured by Cobb test decreased from average values ranging from 300 to 9000 g m -2 (for nonmodified surfaces) to values ranging from 0 to 20 g m -2 (for treated surfaces). The Karl-Fischer titration indicated that between 90 and 1000 ppm (depending on the reagent used) of water remained in the hydrocarbon compound after filtration

  11. Solución Matricial de Modelos para Cálculo de Equilibrio Líquido-Vapor Matrix Solution of Models to Calculate Liquid-Vapor Equilibrium

    OpenAIRE

    José F Orejel-Pajarito; Raúl González-García

    2008-01-01

    El objetivo de este artículo es demostrar la viabilidad de utilizar modelos termodinámicos de coeficientes de actividad (Wilson, NRTL, UNIQUAC) programados con matrices, en lugar de estar programados con ciclos. Se determina la relación de equilibrio líquido-vapor de las mezclas Metanol-Etanol-Benceno y Acetona-Cloroformo-Metanol representados en mapas de curvas de residuo y en mapas de líneas de destilación. Para obtener resultados más confiables y conclusiones objetivas, el estudio fue apoy...

  12. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6).

    Science.gov (United States)

    Tong, Jing; Yang, Hong-Xu; Liu, Ru-Jing; Li, Chi; Xia, Li-Xin; Yang, Jia-Zhen

    2014-11-13

    With the use of isothermogravimetrical analysis, the enthalpies of vaporization, Δ(g)lH(o)m(T(av)), at the average temperature, T(av) = 445.65 K, for the ionic liquids (ILs) 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6) were determined. Using Verevkin's method, the difference of heat capacities between the vapor phase and the liquid phase, Δ(g)lC(p)(o)m, for [C(n)mim][Pro](n = 2, 3, 4, 5, 6), were calculated based on the statistical thermodynamics. Therefore, with the use of Δ(g)lC(p)(o)m, the values of Δ(g)lH(o)m(T(av)) were transformed into Δ(g)lH(o)m(298), 126.8, 130.3, and 136.5 for [C(n)mim][Pro](n = 4, 5, 6), respectively. In terms of the new scale of polarity for ILs, the order of the polarity of [C(n)mim][Pro](n = 2, 3, 4, 5, 6) was predicted, that is, the polarity decreases with increasing methylene. A new model of the relationship between the surface tension and the enthalpy of vaporization for aprotic ILs was put forward and used to predict the surface tension for [C(n)mim][Pro](n = 2, 3, 4, 5, 6) and others. The predicted surface tension for the ILs is in good agreement with the experimental one.

  13. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  14. Measurement and correlation of vapor-liquid equilibria for a binary system containing 1-butyl-3-methylimidazolium tridecafluorohexyl sulfonate and carbon dioxide

    International Nuclear Information System (INIS)

    Hong, Soon Kang; Park, Yoon Kook

    2016-01-01

    Using a high-pressure variable-volume view cell, the vapor-liquid equilibria of the binary system CO 2 and 1-butyl-3-methylimidazolium tridecafluorohexylsulfonate ([BMIM][TDfO]) were determined. The CO 2 mole fraction ranged from 0.104 to 0.952 over a temperature range of 298.2-323.2 K. Both the Peng-Robinson and Soave-Redlich- Kwong equations of state were applied with two different mixing rules to correlate with the experimentally obtained results. Increasing the alkyl chain length in perfluorinated sulfonate anion mother structure from methyl to hexyl markedly increased the CO 2 solubility. To investigate the effect of the number of fluorine atoms in the anion on the phase behavior of imidazolium-based ionic liquid, these experimental results were then compared with those reported in previous experimental studies of 1-alkyl-3-methylimidazolium cations-including ionic liquid+CO 2 binary system.

  15. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    Science.gov (United States)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  16. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  17. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review].

    Science.gov (United States)

    Liu, Li-Min; Qi, Hua; Luo, Xin-Lan; Zhang, Xuan

    2008-09-01

    Some important phenomena and behaviors concerned with the coordination effect between vapor water loss through plant stomata and liquid water supply in SPAC were discussed in this paper. A large amount of research results showed that plants show isohydric behavior when the plant hydraulic and chemical signals cooperate to promote the stomatal regulation of leaf water potential. The feedback response of stomata to the change of environmental humidity could be used to explain the midday depression of stomatal conductance and photosynthesis under drought condition, and also, to interpret the correlation between stomatal conductance and hydraulic conductance. The feed-forward response of stomata to the change of environmental humidity could be used to explain the hysteresis response of stomatal conductance to leaf-atmosphere vapor pressure deficit. The strategy for getting the most of xylem transport requires the rapid stomatal responses to avoid excess cavitation and the corresponding mechanisms for reversal of cavitation in short time.

  18. Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lai, Hung-Sheng; Lin, Yi-Feng; Tu, Chein-Hsiun

    2014-01-01

    Highlights: • We report VLE data at 101.3 kPa for mixtures of ethanol, water, and 1,3-propanediol. • The VLE data were correlated by the Wilson, NRTL, and UNIQUAC models. • The ternary VLE data were predicted from binary VLE data using the three models. • The VLE effect of 1,3-propanediol on the azeotropic ethanol + water mixture was studied. • The azeotropic point of ethanol + water disappears at 30 wt% of 1,3-propanediol. -- Abstract: Isobaric (vapor + liquid) equilibrium (VLE) at P = 101.3 kPa have been measured for the ternary system of (ethanol + water + 1,3-propanediol) and for the corresponding binary systems of (ethanol + water), (ethanol + 1,3-propanediol), and (water + 1,3-propnaediol) using a Hunsmann-type equilibrium still with circulation of both vapor and liquid phases. The ternary mixtures were prepared by mixing ethanol and pure water with three concentrations (10, 30, and 50) wt% of 1,3-propanediol in the overall liquid mixtures in order to study the effect of 1,3-propanediol on the VLE of (ethanol + water). The equilibrium compositions of mixtures were analyzed by gas–liquid chromatography. The relative volatilities of ethanol with respect to water were also determined. The results of the investigation indicate the disappearance of the binary azeotrope between ethanol and water when the concentration of 1,3-propanediol is up to 30 wt%. The liquid activity coefficients were calculated using the modified Raoult’s law. The thermodynamic consistency of the VLE data was performed for the three binary systems using Van Ness direct test. The new binary and ternary VLE data were successfully correlated using the Wilson, NRTL, and UNIQUAC models, for which the binary interaction parameters are reported

  19. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  20. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  1. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300° to 500°C

    Science.gov (United States)

    Bischoff, James L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300° and 500°C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. 

  2. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  3. Evaluation of the nonrandom hydrogen bonding (NRHB) theory and the simplified perturbed-chain-statistical associating fluid theory (sPC-SAFT). 1. Vapor-liquid equilibria

    DEFF Research Database (Denmark)

    Grenner, Andreas; Tsivintzelis, Ioannis; Economou, Ioannis

    2008-01-01

    for the models were taken from literature or estimated in this work. Generalized pure-component parameters were fitted to pure-component vapor-pressure and liquid-density data. For the majority of the mixtures examined, satisfactory results were obtained. For a number of mixtures, different modeling approaches...... were applied to improve the results, such as incorporation of cross-association between nonself-associating fluids or induced association for mixtures of polar nonassociating and self-associating fluids. For both models, the overall deviations from experimental data are similar, and none of the models...

  4. Surface Tension of Supercooled Water: No Inflection Point down to-25 degrees C

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Jan; Vinš, Václav; Mareš, R.; Hykl, Jiří; Kalová, J.

    2014-01-01

    Roč. 5, č. 3 (2014), s. 425-428 ISSN 1948-7185 R&D Projects: GA AV ČR(CZ) IAA200760905; GA ČR(CZ) GPP101/11/P046; GA MŠk(CZ) LG13056 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761201 Institutional support: RVO:61388998 Keywords : liquid * metastable * supercooled Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 7.458, year: 2014

  5. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  6. Fundamental research on supercooling phenomenon on heat transfer surface

    International Nuclear Information System (INIS)

    Saito, A.; Okawa, S.; Koganezawa, S.

    1991-01-01

    In relation to the problem of supercooling for ice storage devices, experiments on freezing a relatively large volume of supercooled water is carried out. In the experiment, an experimental method to determine a probability of freezing a large volume of supercooled water with a uniform temperature distribution is introduced. It is accomplished by dividing the water into many smaller droplets. In a statistical analysis, a method to improve an accuracy in a case of having a limited number of experiments is introduced, and the probability of freezing is calculated for each degree of supercooling. The average freezing temperature for the experiment is placed just at the extended region of the other researchers results worked on small droplets. By relating the value with the probability of freezing on various kinds of heat transfer surfaces, the probability of freezing which is independent of the surface is calculated. In this paper it is confirmed to be negligible compared with the one on the surface

  7. Surface Tension of Supercooled Water: Inflection Point-Free Course down to 250 K Confirmed Using a Horizontal Capillary Tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2017-01-01

    Roč. 62, č. 11 (2017), s. 3823-3832 ISSN 0021-9568 R&D Projects: GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : horizontal technique * metastable liquid * supercooled Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.323, year: 2016 http://pubs.acs.org/doi/pdf/10.1021/acs.jced.7b00519

  8. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    Science.gov (United States)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under

  9. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    Science.gov (United States)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  10. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  11. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  12. On the pressure evolution of dynamic properties of supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C Michael [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Imre, Attila R [KFKI Atomic Energy Research Institute, 1525 Budapest, POB 49 (Hungary)

    2008-06-18

    A pressure counterpart of the Vogel-Fulcher-Tammann (VFT) equation for representing the evolution of dielectric relaxation times or related dynamic properties is discussed: {tau}(P) = {tau}{sub 0}{sup P}exp[D{sub P}{delta}P(P{sub 0}-{delta}P)], where {delta}P = P-P{sub SL}, P{sub 0} is the ideal glass pressure estimation, D{sub P} is the pressure fragility strength coefficient, and the prefactor {tau}{sub 0}{sup P} is related to the relaxation time at the stability limit (P{sub SL}) in the negative pressure domain. The discussion is extended to the Avramov model (AvM) relation {tau}(T,P) = {tau}{sub 0}exp[{epsilon}(T{sub g}(P)/T){sup D}], supplemented with a modified Simon-Glatzel-type equation for the pressure dependence of the glass temperature (T{sub g}(P)), enabling an insight into the negative pressure region. A recently postulated (Dyre 2006 Rev. Mod. Phys. 78 953) comparison between the VFT and the AvM-type descriptions is examined, for both the temperature and the pressure paths. Finally, we address the question 'Does fragility depend on pressure?' from the title of Paluch M et al (2001 J. Chem. Phys. 114 8048) and propose a pressure counterpart for the 'Angell plot'.

  13. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  14. An elegant access to formation and vaporization enthalpies of ionic liquids by indirect DSC experiment and "in silico" calculations.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Schick, Christoph; Jayaraman, Saivenkataraman; Maginn, Edward J

    2012-07-14

    We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.

  15. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    International Nuclear Information System (INIS)

    Zhang Yang; Mamontov, Eugene; Tyagi, Madhusudan; Chen, Sow-Hsin

    2012-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ 0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χ T (Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement (x 2 ) and the non-Gaussian parameter α 2 extracted from the elastic scattering.

  16. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  17. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    Science.gov (United States)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  18. Molecular Simulation of the Vapor-Liquid Phase Behavior of Lennard-Jones Mixtures in Porous Solids

    Science.gov (United States)

    2006-09-01

    sur la Catalyse, Centre National de la Recherche Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France...and Group de Chimie Theorique, Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 69364 Lyon, Cedex 07, France 14. ABSTRACT We present vapor...Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France and Group de Chimie Theorique, Ecole Normale

  19. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Ari; Merilaeinen, Arttu [Helsinki University of Technology, Department of Energy Technology, Applied Thermodynamics, P.O. Box 4400, 02015 TKK (Finland); Wikstroem, Lisa; Kauranen, Pertti [VTT Technical Research Centre of Finland, Advanced Materials, P.O. Box 1300, 33101 Tampere (Finland)

    2010-07-15

    Some liquids can be kept in a supercooled or supersaturated metastable state for substantially long periods. Such liquids can be applied as long-term heat storage where the latent heat can be released when needed. As xylitol possesses a relatively high value of latent heat and as it can be easily supercooled, it has promising properties for this application. However, the speed of the crystallization of xylitol is low, leading to a low release rate of latent heat. Several additives have been experimentally tested for the purpose of accelerating the crystallization speed. The effect of the additives on the latent heat, on the melting temperatures, and on the long-term durability of the supercooled state was also measured. The highest speeds of the crystallization front, at a temperature of 22 C, were achieved with methanol as an additive leading to speeds 33 times higher in vertical experiments and in 170 times higher in horizontal ones than with pure xylitol. The improved speed of the crystallization front is mostly caused by the methanol flow currents generated as a result of the separation of methanol during crystallization, and to a lesser extent, as a result of the increase in the speed of the growth of the crystals. (author)

  20. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Science.gov (United States)

    2010-07-01

    ..., or malfunction) greater than the agitator stuffing box pressure; or (B) Equipped with a barrier fluid... purges the barrier fluid into a process stream. (ii) The barrier fluid is not in light liquid service...

  1. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Science.gov (United States)

    2010-07-01

    ... agitator stuffing box pressure; or (B) Equipped with a barrier fluid degassing reservoir that is routed to... barrier fluid into a process stream. (ii) The barrier fluid is not in light liquid service. (iii) Each...

  2. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  3. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  4. Measurement and correlation of vapor-liquid equilibria for a binary system containing 1-butyl-3-methylimidazolium tridecafluorohexyl sulfonate and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Kang; Park, Yoon Kook [Hongik University, Sejong (Korea, Republic of)

    2016-01-15

    Using a high-pressure variable-volume view cell, the vapor-liquid equilibria of the binary system CO{sub 2} and 1-butyl-3-methylimidazolium tridecafluorohexylsulfonate ([BMIM][TDfO]) were determined. The CO{sub 2} mole fraction ranged from 0.104 to 0.952 over a temperature range of 298.2-323.2 K. Both the Peng-Robinson and Soave-Redlich- Kwong equations of state were applied with two different mixing rules to correlate with the experimentally obtained results. Increasing the alkyl chain length in perfluorinated sulfonate anion mother structure from methyl to hexyl markedly increased the CO{sub 2} solubility. To investigate the effect of the number of fluorine atoms in the anion on the phase behavior of imidazolium-based ionic liquid, these experimental results were then compared with those reported in previous experimental studies of 1-alkyl-3-methylimidazolium cations-including ionic liquid+CO{sub 2} binary system.

  5. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    Science.gov (United States)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  6. Super-cool Dark Matter arXiv

    CERN Document Server

    Hambye, Thomas; Teresi, Daniele

    In dimension-less theories of dynamical generation of the weak scale, the Universe can undergo a period of low-scale inflation during which all particles are massless and super-cool. This leads to a new mechanism of generation of the cosmological Dark Matter (DM) relic density: super-cooling can easily suppress the amount of DM to the desired level. This is achieved for TeV-scale DM, if super-cooling ends when quark condensates form at the QCD phase transition. Along this scenario, the baryon asymmetry can be generated either at the phase transition or through leptogenesis. We show that the above mechanism takes place in old and new dimension-less models.

  7. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  8. Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land

    Science.gov (United States)

    Ni, Yicun; Hestand, Nicholas J.; Skinner, J. L.

    2018-05-01

    According to the liquid-liquid critical point (LLCP) hypothesis, there are two distinct phases of supercooled liquid water, namely, high-density liquid and low-density liquid, separated by a coexistence line that terminates in an LLCP. If the LLCP is real, it is located within No Man's Land (NML), the region of the metastable phase diagram that is difficult to access using conventional experimental techniques due to rapid homogeneous nucleation to the crystal. However, a recent ingenious experiment has enabled measurement of the diffusion constant deep inside NML. In the current communication, these recent measurements are compared, with good agreement, to the diffusion constant of E3B3 water, a classical water model that explicitly includes three-body interactions. The behavior of the diffusion constant as the system crosses the Widom line (the extension of the liquid-liquid coexistence line into the one-phase region) is analyzed to derive information about the presence and location of the LLCP. Calculations over a wide range of temperatures and pressures show that the new experimental measurements are consistent with an LLCP having a critical pressure of over 0.6 kbar.

  9. Measurement and correlation of (vapor + liquid) equilibrium data for {α-pinene + p-cymene + (S)-(−)-limonene} ternary system at atmospheric pressure

    International Nuclear Information System (INIS)

    Sun, Lixia; Liao, Dankui; Yang, Zhengyu; Chen, Xiaopeng; Tong, Zhangfa

    2013-01-01

    Highlights: ► The VLE data of (α-pinene + p-cymene) and (α-pinene + p-cymene + (S)-(−)-limonene) at atmospheric pressure were measured. ► The VLE data of binary system were correlated by four activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the Liebermann–Fried model. ► The constant G 123 E counters plotted on the Roozeboom diagrams. -- Abstract: (Vapor + liquid) equilibrium (VLE) data for binary system of (α-pinene + p-cymene) and ternary system of {α-pinene + p-cymene + (S)-(−)-limonene} were measured at 100.7 kPa using the modified Ellis equilibrium still. The VLE data are thermodynamically consistent. Parameters of the binary system for the four solution models — Liebermann–Fried, Wilson, NRTL, and UNIQUAC — were calculated by referencing least squares method to minimize an objective function based on the total pressure. The ternary system data were predicted with the parameters of Liebermann–Fried model obtained from the pertinent binary systems. The predicted bubble-point temperature and the vapor composition for the ternary system were in good agreement with the experimental results. Smooth representations of the results are used to construct constant excess Gibbs free energy contours on Roozeboom diagrams

  10. Demonstration of GaAsSb/InAs nanowire backward diodes grown using position-controlled vapor-liquid-solid method

    Science.gov (United States)

    Kawaguchi, Kenichi; Takahashi, Tsuyoshi; Okamoto, Naoya; Sato, Masaru

    2018-02-01

    p-GaAsSb/n-InAs type-II nanowire (NW) diodes were fabricated using the position-controlled vapor-liquid-solid growth method. InAs and GaAsSb NW segments were grown vertically on GaAs(111)B substrates with the assistance of Au catalysts. Transmission electron microscopy-energy-dispersive X-ray spectroscopy analysis revealed that the GaAsSb segments have an Sb content of 40%, which is sufficient to form a tunnel heterostructure. Scanning capacitance microscope images clearly indicated the formation of a p-n junction in the NWs. Backward diode characteristics, that is, current flow toward negative bias originating from a tunnel current and current suppression toward positive bias by a heterobarrier, were demonstrated.

  11. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    Science.gov (United States)

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  12. Parallel-aligned GaAs nanowires with (110) orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Tateno, Kouta; Gotoh, Hideki; Nakano, Hidetoshi

    2010-01-01

    We report parallel aligned GaAs nanowires (NWs) with (110) orientation laterally grown on [311]B substrates via the vapor-liquid-solid mode and demonstrate their controllability and growth mechanism. We control the size, density, and site of the lateral NWs by using size- and density-selective Au colloidal particles and Au dot arrays defined by electron-beam lithography. The lateral NWs grow only along the [110] and [1-bar 1-bar 0] directions and formation of the stable facets of (111)B and (001) on the sides of the lateral NWs is crucial for lateral NW growth. We clarify the growth mechanism by comparing the growth results on [311]B, (311)A, and (001) substrates and the surface energy change of lateral and freestanding NWs.

  13. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa

    International Nuclear Information System (INIS)

    Madani, Hakim; Valtz, Alain; Coquelet, Christophe; Meniai, Abdeslam Hassen; Richon, Dominique

    2008-01-01

    Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258-343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable 'static-analytic' method taking advantage of two online ROLSI TM micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng-Robinson equation of state, the Mathias-Copeman alpha function, the Wong-Sandler mixing rules, and the NRTL model

  14. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  15. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    Science.gov (United States)

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  16. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  17. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  18. Solidity of viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1999-01-01

    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length...

  19. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  20. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1-C4) and dimethyl carbonate

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Fukano, Makoto; Kikkawa, Shinichiro; Constantinescu, Dana; Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji; Gmehling, Juergen

    2012-01-01

    Highlights: → The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. → VLE data for ternary and binary mixtures containing alcohol and DMC were measured. → Several activity coefficient models were used for data reduction or prediction. → Valley line, i.e., distillation boundary, was observed for the ternary mixture. → Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C 3 or C 4 ) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  1. Séparations par changement de phase. Etude et représentation des équilibres liquide-vapeur Separation by Phase Hange. Study and Computing Liquid-Vapor Equilibria

    Directory of Open Access Journals (Sweden)

    Asselineau L.

    2006-11-01

    Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon

  2. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  3. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  4. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  5. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  6. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    gaseous free state models. Some extreme examples are to be discussed: (1) The 1,1,3,3-tetramethyl-guanidinium chloride “molecule” [TMG-H-Cl] found [ref 1] to exist in gaseous state over its corresponding liquid in evacuated ampouls heated at ~225°C (Fig. 1); (2) the analogous bromide “molecule” [TMG...

  7. Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen

    Science.gov (United States)

    Woody plant crop germplasm is often grown in different geographical locations with various climatic conditions. One of the methods of a secure back-up of tree crop is storing winter buds in liquid nitrogen. It was thought that dormant buds from colder climates would have a higher post storage surviv...

  8. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool

    International Nuclear Information System (INIS)

    Tang, Jiguo; Yan, Changqi; Sun, Licheng; Li, Ya; Wang, Kaiyuan

    2015-01-01

    Highlights: • Deviations of signals increase first and then decrease with increase in subcooling. • Two typical waveforms are observed and correspond to bubble split-up and collapse. • Dominant frequency in low frequency region is found for all condensation regimes. • Peaks in high frequency region were only found in capillary wave regime. • Bubble collapse frequency is close to frequency of first peak in amplitude spectra. - Abstract: Sound characteristics of direct contact condensation of vapor bubbles in a subcooled pool were investigated experimentally with a hydrophone and a high-speed video camera. Three different condensation modes were observed, which were referred to as shape oscillation regime, transition regime and capillary wave regime in the paper. Time domain analysis indicated that the acoustic signals were boosted in their maximum amplitude with increase in subcooling, while their standard and average absolute deviations shifted to decrease after reaching a peak value. In addition, two different waveforms were found, possible sources of which were split-up and collapse of bubbles, respectively. From the amplitude spectra obtained by FFT, the first dominant frequency was found at frequency of 150–300 Hz for all condensation regimes, whereas some peaks in high frequency region were observed only for the capillary wave regime. The first dominant frequency was the result of the periodic variation in the vapor bubble volume, and the peaks in high frequency region were due to the high-frequency oscillation of water in pressure caused by sudden bubble collapse. The frequency of first peak was considered to be resulted from the periodic bubble collapse or split-up and thus was close to the bubble collapse frequency obtained from snapshots of bubble condensation. Moreover, according to results of short-time Fourier transform (STFT), the time intervals in which a certain process of bubble condensing occurred could be well known.

  9. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  10. Heat transfer by gas-liquid mixture in forced turbulent flow with weak vaporization of the liquid phase (1962); Transfert de chaleur par melange de liquide et de gaz en convection forcee turbulente avec faible vaporisation de la phase liquide (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Huyghe, J; Mondin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    The present study deals with measures of heat transfer and pressure drop in two-phase liquid flow. The stream is of annular dispersed type, obtained by introducing a small quantity of liquid in a gas turbulent flow. The heat transfer experiments are performed without vaporization of the liquid phase. A notable improvement of the heat transfer coefficient of such a stream is observed, compared with a gas-alone or liquid-alone flow. The improvement concerning the gas-alone is of about 20 when it is compared with the same gas Reynolds's number, of about 8 when it is compared with the same total mass flow rate. A hydrodynamic study of the flow pattern lets us know the original structure of the flow, and allows to foresee the experimental results by means of a simplified theory. (authors) [French] II est fait etat de mesures de transfert thermique et de perte de charge dans un ecoulement en double phase gaz-liquide. L'ecoulement est du type annulaire disperse, obtenu par injection d'une faible quantite de liquide dans un ecoulement gazeux en regime turbulent. Les experiences de transfert thermique sont menees sans vaporisation de la phase liquide. On note une amelioration sensible du coefficient de transfert thermique dans un tel ecoulement par rapport a un ecoulement de gaz seul ou de liquide seul. L'augmentation est de l'ordre de 20 par rapport au gaz seul si on opere a meme nombre de REYNOLDS du gaz, de l'ordre de 8 si on opere a meme debit massique total. Une etude hydrodynamique rapide de l'ecoulement permet de connaitre la structure originale de l'ecoulement, puis de prevoir par une theorie simplifiee le phenomene thermique observe. (auteurs)

  11. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2013-03-15

    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  13. Direct Evidence of Mg Incorporation Pathway in Vapor-Liquid-Solid Grown p-type Nonpolar GaN Nanowires

    OpenAIRE

    Patsha, Avinash; Amirthapandian, S.; Pandian, Ramanathaswamy; Bera, S.; Bhattacharya, Anirban; Dhara, Sandip

    2015-01-01

    Doping of III-nitride based compound semiconductor nanowires is still a challenging issue to have a control over the dopant distribution in precise locations of the nanowire optoelectronic devices. Knowledge of the dopant incorporation and its pathways in nanowires for such devices is limited by the growth methods. We report the direct evidence of incorporation pathway for Mg dopants in p-type nonpolar GaN nanowires grown via vapour-liquid-solid (VLS) method in a chemical vapour deposition te...

  14. Physics-Based Modeling of Permeation: Simulation of Low-Volatility Agent Permeation and Aerosol Vapor Liquid Assessment Group Experiments

    Science.gov (United States)

    2015-06-01

    methylphosphonothiolate (VX) through natural latex rubber and neoprene resulting from LVAP tests. 2. The permeation model is used to study the sensitivity of...Styrene–Butadiene– Rubber , Ethylene–Propylene–Diene Terpolymer, and Natural Rubber Versus Hydrocarbons (C8–C16). Macromolecules 1991, 24 (9), 2598–2605...22 14. Harogoppad, S.B.; Aminabhavi, T.M. Diffusion and Sorption of Organic Liquids through Polymer Membranes 2. Neoprene, SBR, EPDM, NBR , and

  15. Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology

    DEFF Research Database (Denmark)

    Damaceno, Daniela S.; Perederic, Olivia A.; Ceriani, Roberta

    2017-01-01

    structures that the first-order functional groups are unable to handle. In the particular case of fatty systems these models are not able to adequately predict the non-ideality in the liquid phase. Consequently, a new set of functional groups is proposed to represent the lipid compounds, requiring thereby....... There are rather small differences between the models and no single model is the best in all cases....

  16. Liquid-liquid phase transition in Stillinger-Weber silicon

    International Nuclear Information System (INIS)

    Beaucage, Philippe; Mousseau, Normand

    2005-01-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase

  17. Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    2016-08-01

    An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, continuous vaporing of nitric acid and water leads to increase Ru volatilization in liquid waste temperature over 120degC at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor flowing from waste tank are expected to condense at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out for the proposed model being feasible to formulate the activity coefficients and to review the thermodynamic properties of nitric acid solution. Practicability of the proposed analytical model has been shown successfully through the feasibility study with simulation of an experiment result. (author)

  18. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    Science.gov (United States)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  19. Analysis of supercooling activity of tannin-related polyphenols.

    Science.gov (United States)

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  20. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  1. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  2. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  3. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  4. Synthesis and characterization of a liquid Eu precursor (EuCp{sup pm}{sub 2}) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Brandon, E-mail: bmitchell@wcupa.edu [Department of Physics, West Chester University, West Chester, PA, 19383 (United States); Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru [Kojundo Chemical Laboratory Co., Ltd., 5-1-28 Chiyoda, Sakado, Saitama, 350-0284 (Japan); Ofuchi, Hironori; Honma, Tetsuo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan); Fujiwara, Yasufumi, E-mail: fujiwara@mat.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2017-06-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu{sup 2+} to Eu{sup 3+} could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  5. Synthesis and characterization of a liquid Eu precursor (EuCppm2) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Mitchell, Brandon; Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf; Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru; Ofuchi, Hironori; Honma, Tetsuo; Fujiwara, Yasufumi

    2017-01-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu 2+ to Eu 3+ could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  6. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  7. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Science.gov (United States)

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  9. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    Science.gov (United States)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  10. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  11. Evaluation and Modeling of Vapor-Liquid Equilibrium and CO2 Absorption Enthalpies of Aqueous Designer Diamines for Post Combustion Capture Processes.

    Science.gov (United States)

    Luo, Weiliang; Yang, Qi; Conway, William; Puxty, Graeme; Feron, Paul; Chen, Jian

    2017-06-20

    Novel absorbents with improved characteristics are required to reduce the existing cost and environmental barriers to deployment of large scale CO 2 capture. Recently, bespoke absorbent molecules have been specifically designed for CO 2 capture applications, and their fundamental properties and suitability for CO 2 capture processes evaluated. From the study, two unique diamine molecules, 4-(2-hydroxyethylamino)piperidine (A4) and 1-(2-hydroxyethyl)-4-aminopiperidine (C4), were selected for further evaluation including thermodynamic characterization. The solubilities of CO 2 in two diamine solutions with a mass fraction of 15% and 30% were measured at different temperatures (313.15-393.15 K) and CO 2 partial pressures (up to 400 kPa) by thermostatic vapor-liquid equilibrium (VLE) stirred cell. The absorption enthalpies of reactions between diamines and CO 2 were evaluated at different temperatures (313.15 and 333.15 K) using a CPA201 reaction calorimeter. The amine protonation constants and associated protonation enthalpies were determined by potentiometric titration. The interaction of CO 2 with the diamine solutions was summarized and a simple mathematical model established that could make a preliminary but good prediction of the VLE and thermodynamic properties. Based on the analyses in this work, the two designer diamines A4 and C4 showed superior performance compared to amines typically used for CO 2 capture and further research will be completed at larger scale.

  12. Measurement of (vapor + liquid) equilibrium for the systems {methanol + dimethyl carbonate} and {methanol + dimethyl carbonate + tetramethylammonium bicarbonate} at p = (34.43, 67.74) kPa

    International Nuclear Information System (INIS)

    Yang Changsheng; Zeng Hao; Yin Xia; Ma Shengyong; Sun Feizhong; Li Yafei; Li Jiao

    2012-01-01

    Highlights: ► VLE data for the binary system and the ternary system were measured. ► Methanol, dimethyl carbonate, and tetramethylammonium bicarbonate were studied. ► Isobaric experimental data were measured at p = (34.43, 67.74) kPa. ► VLE data of binary system were correlated with the Wilson, NRTL, and UNIQUAC models. ► The salt effect of TMAB on the VLE of {methanol + DMC} system was investigated. - Abstract: Isobaric (vapor + liquid) equilibrium (VLE) data for the binary system (methanol + dimethyl carbonate) and the ternary system (methanol + dimethyl carbonate + tetramethylammonium bicarbonate) have been measured at p = (34.43, 67.74) kPa using a modified Rose–Williams still. The experimental data for the binary system were well correlated by Wilson, NRTL, and UNIQUAC activity-coefficient models at the two reduced pressures. All the experimental results of the binary system passed the thermodynamic consistency test by the area test of Redlich–Kister and the point test of Van Ness et al. The experimental results of ternary system show that the salt tetramethylammonium bicarbonate has a salting-in effect on methanol. And this effect enhances when the salt concentration increases.

  13. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    Science.gov (United States)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  14. Synergetic enhancement effect of ionic liquid and diethyldithiocarbamate on the chemical vapor generation of nickel for its atomic fluorescence spectrometric determination in biological samples

    International Nuclear Information System (INIS)

    Zhang Chuan; Li Yan; Wu Peng; Yan Xiuping

    2009-01-01

    Room-temperature ionic liquid in combination with sodium diethyldithiocarbamate (DDTC) was used to synergetically improve the chemical vapor generation (CVG) of nickel. Volatile species of nickel were effectively generated through reduction of acidified analyte solution with KBH 4 in the presence of 0.02% DDTC and 25 mmol L -1 1-butyl-3-methylimidazolium bromide ([C 4 mim]Br) at room temperature. Thus, a new flow injection (FI)-CVG-atomic fluorescence spectrometric (FI-CVG-AFS) method was developed for determination of nickel with a detection limit of 0.65 μg L -1 (3 s) and a sampling frequency of 180 h -1 . With consumption of 0.5 mL sample solution, an enhancement factor of 2400 was obtained. The precision (RSD) for eleven replicate determinations of 20 μg L -1 Ni was 3.4%. The developed FI-CVG-AFS method was successfully applied to determination of trace Ni in several certified biological reference materials.

  15. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  16. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  17. Modeling liquid-vapor equilibria with an equation of state taking into account dipolar interactions and association by hydrogen bonding

    International Nuclear Information System (INIS)

    Perfetti, E.

    2006-11-01

    Modelling fluid-rock interactions as well as mixing and unmixing phenomena in geological processes requires robust equations of state (EOS) which must be applicable to systems containing water, gases over a broad range of temperatures and pressures. Cubic equations of state based on the Van der Waals theory (e. g. Soave-Redlich-Kwong or Peng-Robinson) allow simple modelling from the critical parameters of the studied fluid components. However, the accuracy of such equations becomes poor when water is a major component of the fluid since neither association trough hydrogen bonding nor dipolar interactions are accounted for. The Helmholtz energy of a fluid may be written as the sum of different energetic contributions by factorization of partition function. The model developed in this thesis for the pure H 2 O and H 2 S considers three contributions. The first contribution represents the reference Van der Waals fluid which is modelled by the SRK cubic EOS. The second contribution accounts for association through hydrogen bonding and is modelled by a term derived from Cubic Plus Association (CPA) theory. The third contribution corresponds to the dipolar interactions and is modelled by the Mean Spherical Approximation (MSA) theory. The resulting CPAMSA equation has six adjustable parameters, which three represent physical terms whose values are close to their experimental counterpart. This equation results in a better reproduction of the thermodynamic properties of pure water than obtained using the classical CPA equation along the vapour-liquid equilibrium. In addition, extrapolation to higher temperatures and pressure is satisfactory. Similarly, taking into account dipolar interactions together with the SRK cubic equation of state for calculating molar volume of H 2 S as a function of pressure and temperature results in a significant improvement compared to the SRK equation alone. Simple mixing rules between dipolar molecules are proposed to model the H 2 O-H 2 S

  18. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    OpenAIRE

    Kim, Yiseul; Hong, Geun-Pyo

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4? for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4?. Despite that SSF was conducted with the ...

  19. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  20. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Brombach, Christoph-Cornelius; Chen, Bin; Corns, Warren T.; Feldmann, Jörg; Krupp, Eva M.

    2015-01-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation

  1. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brombach, Christoph-Cornelius [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Chen, Bin; Corns, Warren T. [PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP (United Kingdom); Feldmann, Jörg [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Krupp, Eva M., E-mail: e.krupp@abdn.ac.uk [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation.

  2. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  3. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    Science.gov (United States)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  4. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-01-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH 2 and CH 3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces

  5. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  6. Empirical Formulae for The Calculation of Austenite Supercooled Transformation Temperatures

    Directory of Open Access Journals (Sweden)

    Trzaska J.

    2015-04-01

    Full Text Available The paper presents empirical formulae for the calculation of austenite supercooled transformation temperatures, basing on the chemical composition, austenitising temperature and cooling rate. The multiple regression method was used. Four equations were established allowing to calculate temperature of the start area of ferrite, perlite, bainite and martensite at the given cooling rate. The calculation results obtained do not allow to determine the cooling rate range of ferritic, pearlitic, bainitic and martensite transformations. Classifiers based on logistic regression or neural network were established to solve this problem.

  7. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  8. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  9. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    Science.gov (United States)

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  10. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  11. Comment on "Spontaneous liquid-liquid phase separation of water"

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  12. Comment on "Spontaneous liquid-liquid phase separation of water".

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  13. Deuteron-NMR investigation on the dynamics of supercooled, confined water

    Energy Technology Data Exchange (ETDEWEB)

    Sattig, Matthias; Vogel, Michael [TU Darmstadt, Institut fuer Festkoerperphysik (Germany)

    2013-07-01

    The dynamical behaviour of water in the regime of the supercooled liquid is a topic of large interest. In particular, the existence of a fragile-to-strong transition (FST) at T=225K related to the transition between two distinct phases of liquid water is controversially discussed. Due to crystallization the temperature range proposed for the FST is hardly accessible in bulk water. Therefore, we confine heavy water to narrow pores in the mesoporous silicate MCM-41. This suppresses the freezing of a substantial fraction of water, enabling direct investigation of the interesting temperatures. Deuteron-NMR methods are utilised to determine the rotational correlation times τ of water on time scales from ns up to s. The spin-lattice-relaxation time T{sub 1} exhibits a typical minimum at about T = 230 K. Above this minimum the correlation times follow a Vogel-Fulcher-Tammann law. Below the minimum, two relaxation processes could be observed. The low-temperature processes show a different temperature dependence, where the curves τ(T) of all processes intersect at about T = 230 K. A comparison with literature data from neutron scattering and dielectric spectroscopy gives rise to the idea that the observed crossover is due to this intersection of processes rather than to a FST. To test this idea studies on water confined to MCM-41 with different pore sizes and fillings are in progress.

  14. Xylem development in prunus flower buds and the relationship to deep supercooling.

    Science.gov (United States)

    Ashworth, E N

    1984-04-01

    Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.

  15. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.

    Science.gov (United States)

    Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A

    2014-07-01

    The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Binary and Ternary Vapor-Liquid Equilibrium Data of the System (Ethylbenzene+Styrene+4-Methyl-N-butylpyridinium Tetrafluoroborate) at Vacuum Conditions and Liquid-Liquid Equilibrium Data of Their Binary Systems

    NARCIS (Netherlands)

    Jongmans, Mark; Raijmakers, M.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Ethylbenzene and styrene are currently separated by ordinary fractional distillation, which is challenging due the low relative volatility of this mixture of 1.3 to 1.4. Extractive distillation is a promising alternative to save capital and operational expenditures. Recently, ionic liquids (ILs)

  17. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  18. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  19. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  20. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    Science.gov (United States)

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.