WorldWideScience

Sample records for superconductors wire fabrication

  1. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  2. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  3. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides.

    Science.gov (United States)

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-06-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

  4. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  5. Development of (Nb,Ta3Sn multifilamentary superconductor wire for high current applications

    Directory of Open Access Journals (Sweden)

    Durval Rodrigues Jr.

    2000-10-01

    Full Text Available The optimization of the energy generated by a MagnetoHydroDynamic (MHD channel using a superconducting magnet demands the optimization of the magnetic field of the system and of the critical points on the magnet winding. This work must include the development of a high performance superconductor wire suitable for this system. Aiming to the construction of improved performance MHD channel, it was developed a low cost superconductor wire, with the required characteristics. The wire was made using a technology compatible with the assembling steps and heat treatment conditions of the MHD superconducting magnets fabrication. It was used the internal Sn method in Nb-7.5wt%Ta tube to fabricate a 271-filament wire with a diameter of 0.81 mm and a Cu/nonCu ratio of 2.3. The wire was heat treated at 200 °C to diffuse the Sn into the Cu shell, producing bronze, followed by the final reaction at temperatures ranging from 670 °C to 730 °C during 25 to 150 h, to produce (Nb,Ta3Sn. The superconducting wire characterization was made measuring the critical current Ic versus the applied magnetic field in the range of 5 to 20 T, the critical temperature Tc and the residual resistivity ratio (RRR. The wire transported critical currents above those available in commercial superconducting wires. These values of Ic are higher than the expected values for the optimization of the MHD channel.

  6. Method of fabricating composite superconductors

    International Nuclear Information System (INIS)

    Koike, Y.; Shiraki, H.; Suzuki, E.; Yoshida, M.

    1977-01-01

    A method of making stabilized superconductors of a composition such as Nb 3 Sn is disclosed. The method includes forming a stock product comprising a tin base alloy as a core with a copper jacket and having a niobium tube clad thereon. The stock product is then embedded in a good thermally and electrically conducting matrix which is then coreduced until the desired size is obtained. This cold worked product is then submitted to a heat treatment to form superconductors of Nb 3 Sn

  7. Superconductors

    International Nuclear Information System (INIS)

    Ekin, J.W.

    1983-01-01

    This chapter attempts to provide an introductory guide to interpreting handbook data on practical, high-current, superconducting materials, principally for magnet applications. An overview is given of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. Topics considered include critical temperature, critical magnetic field, Type I and Type II superconductors, upper critical field values for practical materials, the temperature dependence of critical field and upper critical field, critical current, critical current density values for practical materials, the measurement of critical current, composite fabrication, stability, ac losses, eddy current loss, hysteretic loss, mechanical properties, critical current degradation, and superconducting materals selection and composite design

  8. Development of Nb3Sn based multi-filamentary superconductor wires for fusion reactor magnets

    International Nuclear Information System (INIS)

    Kundu, Sayandeep; Singh, A.K.; Hussain, M.M.

    2016-01-01

    Nb 3 Sn is a proposed type II superconductor material to be used as superconducting magnet in fusion reactor for its superior superconducting properties. Fabrication of long single length wire containing Nb 3 Sn filaments is a challenge. The usual manufacturing philosophy involves deforming an assembly of tin and niobium in copper matrix to the final size, followed by the heat treatment to produce superconducting phase at Nb-Cu interface. Multi-filamentary wires were fabricated by hot extrusion of superconductor billet followed by several stages of cold drawing. Heat treatments at various temperature and time were carried out on as formed wire containing multiple filaments in order to see the growth of superconducting intermetallic phase during subsequent characterization. Post heat treatment characterization through SEM, EBSD and EDS revealed the presence of intermetallic phase of Nb and Sn, hypo stoichiometric in Sn, at the Cu-Nb interface growing towards the center of Nb filament. The manufacturing process till the desired final size of the wire happened to be a challenge, mainly because it required extraordinary co-deformability between various materials in such an assembly. Post-trial failure analysis through destructive testing using optical and scanning electron micrographs revealed the propensity of internal radial cracks at Cu-Sn interfaces, while the Nb-Cu interfaces were found to be relatively unaffected. This paper will discuss the details of the fabrication process. (author)

  9. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  10. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  11. Method of fabricating multifilament intermetallic superconductor

    International Nuclear Information System (INIS)

    Marancik, W.G.; Hong, S.O.

    1987-01-01

    A method is described for the fabrication of a multifilament superconducting wire of the type A/sub 3/B where A is selected from the group consisting of Nb and V, and B is selected from the group consisting of Sn and Ga which comprises the steps of: (a) filling the center of one or more copper tubes with B or with a predominantly B-copper alloy and drawing the tubes to form copper -B wires, the ratio of B to Cu in the wire being between 10-50 weight % B; (b) cabling a plurality of the copper -B wires around a core predominantly A wire; (c) bundling a plurality of the cables of step (b) with an enveloping layer of copper; (d) drawing the assembly of step (c) to reduce its diameter to a desired size; and (e) heat treating the product of step (d) to cause B to diffuse and form A/sub 3/B at the surface of the A filaments

  12. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  13. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  14. Fabrication and study of hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Jurbergs, D.; Riley, D.R.; Zhao, J.; Zhou, J.P.; Lo, K.; Grassi, J.; Jones, C.

    1994-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the first two classes of composite molecule/superconductor devices are reported. Consequently, light sensors based on organic dye-coated superconductor junctions as well as molecular switches fashioned from organic conductive polymer-coated superconductor microbridges are discussed. Moreover, the initial results related to the study of molecule/superconductor energy and electron transfer phenomena are reported

  15. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  16. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    Science.gov (United States)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  17. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  18. Sharp superconductor-insulator transition in short wires

    International Nuclear Information System (INIS)

    Meidan, Dganit; Oreg, Yuval; Refael, Gil; Smith, Robert A.

    2008-01-01

    Recent experiments on short MoGe nanowires show a sharp superconductor-insulator transition tuned by the normal state resistance of the wire, with a critical resistance of R c ∼ R Q = h/(4e 2 ). These results are at odds with a broad range of theoretical work on Josephson-like systems that predicts a smooth transition, tuned by the value of the resistance that shunts the junction. We develop a self-consistent renormalization group treatment of interacting phase-slips and their dual counterparts, correlated cooper pair tunneling, beyond the dilute approximation. This analysis leads to a very sharp transition with a critical resistance of R Q . The addition of the quasi-particles' resistance at finite temperature leads to a quantitative agreement with the experimental results. This self-consistent renormalization group method should also be applicable to other physical systems that can be mapped onto similar sine-Gordon models, in the previously inaccessible intermediate-coupling regime

  19. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  20. Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors

    International Nuclear Information System (INIS)

    Austen, Alfred R.

    2003-01-01

    Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors Phase 1 Summary Purpose of the research: The Phase 1 goal was to make a significant improvement in the wire drawing technology used for difficult to draw superconductor precursor composites. Many ductile Nb-Al and Nb-Sn precursor wire composites have experienced the onset of wire drawing breakage at about 1.5 mm diameter. Phase 1 focused on evaluating the role that precision rigid guidance of the wire into the drawing die and the hydrostatic stress state at the die entrance played in preventing wire breakage. Research carried out: The research performed depended upon the construction of both a mechanical wire guide and a hydrostatic pressure stiffened wire guidance system. Innovare constructed the two wire guidance systems and tested them for their ability to reduce wire drawing breakage. One set of hardware provided rigid alignment of the wires to their wire drawing die axes within 0.35 degrees using ''hydrostatic pressure stiffening'' to enable the precision guidance strategy to be implemented for these highly flexible small diameter wires. This apparatus was compared to a guide arrangement that used short span mechanical guide alignment with a misalignment limit of about 0.75 degrees. Four A-15 composite wires with breakage histories were drawn to evaluate the use of these wire guiding systems to reduce and/or eliminate wire breakage. Research findings and results: In Phase 1, a breakthrough in wire drawing technology for A-15 superconductor composites was achieved by dramatically limiting or eliminating breakage in four different A-15 composite precursor wire designs during the drawing of these very desirable composites that previously could not be drawn to near final size. Research results showed that the proposed Phase 1 mechanical wire guides were sufficiently effective and successful in eliminating breakage when used along with other advanced wire drawing technology to

  1. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the

  2. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  3. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  4. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  5. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  6. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil.

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  7. DT fusion neutron irradiation of BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1976-01-01

    The following samples were irradiated with the LLL rotating target neutron source: 19-core Nb 3 Sn multifilament wires, Nb 3 Sn single core, V 3 Ga single core, NbTi Supercon 402, and NbTi cupronickel jacketed. No test results are given

  8. Wire electric-discharge machining and other fabrication techniques

    Science.gov (United States)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  9. Fabrication and transport studies of graphene-superconductor heterostructures

    Science.gov (United States)

    Hu, Jiuning; Wu, Tailung; Tian, Jifa; Chen, Yong

    2014-03-01

    Recently, graphene based stacked heterostructures, e.g., graphene and boron nitride (BN) multi-layers, have attracted much attention as a system to study novel interaction-driven physics (e.g., excitonic condensation) and perform interesting measurements (eg. Coulomb drag and tunneling). The realm of graphene-superconductor heterostructures remains less unexplored, while such a system offers various interesting prospects (effects of superconductor vortices lattices on over-layering graphene and quantum Hall states, where novel phenomena such as anionic excitations have been predicted). We have used polyvinyl alcohol (PVA) based carrier films and a micro-manipulator to transfer mechanically exfoliated flakes and fabricated graphene/BN/NbSe2 structures to study the transport properties of graphene in close proximity to electrically isolated superconducting NbSe2 films. The NbSe2 film shows the superconducting transition temperature of ~7 K and upper critical field of ~3.5 T after device fabrication. We will present results from magneto-transport in graphene and graphene-NbSe2 Coulomb drag and tunneling measurements.

  10. Fabrication details for wire wrapped fuel assembly components

    International Nuclear Information System (INIS)

    Bosy, B.J.

    1978-09-01

    Extensive hydraulic testing of simulated LMFBR blanket and fuel assemblies is being carried out under this MIT program. The fabrication of these test assemblies has involved development of manufacturing procedures involving the wire wrapped pins and the flow housing. The procedures are described in detail in the report

  11. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  12. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes

    Science.gov (United States)

    Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang

    2018-05-01

    We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.

  13. Fabrication and properties of Y-Ba-Cu-O high Tc superconductor by upset-forging method

    International Nuclear Information System (INIS)

    Chang, Ho Jung; Kang, Kae Myung; Song, Jin Tae

    1990-01-01

    YBa 2 Cu 3 O 7-x oxide superconductors was fabricated by sintering process and upset-forging method, respectively, and microstructures and conduction properties were compared. There was no difference in crystal structure the (001) x-ray reflection presumably due to preferred crystal orientation of the YBa 2 Cu 3 O 7-x superconductor. Furthermore, the grain size of the 123-phase increased as the reduction ratio became larger during the upset-forging. The critical temperature for zero resistivity of both samples was almost the same, i.e., about 90K. These results have demonstrated the potential of producing YBa 2 Cu 3 O 7-x superconducting wire or tape effectively using a upset-forging method. The critical current density of the upset-forged sample, however, was lower than that of the sintered one, which fact might be ascribed to microcrack formation during fast upset-forging. (Author)

  14. Making superconductors

    International Nuclear Information System (INIS)

    McDonald, W.K.

    1981-01-01

    A method is described of producing composite rod or wire of increased strength and fineness wherein the composite is formed by reducing a lamina of two metals which have been rolled to form a cylindrical billet in which one of the metals is in expanded form. The composite produced can be encased in copper and fabricated to produce a superconductor. Alloys contemplated for producing superconductors are Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Si, Nb-Ti, V 3 Ga, V 3 Si, V 3 Sn, V 3 Al, and V 3 Ge laminated on bronze, Al, Cu, Ta, or combinations thereof. (author)

  15. Corrosion of bismuth-based superconductor wires by some atmospheric agents

    International Nuclear Information System (INIS)

    Ben Azzouz, F.; M'chirgui, A.; Ben Salem, M.; Yangui, B.; Lamine, C.; Nitsche, S.; Boulesteix, C.

    2000-01-01

    Superconducting wires (SWs) were previously prepared in our group by heat treatment of bismuth-based superconductor coatings on a metal core. This paper presents an analysis of the corrosion process by some atmospheric agents on the SWs. SWs with different concentrations of a (Bi, Pb)-2223 phase have been exposed to water vapour saturated air, to pure water vapour or to dry carbon dioxide. Each of these atmospheric agents was found to act differently on the SWs. However, all the studied corrosion processes present a high sensitivity to the concentration of the (Bi, Pb)-2223 phase. For a higher concentration of this phase, the SWs are less sensitive to atmospheric agents. (author)

  16. Superconductors by powder metallurgy techniques

    International Nuclear Information System (INIS)

    Pickus, M.R.; Wang, J.L.F.

    1976-05-01

    Fabrication methods for Nb 3 Sn type compounds are described. Information is included on the Bell Telephone process, the General Electric tape process, superconductor stability, the bronze process, powder metallurgy multifilamentary tapes and wires, and current assessment of powder metallurgy superconducting wire

  17. Metallic superconductors. 3. Na3Sn and V3Ga wires (Part one)

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji

    2010-01-01

    Nowadays Nb 3 Sn wires are being widely used as one of the key materials in advanced science and technology, with various applications such as NMR, fusion and cryogen-free superconducting magnets. In this article, at first microstructures and fundamental aspects as well as the effect of additional elements in Nb 3 Sn are outlined. Intrinsic superconducting performances, e.g. T c and B c2 , are quite sensitive to the stoichiometry of the Sn concentration. A small amount of Ti and Ta doping is much effective for the increase of B c2 in Nb 3 Sn. The effect of Cu on the enhancement of Nb 3 Sn synthesis has yielded a significant breakthrough for the industrial production of the wires. At present the bronze process and internal Sn process are the twin major fabrication techniques of Nb 3 Sn wires. The recent status of both processes is reviewed in this article. Pronounced progress has been achieved in the performance of Nb 3 Sn wires fabricated through both techniques. Although just half a century has passed since the first fabrication of Nb 3 Sn wire, further progress in Nb 3 Sn technology may be expected like the proverb saying 'Fresh water still comes out from an old spring'. (author)

  18. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  19. Electrical and microstructural characterization of silver sheathed high Tc superconductors wires and ribbons

    International Nuclear Information System (INIS)

    Chaffron, L.; Regnier, P.; Schmirgeld, L.; Maurice, F.; Aguillon, C.; Senoussi, S.

    1991-01-01

    High Tc superconductors wires and ribbons were prepared according to the powder in tube method. It is shown that the electrical performances of the so prepared superconductors can be considerably improved, first by increasing as much as possible the density of the green body before sintering, and afterwards by melt texturing the sintered conductors. Some measurements of the transport critical current density of our conductors as a function of their diameter or their thickness are then presented and compared with indirect values obtained via the Bean method. The highest transport Jc measured in the present study, before melt texturing, are: 2250 and 5100 A/cm 2 at 77 and 63 K respectively, for a 50 μm thick silver sheathed ribbon. These figures compare nicely with the values of the intergranular critical current densities determined from magnetic measurements which are: 2100 and 5000 A/cm 2 at the same temperatures, and 40000 A/cm 2 at 4.2 K. Much higher intergranular values, in the range of 10 5 A/cm 2 were obtained after melt texturing the wires. Finally, microstructural characterizations carried out by X-ray diffraction, electron microprobe analysis and transmission electron microscopy are reported and discussed

  20. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  1. DT fusion neutron irradiation of LLL Nb3Sn and LLL superconductor wires at 4.20K

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of one LLL superconductor wire and one LLL Nb 3 Sn foil at 4.2 0 K is described. The sample position, beam-on time, and neutron dose record are given. The results from two ''profile'' dosimetry foils measuring the lateral variation in neutron flux are included

  2. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  3. Fabrication and testing of the Nb3Sn superconductor for High-Field Test Facility (HFTF)

    International Nuclear Information System (INIS)

    Spencer, C.; Adam, E.; Gregory, E.; Marancik, W.; Sanger, P.; Scanlan, R.; Cornish, D.

    1979-01-01

    A 5000 A-12 T fully stable Nb 3 Sn superconductor has to be produced for the insert magnet of the high-field test facility being built at Lawrence Livermore Laboratory. A process is described which permits the fabrication of long lengths of large fully transposed monolithic superconductors containing in excess of 100,000 filaments of Nb 3 Sn. Measurements of critical current as a function of magnetic field and longitudinal strain on prototype samples are reported

  4. The characterization and selection of superconductor wire and cable for RHIC

    International Nuclear Information System (INIS)

    Greene, A.F.; Garber, M.; Ghosh, A.K.; McChesney, D.; Morgillo, A.

    1992-01-01

    This report describes the procedures used to select a single vendor for superconductor cable for the RHIC 80 mm dipole and quadrupole magnets, and some insertion dipoles with 110 mm aperture. Experience gained at BNL through involvement with the HERA and SSC Projects provided valuable Teaming experiences for this work. A performance specification was prepared and three qualified vendors were selected to complete a preproduction lot of 63,000 ft. of cable (approximately five multifilament billets). Samples were sent to BNL from every wire spool and from every continuous cable length. Mechanical, electrical and magnetization measurements were made to characterize the material. A data base was used to collect information, to compare BNL and vendor measurements and to study uniformity. Results are presented without specific identification of the vendors involved

  5. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  6. Laser fabrication nanocrystalline coatings using simultaneous powders/wire feed

    Science.gov (United States)

    Li, Jianing; Zhai, Tongguang; Zhang, Yuanbin; Shan, Feihu; Liu, Peng; Ren, Guocheng

    2016-07-01

    Laser melting deposition (LMD) fabrication is used to investigate feasibilty of simultaneously feeding TC17 wire and the Stellite 20-Si3N4-TiC-Sb mixed powders in order to increase the utilization ratio of materials and also quality of LMD composite coatings on the TA1 substrate. SEM images indicated that such LMD coating with metallurgical joint to substrate was formed free of the obvious defects. Lots of the ultrafine nanocrystals (UNs) were produced, which distributed uniformly in some coating matrix location, retarding growth of the ceramics in a certain extent; UNs were intertwined with amorphous, leading the yarn-shape materials to be produced. Compared with substrate, an improvement of wear resistance was achieved for such LMD coating.

  7. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G; Lee, H J; Kim, K B; Won, D Y; Jang, K I; Kwon, S C; Kim, W J; Ji, Y A; Yang, S W; Kim, W K; Park, S D; Lee, M H; Lee, D M; Park, H W; Yu, J K; Lee, I S; Kim, J J; Choi, H S; Chu, Y; Kim, Y S; Kim, D H

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  8. Development of superconductor application technology

    International Nuclear Information System (INIS)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs

  9. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  10. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin W; Li Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James, E-mail: mrupich@amsc.co [American Superconductor Corporation, 64 Jackson Road, Devens, MA 01434-4020 (United States)

    2010-01-15

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cm{sub width}{sup -1} at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  11. Superconductors

    International Nuclear Information System (INIS)

    1988-01-01

    The chapter 6.3 p. 143 to 153 of this book deals with superconductors 19 items are briefly presented with address of manufacturer or laboratory to contact, mainly in the USA or Japan. In particular magnets, films, high temperature superconductors and various applications are presented [fr

  12. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  13. Fabrication of superconducting wire using organometallic precursors and infiltration

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1991-01-01

    Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90 degree K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945 degree C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90 degree K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples

  14. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  15. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Science.gov (United States)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  16. Recent status of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Greene, A.F.

    1992-01-01

    A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly

  17. Quench-age method for the fabrication of niobium--aluminum superconductors

    International Nuclear Information System (INIS)

    Pickus, M.R.; Ciardella, R.L.

    1978-01-01

    A flexible Nb 3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium

  18. Quench-age method for the fabrication of niobium-aluminum superconductors

    Science.gov (United States)

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  19. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  20. Fabrication of Nb_3Al superconductor by the optimized mechanical alloying method with low temperature

    International Nuclear Information System (INIS)

    Zhang, Y.; Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L.; Li, P.Y.; Pan, X.F.; Yan, G.; Zhao, Y.

    2016-01-01

    Highlights: • Due to a much better strain tolerance than Nb_3Sn, Nb_3Al has been considered as an excellent candidate for making high field magnets. At present, the Nb_3Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb_3Al superconductor with T_c of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb_3Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb_3Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb_3Al superconductor with T_c of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb_3Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  1. Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor

    Science.gov (United States)

    Tkaczyk, J.E.; Lay, K.W.; He, Q.

    1997-07-08

    A method is disclosed for fabricating a polycrystalline thallium-containing superconductor having high critical current at elevated temperatures and in the presence of a magnetic field. A powder precursor containing compounds other than thallium is compressed on a substrate. Thallium is incorporated in the densified powder precursor at a high temperature in the presence of a partial pressure of a thallium-containing vapor. 2 figs.

  2. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  3. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Science.gov (United States)

    Asari, Tsukasa; Shibata, Ryosuke; Awano, Hiroyuki

    2017-05-01

    Nanoimprint lithography (NIL) is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS) in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL). We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc) for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  4. The fabrication of YBCO superconductor polycrystalline powder by CCSO

    International Nuclear Information System (INIS)

    Martirosyan, K S; Luss, D; Galstyan, E; Xue, Y Y

    2008-01-01

    We present a novel, cost-effective and simple method to produce polycrystalline superconductor YBa 2 Cu 3 O 7-δ (YBCO) powder by a self-sustaining one-step process called carbon combustion synthesis of oxides (CCSO). In this process the exothermic oxidation of carbon nanoparticles generates a thermal wave that propagates at a velocity of about 1 mm s -1 through the solid yttrium, barium, and copper precursors, converting them rapidly (in the order of seconds) to polycrystalline YBCO. The carbon is not incorporated in the product and is emitted as carbon dioxide (CO 2 ) from the sample, generating a highly porous (∼70%) and friable product. Most of the grains have a plate-like shape, are well connected, and have a size of between 1 and 3 μm. The concentration of the residual carbon was less than 0.06 wt%. The magnetization of as-synthesized samples (without external post-annealing in oxygen), as determined by a SQUID magnetometer, showed an onset of the superconducting (SC) transition at ∼91 K, with a 44% shielding fraction of the -1/(4π) value

  5. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    International Nuclear Information System (INIS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-01-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  6. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  7. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    International Nuclear Information System (INIS)

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  8. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  9. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  10. Interior seeding for the fabrication of single-grain REBCO bulk superconductors

    International Nuclear Information System (INIS)

    Kim, C-J; Park, S-D; Jun, B-H; Park, H-W

    2016-01-01

    This study presents a new seeding technique, named ‘interior seeding’ which allows the growth of a single REBCO (RE: rare-earth elements) grain in the interior of REBCO compacts. The key techniques of interior seeding are to provide appropriate open space for seeds in the interior of REBCO powder compacts to supply air or oxygen to the seeds, and to minimize the contact area between the seeds and liquid. The advantages of interior seeding are as follows: (1) simultaneous growth from the seed to the top and bottom of the REBCO compacts is possible, (2) fractions of the a-b growth sector and the a-c growth sector on the top surface can be controlled and (3) the top surfaces of the single-grain REBCO bulk superconductors are free from samarium or neodymium contamination from the used seeds. The very large single-grain Y 1.5 Ba 2 Cu 3 O 7−y (Y1.5) bulk superconductors (42 mm) were successfully fabricated using a melt growth (MG) process combined with interior seeding. Also, large-grain Y1.5 bulk superconductors (41 mm) with 〈110〉/〈110〉 and 〈100〉/〈100〉 grain junctions were fabricated using multiple interior seeding. In this paper, the detailed process of interior seeding, the development of top surface patterns and the properties of single-grain Y123 bulk superconductors fabricated using interior seeding were reported. (paper)

  11. Method of making V.sub.3 Ga superconductors

    Science.gov (United States)

    Dew-Hughes, David

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  12. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  13. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    International Nuclear Information System (INIS)

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)

  14. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  15. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  16. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    Science.gov (United States)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  17. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2016-02-01

    Full Text Available We designed a new style of broadband terahertz (THz polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  18. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.

    Science.gov (United States)

    Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S

    1998-12-01

    The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.

  19. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  20. Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth

    International Nuclear Information System (INIS)

    Iida, K; Babu, N H; Shi, Y; Cardwell, D A; Miyazaki, T; Murakami, M; Sakai, N

    2008-01-01

    We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, J c , of over 70 kA/cm 2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of J c throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter x 7 mm thickness)

  1. Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method

    Science.gov (United States)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.

    2007-06-01

    Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.

  2. Development of magnesium diboride (MgB{sub 2}) wires and magnets using in situ strand fabrication method

    Energy Technology Data Exchange (ETDEWEB)

    Tomsic, Michael [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States); Rindfleisch, Matthew [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States)]. E-mail: mrindfleisch@hypertechresearch.com; Yue, Jinji [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States); McFadden, Kevin [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States); Doll, David [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States); Phillips, John [Hyper Tech Research, Inc., 1275 Kinnear Road, Columbus, OH 43212 (United States); Sumption, Mike D. [LASM, Department of Materials Science and Engineering, Ohio State University, Columbus, OH, 43210 (United States); Bhatia, Mohit [LASM, Department of Materials Science and Engineering, Ohio State University, Columbus, OH, 43210 (United States); Bohnenstiehl, Scot [LASM, Department of Materials Science and Engineering, Ohio State University, Columbus, OH, 43210 (United States); Collings, E.W. [LASM, Department of Materials Science and Engineering, Ohio State University, Columbus, OH, 43210 (United States)

    2007-06-01

    Since 2001 when magnesium diboride (MgB{sub 2}) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB{sub 2} superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB{sub 2} wire in superconducting devices now that the wire is available commercially. MgB{sub 2} superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB{sub 2} conductor and coil development in the last several years at Hyper Tech Research, Inc.

  3. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method

    International Nuclear Information System (INIS)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E.W.

    2007-01-01

    Since 2001 when magnesium diboride (MgB 2 ) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc

  4. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Andersen, Karsten Brandt; Svendsen, Winnie Edith

    2011-01-01

    This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on c...... characterization by SEM and I-V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin-streptavidin interaction in order to probe their potential in the development of biosensing devices....

  5. The superconductor

    International Nuclear Information System (INIS)

    Lad, J.K.

    1979-01-01

    Techniques for fabrication of a few important superconductors like Nb, Ti and Nb 3 Sn are described. Copper or bronze or both can be used as a matrix in the superconductor. Current densities obtained for different ratios of copper to superconductor are studied. The specifications of multi-filament Nb 3 Sn superconductors are given. The relative merits of the two superconductors are discussed. The temperature range obtained is approximately 3 0 K and a magnetic field of 9T(tesla) can be achieved. (A.K.)

  6. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Jiawen Chen

    2018-03-01

    Full Text Available A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device.

  7. Practical superconductor development for electrical power applications

    International Nuclear Information System (INIS)

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-T c ) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-T c superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs

  8. Optimal Modes for the Fabrication of Aluminum Nanopowders by the Electrical Explosion of Wires

    Directory of Open Access Journals (Sweden)

    Alexei Pustovalov

    2017-01-01

    Full Text Available The paper is aimed at studying the impact of initial conditions of electrical explosion of wires on energy characteristics of the explosion and some other properties of the obtained aluminum powders. Explosion modes where the energy input into the wire has the maximal level were found. These modes are optimal for fabrication of powders with the best properties. The powders have the highest value of the specific surface of 14.5 m2/g, a narrow histogram of the particle size distribution, and a narrow distribution histogram with a high polydispersity coefficient of 0.7.

  9. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    Science.gov (United States)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  10. Flux Pinning and AC Loss in Second Generation High Temperature Superconductor Wires

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Major advances have been made in the last 18 years in high-temperature superconductor (HTS) reserach and development, resulting in increased use of HTS materials in commerical and pre-commercial electric-power applications. This new and important book addresses the issues related to flux pinning, AC losses and thick YBCO film growth. Written by top most scientists in the world, it presents the current status and issues related to YBCO coated conductors and the need for further fundamental materials science work in YBCO coated conductor. It will be a useful handbook for years to come.

  11. Fabrication of sub-15 nm aluminum wires by controlled etching

    International Nuclear Information System (INIS)

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Marković, N.; McQueen, T. M.

    2014-01-01

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices

  12. Advanced nuclear materials development -Development of superconductor application technology-

    International Nuclear Information System (INIS)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author)

  13. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  14. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  15. Quasiparticle transport properties of mesoscopic wires containing normal-metal/superconductor/normal-metal proximity junctions

    International Nuclear Information System (INIS)

    Kim, Nam; Kim, Kijoon; Lee, Hu Jong; Lee, Seongjae; Yuk, Jong Seol; Park, Kyoung Wan; Lee, El Hang

    1997-01-01

    We measured the differential resistance dV/dI of mesoscopic normal-metal/superconductor/normal-metal (N-S-N) junctions. At low temperatures (T PbIn /e, where Δ PbIn is the gap energy of superconducting Pb-In, and at a higher bias V c . The zero-bias dip is supposed to originate from Andreev reflections of quasiparticles and the peak near 2Δ PbIn /e from the formation of a standing-wave mode of quasiparticles inside the superconducting potential barrier. We attribute the peaks at V c to a transition of the superconducting region to the normal state as the current exceeds the critical current I c of S

  16. The fabrication and characterisation of quantum dots, wires and wire net works

    International Nuclear Information System (INIS)

    Zhang, Q.

    1996-07-01

    The work in this thesis includes two aspects as described below: 1. Freshly produced red, yellow and green emitting porous Si have been fabricated and studied by NEXAFS and EXAFS. The emission peaks are at 690, 580 and 520 nm, which almost covers the fall visible range that direct anodization can achieve. The correlation between the co-ordination numbers of the first, second and third Si neighbour shells from Fourier transform fitting of EXAFS and both emission peak energies and optical bandgaps estimated by PLE (photoluminescence excitation dependence) suggests that the nanostructures of the PS are nanowires, rather than nanoclusters. Two types of quantum nanowire with one and one-plus-a-fraction dimensionality are proposed to interpret the correlation. The order factors of the theoretical fits suggest the nanowires of the freshly produced PS have crystalline cores. 2. Strong and stable blue photoluminescence (PL), visible to the naked eye under 0.4 μW of 300 nm and 2.7 μW of 370 nm excitation, has been observed for samples of Si and C clusters embedded in SiO 2 matrices, prepared by rf co-sputtering followed by N 2 annealing at 800 deg C. Firstly for the Si clusters. Si K-edge EXAFS and NEXAFS strongly suggest the existence of Si nanoclusters with crystalline cores in the efficient emitting material. On the other hand for the carbon clusters, silicon, carbon and oxygen K-edge XAFS suggest that 1) the nanoclusters present are C-based materials, 2) the luminescent materials probably involves π bonded carbon. The size distributions of both kinds of the nanoclusters obtained by TEM suggest that a quantum-confined size effect can also apply to the blue PL. The strong blue emission is related with the crystallisation of the nanodots by annealing. The PL excitation dependence is explained by an increase in the conduction band density of states deep in the band, and the formation of a band tail. (author)

  17. Development of a generic seed crystal for the fabrication of large grain (RE)-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Shi, Y; Babu, N Hari; Cardwell, D A

    2005-01-01

    The critical current density, J c , irreversibility field, B irr , and magnetic field trapping ability of (LRE)-Ba-Cu-O bulk superconductors, where LRE is a light rare earth element such as Nd, Sm, Eu and Gd, are generally superior to those of the more common melt-processed Y-Ba-Cu-O (YBCO). The lack of availability of a suitable seed crystal to grow large, single grain (LRE)-Ba-Cu-O superconductors with controlled orientation, however, has hindered severely the development of these materials for engineering applications over the past ten years. In this communication we report for the first time the development of a generic seed crystal that can be used to fabricate any rare earth (RE) based (RE)-Ba-Cu-O ((RE)BCO) superconductor in the form of a large single grain with controlled orientation. The new seed crystal will potentially enable large grain (LRE)-Ba-Cu-O bulk superconductors to be fabricated routinely, as is the case for YBCO. This will enable the field trapping and current-carrying characteristics of these materials to be explored in more detail than has been possible to date. (rapid communication)

  18. Fabrication of Nb{sub 3}Al superconductor by the optimized mechanical alloying method with low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yongzhang@swjtu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, P.Y.; Pan, X.F.; Yan, G. [Western Superconducting Technoligies Co., Ltd., Xi' an 710018 (China); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2016-11-15

    Highlights: • Due to a much better strain tolerance than Nb{sub 3}Sn, Nb{sub 3}Al has been considered as an excellent candidate for making high field magnets. At present, the Nb{sub 3}Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb{sub 3}Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb{sub 3}Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb{sub 3}Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  19. Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: chyagrit@chula.ac.th; Punnachaiya, Suvit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-12-15

    A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

  20. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    Science.gov (United States)

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  1. Compressive and bending behavior of sandwich panels with Octet truss core fabricated from wires

    International Nuclear Information System (INIS)

    Lim, Ji Hyun; Nah, Seong Jun; Kang, Ki Ju; Koo, Man Hoe

    2005-01-01

    Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having Octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending and compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work

  2. Pre-fabricated nanorods in RE–Ba–Cu–O superconductors

    International Nuclear Information System (INIS)

    Khatri, N D; Majkic, G; Shi, T; Selvamanickam, V; Chen, Y

    2013-01-01

    Pre-fabrication of metallic nanorods on biaxially textured templates has been explored in this study to introduce flux pinning centers in RE–Ba–Cu–O (REBCO, RE =rare earth) based superconductors. Pt nanorods were deposited by an electron beam assisted deposition method on LaMnO 3 -capped biaxially textured IBAD-(ion beam assisted deposition) substrates. Well-controlled nanorods with varying diameter (50–120 nm), length (up to 1 μm), orientation and unit cell size were grown over an area of 120–150 μm 2 . The nanorod-decorated samples were then deposited with Gd–Y–Ba–Cu–O ((Gd, Y)BCO) by metal organic chemical vapor deposition (MOCVD). The Pt nanorods remain in their positions during MOCVD and become embedded in the (Gd, Y)BCO matrix, although they suffer creep-induced shape deformation due to exposure to elevated temperature. Higher unit cell size, longer nanorods, and nanorods oriented at an angle to the substrate normal adversely affect the epitaxy of the (Gd, Y)BCO film due to formation of a-axis grains. The observed current-carrying capacity of the Pt nanorod sample is lower than its corresponding reference sample without any nanorods and processed under identical conditions, but it decreases at a slower rate with increasing magnetic field. Potential routes to improve the performance while retaining the desirable characteristics of controlled nanorod direction and density are discussed. (paper)

  3. Fabrication and characterizations of the BSCCO-2212/SrSO4 bulk superconductors

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Jang, Seok Hern; Park, Eui Cheol; Hwang, Sumin; Joo, Jin Hoo; Hong, Gye Won; Kim, Chan Joong; Kim, Hye Rim; Hyun, Ok Bae

    2006-01-01

    We fabricated Bi-2212/SrSO 4 bulk superconductors by the casting process and evaluated the effects of the powder mixing method and annealing temperature on the texture, microstructure, and critical current. In the process, the Bi-2212 powders were mixed with SrSO 4 by hand-mixing(HM) and planetary ball milling(PBM) method and then the powder mixtures were melted at 1100 - 1200 degrees C, solidified, and annealed. We observed that the rod made by the PBM had a more homogeneous microstructure and smaller SrSO 4 and second phases than that of the rod made by the HM, resulting in increased I c . The I c of the rod also depended on the annealing temperature and the highest I c was obtained to be 200 A when prepared by HM at 1200 degrees C and annealed at 810 degrees C which is probably due to the moderate density and 2212 texture and the smaller and less second phase compared to that at higher temperature. The possible causes of the variations of I c with the powder mixing method and annealing temperature were related to the microstructural evolution based on the SEM, EPMA, and DTA analyses.

  4. Fabrication and characterization of a dual-joint smart inhaler nozzle actuated by embedded SMA wires

    International Nuclear Information System (INIS)

    Furst, Stephen J; Seelecke, Stefan

    2014-01-01

    Shape memory alloy (SMA) wires offer a novel solution for many embedded actuator and sensor applications. Small SMA wires in particular can be heated with a relatively low electric current, cool rapidly, and serve as a sensor thanks to a measurable resistance change. However, the challenges of fabrication with SMA actuator wires as well as their hysteretic nature have prevented them from finding mainstream application. This work focuses on the process used to control the fabrication of an SMA-actuated adaptive nozzle for the previously presented Smart Inhaler application. The elements of nozzle design that facilitate fabrication are summarized and an assembly setup and procedure is presented for controlling the stress and strain in the SMA wires while they are attached to the nozzle structure via temperature-resistant adhesives. Finally, the performance of the nozzle is characterized by measuring the changes in nozzle deflection and SMA wire strain and resistance in response to a controlled Joule heating power input. Results show controlling pre-stress in the wires during assembly can lead to reproducible behavior, an input heating power serves to control nozzle deflection, and a measured resistance can provide a useful sensor of SMA wire strain and nozzle joint deflection. (paper)

  5. Radiation Crosslinking of Small Electrical Wire Insulator Fabricated from NR-LDPE Blend

    International Nuclear Information System (INIS)

    Chyagrit, S.

    2006-01-01

    Blending of block natural rubber (STR-5L) and LDPE with phthalic anhydride (PA) as copatibilizer was put to the test for the purpose of a fabrication into small electrical wire insulator. It was found that PA at concentration of 1.0 - 1.5% in NR/PE of 50/50 so fabricated into the insulator, after gamma ray cross-linked at a dose of 180 kGy in limited air, could meet Thai Industrial Standard (TIS) 11-2531 of small eletrical insulator (<300 V). Effect of radiation dose on tensile, hardness, elongation at break, modulus 100%, limiting oxigen index (LOI) were investigated. It was noted that to comply with TIS 11-2531 for vertical flame retardance test, a suitable flame retardance was needed for the insulator

  6. Structure of Polymer Fibers Fabricated by Electrospinning Method Utilizing a Metal Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Shinbo, Kazunari; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    We fabricated electrospun poly (vinylalcohol) (PVA) fibers using a copper wire electrode in Teflon capillary tube, and the SEM images were observed. The apparatus in this method is reasonable, and needed volume of polymer solution and distance between the electrodes can be largely reduced compared to conventional method. The wire electrode tip position in the capillary tube is also important in this method and should be close to the polymer solution surface.

  7. Superconductor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gömöry, F [Bratislava, Inst. Elect. Eng. (Slovakia)

    2014-07-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses of various flux dynamic cases are presented.

  8. Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing.

    Science.gov (United States)

    Ji, Lei; Lu, Jiping; Tang, Shuiyuan; Wu, Qianru; Wang, Jiachen; Ma, Shuyuan; Fan, Hongli; Liu, Changmeng

    2018-06-28

    Wire feeding additive manufacturing (WFAM) has broad application prospects because of its advantages of low cost and high efficiency. However, with the mode of lateral wire feeding, including wire and laser additive manufacturing, gas tungsten arc additive manufacturing etc., it is easy to generate macro defects on the surface of the components because of the anisotropy of melted wire, which limits the promotion and application of WFAM. In this work, gas tungsten arc additive manufacturing with lateral wire feeding is proposed to investigate the mechanisms of macro defects. The results illustrate that the defect forms mainly include side spatters, collapse, poor flatness, and unmelted wire. It was found that the heat input, layer thickness, tool path, and wire curvature can have an impact on the macro defects. Side spatters are the most serious defects, mainly because the droplets cannot be transferred to the center of the molten pool in the lateral wire feeding mode. This research indicates that the macro defects can be controlled by optimizing the process parameters. Finally, block parts without macro defects were fabricated, which is meaningful for the further application of WFAM.

  9. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  10. Superconductor-normal metal-superconductor process development for the fabrication of small Josephson junctions in ramp type configuration

    International Nuclear Information System (INIS)

    Poepel, R.; Hagedorn, D.; Weimann, T.; Buchholz, F.-I.; Niemeyer, J.

    2000-01-01

    At PTB, a fabrication process has been developed in SNS Nb/PdAu/Nb technology for the verification of small Josephson junctions (JJs) in the deep sub-micron range to enable the implementation of JJs as active elements in highly integrated superconducting circuits. Two steps of this technological development are described with regard to appropriately designed circuit layouts of JJ series arrays (JJAs), the first one in a conventional window type junction (WTJ) configuration and the second one in a ramp type junction (RTJ) configuration. Test circuits of JJAs containing up to 10 000 JJs have been fabricated and experimentally tested. In WTJ configuration, the circuits proved to be sensitive to external perturbing effects affecting the stability of circuit operation. In contrast to that, in RTJ configuration, the circuits realized showed correct function and a high grade of reliability of operation. To produce RTJ circuits, the technology parameters have been set to realize JJs with contact areas of A=0.25μmx1.3μm. At a thickness of the PdAu normal metal layer of d = 40 nm, the values achieved for the critical current density and for the product of critical current and normal state resistance are about j c = 200 k Acm -2 and about I c R N = 21 μV. (author)

  11. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    International Nuclear Information System (INIS)

    Lanagan, M. T. et al.

    1998-01-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed

  12. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  13. Inhomogeneous superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1978-01-01

    The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications

  14. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  15. Project of RE123 bulk superconductors fabrication in a microgravity environment; Bishojuryokuka chodensotai seizo purojekuto

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, N; Murakami, M [International Superconductivity Technology Center, Tokyo (Japan); Shisa, A [Ishikawajima-Harima Heavy Industries Co., Ltd., Toky o(Japan); Hirata, H [Institute for Unmanned Space Experiment Free Flyer, Tokyo (Japan)

    1999-11-25

    Large single-grain bulk rare earth element (RE)-Ba-Cu-O superconductors can be used for various applications such magnetic bearings, load trapped field magnets. The magnetic field generated by bulk RE-Ba-Cu-O superconductors is proportional to its radius, however, the growth of a large single-grain bulk with good quality is difficult due to contamination from the substrate or the crucible and also due to liquid loss. Such problems can be solved by growing RE-Cu-O bulk in a microgravity environment, where the bulk can be supported by a seed crystal alone during crystal growth. Such experiments will be conducted in the Unmanned Space Experiment Recovery System (USERS) project. In this paper, the experiment plan and the present status of the system development are reported. (author)

  16. Multifilamentar superconductor wires of Cu-Nb-Al and Cu-Nb3Sn obtained by a new method

    International Nuclear Information System (INIS)

    Lima, O.F. de

    1985-01-01

    A new method to prepare multifilamentar wires of Cu-Nb 3 Sn which is based on power metallurgy is developed. Wires of Cu+xw%Nb++2wt%Al (x =10,30) were tinned and heat treated for Sn diffusion and reaction (T = 700 0 C), leading to the Nb 3 Sn A 15 phase. Final wires showed microfilament density around 8 x 10 4 mm -2 . The superconducting properties (T sup(c), J sup(c) x H), mechanical properties (tau x epsilon) and eletrical resistivity for Cu-Nb-Al wires were as normally expected. The Cu-Nb 3 Sn wires showed high T sub(c) approx. 17.9 K, very near that for the pure A 15 phase. J sub(c) x H curves were approx. 4 times lower than typical published results for wires prepared by other methods. The experimental evidence shows that J sub(c) increases when decreases the initial Nb particle size. (Author) [pt

  17. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    Science.gov (United States)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  18. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  19. Design and fabrication of Sn-Nb-Cu-Ta-C composites for multifilamentary superconducting Nb/sub 3/Sn wires by using the modified tube technique

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Kosek, Z M

    1987-10-01

    The factors determining the design and fabrication of Nb/sub 3/Sn multifilamentary wires by the tube technique are discussed. New improved methods of obtaining multifilamentary Nb/sub 3/Sn wires on the basis of both external diffusion and internal diffusion processes, by using the tube technique in a simpler and less expensive way, are presented.

  20. Fabrication of wire and flat strips with elevated recrystallization temperature of Mo monocrystals

    International Nuclear Information System (INIS)

    Mikhajlov, S.M.; Nesgovorov, V.V.; Kabakova, L.G.; Korzukhin, V.E.; Savitskij, E.M.; Burkhanov, G.S.; Ottenberg, E.V.

    1977-01-01

    A technique is developed for manufacturing wire and flat strip of elevated recrystallization point from single crystals fo molybdenum with micro-additions of zirconium and titanium by rotary hot forging with subsequent drawing under hydrodynamic friction conditions. Flat strip is manufactured next from a wire annealed at 1300-1400 deg C in hydrogen. Resultant wire and flat strip feature a high recrystallization point and a good shape stability. Tests on their ultimate strength on the range of temperatures between 20 and 1700 deg C have shown that the maximum temperature of the recrystallization onset is that of a wire from Mo single crystals of orientation [110], containing micro-additions of Zr and Ti, whereas loss of strength is at its highest in a wire from non-alloyed single-crystal molybdenum

  1. Mono-domain YBa2Cu3Oy superconductor fabrics prepared by an infiltration process

    International Nuclear Information System (INIS)

    Sudhakar Reddy, E.; Noudem, J.G.; Tarka, M.; Schmitz, G.J.

    2000-01-01

    A novel process for the fabrication of a new form of YBa 2 Cu 3 O y (123) superconducting material, with the dimensions of a thick film and the microstructure of a melt-textured single-domain bulk is described. The process allows the fabrication of 123 as a self-supporting fabric or as a thick film on various substrate materials. The process, which is generic and economical, uses commercially available Y 2 O 3 fabrics as a precursor material. The Y 2 O 3 cloth is infiltrated with barium cuprates and copper oxides from a liquid-phase source, then converted into Y 2 BaCuO 5 (211) phase and eventually to 123. The nucleation and growth of the 123 phase is controlled by seeding the cloth with an oriented heterogeneous MgO or Nd123 seed. Interesting application areas for the new form of the 123 mono-domain fabric are discussed. (author)

  2. Syntactic intergrowth problems with BCSCO and fabrication difficulties therefrom. [Bismuth-Calcium-Strontium-Copper-Oxide superconductors

    Science.gov (United States)

    Morgan, P. E. D.; Ratto, J. J.; Housley, R. M.; Porter, J. R.

    1988-01-01

    EDXS performed on isolated particles of the Bi-Ca-Sr-Cu-O high-temperature ceramic superconductor has verified the presence of significant elemental exchange between the Ca and Sr, and, to a lesser extent, between Cu and Bi. Two primary preparations, identified as primarily 24.4 A and 30.6 A, respectively, are identified. The Cu:Bi ratio in the 30.6 A material is approximately 1:1 for most particles, although only a few particles of the nominally 24.4 A material have the expected 1:2 ratio. No unequivocal assignment of atomic composition to the predominantly 24.4 A or 30.6 A appears possible, if major syntactic problems are present.

  3. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  4. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  6. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed

    International Nuclear Information System (INIS)

    Wang, F.; Mei, J.; Jiang, H.; Wu, X.

    2007-01-01

    Composites of Ti-6Al-4V containing different volume fractions of TiC were manufactured using direct laser fabrication. Ti-6Al-4V wire and TiC powder were fed into the laser with the rate of powder feed being changed so that samples containing different volume fractions of TiC could be manufactured. Optical microscopy, scanning electron and transmission electron microscopy were used to characterise the microstructure of these samples. The room temperature tensile properties were measured also on some selected compositions together with their Young's moduli. In addition the change in wear resistance was studied as a function of TiC volume fraction using a standard wear test. These observations are discussed in terms of the advantages and difficulties of using simultaneous wire and powder feed systems and in terms of the value of this approach in obtaining data over a wide range of compositions for such a composite

  7. Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model.

    Science.gov (United States)

    Jung, Jong Moon; Wi, Young Joo; Koo, Hyun Mo; Kim, Min Ji; Chun, Youn Sic

    2017-07-01

    The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage.

  8. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    Science.gov (United States)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  9. Achievement report on developing superconductor power applied technologies in fiscal 1999 (1). Research and development of superconductor wire materials, research and development of superconductor power generators, research of total systems, research and development of freezing systems, and verification tests; 1999 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu / chodendo hatsudenki no kenkyu kaihatsu / total system no kenkyu / reito system no kenkyu kaihatsu / jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to achieve higher efficiency, higher density, and higher stability in power systems, research and development has been performed on superconductor power applied technologies. This paper summarizes the achievements thereof in fiscal 1999. In research and development of the superconductor wire materials, decrease in loss and increase in capacity of the conductors were progressed for the Nb{sub 3}Sn wire material, whereas its mechanical properties and stability were evaluated. In research and development of the superconductor generators, an ultra high speed responding generator was verified of its healthiness in a sudden short circuit test. A linkage test with an operating 77-kV system was performed, wherein verification was given that the superconductor generator can be operated stably against various disturbances. In research and development of the freezing systems, an improved system was structured, which achieved operation of 11,390 hours in a single system as a result of the high reliability of the oil-free structure. In the verification tests, the ultra high speed responding model generator was connect to the freezing system to give such tests as load test, onerous test, actuation test by using the M-G system, and 77-kV system linkage test. The functions, reliability, and durability of the system were verified, and different data were acquired. (NEDO)

  10. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    OpenAIRE

    Heesoo Jung; Jin Ah Seo; Seungki Choi

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design?wearable APP (WAPP)?that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully e...

  11. Development of superconductor application technology -Advanced nuclear materials development-

    International Nuclear Information System (INIS)

    Hong, Gyee Won; Won, Dong Yeon; Lee, Hui Gyun; Lee, Ho Jin; Kim, Chan Joong; Park, Soon Dong; Kim, Uh Kon; Kim, Ki Baek; Kwon, Seon Chil; Kim, Yeon Soo; Lim, Dae Ho; Kim, Jong Jin

    1994-06-01

    Formation of oxide superconducting phase, fabrication of superconducting wire, design and fabrication of precise superconducting magnet were studied for developing superconductor application technique. The CeO 2 addition reduced the particle size of Y 2 BaCuO 5 trapped in the matrix after the melt-texture growth. The anomally is not observed at low temperature, which indicates that the oxygen deficiency is not effective flux pinning site at these temperature. Powder-in-powder method was developed to make superconducting wire. The stacking method for bonding the high Tc superconducting tapes was developed and proto-type current lead was fabricated by this technique. The precise superconducting coil was designed and fabricated. The required 4.02tesla was obtained on 139 A. The field deviation along the z axis of 5 cm was below 10 ppm when using 4 terms of shim cols. (Author)

  12. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  13. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  14. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  15. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  16. Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire

    International Nuclear Information System (INIS)

    Wang, F.; Mei, J.; Wu Xinhua

    2007-01-01

    Ti6Al4V reinforced with TiC has been fabricated as compositionally graded material by direct laser fabrication using TiC powder and Ti6Al4V wire which were fed simultaneously into the laser focal point. The microstructure along the length of the sample has been characterised using X-ray diffraction and scanning electron microscopy. The results show that the composition along the length changes as expected from the imposed changes in feed rate when allowance is made for the different capture efficiency for the powder and the wire. Some unmelted TiC has been observed in regions where the TiC fraction was high, but along most of the length of the samples TiC was completely melted and formed primary TiC, eutectic TiC and secondary TiC. Some preliminary tribological properties of the compositionally graded material were obtained using a sliding wear test which showed that the tribological properties of Ti6Al4V are improved by the reinforced TiC particles with the optimum frictional behaviour being found with approximately 24 vol% of TiC

  17. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    Science.gov (United States)

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  18. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Vertical Wire Feeding with Axisymmetric Multi-Laser Source

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2017-02-01

    Full Text Available Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool has exhibited great advantages over LAM (laser additive manufacturing with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions.

  19. Cryogenic milling for the fabrication of high J{sub c} MgB{sub 2} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. N.; Kang, M. O.; Park, H. W. [Korea University of Technology and Education, Cheonan (Korea, Republic of); Jun, B. H.; Kim, C. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density (J{sub c}) MgB{sub 2} bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg (6-12 μm, 99.9 % purity) and plate-like B powder (⁓ 1 μm, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using ZrO{sub 2} balls. The (Mg{sup +2B}) powders milled were pressed into pellets and heat-treated at 700°C for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting MgB{sub 2}, reduced the grain size of MgB{sub 2}, and suppressed the formation of impurity MgO. The superconducting critical temperature (T{sub c}) of MgB{sub 2} was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density (J{sub c}) of MgB{sub 2} increased significantly when t increased to 4 h. When t increased further to 6 h, however, Jc decreased. The J{sub c} enhancement of MgB{sub 2} by cryogenic milling is attributed to the formation of the fine grain MgB{sub 2} and a suppression of the MgO formation.

  20. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Fan, Xing; Zhang, Xiaoying; Zhang, Nannan; Cheng, Li; Du, Jun; Tao, Changyuan

    2015-01-01

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  1. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Donghong Ding

    2016-08-01

    Full Text Available Cast nickel aluminum bronze (NAB alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM. Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

  2. Superconducting properties of (Nb,Ta)3Sn wires fabricated by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Aihara, K.; Kaiho, K.; Luhman, T.S.

    1979-01-01

    Measurements of the superconducting critical temperature T/sub c/, critical current density, J/sub c/ (8 3 Sn monofilamentary wires. Ta content in the Nb 3 Sn compound was varied by alloying the Nb core prior to a reaction heat treatment. Core compositions were 0, 3, 7, 10, and 20 wt% Ta and heat treatments for the reaction were 16, 64, and 120 h at 725 0 C. For the 120 h heat treatment T/sub c/ decreased monotonically with Ta content from 17.5 to 15.7K while H/sub c2/ increased from 19.8 to 24.6 T. With increasing Ta content J/sub c/ (16 T) increased from 0.7 x 10 5 A/cm 2 to a maximum value of 1.3 x 10 5 at 7 wt% Ta. Further increases in the Ta content produced a decrease in J/sub c/(16 T). At 10 T J/sub c/ decreased with increasing Ta content. An important aspect of this work is the observation that alloying with Ta did not hinder wire ductility during drawing. It appears therefore that the improvements in J/sub c/(16 T) can be incorporated into commercially manufactured conductors

  3. Superconductor with improved persistence characteristics

    International Nuclear Information System (INIS)

    Stekly, Z. J. J.; Strauss, B. P.

    1984-01-01

    In a multifilamentary superconductor, plural filaments are separated from one another by a ductile nonsuperconducting copper matrix. The niobium titanium filaments are arrayed through the copper, with one filament being substantially larger than the others, and preferably, centrally located in the wire. Preferably also, the other filaments are arrayed in an annular configuration about the periphery of the wire

  4. A-15 superconducting composite wires and a method for making

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C. J.; Luhman, Th. S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, The tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes

  5. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  6. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  7. Fabrication and Characterization of Ni-CNT Composites by Electrical Explosion of Wire in Different Liquids

    Directory of Open Access Journals (Sweden)

    Thuyet-Nguyen M.

    2017-06-01

    Full Text Available In this study, Ni-CNT powders and colloids were synthesized via the Electrical explosion of wire (EEW in different liquid conditions. The influence of ambient solvents (D.I. Water, ethanol, methanol, acetone and ethylene-glycol on characteristics of the as-synthesized Ni-CNT was investigated. The morphology and size were observed by field emission scanning electron microscopy (FE-SEM. The Ni particles were spherical or near spherical shape. The phase of the composite powders analyzed via X-ray diffraction demonstrate the presence of CNTs in composite powders is not affect the structure of Ni. However, the phase of the composites was changed based on the changing of liquid conditions. Stability of colloids was investigated by Turbiscan technique. Magnetic properties were also investigated by Vibrating sample magnetometer (VSM at room temperature. The as-synthesized composite powders revealed a ferromagnetic characteristic material.

  8. Investigation of hydrostatic extrusion and other deformation modes for the fabrication of multifilamentary niobium--tin superconductors by a powder metallurgy approach

    International Nuclear Information System (INIS)

    MacLeod, G.E.

    1977-06-01

    Various aspects of a powder metallurgy approach to fabricate filamentary niobium-tin superconducting wire were investigated. Difficulties occurred due to lack of complete tin infiltration of the sintered niobium rod, formation of intermetallics during infiltration, and both cladding and core fracture during mechanical reduction. The influence of sintering time, infiltration temperature, and deformation mode was investigated. Progress is reported on the clarification of the role of several of the important process parameters

  9. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process

    International Nuclear Information System (INIS)

    Namburi, Devendra K; Shi, Yunhua; Palmer, Kysen G; Dennis, Anthony R; Durrell, John H; Cardwell, David A

    2016-01-01

    Bulk (RE)–Ba–Cu–O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE) 2 BaCuO 5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (∼41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique. (paper)

  10. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  11. Avalanche effect in the planar array of superheated superconductors

    International Nuclear Information System (INIS)

    Meagher, G.; Pond, J.; Kotlicki, A.; Turrell, B.G.; Eska, G.; Drukier, A.K.

    1996-01-01

    An avalanche effect has been observed in a cryogenic detector based on the planar array of superheated superconductors (PASS). The indium PASS, fabricated by photolithography on a mylar substrate, consisted of 40 well-separated lines each containing about 175 spheres of diameter 18 μm and separation 20 μm with those at the end being shielded by superconducting wire. The magnetic field was applied in the PASS plane parallel to the lines. Avalanche events in which several granules changed their state from superconducting to normal were triggered by the nucleation of the transition in a single grain by an alpha particle. (author)

  12. Fabrication and application of mesoporous TiO{sub 2} film coated on Al wire by sol-gel method with EISA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linkang; Lu, Jianjun, E-mail: lujianjunktz@tyut.edu.cn

    2017-04-30

    Highlights: • Successfully fabricated mesoporous TiO{sub 2} thin film on Al wire by sol-gel method with EISA. • Ni supported on this film and exhibits good methanation performance. • Investigate the decomposition temperature of template agent F127 in TiO{sub 2} precursor system. - Abstract: Mesoporous TiO{sub 2} film on Al wire was fabricated by sol-gel method with evaporation induced self assembly (EISA) process using F127 as templating agent in the mixed solution of ethanol and Tetra-n-butyl Titanate. The Ni/TiO{sub 2} film catalyst supported on Al wire was prepared by impregnation and the catalytic performance on methanation was carried out in a titanium alloy micro-reactor tube. It was shown that anatase mesoporous TiO{sub 2} film was prepared in this conditions (1 g F127,calcined at 400 °C and aged for 24 h), which has specific surface area of 127 m{sup 2} g{sup −1} and narrow pore size distribution of 5.3 nm. Low calcined temperature (300 °C) cannot transfer film to anatase and decompose F127 completely. Ni/TiO{sub 2} film on Al wire catalyst was proved to be active in CO methanation reaction. And the CO conversion reaches 99% and CH{sub 4} selectivity close is to 80% when the reaction temperature is higher 360 °C.

  13. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process

    International Nuclear Information System (INIS)

    Togano, K; Hur, J M; Matsumoto, A; Kumakura, H

    2009-01-01

    We found that the reaction between a Mg core and a B powder layer in an internal Mg diffusion (IMD)-processed multi-filamentary wire can proceed rapidly even at a furnace temperature lower than the melting point of Mg (650 deg. C), resulting in the formation of a reacted layer with a fine composite structure and, hence, excellent in-field critical current properties. The multi-filamentary wire is composed of an outermost Cu-Ni sheath and seven filaments with a Ta sheath, a Mg core, and B+SiC powder filled in the space between the Ta sheath and the Mg core. Heat treatment at 645 deg. C for 1 h produced a reacted layer with dense composite structure along the inner wall of the Ta sheath and a hole at the center of each core. This reaction probably initiated from the heat generation at the B/Mg interface, resulting in a temperature rise of the Mg core and the occurrence of liquid Mg infiltration. The J c value at 4.2 K for the reacted layer exceeds 10 5 cm -2 at 9 T, which is the highest reported so far for MgB 2 wire, including powder-in-tube (PIT)-processed wires. These results indicate that the IMD process can compete in terms of practical wire fabrication with the conventional PIT process.

  14. Hysteretic Vortex-Matching Effects in High-Tc Superconductors with Nanoscale Periodic Pinning Landscapes Fabricated by He Ion-Beam Projection

    Science.gov (United States)

    Zechner, G.; Jausner, F.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2017-07-01

    Square arrays of submicrometer columnar defects in thin YBa2 Cu3 O7 -δ (YBCO) films with spacings down to 300 nm are fabricated by a He ion-beam projection technique. Pronounced peaks in the critical current and corresponding minima in the resistance demonstrate the commensurate arrangement of flux quanta with the artificial pinning landscape, despite the strong intrinsic pinning in epitaxial YBCO films. While these vortex-matching signatures are exactly at the predicted values in field-cooled experiments, they are displaced in zero-field-cooled, magnetic-field-ramped experiments, conserving the equidistance of the matching peaks and minima. These observations reveal an unconventional critical state in a cuprate superconductor with an artificial, periodic pinning array. The long-term stability of such out-of-equilibrium vortex arrangements paves the way for electronic applications employing fluxons.

  15. Ac losses of transposed superconductors

    International Nuclear Information System (INIS)

    Eckert, D.; Enderlein, G.; Lange, F.

    1975-01-01

    Eastham and Rhodes published results of loss measurements on transposed superconducting NbTi cables and concluded basing on an extrapolation to very large numbers of wires that transposed superconductors could be used favorably in cables for power transmission. There are some reasons to question the correctness of their extrapolation. Losses were calculated for transposed superconductors in self field and got results different from those of Eastham and Rhodes. Loss measurements were performed the results of which give evidence for the correctness of our calculations. The results lead to the conclusion that the use of transposed cables of irreversible type 2 superconductors for power transmission is not advantageous

  16. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  17. Microscopic unravelling of nano-carbon doping in MgB{sub 2} superconductors fabricated by diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.K. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Yeoh, W.K. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); De Silva, K.S.B. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Institute for Nanoscale Technology, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007 (Australia); Kondyurin, A.; Bao, P. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Li, W.X. [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, X.; Peleckis, G.; Dou, S.X. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Ringer, S.P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); Zheng, R.K., E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, New South Wales 2006 (Australia)

    2015-09-25

    Highlights: • First report on nano-carbon doped MgB{sub 2} superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B{sub 4}C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB{sub 2} with 2.5% nano-carbon doped showed the highest J{sub c}, ≈10{sup 4} A/cm{sup 2} for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB{sub 2} crystalline. The strain increased across the doping level due to the carbon substitution in the MgB{sub 2} matrix. The broadening of the T{sub c} curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B{sub 4}C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB{sub 2}. Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J{sub c} of the 10% nano-carbon doped MgB{sub 2} bulk superconductor.

  18. Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; De Silva, K.S.B.; Kondyurin, A.; Bao, P.; Li, W.X.; Xu, X.; Peleckis, G.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    Highlights: • First report on nano-carbon doped MgB 2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B 4 C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB 2 with 2.5% nano-carbon doped showed the highest J c , ≈10 4 A/cm 2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB 2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB 2 matrix. The broadening of the T c curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B 4 C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB 2 . Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J c of the 10% nano-carbon doped MgB 2 bulk superconductor

  19. Advantageous grain boundaries in iron pnictide superconductors

    Science.gov (United States)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  20. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  1. Fabrication of extruded wire of MgB2/Al composite material and its superconducting property and microstructure

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Nishimura, K.; Ikeno, S.; Mori, K.; Aoyama, S.; Yabumoto, Y.; Hishinuma, Y.; Müllerová, Ilona; Frank, Luděk; Yurchenko, V. V.; Johansen, T. H.

    2008-01-01

    Roč. 97, - (2008), 012230:1-6 E-ISSN 1742-6596. [European Conference on Applied Superconductivity /8./ - EUCAS 2007. Brussels, 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z20650511 Keywords : MgB2/Al composite * superconductors * electron microscopy Subject RIV: JI - Composite Materials

  2. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Djozan, Djavanshir, E-mail: djozan@tabrizu.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Ebrahimi, Bahram [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahkam, Mehrdad [Chemistry Department, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-07-26

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL{sup -1}, respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  3. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Djozan, Djavanshir; Ebrahimi, Bahram; Mahkam, Mehrdad; Farajzadeh, Mir Ali

    2010-01-01

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL -1 , respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  4. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Cao Dandan; Lue Jianxia; Liu Jingfu; Jiang Guibin

    2008-01-01

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H 2 O 2 (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a ∼1.2 μm thick nanostructured coating consisting of ∼100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L -1 ), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L -1 ), and good linearity (coefficient of estimation R 2 = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  5. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dandan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Environmental Science Division, School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Lue Jianxia [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2008-03-17

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H{sub 2}O{sub 2} (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a {approx}1.2 {mu}m thick nanostructured coating consisting of {approx}100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L{sup -1}), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L{sup -1}), and good linearity (coefficient of estimation R{sup 2} = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  6. Fabrication and installment of hard-wired I and C works for the neutral beam injection system of the KSTAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun; In, Sang Ryul; Yoon, Jae Sung

    2004-01-01

    Instrumentation and Control(I and C) of the neutral beam injection(NBI) system for the K-STAR national fusion research project has been working from the start of the project to answer diverse requests arising from various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Some examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. They are one of those integral parts for the proper operation of the NBI system. Examples of those hard-wired I and C works are introduced in this presentation

  7. Fabrication and installment of the hard-wired I and C works for the neutral beam injection test stand of the K-STAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun

    2004-12-01

    Instrumentation and Control(I and C) of the neutral beam injection test stand (NBI-TS) for the K-STAR national fusion research project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. Another one to be mentioned is the interlock circuitry. One of the interlock circuits are related to the coolant flow failure. The other is the interlock circuit related to the vacuum failure. All of the above mentioned circuitry now constitutes integral parts for the proper operation of the NBI system; details of those hard-wired I and C work are described in this report

  8. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  9. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  10. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  11. In-depth study of the mechanical properties for Fe_3Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    International Nuclear Information System (INIS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-01-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe_3Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe_3AlC_0_._5 precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  12. Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors.

    Science.gov (United States)

    Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe

    2018-03-09

    Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intermetallic superconductors - The state of development in 1991

    International Nuclear Information System (INIS)

    Forsyth, E.

    1991-01-01

    The commercial fabrication of intermetallic superconductors has reached a high degree of maturity in the past thirty years. The only significant, commercial requirement for superconducting wire is the construction of magnetic resonance imaging (MRI) devices for medical diagnosis. In addition to this demand there are one-time projects such as a high energy particle accelerators which often need considerable quantities of superconducting material over the few years of construction. R and D projects also provide a fluctuating market for superconducting materials, in the past the projects have included power apparatus such as generators, motors, energy storage and transmission cables, and magnets for experimental fusion reactors. Superconducting magnetically levitated trains have undergone full scale trials in Japan and Germany. This is by no means a comprehensive list of all the possible applications. Virtually all the devices requiring a magnetic field to be produced by superconducting windings have used NbTi wire, but a few experimental Nb 3 Sn high field magnets have been constructed. In the case of these materials commercial vendors can provide a high degree of quality assurance on such characteristics as critical current, coupling effects and mechanical tolerances. This paper discusses the market for intermetallic and ceramic superconductors, their fabrication properties, applications, and cost

  14. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  15. DT fusion neutron irradiation of BNL--LASL superconductor wires, LASL YAG, Al2O3 and Spinel, LASL-IIT MgO, YAG, Al2O3 and Spinel, and NRL GeO2 crystals, December 28, 1977

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of eleven BNL-LAST superconductor wires, six NRL GeO 2 crystals, two YAG, two Spinel and two Al 2 O 3 crystals for LASL and four LASL high purity single crystals of MgO, YAG, Spinel and Al 2 O 3 is described. The sample position, beam-on time, and neutron dose record are given. The maximum fluence on any sample was 1.51 x 10 16 neutrons/cm 2

  16. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  17. Effect of Tool-Path on Morphology and Mechanical Properties of Ti-6Al-4V Fabricated by Wire and Arc Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Fu Jie

    2017-01-01

    Full Text Available Ti-6Al-4V components are widely used in aerospace industry. However, it’s not economic to manufacture them in traditional subtractive methods. Wire and arc additive manufacturing (WAAM is a promising alternative technology for fabricating it efficiently and economically. Tool-path planning strategy is a very important step in WAAM process. This paper investigated the influence of the lap way between layers and layers in tool-path on the Ti-6Al-4V samples fabricated by WAAM. It has been found that the lap way between layers and layers in tool-path do influence the forming quality and especially mechanical properties of the fabricated samples. Samples have different surface quality (smooth or undulating and defects inside or on the surface of the components. The highest and smallest ultra tensile strength of the fabricated samples are respectively 907.86 MPa, 684.82 MPa. But it has few effect on the grains of the fabricated samples, and they all have cross-sectional columnar grains.

  18. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires

    International Nuclear Information System (INIS)

    Pyon, Sunseng; Yamasaki, Yuji; Tamegai, Tsuyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo

    2015-01-01

    The evolution of the superconducting properties of round wires of (Ba,K)Fe 2 As 2 fabricated by the powder-in-tube (PIT) method is systematically studied. After establishing the method to obtain the largest transport critical current density (J c ) in round wires using the hot isostatic press technique, we investigated how the transition temperature (T c ), J c , and microstructures change at each step of the wire fabrication. Unexpectedly, we find that superconducting properties of the wire core are significantly damaged by the drawing process. Systematic measurements of J c and T c of the core superconductor after each drawing and sintering process clarified the evolution of degradation by the drawing process and recovery by heat treatment. (paper)

  19. Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-11-01

    Full Text Available This paper proposes a hybrid WAAM (wire arc additive manufacturing and milling process (HWMP, and highlights its application in the fabrication of stiffened panels that have wide applications in aviation, aerospace, and automotive industries, etc. due to their light weight and strong load-bearing capability. In contrast to existing joining or machining methods, HWMP only deposits stiffeners layer-by-layer onto an existing thin plate, followed by minor milling of the irregular surfaces, which provides the possibility to significantly improve material utilization and efficiency without any loss of surface quality. In this paper, the key performances of HWMP in terms of surface quality, material utilization and efficiency are evaluated systematically, which are the results of the comprehensive effects of the deposition parameters (e.g., travel speed, wire-feed rate and the milling parameters (e.g., spindle speed, tool-feed rate. In order to maximize its performances, the optimization is also performed to find the best combination of the deposition and the milling parameters. The case study shows that HWMP with the optimal process parameters improves the material utilization by 57% and the efficiency by 32% compared against the traditional machining method. Thus, HWMP is believed to be a more environmental friendly and sustainable method for the fabrication of stiffened panels or other similar structures.

  20. Organic superconductors

    International Nuclear Information System (INIS)

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  1. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  2. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  3. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  4. Fabrication, properties, and microstructures of high Tc tapes and coils made from Ag-clad Bi-2223 superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Iyer, A.N.; Youngdahl, C.A.; Motowidlo, L.R.; Hoehn, J.G.; Haldar, P.

    1993-07-01

    Bi-2223 precursor powders were prepared via a solid-state reaction using carbonates and oxides of Bi, Pb, Sr, Ca, and Cu. Results indicate that an in-situ reaction between constituent phases with tho formation of a transient liquid that is consumed during final heat treatment, is essential to obtain increased density with greater connectivity between the 2223 grains. Relative amounts of the constituent phases were adjusted in the powder by varying the calcination conditions, and the powder was then used to fabricate Ag-clad tapes by a powder-in-tube technique. By improving process conditions, transport critical current density (J c ) values greater than 4 x 10 4 A/cm 2 at 77 K and 2 x 10 5 A/cm 2 at 4.2 and 27 K have been obtained in short tape samples. Long tapes were cut into lengths upto 10 m long and used in parallel to fabricate small superconducting pancake coils. The coils were characterized at 77, 27 and 4.2 K and results are discussed

  5. Studies of design parameters in the fabrication of Nb--Al--Ge superconductors by the powder metallurgy infiltration method

    International Nuclear Information System (INIS)

    Granda, J.J.

    1976-12-01

    Experimental studies have been carried out in which the A15 phase of the Nb-Al-Ge system has been synthesized in the form of thin filaments contained in form rolled wires. A powder metallurgy approach has been used to achieve controlled porosity in compacts of sintered niobium powder. Infiltration with an aluminum-germanium eutectic alloy followed by mechanical deformation has produced small interconnected filaments embedded in the Nb matrix. Diffusion heat treatment for a short time transforms them into the A15 superconducting compound with a size range of 1-5 microns at 1300 0 C and 1-9 microns at 1750 0 C. The superconducting properties T/sub c/ and J/sub c/ were evaluated for samples subjected to different condition of time and temperature. The influence of certain parameters involved in the process has been investigated. The microstructure and microhardness of the Al-Ge eutectic alloy cooled at high and low cooling rates from temperatures between 900-400 0 C have been evaluated. Optical and electron beam metallographic results are presented for the analysis of the different phases and relative compositions. The critical temperature measured inductively is between 16.4 0 K and 18.1 0 K depending on the heat treatment. The critical current density as a function of the applied magnetic field is reported. These data were obtained using a pulsed magnetic field technique that measured J/sub c/ at 4.2 0 K in fields up to 100 kG. J/sub c/ was 8.8 x 10 4 amp/cm 2 at 20 kG and 3.6 x 10 4 amp/cm 2 at 60 kG for specimens containing approximately 20% A15 phase

  6. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  7. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  8. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    Science.gov (United States)

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gas shielded metal arc welding with fusible electrode wire. First returns on experience and opportunities in nuclear maintenance and fabrication

    International Nuclear Information System (INIS)

    Huguet, Fr.; Joly, P.; Leconte, F.; Baritaux, S.; Prin, C.

    2013-06-01

    In a brief text and a Power Point Presentation, the authors report a return on experience for the implementation of two applications using gas shielded metal arc welding process (GMAW): the on-site welding of the final joint of steam generators, and the coating of a tubing flare. In the first case, the authors analyze not only the compliance with specified technical requirements, but also outline the need to support the process with new verification methods in real time, associated development and validation efforts, and organisational and decisional measures to guarantee a good implementation of the process on site. In the second case, they analyze the process ability to meet technical specifications requiring dilution control, a perfect reproducibility, as well a good control of the welding bath. The authors outline that these two applications which are both using the same term (gas shielded metal arc welding with fusible electrode wire), implement two different transfer regimes and processes. They also discuss operational constraints, and technical opportunities and constraints of fusible electrode wire

  10. A New Understanding of the Heat Treatment of Nb-Sn Superconducting Wires

    Science.gov (United States)

    Sanabria, Charlie

    Enhancing the beam energy of particle accelerators like the Large Hadron Collider (LHC), at CERN, can increase our probability of finding new fundamental particles of matter beyond those predicted by the standard model. Such discoveries could improve our understanding of the birth of universe, the universe itself, and/or many other mysteries of matter--that have been unresolved for decades--such as dark matter and dark energy. This is obviously a very exciting field of research, and therefore a worldwide collaboration (of universities, laboratories, and the industry) is attempting to increase the beam energy in the LHC. One of the most challenging requirements for an energy increase is the production of a magnetic field homogeneous enough and strong enough to bend the high energy particle beam to keep it inside the accelerating ring. In the current LHC design, these beam bending magnets are made of Nb Ti superconductors, reaching peak fields of 8 T. However, in order to move to higher fields, future magnets will have to use different and more advanced superconducting materials. Among the most viable superconductor wire technologies for future particle accelerator magnets is Nb3Sn, a technology that has been used in high field magnets for many decades. However, Nb3Sn magnet fabrication has an important challenge: the fact the wire fabrication and the coil assembly itself must be done using ductile metallic components (Nb, Sn, and Cu) before the superconducting compound (Nb3 Sn) is activated inside the wires through a heat treatment. The studies presented in this thesis work have found that the heat treatment schedule used on the most advanced Nb3Sn wire technology (the Restacked Rod Process wires, RRPRTM) can still undergo significant improvements. These improvements have already led to an increase of the figure of merit of these wires (critical current density) by 28%.

  11. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  12. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application

    Directory of Open Access Journals (Sweden)

    Qi Cai

    2017-03-01

    Full Text Available Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of 11B against fast neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with 11B serving as the boron source is an alternative candidate for use in fusion reactors with a severe high neutron flux environment. In the present work, the glycine-doped Mg11B2 bulk superconductor was synthesized from isotopic 11B powder to enhance the high field properties. The critical current density was enhanced (103 A·cm−2 at 20 K and 5 T over the entire field in contrast with the sample prepared from natural boron.

  13. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  14. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  15. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  16. Briefing on superconductor developments

    International Nuclear Information System (INIS)

    Larbalestier, D.

    1987-01-01

    In this paper, the author covers the technology of the new oxide superconductors and how they might relate to the existing superconductors. He discusses old-fashioned superconductors; the material science of superconductors; the new oxide superconductors; and the future of oxide superconductors. 13 figures, 1 table

  17. Oxide superconductors

    International Nuclear Information System (INIS)

    Cava, R.J.

    2000-01-01

    This article briefly reviews ceramic superconductors from historical and materials perspectives. It describes the factors that distinguish high-temperature cuprate superconductors from most electronic ceramics and places them in the context of other families of superconducting materials. Finally, it describes some of the scientific issues presently being actively pursued in the search for the mechanism for high-temperature superconductivity and the directions of research into new superconducting ceramics in recent years

  18. Progress on MOD/RABiTSTM 2G HTS wire

    International Nuclear Information System (INIS)

    Rupich, M.W.; Zhang, W.; Li, X.; Kodenkandath, T.; Verebelyi, D.T.; Schoop, U.; Thieme, C.; Teplitsky, M.; Lynch, J.; Nguyen, N.; Siegal, E.; Scudiere, J.; Maroni, V.; Venkataraman, K.; Miller, D.; Holesinger, T.G.

    2004-01-01

    The development of the second generation (2G) high temperature superconducting wire has advanced beyond initial laboratory demonstrations and is now focused on developing and testing high critical current conductor designs required for commercial applications. The approach pursued at American Superconductor for 2G wire manufacturing is based on the combination of the RABiTS TM substrate-buffer technology with metal organic deposition (MOD) of the YBCO layer. This MOD/RABiTS TM approach has been demonstrated in 10 m lengths with critical currents of up to 184 A/cm-width (∼2.3 MA/cm 2 ) and in short length with critical currents of up to 270 A/cm-width (∼3.4 MA/cm 2 ). In addition to a high critical current, the superconducting wire must also meet stringent mechanical and electrical stability requirements that vary by application. Commercially viable architectures designed to meet these specifications have been fabricated and tested. Wires manufactured by this process have been successfully tested in prototype cable and coil applications

  19. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  20. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  1. Hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.

    1993-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time

  2. Method and apparatus to trigger superconductors in current limiting devices

    Science.gov (United States)

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  3. BioWires: Conductive DNA Nanowires in a Computationally-Optimized, Synthetic Biological Platform for Nanoelectronic Fabrication

    Science.gov (United States)

    Vecchioni, Simon; Toomey, Emily; Capece, Mark C.; Rothschild, Lynn; Wind, Shalom

    2017-01-01

    DNA is an ideal template for a biological nanowire-it has a linear structure several atoms thick; it possesses addressable nucleobase geometry that can be precisely defined; and it is massively scalable into branched networks. Until now, the drawback of DNA as a conducting nanowire been, simply put, its low conductance. To address this deficiency, we extensively characterize a chemical variant of canonical DNA that exploits the affinity of natural cytosine bases for silver ions. We successfully construct chains of single silver ions inside double-stranded DNA, confirm the basic dC-Ag+-dC bond geometry and kinetics, and show length-tunability dependent on mismatch distribution, ion availability and enzyme activity. An analysis of the absorbance spectra of natural DNA and silver-binding, poly-cytosine DNA demonstrates the heightened thermostability of the ion chain and its resistance to aqueous stresses such as precipitation, dialysis and forced reduction. These chemically critical traits lend themselves to an increase in electrical conductivity of over an order of magnitude for 11-base silver-paired duplexes over natural strands when assayed by STM break junction. We further construct and implement a genetic pathway in the E. coli bacterium for the biosynthesis of highly ionizable DNA sequences. Toward future circuits, we construct a model of transcription network architectures to determine the most efficient and robust connectivity for cell-based fabrication, and we perform sequence optimization with a genetic algorithm to identify oligonucleotides robust to changes in the base-pairing energy landscape. We propose that this system will serve as a synthetic biological fabrication platform for more complex DNA nanotechnology and nanoelectronics with applications to deep space and low resource environments.

  4. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  5. Mass production system and technology of NbTi superconductors

    International Nuclear Information System (INIS)

    Fukutsuka, Toshiro; Monju, Yoshiyuki; Tatara, Isamu; Noguchi, Masataka; Yokochi, Katsuhiro; Matsubara, Mitsuharu.

    1984-01-01

    A mass production system for NbTi superconductors is described, involving vacuum arc melting of the alloys, hot hydrostatic extrusion of the composite billets and special drawing and stranding techniques for the rods and wires. The qualities required for superconducting wires are assured by a variety of instrument measurement and inspection techniques drawn from accumulated cryogenic experiences. (author)

  6. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  7. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  8. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  9. The paramagnetic effect in Type-I superconductors

    International Nuclear Information System (INIS)

    Rothen, F.; Lievre, C.

    1975-01-01

    The paramagnetic effect in superconductors was first observed by Steiner and Schoeneck in 1943. This effect takes place in a cylindrical wire if superconductivity is destroyed by a current J in the presence of a magnetic field He parallel to the axis: one notices that the average longitudinal magnetic induction inside the wire can greatly exceed He. An attempt is made to compute the maximal value of the longitudinal magnetic permeability of the current-carrying wire. (Auth.)

  10. Stability of superconductor

    International Nuclear Information System (INIS)

    Wada, Hitoshi; Takeuchi, Takao; Kuroda, Tsuneo

    2000-01-01

    To evaluate the stability of superconductors, we constructed a measurement system of the critical current density Jr property as function of temperature, magnetic strength, azimuth of magnetic field and distortion. LabView program automatically controlled the magnetic field, temperature, rotational displacement, load, multimeter and sample source in the system. The superconducting critical surface of Nb 3 Al wire was prepared by two methods: a low temperature diffusion method and a phase transformation method. Nb 3 Al prepared by two methods proved the temperature scaling law of magnetic pinning force density and parameters for fitting the pinning model were introduced. The tailing of Jc-T curve at the high temperature side was generated by pinning property of magnetic flux line. On measurement of AC magnetic susceptibility, a primary stack (JR filament) of RIT Nb 3 Al wire prepared by phase transformation connected electrically and the size corresponded to the effective core size, so that, large n value was shown in spite of high temperature treatment and it showed good distortion resistance. Nb 3 Al wire prepared by low temperature diffusion method indicated large anisotropy of Bc 2 and Jc in the rectangular wire. On V 3 Ga, the temperature scaling law of magnetic field was not established and it was observed the effective grain boundary pinning at the low magnetic field and the other pinning mechanism of which magnetic flux line synchronized in the high temperature field. The specific magnetic azimuth dependency showed in the neighborhood of the parallel magnetic field. Jc indicated the positive dependence of temperature in the peak magnetic field. Jc of Bi oxides tape conductor was measured and the results showed the magnetic field was governed by magnetic field dependence on the c axis direction. (S.Y.)

  11. Voltage current characteristics of type III superconductors

    International Nuclear Information System (INIS)

    Dorofejev, G.L.; Imenitov, A.B.; Klimenko, E.Y.

    1980-01-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb 3 Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T. (author)

  12. Voltage current characteristics of type III superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeiev, G L; Imenitov, A B; Klimenko, E Y [Gosudarstvennyi Komitet po Ispol' zovaniyu Atomnoi Ehnergii SSSR, Moscow. Inst. Atomnoi Ehnergii

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb/sub 3/Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T.

  13. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  14. Chapter 27. Superconductors

    International Nuclear Information System (INIS)

    Vavra, O.

    2007-01-01

    In this chapter author deals with superconductors and superconductivity. Different chemical materials used as high-temperature superconductors are presented. Some applications of superconductivity are presented.

  15. Symmetric tape round REBCO wire with J e (4.2 K, 15 T) beyond 450 A mm-2 at 15 mm bend radius: a viable candidate for future compact accelerator magnet applications

    Science.gov (United States)

    Kar, Soumen; Luo, Wenbo; Ben Yahia, Anis; Li, Xiaofen; Majkic, Goran; Selvamanickam, Venkat

    2018-04-01

    Round REBCO (RE = rare earth) wires of 1.6-1.85 mm diameter have been fabricated using ultrathin REBCO tapes where the superconductor film is positioned near the geometric center. Such symmetric tape round (STAR) wires exhibit excellent tolerance to bend strain with a critical current retention of more than 97% when bent to a radius of 15 mm. A 1.6 mm diameter REBCO STAR wire made with six 2.5 mm wide symmetric tapes reached an engineering current density (J e) of 454 A mm-2 at 4.2 K in a background field of 15 T at a bend radius of 15 mm. Such superior performance at a small bend radius can enable fabrication of future accelerator magnets, operating at magnetic fields above 20 T.

  16. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    International Nuclear Information System (INIS)

    Malagoli, A; Bernini, C; Braccini, V; Romano, G; Putti, M; Chaud, X; Debray, F

    2013-01-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density J C and on the microstructure. In particular, groove-rolled multifilamentary wires show a J C increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper. (paper)

  17. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  18. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  19. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  20. Strain effects in oxide superconductors

    International Nuclear Information System (INIS)

    Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.

    1991-01-01

    Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)

  1. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  2. Development of manufacturing capability for the fabrication of the Nb3Sn superconductor for the High Field Test Facility. Final report

    International Nuclear Information System (INIS)

    Spencer, C.R.

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb 3 Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored

  3. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  4. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  5. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  6. Improvement of stability of Nb3 Sn superconductors by introducing high specific heat substances

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Li, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zlobin, A. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Peng, X. [Unlisted, US, OH

    2018-01-24

    High-Jc Nb3Sn conductors have low stability against perturbations, which accounts for the slow training rates of high-field Nb3Sn magnets. While it is known that adding substances with high specific heat (C) into Nb3Sn wires can increase their overall specific heat and thus improve their stability, there has not been a practical method that is compatible with the fabrication of long-length conductors. In this work, we put forward a scheme to introduce such substances to distributed-barrier Nb3Sn wires, which adds minimum difficulty to the wire manufacturing process. Multifilamentary wires using a mixture of Cu and high-C Gd2O3 powders have been successfully fabricated along this line. Measurements showed that addition of Gd2O3 had no negative effects on residual resitivity ratio or non-Cu Jc, and that flux jumps were remarkably reduced, and minimum quench energy values at 4.2 K, 14 T were increased by a factor of three, indicating that stability was significantly improved. We also discussed the influences of the positioning of high-C substances and their thermal diffusivity on their effectiveness in reducing the superconductor temperature rise against perturbations. Based on these results, we proposed an optimized conductor architecture to maximize the effectiveness of this approach.

  7. Intrinsic stability of technical superconductors

    International Nuclear Information System (INIS)

    Veringa, H.J.

    1981-10-01

    For the operation of technical superconductors under high current density conditions, the superconducting wires composing high current cables should be intrinsically stabilized. In this report the various important stability criteria are derived and investigated on their validity. An experimental set up is made to check the occurrence of magnetic instabilities if the different applicable criteria are violated. It is found that the observed instabilities can be predicted on the basis of the model given in this report. Production of high current cables based upon composites made by the ECN technique seems to be possible. (Auth.)

  8. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  11. Magneto-optical imaging of transport current densities in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Welp, U.; Gunter, D.O.; Zhong, W.; Balachandran, U.; Haldar, P.; Sokolowski, R.S.; Vlasko-Vlasov, V.K.; Nikitenko, V.I.

    1995-01-01

    Direct imaging of the paths of transport currents in superconductors creates many new possibilities for exploring the basic features of vortex pinning mechanisms and for improving the performance of superconducting materials. A technique for imaging the path and magnitude of the transport current density flowing in superconductors is described. Results are given for a 37-filament BSCCO 2223 powder-in-tube wire, showing a highly inhomogeneous current path within the filaments

  12. Stabilized superconductors

    International Nuclear Information System (INIS)

    Wong, J.

    1975-01-01

    The stable, high field, high current composite wire comprises multiple filaments in a depleted bronze matrix, each filament comprising a type II superconducting, beta-tungsten structure, intermetallic compound layer jacketing and metallurgically bonded to a stabilizing copper core, directly or via an intermediate layer of refractory metal

  13. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  14. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  15. High critical temperature superconductors: Progress achieved after two years

    International Nuclear Information System (INIS)

    Maillard, J.M.; Rammal, R.; Vittorge, M.C.

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given [fr

  16. Magnetic field penetration into superconductors with sharp edges

    International Nuclear Information System (INIS)

    Zhilichev, Yuriy N.

    2003-01-01

    The magnetic field and surface currents induced within a superconductor are calculated assuming the field penetrates in it near sharp corners. Rounding the corners is used to keep the field less than a critical value. Analytical formulas for a corner radius are given for a wire of the rectangular cross-section and a cylinder in the external magnetic field. A boundary integral method is used to calculate the boundary of the Meissner domain when the external field penetrates deep into the superconductor. The effect of degree of penetration on the magnetic moment of superconducting cylinders and wires is discussed

  17. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Progress on MOD/RABiTS{sup TM} 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, M.W.; Zhang, W.; Li, X.; Kodenkandath, T.; Verebelyi, D.T.; Schoop, U.; Thieme, C.; Teplitsky, M.; Lynch, J.; Nguyen, N.; Siegal, E.; Scudiere, J.; Maroni, V.; Venkataraman, K.; Miller, D.; Holesinger, T.G

    2004-10-01

    The development of the second generation (2G) high temperature superconducting wire has advanced beyond initial laboratory demonstrations and is now focused on developing and testing high critical current conductor designs required for commercial applications. The approach pursued at American Superconductor for 2G wire manufacturing is based on the combination of the RABiTS{sup TM} substrate-buffer technology with metal organic deposition (MOD) of the YBCO layer. This MOD/RABiTS{sup TM} approach has been demonstrated in 10 m lengths with critical currents of up to 184 A/cm-width ({approx}2.3 MA/cm{sup 2}) and in short length with critical currents of up to 270 A/cm-width ({approx}3.4 MA/cm{sup 2}). In addition to a high critical current, the superconducting wire must also meet stringent mechanical and electrical stability requirements that vary by application. Commercially viable architectures designed to meet these specifications have been fabricated and tested. Wires manufactured by this process have been successfully tested in prototype cable and coil applications.

  2. Influence of Ta and Ti Doping on the High Field Performance of (Nb, Ta, Ti)3Sn Multifilamentary Wires based on Osprey Bronze with High Tin Content

    International Nuclear Information System (INIS)

    Abaecherli, V; Uglietti, D; Lezza, P; Seeber, B; Fluekiger, R; Cantoni, M; Buffat, P-A

    2006-01-01

    Ta and Ti are the most widely used additions for technical Nb 3 Sn multifilamentary superconductors. These elements are known to influence grain growth, grain morphology and chemical composition in the A15 layer, hence the current carrying properties of the wires over a wide magnetic field range. So far only few studies tried to compare systematically Ta and Ti doped and undoped Nb 3 Sn wires in the frame of the same work, down to a nanometric scale. We present an investigation on several multifilamentary (Nb, Ta, Ti) 3 Sn bronze route wires, fabricated at a laboratory scale, with various amounts of additives. The wires consist of fine filaments embedded in a Cu-Sn or Cu-Sn-Ti Osprey bronze with > 15 wt.% Sn and an external Cu stabilization. Microstructural observations are compared with the results of J c and n values measured up to 21 T at 4.2 and 2.2 K, and for longitudinal strains up to 0.5%. Non-Cu J c values up to 300 Amm -2 and n values up to 50 at 17 T and 4.2 K show clearly that wires with Ti addition to the bronze have a better performance with respect to wires with Ti additions to the filaments

  3. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  4. Development of superconductors for fusion technology

    International Nuclear Information System (INIS)

    Wilson, M.N.; Walters, C.R.

    1976-04-01

    A report is presented on the development of a 10 4 Amp NbTi cryogenically stabilized superconductor. The long term objective was the construction of a superconducting toroidal field magnet for a post JET Tokamak experiment. The report is in sections entitled: magnet reference parameters; specific conductor designs; theoretical studies; experimental measurements; fabrication techniques; discussion, summary, conclusions and recommendations. (U.K.)

  5. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  6. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  7. Voltage current characteristics of type III superconductors

    Science.gov (United States)

    Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.

  8. Ferromagnetic resonance of Ni wires fabricated on ferroelectric LiNbO3 substrate for studying magnetic anisotropy induced by the heterojunction

    Science.gov (United States)

    Yamaguchi, Akinobu; Nakao, Akiko; Ohkochi, Takuo; Yasui, Akira; Kinoshita, Toyohiko; Utsumi, Yuichi; Saiki, Tsunemasa; Yamada, Keisuke

    2018-05-01

    The electrical ferromagnetic resonance of micro-scale Ni wires with magnetic anisotropy induced by the heterojunction between the Ni layer and ferroelectric single crystalline LiNbO3 substrate was demonstrated by using rectifying effect. The two resonance modes were observed in the Ni wire aligned parallel to the applied magnetic field in plane. The lower resonance frequency mode is considered to correspond to the normal resonance mode with domain resonance, while the higher resonance mode is attributed to the mode which is contributed by the heterojunction between the Ni layer and LiNbO3 substrate. Our results manifest that the rectifying electrical detections are very useful for understating and evaluating the magnetic properties induced by the heterojunction.

  9. Fidelity approach in topological superconductors with disorders

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi, E-mail: physicswangzhi@gmail.com; Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn

    2015-03-20

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire.

  10. Fidelity approach in topological superconductors with disorders

    International Nuclear Information System (INIS)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi; Yao, Dao-Xin

    2015-01-01

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire

  11. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  12. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  13. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.

    Science.gov (United States)

    Fu, Jiecai; Zhang, Junli; Peng, Yong; Zhao, Changhui; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Mellors, Nigel J; Xie, Erqing

    2013-12-21

    Wire-in-tube structures have previously been prepared using an electrospinning method by means of tuning hydrolysis/alcoholysis of a precursor solution. Nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanowire-in-nanotubes have been prepared as a demonstration. The detailed nanoscale characterization, formation process and magnetic properties of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes has been studied comprehensively. The average diameters of the outer tubes and inner wires of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes are around 120 nm and 42 nm, respectively. Each fully calcined individual nanowire-in-nanotube, either the outer-tube or the inner-wire, is composed of Ni0.5Zn0.5Fe2O4 monocrystallites stacked along the longitudinal direction with random orientation. The process of calcining electrospun polymer composite nanofibres can be viewed as a morphologically template nucleation and precursor diffusion process. This allows the nitrates precursor to diffuse toward the surface of the nanofibres while the oxides (decomposed from hydroxides and nitrates) products diffuse to the core region of the nanofibres; the amorphous nanofibres transforming thereby into crystalline nanowire-in-nanotubes. In addition, the magnetic properties of the Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes were also examined. It is believed that this nanowire-in-nanotube (sometimes called core-shell) structure, with its uniform size and well-controlled orientation of the long nanowire-in-nanotubes, is particularly attractive for use in the field of nano-fluidic devices and nano-energy harvesting devices.

  14. Optimization of superconductor--normal-metal--superconductor Josephson junctions for high critical-current density

    International Nuclear Information System (INIS)

    Golub, A.; Horovitz, B.

    1994-01-01

    The application of superconducting Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 wires or tapes to electronic devices requires the optimization of the transport properties in Ohmic contacts between the superconductor and the normal metal in the circuit. This paper presents results of tunneling theory in superconductor--normal-metal--superconductor (SNS) junctions, in both pure and dirty limits. We derive expressions for the critical-current density as a function of the normal-metal resistivity in the dirty limit or of the ratio of Fermi velocities and effective masses in the clean limit. In the latter case the critical current increases when the ratio γ of the Fermi velocity in the superconductor to that of the weak link becomes much less than 1 and it also has a local maximum if γ is close to 1. This local maximum is more pronounced if the ratio of effective masses is large. For temperatures well below the critical temperature of the superconductors the model with abrupt pair potential on the SN interfaces is considered and its applicability near the critical temperature is examined

  15. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  16. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  17. Development of Nb-Ti multifilamentar superconducting wires

    International Nuclear Information System (INIS)

    Otubo, J.

    1986-01-01

    Ni-Ti superconducting wires with multifilamentar configuration were produced, using the grouping technique. Some basic concepts on superconductivity and its main critical parameters are presented. The criteria for stabilizing superconductors in terms of the geometry are studied. The main critical parameters, H c , J c , T c in function of the composition and the metallurgical structure of Ni-Ti alloy are analysed. The development of Ni-Ti superconducting wires is described. (M.C.K.) [pt

  18. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique.

    Science.gov (United States)

    Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam

    2017-11-01

    In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.

  19. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  20. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    Science.gov (United States)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  1. submitter Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    CERN Document Server

    Sugano, Michinaka; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2015-01-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young's modulus of MgB2 filaments in wires with a practical level of critical current. The Young's moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young's modulus of the few-micron-thick Nb–Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young's moduli of the in situ and ex situ MgB2 wires were in the range of 76–97 GPa and no distinct difference depending on the fabrication process was found.

  2. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    International Nuclear Information System (INIS)

    Fujita, H; Maeji, Y; Yamagata, K; Itoh, M; Kezuka, H; Kikuchi, M; Atou, T; Kawasaki, M; Fukuoka, K

    2006-01-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm 2 in the absence of an excitation magnetic field B ex . The superconducting state was then broken and the specimen exposed to a B ex value of 40x10 -4 T. That is, the resistance R meas of the specimen occurred when exposed to 40x10 -4 T under a constant J of 40 A/cm 2 . The magnetic sensitivity S of the specimen was approximately 13 %/(10 -4 T) over the range of measurement of the magnetic field B meas from 0 to ±5x10 -4 T, under a constant 40x10 -4 T for the value of B ex , being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor

  3. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Maeji, Y [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Yamagata, K [Relia. Eval. Technol. Center, Nitto Denko Corp., Onomichi, Hiroshima 722-0212 (Japan); Itoh, M [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Kezuka, H [Faculty of Bionics, Tokyo University of Technol., Hachioji, Tokyo 192-0982 (Japan); Kikuchi, M [Kansen Fukushi Research Center, Tohoku Fukushi University Sendai, Miyagi 989-3201 (Japan); Atou, T [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Kawasaki, M [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Fukuoka, K [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan)

    2006-06-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm{sup 2} in the absence of an excitation magnetic field B{sub ex}. The superconducting state was then broken and the specimen exposed to a B{sub ex} value of 40x10{sup -4} T. That is, the resistance R{sub meas} of the specimen occurred when exposed to 40x10{sup -4} T under a constant J of 40 A/cm{sup 2}. The magnetic sensitivity S of the specimen was approximately 13 %/(10{sup -4} T) over the range of measurement of the magnetic field B{sub meas} from 0 to {+-}5x10{sup -4} T, under a constant 40x10{sup -4} T for the value of B{sub ex}, being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor.

  4. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  5. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  6. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    In a system of thin alternating layers of superconductors and insulators the equations describing static and dynamic fluxon solutions are derived. The approach, represented by a useful compact matrix form, is intended to describe systems fabricated for example of niobium or niobium-nitride thin...... films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...

  7. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2018-01-02

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  8. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Science.gov (United States)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  9. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  10. Studies on ceramic superconductors

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.; Roemer, G.; Hardy, W.N.; Brewer, J.H.; Carolan, J.F.; Parsons, R.R.

    1987-01-01

    The superconducting properties of both bulk specimens and sputtered thin films of the YBa 2 Cu 3 O x compound have been studied. The bulk specimens were fabricated by cold pressing and sintering, and also by hot-pressing (subsequent reheating). The dc resistivity measurements showed a sharp drop in the temperature range 92-87K in this material. Muon spin relaxation (μSR) measurements of sintered discs in 3.4 kOe revealed the formation of a mixed state with an effective magnetic penetration depth λ ∼ 1365 angstrom at 6K, implying an effective charge carrier density of 6 x 10 21 cm -3 . The temperature dependence λ(T) is that of an ordinary s-wave superconductor. The resistivity of the thin film prepared from the compound by dc planar magnetron sputtering, showed a sharp drop to a very low value near 80K. The compound YBa 2 Cu 3 O x loses its superconducting properties, when either hot-pressed (in air) or oxidized at 500 degree C in high O 2 pressure, but this property can be restored when reheated in one atmosphere of O 2 above 900 degree C

  11. Disorder-induced topological transitions in multichannel Majorana wires

    NARCIS (Netherlands)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.T.; Adagideli, I

    2017-01-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and

  12. Critical current measurements of high Tc superconductors in a scanning low temperature cryostat

    International Nuclear Information System (INIS)

    Telschow, K.L.; O'Brien, T.K.

    1991-01-01

    Maintaining uniformity of properties over long distances is one of the fabrication problems encountered with the new high T c superconductors. Uniform properties are crucial in long tapes or wires with high critical current since local nonuniformities can limit the current carrying capacity of the whole piece. Transport critical currents in high T c superconductors are conventionally measured with the contact 4-point probe DC current-voltage technique. This technique requires contact with the sample and and spatially averages over the region between the two voltage contacts. Two techniques have been used to infer the critical state model. The first uses the net magnetization of a suitably shaped sample in an external magnetic field. The second combines a DC magnetic field with AC induced currents to infer spatial flux profiles. The AC magnetization technique offers an advantage in that it is noncontacting; however, it also averages the measurement over a large area and requires that the sample be shaped and positioned such that it exhibits zero demagnetizing factor. This paper describes a measurement technique and a scanning cryostat assembly that are capable of determining local critical current in a tape or wire with high resolution and without any direct sample electrical contact. A small compensated coil was used to induce AC currents in slab-shaped samples. The coil was situated near the surface on one side of the slab. With this method, the AC probe can be used as a noncontacting dissipation probe, replacing the voltage probe in the 4-point contact method, when an externally driven transport current is used, or by itself as a local critical state generator and dissipation detector. The results are shown to be meaningful even when the internal magnetic field is not uniform due to shape demagnetizing effects. 10 refs., 5 figs

  13. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  14. Superconductors with excess quasiparticles

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kopaev, Y.V.

    1981-01-01

    This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors, I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are compared with experimental data

  15. NiTi SMA Wires Coupled with Kevlar Fabric: a Real Application of an Innovative Aircraft LE Slat System in SMAHC Material

    Science.gov (United States)

    Guida, M.; Marulo, F.; Russo, S.

    2018-04-01

    This paper investigates experimentally and numerically the response of a smart hybrid thermoplastic aircraft slat system subjected to a short-duration and high-frequency event like a birdstrike. The focus of the paper is to exploit the ability that superelastic shape memory alloys have to absorb and dissipate energy compared to conventional composite structures. The final objective of the work is to develop an innovative thermoplastic wing leading edge slat able to resist to an impact of 4-lb (1.8 kg) bird at speed of 350 kts (132 m/s), as requested by the aeronautical requirements. Aircraft leading edges must be certified for a proven level of bird impact resistance. In particular, the main structural requirement is to protect the torsion box and control devices from any significant damage caused by birdstrike in order to allow the aircraft to land safely. A clear increase of the composites toughness and higher absorbed energy levels before failure were also observed. This is due to the fact that SMA wires can absorb kinetic energy during the impact due to their remarkably large failure and recoverable strain and to their superelastic and hysteretic behaviour. The activities have been performed within the European Project COALESCE "Cost Efficient Advanced Leading Edge Structure", funded by the Seventh Framework Program Theme 7 Transport (incl. Aeronautics).

  16. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Science.gov (United States)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  17. Pure and Y-substituted BaZrO3 ceramics. A possible support material for fabrication of YBa2Cu3O7-x high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang Xiandong.

    1993-01-01

    This thesis concerns the preparation and characterization of cuprate based high-T c superconductors (Y-123 and Bi-2223) and especially development and testing of BaZrO 3 based materials. The formation of YBa 2 Cu 3 O y (Y-123) by a CO 2 -free route involving reaction sintering of stoichiometric mixtures of chemically prepared fine powders of Y 2 BaCuO 5 , BaCuO 2 and CuO have been studied by thermal and XRD analysis. The synthesis and sintering of BaZrO 3 powders prepared by the hydroxide-alkoxide-methanol sol-gel route have been studied. The phase relations in the system BaO-Y 2 O 3 -ZrO 2 have been studied to determine the solid solubility limits for the perovskite phase Ba X Y Y Zr Z O N (X+X+Z=3) at 1500 deg. C. In the binary system Y 2 O 3 -BaZrO 3 the solubility limit was found to be ≅19 mol% Y 2 O 3 , i.e. Ba 0.81 Y 0. 4 2 Zr 0.81 O 3 . along the joint BaYO 2.5 -Ba the boundary was determined to be at BaY 0.21 Zr 0 . 79 O 2.895 . evidence for a new solid solution series between Ba 3 Y 4 O 9 and ZrO 2 are given, and a partial 1500 deg. C phase diagram for the ternary system BaO-Y 2 O 3 -ZrO 2 is presented. The growth of BaZrO 3 single crystals have been attempted both by a laser zone floating technique and flux methods. The compatibility between YBa 2 Cu 3 O 7 -X and BaZrO 3 , Ba X Y Y Zr Z O 3-δ as well as BaHfO 3 have been studied at 950 deg. and 1050 deg. C. The results show the four most promising candidates as support materials for fabrication of YBa 2 Cu 3 O y to be BaHfO 3 , BaY 0.05 Zr 0.95 O 2.975 , , BaZrO 3 and BaY 0.1 Zr 0.9 O 2.95 . (EG)

  18. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  19. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    International Nuclear Information System (INIS)

    Marzik, James V.

    2012-01-01

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl 3 in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB 2 wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J c , in excess of 10 5 A cm -2 at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H c2 (0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T c in carbon-doped MgB 2 powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB 2 superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant chemistry and concentration, wire

  20. Low critical temperature superconductors for electromagnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-01-01

    After a brief history of the main discoveries in applied superconductivity (section 1), we discuss the structure and properties of NbTi and Nb3 Sn (section 2). Then, we explain why low critical-temperature superconductors are produced under the form of multifilamentary composites (section 3), and we review the manufacturing processes of NbTi and Nb3Sn wires (section 4). We follow by a description of the transition from the superconducting to the normal resistive state of multifilamentary composite wires (section 5) and we detail their magnetization properties section 6). Last, we present the most commonly used cable configurations (section 7) and we provide simple formulae illustrating on a few examples the computation of losses generated under time-varying magnetic fields (section 8). (author)

  1. Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits.

    Science.gov (United States)

    Fujisawa, Takeshi; Makino, Shuntaro; Sato, Takanori; Saitoh, Kunimasa

    2017-04-17

    Ultimately low-loss 90° waveguide bend composed of clothoid and normal curves is proposed for dense optical interconnect photonic integrated circuits. By using clothoid curves at the input and output of 90° waveguide bend, straight and bent waveguides are smoothly connected without increasing the footprint. We found that there is an optimum ratio of clothoid curves in the bend and the bending loss can be significantly reduced compared with normal bend. 90% reduction of the bending loss for the bending radius of 4 μm is experimentally demonstrated with excellent agreement between theory and experiment. The performance is compared with the waveguide bend with offset, and the proposed bend is superior to the waveguide bend with offset in terms of fabrication tolerance.

  2. New superconductors. Pt. B

    International Nuclear Information System (INIS)

    Assmann, H.; Endres, G.; Friedrich, B.; Grosse, J.; Guenther, A.; Heine, K.; Helldoerfer, H.; Herkert, W.; Hofer, G.; Jenovelis, A.; Kleinlein, W.; Koerner, F.; Krauth, H.; Kress, B.; Moser, T.; Neumueller, H.W.; Proelss, N.; Schmatjko, K.J.; Schmidt, W.; Seebacher, B.; Stieding, P.; Tenbrink, J.; Uzel, Y.; Wilhelm, M.

    1992-02-01

    Based on the results of the work on thin films, ceramics and measurement techniques performed in part A, the aim of part B 'Conductor development' was to investigate and to evaluate selected fabrication processes suitable for the manufacturing of conductors (tapes, wires) for applicatons in magnet technology and power engineering. Critical current densities j c of about 1 kA/cm 2 (77 K, zero field) were obtained for melt-textured 2212 BiSrCaCuO bulk material and 2212 BiSrCaCuO Ag-wires; but j c strongly decreases in magnetic field B (factor 10 3 at 0.1 T). At 4.2 K, the Ag-wires made by the powder in tube technique (PIT) achieved j c -values of 50 kA/cm 2 and j c (B) is practically not affected by a magnetic field below 320 K (j c =10 kA/cm 2 at 20 T). Therefore, these conductors are intended for applications in high field magnets operated between 4.2 K and 20 K. First test coils (conductor lengths 1.5 m) had somewhat reduced j c =10 kA/cm 2 (4.2 K, zero field) The PIT-technique ws successfully applied with the three layer Bi-compound. j c vlaues up to 35 kA/cm 2 were obtained at 77 K (zero field), which are within the international top values reported so far. Another continuous manufacturing process is the laser melting technique which achieves rapid melting of YBaCuO-layers of 10-20 μm in thickness on (Ag) substrates, jc=1.4-4 kA/cm 2 were obtained without any process optimization using textured precursors made by electrophoretic deposition. As a preliminary step for the proposed high-current demonstration conductor (200 A, 77 K), laser-ablated YBaCuO films were tested on technical substrates (Ni-based alloys) with buffer layers (MgO, ZrO 2 ). The films had good c-axis orientation. Until now it has been not possible to measure j c at 77 K. (orig.). 67 refs., 21 tabs., 131 figs [de

  3. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  4. Superconductors at the nanoscale. From basic research to applications

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Roger [Forschungszentrum Juelich GmbH (Germany). Peter Gruenberg Inst.; Moshchalkov, Victor [KU Leuven (Belgium). Inst. for Nanoscale Physics and Chemistry; Bending, Simon [Bath Univ. (United Kingdom). School of Physics; Tafuri, Francesco (ed.) [Seconda Univ. di Napoli, Aversa (Italy)

    2017-07-01

    By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. This book contains the following chapters: Tutorial on nanostructured superconductors; Imaging vortices in superconductors: from the atomic scale to macroscopic distances; Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy; STM studies of vortex cores in strongly confined nanoscale superconductors; Type-1.5 superconductivity; Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions; Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films; Artificial pinning sites and their applications; Vortices at microwave frequencies; Physics and operation of superconducting single-photon devices; Josephson and charging effect in mesoscopic superconducting devices; NanoSQUIDs: Basics and recent advances; Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks as emitters of terahertz radiation; Interference phenomena in superconductor-ferromagnet hybrids; Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids; Superconductor/ferromagnet hybrids.

  5. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  6. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  7. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  8. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Chang, In Soon; Lee, Jong Min; Um, Tae Yoon; Hong, Kyae Won; Lee, Ho Jin; Lee, Hee Kwun; Kim, Chan Joong; Park, Soon Dong; Kim, Woo Gon; Kim, Ki Baek; Kwon, Sun Chil

    1992-10-01

    On this study Y-Ba-Cu-O was prepared by partial melt process and superconducting wire was fabricated by powder-in-tube method. First, mechancial properties, electrical properties, microstructure and oxygen diffusion behavior were observed. Second, through fabricated superconducting wire, conceptual design, composition and plasticity of filament superconducting wire were investigated. (Author)

  9. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.

    1998-01-01

    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor's electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications

  10. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  11. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  12. Method for the fabrication of filamentary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, I.L.; Barber, A.C.

    1979-06-21

    There is produced a superconducting intermetallic compound, e.g. Nb/sub 3/Sn. For this purpose a precursor is formed in the shape of a copper-plated niobium thread by repeated drawing technique through reduction nozzles. Several niobium threads are to be embedded within a copper matrix on which Sn is coated in a number of layers. The copper matrix is then homogenized by an inward diffusion of Sn at temperatures between 230 and 760/sup 0/C.

  13. Method for the fabrication of filamentary superconductors

    International Nuclear Information System (INIS)

    McDougall, I.L.; Barber, A.C.

    1979-01-01

    There is produced a superconducting intermetallic compound, e.g. Nb 3 Sn. For this purpose a precursor is formed in the shape of a copper-plated niobium thread by repeated drawing technique through reduction nozzles. Several niobium threads are to be embedded within a copper matrix on which Sn is coated in a number of layers. The copper matrix is then homogenized by an inward diffusion of Sn at temperatures between 230 and 760 0 C. (RW) [de

  14. Superconductors made of niobium germanide

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Valencia, F.A.

    1976-01-01

    This invention concerns the superconductors and particularly the mass coatings of niobium germanide (Nb 3 Ge) exhibiting superconductor properties, as well as the compositions enabling them to be obtained, having transition temperatures of around 20 0 K or more. The invention proposes a composition of a material of the general formula Nb 3 Ge, containing from around 1 to around 10 at. % oxygen. Preferably, the material contains around 5 at. % of oxygen. The invention also proposes fabricated articles in which the compositions described above are associated with and joined to a metallic substrate. Hence, for instance, the present studies involving a superconducting power transmission line for direct current make it possible to envisage the use of conductors placed in a double envelope, enabling the superconducting element transmitting the current to be carried, whilst containing the cryogenic coolant. In this type of design, the coat of superconducting material surrounds a tube containing liquid helium or possibly liquid hydrogen if a sufficiently high superconduction transition temperature can be reached. The tube must be a good heat and electricity conductor in order to achieve good stability of the superconducting coating [fr

  15. Stress and strain effects on the properties of composite superconductors

    International Nuclear Information System (INIS)

    Welch, D.O.

    1982-01-01

    Practical superconductors for use in the production of high magnetic fields are generally in the form of composites of filaments of superconducting material embedded in a matrix of normally conducting material. Lorentz forces which arise during magnet operation are examples of sources of external stress, while internal stresses can arise during the fabrication of the composite superconductor, primarily due to differential thermal contraction between different materials in the composite. The properties of superconducting compounds are often sensitive functions of the elastic strain state in the compound; consequently there is a strong coupling between the mechanical and electrical properties of composite superconductors. The basic features of this phenomenon will be illustrated by a discussion of the properties of simple composite superconductors

  16. Achievement report on developing superconductor power applied technologies in fiscal 1999 (2). Research and development of superconductor wire materials, research and development of superconductor power generators, research of total systems, research and development of freezing systems, and verification tests; 1999 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 2. Chodendo senzai no kenkyu kaihatsu / chodendo hatsudenki no kenkyu kaihatsu / total system no kenkyu / reito system no kenkyu kaihatsu / jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to achieve higher efficiency, higher density, and higher stability in power systems, research and development has been performed on superconductor power generators. This paper summarizes the achievements thereof in fiscal 1999. A verification test was given on the rotor of an ultra high speed responding generator. In a sudden short circuit test using the different phase charging method, no anomalies were found such as quench generation and vibration changes, wherein the healthiness of the generator was verified. In the VVVF actuation test, knowledge was acquired on the actuation method when the ultra high speed responding generator is applied to a combined cycle plant. After the verification test has been completed, the disassembly inspections such as visual check and non-destructive test were performed. With regard to the vacuum leakage found in the rotor under very low temperatures, the causes were presumed and the countermeasures were discussed by observing the weld structures. In the design research, the conception design on the 200-MW pilot generator was reviewed by reflecting the results of the verification tests on the model generator. At the same time, trial design was made on a 600-MW target generator. In summarizing the overall research achievements, the achievements and evaluations were summarized on technological issues that have been allotted to each research member. (NEDO)

  17. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  18. Towards the practical PLD-IBAD coated conductor fabrication - Long wire, high production rate and J c enhancement in a magnetic field

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Ibi, Akira; Fukushima, Hiroyuki; Kuriki, Reiji; Miyata, Seiki; Takahashi, Kazuhiro; Kobayashi, Hirokazu; Ishida, Satoru; Konishi, Masaya; Kato, Takeharu; Hirayama, Tsukasa; Shiohara, Yuh

    2006-01-01

    SRL-Nagoya Coated Conductor Center (NCCC) have succeeded in fabricating stably long coated conductor using ion-beam assisted deposition (IBAD) and pulsed laser deposition (PLD) methods. Reel-to-reel PLD equipment with a multi-plume and multi-turn deposition system (MPMT PLD) resulted in a long coated conductor with a high critical current, I c , of 245 A and length of 212.6 m. I c x L (length) reached the record of 52,087 A m. At the same time, the effort to enhance I c and J c in a magnetic filed are also carried out using artificial pinning center and RE element: YSZ mixed Y123 target brought about a high J c especially in the magnetic field parallel to the c-axis. This was attributed to a columnar structure of the 'bamboo structure' (BaZrO 3 /Y123 layer-stacked structure) in Y123 + YSZ sample. Gd123 was also found to be effective for enhancing pinning properties, which was considered to be due to the native stacking faults in the 123 structure. The combination of Gd element and YSZ introduction were also studied and clearly demonstrated the improvement of the anisotropy of J c for a magnetic field angle

  19. A.C. losses in current-carrying superconductors

    International Nuclear Information System (INIS)

    Reuver, J.L. de.

    1985-01-01

    The feasibility of superconductors for alternating current use depends on successful reduction of losses. Moreover, the demand for large field amplitudes is a stimulation for investigating the nature of a.c. losses (e.g. in the set of poloidal coils in a TOKAMAK). In this thesis, measurements are performed at a.c. superconductivity. Attention is given to various external field conditions as well as to self-field instability. Measurements are performed on different types of wires. A type of wire is searched for with both low losses and a good stabilization under self-field conditions. (G.J.P.)

  20. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  1. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  2. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  3. Room temperature superconductors

    International Nuclear Information System (INIS)

    Sleight, A.W.

    1995-01-01

    If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

  4. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  5. Tunneling conductance in semiconductor-superconductor hybrid structures

    Science.gov (United States)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  6. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  7. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  8. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  9. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  10. Comparative Review on Thin Film Growth of Iron-Based Superconductors

    Directory of Open Access Journals (Sweden)

    Yoshinori Imai

    2017-07-01

    Full Text Available Since the discovery of the novel iron-based superconductors, both theoretical and experimental studies have been performed intensively. Because iron-based superconductors have a smaller anisotropy than high-Tc cuprates and a high superconducting transition temperature, there have been a lot of researchers working on the film fabrication of iron-based superconductors and their application. Accordingly, many novel features have been reported in the films of iron-based superconductors, for example, the fabrication of the epitaxial film with a higher Tc than bulk samples, the extraction of the metastable phase which cannot be obtained by the conventional solid state reaction, and so on. In this paper, we review the progress of research on thin film fabrications of iron-based superconductors, especially the four categories: LnFeAs(O,F (Ln = Lanthanide, AEFe2As2 (AE = Alkaline-earth metal, FeCh (Ch = Chalcogen, and FeSe monolayer. Furthermore, we focus on two important topics in thin films of iron-based superconductors; one is the substrate material for thin film growth on the iron-based superconductors, and the other is the whole phase diagram in FeSe1-xTex which can be obtained only by using film-fabrication technique.

  11. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1991-09-01

    High magnetization YBaCuO superconductor was prepared with additions of BaSnO 3 , SnO 2 and SiC by partial melt processing. Addition of BaSnO 3 increased the magnetic property of YBaCuO by flux pinning action of finely dispersed BaSnO 3 particles, while addition of SnO 2 decreased the magnetic property, because the size of particle was larger than that of BaSnO 3 . BiPbSrCaCuO superconducting tape of single filament was prepared by powder-in-tube method using silver as a shearth material. The fabrication techniques involves powder packing, swaging, drawing and cold rolling/pressing method. The final dimension of wire after drawing is 1.2mm diameter. The wire was pressed into a tape form with a thickness of 70micron and a width of 3mm. The obtained critical current density of the prepared tape was 2000A/cm 2 at 77K. (Author)

  12. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  13. Fabrication and characterization of LRE.sub.1+x./sub.Ba.sub.2-x./sub.Cu.sub.3./sub.O.sub.y./sub. (LRE:Nd, Eu, Gd,NEG) superconductors:a low oxygen partial pressure

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Sakai, N.; Jirsa, Miloš; Murakami, M.

    378-381, - (2002), s. 646-650 ISSN 0921-4534. [International Symposium on Superconductors /14./. Kobe, 25.09.2001-27.09.2001] R&D Projects: GA AV ČR IAA1010919 Institutional research plan: CEZ:AV0Z1010914 Keywords : melt processing * microstructure * critical current density (J c ) * flux pinning * LRE-Ba2Cu3Oy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.912, year: 2002

  14. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  15. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  16. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  17. Photothermal measurements of superconductors

    International Nuclear Information System (INIS)

    Kino, G.S.; Wu, X.D.; Kapitulnik, A.; Fishman, I.

    1993-01-01

    The authors have developed a new photothermal technique to investigate electronic phase transitions of high temperature superconductors. The phase shift of the thermal wave yields the anisotropic thermal diffusivity coefficient of the sample. The amplitude of the photothermal signal is sensitive to electronic phase transitions of the second kind. The technique is completely noncontacting and nondestructive, and is well suited to measure small and fragile single-crystal high-T c superconductors. The measurements give good agreement with fluctuation theory near the transition temperature. They have studied diffusion in, and superconducting fluctuations of, single crystals of YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . Both systems show fluctuation effects beyond Gaussian fluctuations. While YBa 2 Cu 3 O 7-δ behaves as a three-dimensional anisotropic superconductor, results on Bi 2 Sr 2 CaCu 2 O 8 indicate strong two-dimensional effects

  18. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  19. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  20. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  1. An unconventional colour superconductor

    International Nuclear Information System (INIS)

    Huang Mei

    2007-01-01

    Superfluidity, or superconductivity with mismatched Fermi momenta, appears in many systems such as charge-neutral dense quark matter, asymmetric nuclear matter, and in imbalanced cold atomic gases. The mismatch plays the role of breaking the Cooper pairing, and the pair-breaking state cannot be properly described in the framework of standard BCS theory. I give a brief review on recent theoretical developments in understanding unconventional colour superconductivity, including a gapless colour superconductor, chromomagnetic instabilities and the Higgs instability in the gapless phase. I also introduce a possible new framework for describing an unconventional colour superconductor

  2. Macroscopic theory of superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1981-01-01

    A macroscopic theory for bulk superconductors is developed in the framework of the theory for other magnetic materials, where ''magnetization'' current is separated from ''free'' current on the basis of scale. This contrasts with the usual separation into equilibrium and nonequilibrium currents. In the present approach magnetization, on a large macroscopic scale, results from the vortex current, while the Meissner current and other surface currents are surface contributions to the Maxwell j. The results are important for the development of thermodynamics in type-II superconductors. The advantage of the description developed here is that magnetization becomes a local concept and its associated magnetic field can be given physical meaning

  3. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  4. Superconductors with low critical temperature for electro-magnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb 3 Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb 3 Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  5. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  6. Creation of the best performance high-$T_{c}$ superconductor based on Cu-1234

    CERN Document Server

    Ihara, H; Iyo, A; Kito, H; Terada, N; Tokumoto, M; Ishida, K; Sekita, Y; Yamamoto, H; Hayashi, H; Khan, N A; Sundaresan, A; Nie, J; Harashima, E; Ishiura, Y; Tateai, F; Kawamura, M

    1999-01-01

    The purpose of this project is to create the best performance superconductor on the basis of our original Cu-1234 (CuBa/sub 2/Ca /sub 3/Cu/sub 4/O/sub 12-y/) superconductor. Its best performance superconductor will be realized by the modification of superconducting wave function (MSWF) and application of new preparation techniques of thin films. The MSWF leads to the enhancement of coherence length along the c-axis and transformation from d-wave to (d+is)-wave, and then low superconducting anisotropy. The thin film techniques are APE (amorphous phase epitaxy) method and SAE (self assembling epitaxy) method by using a structure stabilizer such as Tl. The best superconductor with long coherence length, low anisotropy, high T/sub c/, high J/sub c/ and high H/sub irr/ will be realized for wire and Josephson junctions and microwave device application at 77 K. (16 refs).

  7. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  8. Superconductors and medical imaging

    International Nuclear Information System (INIS)

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  9. Irradiation damage in superconductors

    International Nuclear Information System (INIS)

    Quere, Y.

    1989-01-01

    Most superconductors are quite sensitive to irradiation defects. Critical temperatures may be depressed, critical currents may be increased, by irradiation, but other behaviours may be encountered. In compounds, the sublattice in which defects are created is of significant importance. 24 refs

  10. Effect of Sintering Time and Diameter on Bi-Pb-Sr-Ca-Cu-O Superconducting Wire Formation with TiO2 Dopant by Silver (Ag Tube

    Directory of Open Access Journals (Sweden)

    Cindy Al Kindi

    2018-01-01

    superconducting wire has a critical temperature at Tc onset = 99 K and Tc zero = 70 K. The time that very important on the formation of superconducting phase is sintering for 9 h and the diameter of the wire having a critical temperature is 6 mm. The sintering time during 30 h can change the phase of BPSCCO become conductor and semiconductor. The diameter of 2,6 mm has not become the correct size on the fabrication of superconducting wire.  Keyword : Cryogenic, Critical Temperature, Superconducting wire, Sintering Time, TiO2 REFERENSI Grivel, J-C, A Jeremie and R Fliikiger, 1995, The Influence Of Ti02 Additions On The Formation And The Superconducting Properties Of The (Bi, Pb2Sr2Ca2Cu3O10-Y Phase. IOP Science Jabur, Akram R. 2012. B2223 High Temperature Superconductor Wires In Silver Sheath, Filament Diameter Effect On Critical Temperature And Current Density. Energy Procedia 18 ( 254 – 264 Liu, Hua Kun., Mihail lonescu., Yuan  Chang Guo,2001. Handbook of Advanced Electronic and Photonic Materials and Devices, Volume 3: High Tc Superconductors and Organic Cond High Tc Superconductors and Organic Conductors, Academic Press. 71-90 Widodo, Henry, 2010, Nanokristalisasi Superkonduktor Bi2SrCa2Cu3O10+x dan Bi1.6Pb0.4Sr2Ca2Cu3O10+6 dengan Metode Kopresipitasi dan Pencampuran Basah, Jurnal Ilmu Pengetahuan dan Teknologi TELAAH : LIPI Bandung

  11. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  12. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  13. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  14. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  15. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  16. Improvements in or relating to superconductors

    International Nuclear Information System (INIS)

    McDougal, I.L.

    1976-01-01

    A method of manufacturing a superconductor consisting of an intermetallic superconductive compound is described. It includes providing an assembly of at least one component of the intermetallic superconductive compound in indirect contact with a material that is not superconductive at 4.2 0 K, then diffusing the remaining component or components through the non-superconductive material to form the intermetallic compound, diffusion of the non-superconductive material being blocked. The non-superconductive material may be a stabilising material and may consist of Cu, Ag, Ni-Cu alloy, Mg, or Fe, and the blocking diffusion barrier may be Ta, Nb, Zr, or Hf. The assembly may be in the form of wire, tape, tube, or other extended configuration. Examples of application of the method are described. (U.K.)

  17. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  18. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  19. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  20. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  1. Iron pnictide superconductors

    International Nuclear Information System (INIS)

    Tegel, Marcus Christian

    2011-01-01

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co x Fe 1-x )PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr 2 Si 2 -type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba 0.6 K 0.4 Fe 2 As 2 , is unveiled. A detailed examination of the complete solid solution series (Ba 1-x K x )Fe 2 As 2 is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe 2 As 2 and EuFe 2 As 2 are characterised and the superconductors Sr 1-x K x Fe 2 As 2 and Ca 1-x Na x Fe 2 As 2 are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se 1-x Te x ) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr 3 Sc 2 O 5 Fe 2 As 2 are presented and Ba 2 ScO 3 FeAs and Sr 2 CrO 3 FeAs, the first two members of the new 21311-type are portrayed. Sr 2 CrO 3 FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is given. Finally, the superconductor Sr 2 VO 3 FeAs is scrutinised and necessary prerequisites for superconductivity in this compound are suggested. (orig.)

  2. "Fluctuoscopy" of Superconductors

    Science.gov (United States)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  3. Atom chips in the real world: the effects of wire corrugation

    Science.gov (United States)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  4. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  5. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  6. Processing of Mixed Oxide Superconductors

    Science.gov (United States)

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  7. Superconductor stability 90: A review

    International Nuclear Information System (INIS)

    Dresner, L.

    1990-01-01

    This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs

  8. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  9. Preparation and properties of high-Tc Bi-oxide superconductors

    International Nuclear Information System (INIS)

    Maeda, H.

    1989-01-01

    Bulk superconductors of Pb-doped Bi-oxide system (BSCCO) dominated with the high-Tc phase have the critical transition temperature, Tc of 110 K, and the upper critical fields, H c2 of 140 T at OK and 60 T at 77 K. A highly dense and a highly oriented microstructure is obtained by inserting an intermediate uniaxial pressing process. The critical current density, Jc at 77 K in zero field, Jc (77K,OT) of some 5000 A/cm 2 can be easily obtained by this process, and the field dependence of Jc is also improved. Flexible high-Tc BSCCO ribbons with a Jc (77K,Ot) of 1850 A/cm 2 have been successfully prepared by the combined process of doctor blade casting, cold rolling and sintering. Aq-sheeted multifilamentary wires with 1330 filaments and tapes with 30 filaments have also been successfully fabricated and the 36-filament tape shows a Jc(77K,OT) of 1050 A/cm 2 . (Auth.). 7 refs.; 7 figs

  10. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    OpenAIRE

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    2016-01-01

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their ma...

  11. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  12. Multiseeding with (100)/(100) Grain Junctions in Top Seeded Melt Growth Processed YBCO Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.J.; Gee, Y.A.; Hong, G.W. [Korea Atomic Energy Research Institute, Taejon (Korea); Kim, H.J.; Joo, J.H. [Sungkyunkwan University, Suwon (Korea); Han, S.C.; Han, Y.H.; Sung, T.H.; Kim, S.J. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    Multiseeding with (100)/(100) grain junctions of top-seeded melt growth (TSMG) processed YBCO superconductors was studied. Multiple seeding shortened the processing time for the fabrication of TSMG-processed YBCO superconductors. The relationship among the number of seeds, the levitation forces and the trapped magnetic fields of the TSMG-processed YBCO samples is reported. The characteristic of the (100)/(100) grain junction is discussed in terms of a wetting angle of a melt. (author). 25 refs., 7 figs.

  13. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  14. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  15. Radiation behavior of superconductors

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Raymond, E.L.

    1979-01-01

    High energy neutron irradiations have been performed on Nb 3 Sn superconductors to assess their behavior in a fusion reactor environment. Irradiations were performed at 4.2 K and property measurements were made without warming the samples. The critical current I/sub c/ increased with irradiation to a level about 50% above the unirradiated value at the highest fluences reached in our experiments. These results are compared with the results of other low temperature irradiations of Nb 3 Sn

  16. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  18. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  19. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  20. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  1. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  2. Progress in AMSC scale-up of second generation HTS wire

    International Nuclear Information System (INIS)

    Zhang, W.; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S.

    2007-01-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS TM /MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications

  3. Progress in AMSC scale-up of second generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)], E-mail: wzhang@amsuper.com; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)

    2007-10-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS{sup TM}/MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications.

  4. Plastic deformation of YBa2Cu3O7-x superconductor compound

    International Nuclear Information System (INIS)

    Torres V, G.; Moreno, J.E.

    1988-01-01

    The high temperature superconductor YBa 2 Cu 3 O 7-x shown a brittle behavior when deformed under ambient conditions. If a hydrostatic state of stress is imposed with a metal matrix, it is possible to induce exttended plastic deformations as a great as 200% were achieved using this method without loosing the superconductivity in the ceramic. The observed deformations mechanisms are similar to those observed in the superplastic metals and the boundary ceramic metal matrix was found to be highly coherent. This method opens a new technique that can be apllied in the manufacture of superconductor wire. (author) [pt

  5. How to measure the cooper pair mass using plasmons in low-dimensional superconductor structures

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    The creation of the Cooper pair mass-spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in dielectric background) are theoretically considered to that purpose. The Cooper pair mass m * can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency ω lower than the superconducting gap 2 Δ can be detected by the same fare-infrared (FIR) absorption technique and grating couplings used previously for investigation of two-dimension (2D) plasmons in semiconductor microstructures. (author). 17 refs, 2 figs

  6. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  7. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  8. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, Arun J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  9. Method for preparation of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barber, A.C.; McDougall, I.L.

    1975-07-10

    The invention deals with a method to prepare a superconductor consisting of a superconducting compound of at least two elements. It especially deals with superconductors which surround a superconducting intermetallic compounds of at least two elements, examples of which are Nb/sub 2/Sn and Nb/sub 3/Al.

  10. Nonmagnetic impurities in magnetic superconductors

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1989-01-01

    The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented

  11. Achievement report for fiscal 1997 (New Sunshine Project) on the development of superconductor power application technology. Research on a total system / investigative research on introduction effects; 1997 nendo chodendo denryoku oyo gijutsu kaihatsu (New Sunshine keikaku) seika hokokusho. Total system nado no kenkyu / donyu koka no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes investigation and discussion on effects of introducing a superconductor power application technology. The generator sub-committee has compared features, technical problems and development expenses in the first and second proposals, but has not reached the final conclusion. The first proposal is targeted for early realization of 200-300 MW class generators with development cost of six to seven billion yen and a development term of seven years. These developments raise largely towards practical application the levels of material technologies, fabrication and processing technologies, and analysis and design technologies. The second proposal is intended of developing 200-300 MW class generators targeted for increased diameter, as a reduced size machine of a 600-MW generator being a future generator. It will take development cost of eight to nine billion yen with the period of nine years for the development. Majority of the technologies required for developing the future 600-MW class generator can be demonstrated. The AC superconductor device sub-committee has investigated design examples, clarified the specification requirements, and investigated and studied the development measures. The oxide superconductor sub-committee has investigated and studied making wires and conductors, and device application feasibility, but has not reached the stage of presenting specific research and development methods. The practical application strategy sub-committee has also not been able to present a collective measure because of difficulty of making future prospect on the electric power business. (NEDO)

  12. Mesoscopic NbSe3 wires

    International Nuclear Information System (INIS)

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  13. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  14. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  15. A method to estimate the necessary twist pitch in multi-filamentary superconductors

    International Nuclear Information System (INIS)

    Lindau, S; Magnusson, N; Taxt, H

    2014-01-01

    Twisting of multi-filamentary superconductors is an important step in the development of wires with AC losses at an acceptable level for AC applications. The necessary twist pitch depends on wire architecture, critical current density, matrix material, and external factors such as temperature, frequency and applied magnetic field. The development of an AC optimized MgB 2 superconductor would be facilitated by a fast method to set the requirements for the twist pitch. A problem often encountered when comparing wires with different twist pitches is the degradation in critical current occurring at small twist pitches due to mechanical deformation. In this work we propose to use a non-twisted conductor to estimate the influence of twisting on the AC losses. A long superconductor is cut into smaller lengths, each simulating one third of the twist pitch, and the AC losses due to applied magnetic fields are compared between samples of different lengths. With this method, the effect of reducing the size of the loop of the coupling currents is studied without changing the superconducting parameters. AC loss measurement results are presented for a round titanium matrix MgB 2 wire with simulated twist pitches between 9 mm and 87 mm.

  16. Quality analysis of superconducting wire and cable for SSC dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.A.

    1992-01-01

    This paper reports that a critical component of the SSC collider dipole magnets is superconducting cable. The uniformity and reliability requirements for the dipoles place stringent demands on the cable. These needs have been defined as various contract requirements in the material specifications for NbTi alloy, superconducting wire and cable. A supplied qualification program is being started by the SSCL with industry to establish reliable sources of superconductor cable. Key to this qualification program is the establishment by industry of detailed process methods and controls for wire and cable manufacture. To monitor conductor performance, a computer database is being developed by the SSCL Magnet Systems Division Quality Assurance Department. The database is part of a program for ensuring superconductor uniformity by focusing on the understanding and control of variation. A statistical and graphical summary of current data for key performance variables will be presented in light of the specification requirement for uniformity. Superconductor material characteristics to be addressed will include Wire Critical Current (I c ), Copper Ratio (Cu:SC), Wire Diameter, Wire Piece Length, and Cable Dimensional Control

  17. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...

  18. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is

  19. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  20. Superconductors go organic

    International Nuclear Information System (INIS)

    Singleton, John; Mielke, Charles

    2002-01-01

    Superconductors made from organic molecules are revealing fascinating new physics and could offer huge technological potential as well. Solid-state physicists are simple people. They believe that basic research is best carried out on chemically simple materials. Traditionally they have focused on inorganic elements, alloys, and other straightforward compounds. This approach has provided some notable successes. For example, any physicist over 35 will remember the huge fuss surrounding the discovery of high-temperature cuprate superconductors in 1986, which led to the infamous 'Woodstock of physics' meeting the following year. Just before the cuprates were discovered, however, an alternative view had begun to emerge. Physical chemists such as Klaus Bechgaard, Peter Day, Gunzi Saito, Viktor Schegolev and Jack Williams were suggesting that the 'simple-materials-are-best' assumption was misplaced. They argued that some of the most exciting studies in solid-state physics can - and should - be attempted on crystalline organic materials. Although chemically complex, such materials are beautifully simple in other ways, and they can, for example, provide much more information about basic phenomena like superconductivity and magnetism than supposedly simple materials. Physicists eventually embraced these materials with enthusiasm, and the number of papers on crystalline organic metals overtook those on the high-temperature cuprate superconductors three years ago. The gap has widened ever since, and the fact that God and a billion years of evolution have produced a processor based on three-dimensional arrays of molecules, rather than silicon or gallium-arsenide chips, is taken as a good omen by those working in the field. (U.K.)

  1. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  2. Magnetic Scaling in Superconductors

    International Nuclear Information System (INIS)

    Lawrie, I.D.

    1997-01-01

    The Ginzburg-Landau-Wilson superconductor in a magnetic field B is considered in the approximation that magnetic-field fluctuations are neglected. A formulation of perturbation theory is presented in which multiloop calculations fully retaining all Landau levels are tractable. A 2-loop calculation shows that, near the zero-field critical point, the singular part of the free energy scales as F sing ∼ |t| 2-α F(B|t| -2ν ), where ν is the coherence-length exponent emdash a result which has hitherto been assumed on purely dimensional grounds. copyright 1997 The American Physical Society

  3. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  4. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  5. Applications of high-temperature superconductors in power technology

    International Nuclear Information System (INIS)

    Hull, John R

    2003-01-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications

  6. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  7. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  9. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  10. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  11. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  12. Pinning and creep in superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.

    1994-01-01

    All superconductors can be separated into two large groups: type I and type II. The behaviour of these two groups in a magnetic field is quite different. The superconductors of type I, in a strong magnetic field, enter the intermediate state. Phenomenological picture of this state was given by Landau. The type II superconductors, in strong magnetic fields, form the mixed state (or Shubnikov phase). The microscopic picture of the mixed state was given by Abrikosov on the basis of Ginzburg-Landau equations. In ideal homogeneous superconductors the free energy is not changed if all the vortex structure is shifted on some distance u. The transport current will be proportional, therefore, to the electric field E. All the real superconductors, however, are inhomogeneous. Inhomogeneities interact with vortex lattice and pin it. In this new state the transport current below some critical value does not lead to the motion of the flux lattice and to the energy dissipation. The value of critical current strongly depends on the type of inhomogeneities, on the value of magnetic field and on temperature. In new layered superconductors, the critical current depends also on the orientation of the magnetic field B with respect to the layer planes. Temperature and quantum fluctuations lead to the transition between different metastable states in superconductors with current. As a result, the vortex lattice slowly moves (creep phenomenon). Below we will briefly discuss all these phenomena. (orig.)

  13. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  14. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  15. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  16. Superconductor fluxoid logic

    International Nuclear Information System (INIS)

    Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.

    1993-01-01

    In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)

  17. Theory of disordered superconductors

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1991-01-01

    The influence of disorder on the superconducting transition temperature is discussed. The main steps on the way to complete theory of disordered superconductors follows the steps in the authors' understanding of disorder and its effect on the quasiparticles in metals. Loosely speaking one can distinguish three such steps. First is the study of weakly disordered systems and this resulted in famous, celebrated Anderson theorem. The second step is ultimately connected with the coherent potential approximation as a method to study the spectrum and transport in concentrated alloys. The discovery of the role of usually neglected interferences between scattered waves in disordered conductors leading to decrease in mobility and increase of the mutual interactions between quantum particles, known as localization and interaction effects has given the new impetus to the theory of superconductivity. This is third step to be discussed in this lecture. The authors limit themselves to homogeneous bulk superconductors. In this paper some experiments on thin films as well as on copper oxides related to the presented theory are briefly mentioned

  18. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  19. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  20. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  1. The quality assurance of superconducting wire and cable for SSC magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Baggett, P.; Capone, D.

    1991-03-01

    The success of the SSC depends on the consistency and uniformity of the superconducting magnets used in the main collider rings and the high energy booster. To a great extent the success of the magnets depends upon the quality of the superconductor wire and cable used in coil windings. As the SSC project has begun its transition from Research to Development, a new laboratory organization has been established to carry the design requirements from concept to reality. The SSCL Magnet Systems Division Quality Assurance Group has been working on the development of a quality management and analysis system for insuring superconductor uniformity through the understanding and control of manufacturing variation. Key areas of the QA activity include: the design and development of a computer database and analysis system for the collection and statistical analysis of superconductor materials data (containing: source physical and chemical properties, billet process history, and final product performance data); and the development of wire and cable product specifications which focus on the control of variation. As a result of this work several new concepts have been developed which will affect the traditional approach to superconductor wire and cable production. 18 refs., 5 figs., 1 tab

  2. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1987-10-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA . cm -2 (at 77 K and ∼10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA . cm -2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  3. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  4. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  5. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  6. The new superconductors: Prospects for applications

    International Nuclear Information System (INIS)

    Wolsky, A.M.; Giese, R.F.; Daniels, E.J.

    1989-01-01

    Two years ago several groups around the world, excited by the discovery by K. Alex Mueller and J. Georg Bednorz of the IBM Zurich Research Laboratory of a superconducting ceramic oxide, developed an yttrium-barium-copper oxide that superconducted at 90 K. Since then other investigators have found two separate families of copper oxides, one incorporating bismuth and the other thallium, that superconduct at between 110 and 120 K. These high-temperature superconductors could be cooled to 77 degrees K with liquid nitrogen, which is cheap and abundant. This immediately suggested that certain applications of superconductivity long considered not to be economic or practical might be feasible. Yet many of the envisioned applications-generators and motors, energy storage, magnetically levitating trains-raise the same issues to which Onnes referred. It is not yet known whether the new materials can be made easily workable-strong and flexible enough to fashion into wire and other useful forms. Nor is it known whether they can be made to carry large currents and operate in intense magnetic fields. Whether the new discoveries will prove fruitful will depend on the progress made toward achieving design requirements for known applications and on identifying new applications as yet unforeseen. Indeed, such new applications may well have the greater impact. No one foresaw today's most important commercial use of superconductivity, magnetic-resonance imaging for medical diagnosis, in the 1960's, when niobium-3-tin and niobium-titanium were found to remain superconducting while carrying high currents in the presence of sizable magnetic fields. Leaving aside the unforeseen, an informed view of the economic and technical advantages of the new superconductors can help guide attempts to achieve the applications now being envisioned

  7. Forces of vortice trapping and critical current in type II superconductors

    International Nuclear Information System (INIS)

    Bormio, C.

    1985-12-01

    The vortice-centers interactions of trapping in type II superconductor materials were studied by two theories: thermodynamic (Hampshire-Taylor) and microscopic (Larkin - Ovchinnikov). The study was applied to NbTi with composition of 50% weight of Ti. They are commercial cables containing 361 filaments with final diameter of 0.35 mm for the wire and 9.2 μm foi filaments. The material presents high deformation rate in area and high density of dislocations. These defects actuate as centers of trapping. Variations in themomechanical treatments of superconductor cables modify the interaction mechanisms. The specific mechanism for each treatment type was identified. Measurements of critical current density in function of magnetic field in the range from 1 to 7 Tesla were done, which the usual superconductor parameters as upper critical field and Ginzburg - Landau (Kappa-k) parameter are estimated from literature data. (M.C.K.) [pt

  8. High critical temperature superconductors: Progress achieved after two years. Les supraconducteurs haute temperature critique: L'etat des lieux deux ans apres

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, J M; Rammal, R; Vittorge, M C

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given.

  9. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  10. New application of superconductors: High sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.

    2017-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm"2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  11. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    International Nuclear Information System (INIS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.

    2017-01-01

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.

  12. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  13. Stress effect on the critical current of Ti-Nb-Zr-Ta multifilamentary superconductors

    International Nuclear Information System (INIS)

    Monju, Yoshiyuki; Tatara, Isamu

    1978-01-01

    The tensile behaviour at R.T., 77K, 4.2K and the degradation of the critical current with stress have been measured on multifilamentary Ti-Nb-Zr-Ta alloy superconductors. The assembly of the stress effect apparatus is as follows; At the center of the 60KOe superconducting solenoid coil, sample wire is hold around an FRP spool and the wire ends are gripped to the load train. Current is supplied through helium vapourcooled flexible leads up to 2000 A. It was clear that a definite degradation of the critical current with stress was not observed up to the stress equal to one third of the fracture stress at 4.2K. This stress value should be defined the maximum allowable stress of alloy superconductors examined from stress effects. (author)

  14. Method for producing superconducting wire and products of the same

    International Nuclear Information System (INIS)

    Marancik, W.G.; Ormand, F.T.

    1975-01-01

    A method is described for producing a composite superconducting wire including one or more strands of high-field Type II superconductor embedded in a conductive matrix of normal material. A composite body is prepared which includes a matrix in which are embedded one or more rods of a metal which is capable of forming a high-field Type II superconductor upon high temperature extruded to an intermediate diameter, and then is hot-drawn to a final diameter at temperatures exceeding about 100 0 C, by multiple passes through drawing dies, the composite being reduced in cross-sectional area approximately 15 to 20 percent per draw. In a preferred mode of practicing the invention, the rods comprise vanadium or niobium, with the matrix being respectively gallium--bronze or tin--bronze, and the superconductive strands being formed by high temperature diffusion of the gallium or tin into the rods subsequent to drawing

  15. Current and field distribution in high temperature superconductors

    International Nuclear Information System (INIS)

    Johnston, M.D.

    1998-01-01

    The manufacture of wires from HTS materials containing copper-oxide planes is difficult because their physical and electrical properties are highly anisotropic. The electrical connectivity depends on the nearest-neighbour grain alignment and although a high degree of grain texture is achieved through processing, the tape microstructure is generally far from uniform, with weak links and porosity also complicating the picture. In order to optimise the processing, the microstructural features common to good tapes must be identified, requiring knowledge of the local properties. The preferential path taken by transport current is determined by the properties of the local microstructure and as such can be used to measure the variation in quality across the tape cross-section. By measuring the self-field profile generated by a current-carrying tape, it is possible to extract the associated current distribution. I have designed and built a Scanning Hall Probe Microscope to measure the normal field distribution above superconductor tapes carrying DC currents, operating at liquid nitrogen temperature and zero applied magnetic field. It has a spatial resolution of 50*50 μm and a field sensitivity of 5 μT, and can scan over a distance of 6 mm. The current extraction is performed by means of a deconvolution procedure based on Legendre functions. This allows a nondestructive, non-invasive method of evaluating the effects of the processing on the tapes - especially when correlated with transport and magnetisation measurement data. Conductors fabricated from Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 CaCu 2 O 8 and (Tl 0.78 Bi 0.22 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O x , have been investigated. I have confirmed the reports that in Bi-2223/Ag mono-core conductors produced by the oxide-powder-in-tube (OPIT) technique, the current flows predominantly at the edges of the tape, where the grains are long and well-aligned. This is in contrast to Bi-2212 ribbons, where the better microstructure

  16. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  17. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  18. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  19. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  20. Polymeric conductors and superconductors

    International Nuclear Information System (INIS)

    Goodings, E.P.

    1975-01-01

    The production of electrically conductive polymers which are flexible ans capable of being shaped by normal processes, is discussed. The relation between the structure of the polymer and its ability to transport electric charge is considered. The main problem is to combine high conductivity with good processability and it is shown that stacked-planar systems are superior to conjugated polymers. Good mechanical properties have yet to be achieved. In some way the rigid pi-bonded systems must be combined with a conventional sigma-bonded polymer without destroying its flexibility and tensile properties. The structure will contain a radical ion system to provide charge carriers but it is not yet known how to design the polymer structure to give high carrier mobility. Further work is required on organic superconductors in unravelling the relationship between charge carrier mobility and the supermolecular structure of polymers. (UK)

  1. Superconductor digital electronics

    International Nuclear Information System (INIS)

    Likharev, Konstantin K.

    2012-01-01

    The objective of these notes is to offer a brief review of the history of superconductor digital electronics, and discuss prospects of its future development. Due to length restrictions, many important technical contributions could not be mentioned at all - with sincere apologies to their authors. Though an attempt has been made to give an unbiased review of the most important work all over the world, a special emphasis on the efforts in the former Soviet Union, which had not been discussed much in literature, and in which the author of this text took an active part, seemed excusable. Another important qualification is that the author phased out his own research in the field about 10 years ago, so that the last parts of the notes, devoted to present-time and future work, should be viewed as not much more than remarks by an (interested) outsider.

  2. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... tubes containing ceramic powder. The final product is a composite tape, where ceramic superconducting fibres are embedded in a silver matrix. The critical current density Je [kA/cm 2 ] is the primary quality parameter of the product. The quality of the superconducting tape depends very much...... in the individual fibres. · The stresses and strains in the deformation zone are analysed. It is concluded that more detailed mechanical tests and a more detailed constitutive plasticity model is desirable in order to improve the precision of the numerical modelling. New test equipment is designed implying the new...

  3. Ex-situ manufacturing of SiC-doped MgB2 used for superconducting wire in medical device applications

    Science.gov (United States)

    Herbirowo, Satrio; Imaduddin, Agung; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-02-01

    Magnesium diboride (MgB2) is a superconductor material with a relatively high critical temperature. Due to its relatively high critical temperature, this material is promising and has the potential to replace Nb3Sn for wire superconducting used in many medical devices. In this work, nanoparticle SiC-doped MgB2 superconducting material has been fabricated through an ex-situ method. The doping of nanoparticle SiC by 10 and 15 wt% was conducted to analyze its effect on specific resistivity of MgB2. The experiment was started by weighing a stoichiometric amount of MgB2 and nanoparticles SiC. Both materials were mixed and grounded for 30 minutes by using an agate mortar. The specimens were then pressed into a 6 mm diameter stainless steel tube, which was then reduced until 3 mm through a wire drawing method. X-ray diffraction analysis was conducted to confirm the phase, whereas the superconductivity of the specimens was analyzed by using resistivity measurement under cryogenic magnetic system. The results indicated that the commercial MgB2 showed a critical temperature of 37.5 K whereas the SiC doped MgB2 has critical temperature of 38.3 K.

  4. New Al5 multifilamentary superconductor based on the niobium--aluminum--silicon system

    International Nuclear Information System (INIS)

    Quinn, G.C.

    1977-12-01

    Based on Powder Metallurgy techniques, a process to fabricate Nb-Nb 3 (Al,Si) multifilamentary superconducting wire has been developed. Optimum sintering and infiltration parameters are listed and the methods of mechanical reduction to wire form are described. Preliminary data indicate that diffusion reaction temperatures as low as 850 0 C form the A15 superconducting compound Nb 3

  5. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime

    Science.gov (United States)

    Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena

    2018-04-01

    Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.

  6. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  7. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb 3 Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb 3 Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb 3 Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  8. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  9. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  11. Reliability improvement of wire bonds subjected to fatigue stresses.

    Science.gov (United States)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  12. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  13. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    Science.gov (United States)

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  14. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A., E-mail: tac1000@cam.ac.u [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E-J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB{sub 2} and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  15. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  16. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  17. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  18. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  19. First superconductor cables manufactured at CERN. Gianfalco Pozzo briefs visitors from industry.

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    At the MSC Workshop in Bld 108: on the table some samples of cable of different diameter. A cable of this type was used for the construction of a very light solenoid needed for the experiment R108 at the ISR. M.Morpurgo and G. Pozzo, Fabrication of an aluminium stabilized superconductor (see Cryogenics, February 1977, p.87).

  20. Electronic components with yttrium- and bismuth-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Daginnus, M.; Guettler, B.

    1992-01-01

    This project investigates the fabrication of microwave components by use of high-Tc superconductors. Detailed descriptions are given of the manufacturing and use of active Y-Ba-Cu-O components. The surface resistance of thin films used in high-quality passive microwave components such as resonators and filters is measured and optimized. (orig./MM) [de

  1. Current-induced massless mode of the interband phase difference in two-band superconductors

    International Nuclear Information System (INIS)

    Tanaka, Y.; Hase, I.; Yanagisawa, T.; Kato, G.; Nishio, T.; Arisawa, S.

    2015-01-01

    Highlights: • A current induces an interband phase difference in two-band superconductors. • By controlling the boundary conditions, we can trap this phase difference. • A phase difference soliton is observed after switching off the current. - Abstract: There is a current-induced massless mode of an interband phase difference in two-band superconductors. For a thin wire, the externally applied current always invokes a finite interband phase difference when the end of the wire is terminated by a natural boundary condition, i.e., where the total current is specified but the other parameters are left as free and a finite interband phase difference is allowed. This condition can be realized by the normal state region formed by the shrinking of a cross section of the wire where the critical current density is lower than that of the other region of the wire. The interband interaction in the wire cannot completely prevent the emergence of the interband phase difference, though it reduces it somewhat. Instead, boundary conditions determine the presence of the interband phase difference. By reverting the normal state into the superconducting state at the shrunken region by decreasing the current, we may trap a rotation of integral multiples of 2π radians of the interband phase difference in the wire. After switching off the current, this rotation of integral multiples of 2π radians, which continuously spreads over the whole wire, is separated into several interband phase difference solitons (i-solitons), where one i-soliton locally generates a 2π interband phase difference

  2. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  3. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  4. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Superconductors: The long road ahead

    International Nuclear Information System (INIS)

    Foner, S.; Orlando, T.P.

    1988-01-01

    Before the discovery of high-temperature superconductors, progress in superconductivity was measured by quite small increases in critical temperature, often of less than one degree. Today, there is no reason to believe that the dramatic leaps in critical temperature inaugurated by superconducting ceramics are over. Researchers may find new high-temperature superconducting materials with less severe technical limitations than the ceramics we know today. And if the day ever comes when a superconductor can be reliably manufactured to operate effectively at room temperature, then superconductors will be incorporated in a broad range of everyday household devices - motors, appliances, even children's toys - with a large consumer market. High-temperature superconductors may also cause us to extensively revise our traditional theories about how superconductivity works. Should it run out that superconductivity in ceramics involves new physical mechanisms, then these mechanisms could lead to applications never considered before. The recent discoveries have already reinvigorated superconductivity research. What was once largely the domain of a relatively small group of scientists has become a genuinely multidisciplinary realm. Now physicists, materials scientists, chemists, metallurgists, ceramists, and solid-state electronics engineers are all focusing on superconductivity. The cross-fertilization of these disciplines should contribute to further discoveries of importance to the practical application of superconductors

  6. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    Science.gov (United States)

    2015-03-10

    efficiency of on-chip storage units implemented with superconductor Reciprocal Quantum Logic (RQL) using our RQL VHDL cell library tuned to the MIT...processor prototype implemented with the AIST/ISTEC 10 kA/cm sq. fabrication process. Our team has developed complete logical and physical designs of five...of key components of a 30 GHz 16-bit RSFQ processor prototype implemented with the AIST/ISTEC 10 kA/cm sq. fabrication process. Our team has

  7. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Sabatini, R.L.; Sampson, W.B.; Suenaga, M.

    1986-01-01

    The magnets for the Superconducting Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (> 2400 A/mm 2 at 5 T) and very small filaments ( about 2μ m in diameter). Previous work has shown that by controling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J /SUB c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufacturers

  8. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    The magnets for the Superconductig Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (>2400 A/mm 2 at 5 T) and very small filaments (approx. 2μm in diameter). Previous work has shown that by controlling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J/sub c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufactures

  9. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Eickemeyer, J.; Gueth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-01-01

    The cube texture as a typical sheet texture can also be formed by cold drawing and recrystallization in profile wires. Cube textured Ni profile wires containing up to 96.2% cube oriented grains in the central region were obtained. Forthcoming investigations are promising to get a textured substrate wire for YBCO-coated conductors. Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2 Cu 3 O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  10. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  11. Superconductor stability, 1983: a review

    International Nuclear Information System (INIS)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years

  12. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zero-bias conductance quantization in a normal / superconducting junction of nano wire

    International Nuclear Information System (INIS)

    Asano, Yasuhiro; Tanaka, Yukio

    2012-01-01

    We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.

  14. Results of the Fermilab wire production program

    International Nuclear Information System (INIS)

    Strauss, B.P.; Remsbottom, R.H.; Reardon, P.J.; Curtis, C.W.; McDonald, W.K.

    1976-01-01

    In examining the various schedules of wire drawing and heat treating, the Critchlow type of schedule provided the highest and most uniform data from billet to billet. It consists of a long anneal at 400 +- 20 0 C at a cold work point giving about 99 percent reduction in area from the extrusion size. Several quick copper anneals at 300 0 C may be interspersed to aid in fabrication. A final anneal at finished size both peaks up the resistivity ratio of the copper as well as the critical current of the alloy by moving dislocations to subcell walls. Using this method, critical currents of 1.7 x 10 5 A/cm 2 could be maintained in all billets. The copper cladding and sinking method looks promising and should save production costs. In spite of this, it was important to attain good packing density in the billets to assure uniform filament pattern and reduce breakage in wire drawing. Overall, a procedure was found for fabricating wire in large production lots that would be acceptable for constructing dipole magnets. It is felt that this method could be peaked up with time

  15. Tensile Strain Dependence of Critical Current for RHQ-Nb3Al Wires

    OpenAIRE

    Jin, Xinzhe; Oguro, Hidetoshi; Nakamoto, Tatsushi; Awaji, Satoshi; Ogitsu, Toru; Tsuchiya, Kiyosumi; Yamamoto, Akira; Kikuchi, Akihiro; Takeuchi, Takao

    2011-01-01

    KEK and NIMS have been jointly developing Nb3Al superconducting wire with a rapid heating and quenching (RHQ) method towards high field accelerator magnets in the Large Hadron Collider (LHC) luminosity upgrade. A15-type superconductors such as Nb3Al and Nb3Sn exhibit strain dependence with respect to their critical currents. Therefore, a thorough understanding of strain behavior is necessary for high field accelerator magnet development, which will be critical for the luminosity upgrade of th...

  16. Mechanical properties and formation mechanisms of a wire of single gold atoms

    DEFF Research Database (Denmark)

    Rubio-Bollinger, G.; Bahn, Sune Rastad; Agrait, N.

    2001-01-01

    initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics simulations, and we find that the total effective...

  17. Potential of MgB2 superconductors in direct drive generators for wind turbines

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2015-01-01

    Topologies of superconducting direct drive wind turbine generators are based on a combination of superconducting wires wound into field coils, copper armature windings, steel laminates to shape the magnetic flux density and finally structural materials as support. But what is the most optimal...... by using the current cost of 4 €/m for the MgB2 wire from Columbus Superconductors and also a possible future cost of 1 €/m if a superconducting offshore wind power capacity of 10 GW has been introduced by 2030 as suggested in a roadmap. The obtained topologies are compared to what is expected from...... a permanent magnet direct drive generators and the further development directions are discussed. Finally an experimental INNWIND.EU demonstration showing that the current commercial MgB2 wires can be wound into functional field coils for wind turbine generators is discussed....

  18. Levitation experiment using a high-temperature superconductor coil for a plasma confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Junji; Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Tokyo (Japan); Ozawa, Daisaku [Tokyo Univ., School of Engineering, Tokyo (Japan); Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu (Japan)

    2001-10-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 {mu}m. (author)

  19. Levitation experiment using a high-temperature superconductor coil for a plasma confinement device

    International Nuclear Information System (INIS)

    Morikawa, Junji; Ogawa, Yuichi; Ozawa, Daisaku; Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki

    2001-01-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 μm. (author)

  20. Levitation Experiment Using a High-Temperature Superconductor Coil for a Plasma Confinement Device

    Science.gov (United States)

    Morikawa, Junji; Ozawa, Daisaku; Ogawa, Yuichi; Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki

    2001-10-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 μm.

  1. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    of many of the products, the superconductors and their nanocrystalline precursors are potentially amenable to inexpensive and large-scale solution-based processing into wires, coatings, films, and templated or patterned structures with nanoscale and microscale features. Also, because of the new synthetic variables that play a key role in the low-temperature formation of intermetallics, the possibility exists to discover new superconductors.

  2. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  3. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  4. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  5. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  6. Luttinger liquid behavior of weakly disordered quantum wires

    International Nuclear Information System (INIS)

    Palevski, A.; Levy, E.; Karpovski, M.; Tsukernik, A.; Dwir, B.; Kapon, E.

    2005-01-01

    Full Text:The talk will be devoted to the electronic transport in quantum nano wires. The temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures is consistent with recent theories given within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our quantum wires, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which exceeds the range of validity of a perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g

  7. Ceramic high-temperature superconductors

    International Nuclear Information System (INIS)

    Marquart, R.

    1989-01-01

    The contribution presents an overview treatment of the structure of the new superconductors (YBa 2 Cu 3 O 7-x ). Methods of powder production and processing technology are described, with current development projects by Dornier being taken into consideration. (orig.) [de

  8. Testing Superconductor Logic Integrated Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2005-01-01

    Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these

  9. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  10. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  11. Dynamics of vortices in superconductors

    International Nuclear Information System (INIS)

    Weinan, E.

    1992-01-01

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter

  12. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  13. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  14. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  15. Fluctuoscopy of Superconductors

    Science.gov (United States)

    Varlamov, Andrey

    2012-02-01

    The study of superconducting fluctuations (SF) is a subject of fundamental and practical importance. Since the moment of discovery SF became a noticeable part of research in the field of superconductivity (SC) and a variety of fluctuation effects have been detected. The interest to SF in SC was regenerated by the discovery of HTS, where, due to extremely short coherence length and low effective dimensionality of the electron system, SF manifest themselves in a wide range of temperatures. The characteristic feature of SF is their strong dependence on temperature and magnetic field. This allows to separate SFs from other contributions and to use them as a tool for characterization of SC systems (``fluctuoscopy'') for example to extract the values of Tc, Hc2(T) and phase-breaking time from experimental data. We present the complete results for fluctuation magneto-conductivity (FMC) and Nernst signal (FNS) of impure 2D superconductor in the whole phase diagram above the transition line Hc2(T), including the domain of quantum fluctuations. Along some line H0(T), in agreement with experimental findings, FMC becomes zero and beyond it remains small and negative. The corresponding surface in coordinates (T,H) becomes in particular non-trivial at low temperatures and close to Hc2(0), where it is trough-shaped. The observation of large FNS in HTS and conventional SC above Tc(H), has attracted much attention recently. The idea to attribute it to the entropy transport by analogy to vortices was proposed. On the other hand this giant effect, close to Tc(0), was explained in terms of SF. Our general results allow to successfully fit the available experimental data in a wide range of magnetic fields and temperatures, to extract the value of the ``ghost'' field and other parameters of SC. We offer also a qualitative consideration, which gives a natural explanation for the giant value of FNS attributing it to a strong dependence of the fluctuation Cooper pair (FCP) chemical

  16. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  17. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  18. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  19. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  20. To Crack or Not to Crack: Strain in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Godeke, Arno

    2007-01-01

    Round wire Bi 2212 is emerging as a viable successor of Nb3Sn in High Energy Physics and Nuclear Magnetic Resonance, to generate magnetic fields that surpass the intrinsic limitations of Nb3Sn. Rather bold claims are made on achievable magnetic fields in applications using Bi 2212, due to the materials' estimated critical magnetic field of 100 Tor higher. High transport currents in high magnetic fields, however, lead to large stress on, and resulting large strain in the superconductor. The effect of strain on the critical properties of Bi-2212 is far from understood, and strain is, as with Nb3Sn, often treated as a secondary parameter in the design of superconducting magnets. Reversibility of the strain induced change of the critical surface of Nb3Sn, points to an electronic origin of the observed strain dependence. Record breaking high field magnets are enabled by virtue of such reversible behavior. Strain effects on the critical surface of Bi-2212, in contrast, are mainly irreversible and suggest a non-electronic origin of the observed strain dependence, which appears to be dominated by the formation of cracks in the superconductor volumes. A review is presented of available results on the effects of strain on the critical surface of Bi-2212, Bi-2223 and YBCO. It is shown how a generic behavior emerges for the (axial) strain dependence of the critical current density, and how the irreversible reduction of the critical current density is dominated by strain induced crack formation in the superconductor. From this generic model it becomes clear that magnets using high temperature superconductors will be strain limited far before the intrinsic magnetic field limitations will be approached, or possibly even before the magnetic field limitation of Nb3Sn can be surpassed. On a positive note, in a very promising recent result from NIST on the axial strain dependence of the critical current density in extremely well aligned YBCO, reversible behavior was observed. This

  1. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  2. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  3. Mechanical considerations in the processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Wright, R.N.; German, R.M.; Knorr, D.B.; Maccrone, R.K.; Rajan, K.

    1990-01-01

    This paper presents a brief review of deformation processing concepts germane to high-Tc superconductor processing, and illustrates some available techniques with results from recent work. It is noted that YBa2Cu3O(7-x) powder/binder cold extrusion technique is quite sensitive to binder formulation and processing conditions. With appropriate technique, indefinite lengths of YBa2Cu3O(7-x) powder/binder composite can be extruded with sufficient workability to allow coiling and other forming operations. With heat treatment, the resulting prototype wire is electrically continuous and manifests critical current densities of a few hundred A/sq cm. The hot extrusion of YBa2Cu3O(7-x) powder results in a modest, but favorable, development of a texture involving preferential rotation of the c-axis toward the radial direction. Billet designs involving larger powder charge diameters, and thinner container walls, produce the favorable texture. Unfortunately, such billet designs reduce workability. 29 refs

  4. Investigation of pinning in MgB2 superconductors

    International Nuclear Information System (INIS)

    Mohammad, S.; Reissner, M.; Steiner, W.; Bauer, E.; Giovannini, M.

    2006-01-01

    Full text: The pinning behaviour of bulk MgB 2 superconductors is peculiar in many respects. Pinning seems to be stronger than in classical high T C materials and there seems to be no weak link problem in these compounds, giving hope to produce bulk samples and wires with current densities appropriate for technical applications. But, although many studies concerning the pinning behaviour in this compound appeared in recent years, the results are still contradictory. In the present work we present results of an investigation of the pinning behaviour by magnetic relaxation measurements of three MgB 2 samples: a pure one, a sample with 8 at% Al substitution and a sample with 10 wt% of SiC admixture. A comparison of different analyses methods is given. (author)

  5. A review and prospects for Nb3Sn superconductor development

    Science.gov (United States)

    Xu, Xingchen

    2017-09-01

    Nb3Sn superconductors have significant applications in constructing high-field (>10 T) magnets. This article briefly reviews development of Nb3Sn superconductor and proposes prospects for further improvement. It is shown that significant improvement of critical current density (J c) is needed for future accelerator magnets. After a brief review of the development of Nb3Sn superconductors, the factors controlling J c are summarized and correlated with their microstructure and chemistry. The non-matrix J c of Nb3Sn conductors is mainly determined by three factors: the fraction of current-carrying Nb3Sn phase in the non-matrix area, the upper critical field B c2, and the flux line pinning capacity. Then prospects to improve the three factors are discussed respectively. An analytic model was developed to show how the ratios of precursors determine the phase fractions after heat treatment, based on which it is predicted that the limit of current-carrying Nb3Sn fraction in subelements is ∼65%. Then, since B c2 is largely determined by the Nb3Sn stoichiometry, a thermodynamic/kinetic theory is presented to show what essentially determines the Sn content of Nb3Sn conductors. This theory explains the influences of Sn sources and Ti addition on stoichiometry and growth rate of Nb3Sn layers. Next, to improve flux pinning, previous efforts in this community to introduce additional pinning centers to Nb3Sn wires are reviewed, and an internal oxidation technique is described. Finally, prospects for further improvement of non-matrix J c of Nb3Sn conductors are discussed, and it is seen that the only opportunity for further significantly improving J c lies in improving flux pinning.

  6. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  7. Slim-look superconductors lead the applications race

    International Nuclear Information System (INIS)

    Hellemans, A.

    1996-01-01

    When George Bednorz and Alex Mueller discovered high-temperature superconductivity (HTS) 10 years ago at IBM research labs near Zurich, newspapers, magazines, and TV news reports across the world were soon filled with forecasts of super-efficient power lines, trains floating along at unimaginable speeds levitated by superconducting magnets, and swift, silent ships powered by magnetohydro-dynamic drives. Chunks of these new ceramic materials, which can conduct electricity free form all resistance at temperatures high enough to require only cheap liquid nitrogen as a coolant rather than expensive liquid helium, would pave the way to the technological future. However, researchers are now thinking of thin films rather than chunks of HTS material. Superconductors do not always require long wires and coils or high currents. Electronic devices make from HTS ceramics have some remarkable properties, and all you need is a thin layer of film of the ceramic grown on a rigid substrate. This article discusses the possibilities of applications using new thin film superconductors

  8. Properties of the superconductor in accelerator dipole magnets

    Science.gov (United States)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  9. Achievement report for fiscal 1996 on the research and development of superconductor technology to power generation. Pt. 1. Research and development of superconducting wire, generator, total system, and refrigeration system; and verification test; 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    In the research and development of superconducting wires, studies are conducted to increase the current capacity of NbTi and Nb{sub 3}Sn metal wires and to improve their properties, and to increase the current capacity of oxide materials and improve their performance making full use of the features of each manufacturing method. In the development of superconducting generators, a slow excitation response type is tested for verification, and a good result is attained; and a quick excitation response type is tested for field winding static excitation, and good performance is exhibited. Using the results so far achieved, the 200,000kW class pilot machine concept design is reviewed. In the study of total systems, feasibility is studied of a quench test for the 70,000kW class machine through simulation analyses, etc. In the development of refrigeration systems, efforts are exerted to improve on the conventional type in terms of reliability and to further improve on the improved version in terms of performance and space-saving feature. One of the endeavors involves the development of a He Brayton cycle turbine driven compressor. A multilayer cylindrical rotor is verified in terms of functions, characteristics, reliability and durability, and various data are collected toward the development of a pilot machine. (NEDO)

  10. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments

    DEFF Research Database (Denmark)

    Zhao, P.; Riesch, J.; Höschen, T.

    2017-01-01

    Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various hea...... a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife...

  11. World-record current in the MgB2 superconductor

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two 20-metre long cables made of Magnesium Diboride (MgB2) superconductor. This result makes the use of such technology a viable solution for long-distance power transportation.   The 20-metre long electrical transmission line containing the two 20 kA MgB2 cables. “The test is an important step in the development of cold electrical power transmission systems based on the use of MgB2,” says Amalia Ballarino, head of the Superconductors and Superconducting Devices section in the Magnet, Superconductors and Cryostat group of the Technology Department, and initiator of this project. “The cables and associated technologies were designed, developed and tested at CERN. The superconducting wire is the result of a long R&D effort that started ...

  12. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  13. NSSEFF Designing New Higher Temperature Superconductors

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-10-1-0191 5c...materials, identifying the most promising candidates. 15. SUBJECT TERMS TEMPERATURE, SUPERCONDUCTOR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  14. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  15. Applications of superconductors to electric motors

    International Nuclear Information System (INIS)

    McConnell, B.W.

    1988-01-01

    This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications

  16. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  17. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  18. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  19. Fundamental studies of superconductors using scanning magnetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, J R [Center for Probing the Nanoscale, Stanford University, Stanford, CA (United States)

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies-scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-T{sub c} superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr{sub 2}RuO{sub 4}, which is believed to have p{sub x} {+-} ip{sub y} pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices

  20. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    Science.gov (United States)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.