Superconductivity theory applied to the periodic table of the elements
International Nuclear Information System (INIS)
Elifritz, T.L.
1994-01-01
The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity
Superconductivity theory applied to the periodic table of the elements
Energy Technology Data Exchange (ETDEWEB)
Elifritz, T.L. [Information Corporation, Madison, WI (United States)
1994-12-31
The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.
Superconductivity theory applied to the periodic table of the elements
Elifritz, Thomas Lee
1995-01-01
The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.
Newhouse, Vernon L
1975-01-01
Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec
Academic training: Applied superconductivity
2007-01-01
LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2Â K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the alreadyÂ known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview ofÂ phenomenology and basic theory of superconductivity, the lectures for this a...
International Nuclear Information System (INIS)
Crisan, M.
1988-01-01
This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity
Field theory methods applied for the study of superconductivity in one-dimensional systems
International Nuclear Information System (INIS)
Martins, M.J.
1986-01-01
It is shown that the Froehlich's hamiltonian in one spatial dimension is identical to that of an exactly solvable field Theory. The spectrum of the theory is computed. A critical coupling is found above which the system becomes unstable, indicating a superconducting transition. It is also proposed and investigated a renormalizable relativistic field theory model in two space-time dimensions, with quartic self-interaction among N species of fermions, which undergoes dynamical generation of a superconducting gap and is asymptotically free. A finite temperature is introduced and, for N -> ∞ a critical value T c is found above which the gap vanishes. (author)
Thermodynamic Green functions in theory of superconductivity
Directory of Open Access Journals (Sweden)
N.M.Plakida
2006-01-01
Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.
New theory of superconductivity
International Nuclear Information System (INIS)
Bell, A.B.; Bell, D.M.
1978-01-01
Based on three earlier papers which treat electromagnetic, elastogravitational, and radiant-nonradiant thermal phenomena in terms of six types of electric or nonelectric charges, the authors classify states of matter as hyperefficient, efficient, semiefficient, and hypoefficient in transmitting a particular type of charge, by means of a generalization of Ohm's law to two or three dimensions. Conventional states of matter (solid, liquid, gas, vacuum) are associated with torsional (gravitational) charges. Applications are made to electric superconductivity of crystals at elevated temperatures, and to frequency shift
Superconducting quantum circuits theory and application
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons
Some theories of high temperature superconductivity
International Nuclear Information System (INIS)
Cohen, M.L.
1990-01-01
In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures
Theories of superconductivity (a few remarks)
International Nuclear Information System (INIS)
Ginzburg, V.L.
1992-01-01
The early history in the development of superconductivity. Idea of pairing, Schafroth and BCS types of theories. Some remarks on present state of the microscopical theory of high-temperature superconductors (HTSC). Mean field macroscopic theory of superconductivity and its specific features in HTSC. About generalized macroscopic theory applicable in critical region. Concluding remarks. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Martins, M J
1987-12-31
It is shown that the Froehlich`s hamiltonian in one spatial dimension is identical to that of an exactly solvable field Theory. The spectrum of the theory is computed. A critical coupling is found above which the system becomes unstable, indicating a superconducting transition. It is also proposed and investigated a renormalizable relativistic field theory model in two space-time dimensions, with quartic self-interaction among N species of fermions, which undergoes dynamical generation of a superconducting gap and is asymptotically free. A finite temperature is introduced and, for N -> {infinity} a critical value T{sub c} is found above which the gap vanishes. (author).
13th European Conference on Applied Superconductivity
2017-01-01
EUCAS is a worldwide forum for scientists and engineers, and provides an ideal platform to share knowledge and the most recent advances in all areas of applied superconductivity: from large-scale applications to miniature electronics devices, with a traditional focus on advanced materials and conductors. The broad scope is at the same time a challenge and an opportunity to foster novel, inter-disciplinary approaches and promote cross-fertilization among the various fields of applied superconductivity.
Resonant coupling applied to superconducting accelerator structures
International Nuclear Information System (INIS)
Potter, James M.; Krawczyk, Frank L.
2013-01-01
The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.
The theory of anyonic superconductivity
International Nuclear Information System (INIS)
Lukken, J.D.; Sonnenschien, J.; Weiss, N.
1991-01-01
Particles in two spatial dimensions with fractional statistics known, generically, as anyons, have been of interest to particle physicists for nearly ten years. A major change in the direction of research occurred when it was discovered that anyons could play a role as quasiparticles in condensed-matter systems. This was originally discovered to be the case in systems exhibiting the Fractional Quantum Hall Effect. The application of anyons to condensed-matter systems received yet another boost when it was discovered by Laughlin that even an ideal gas of anyons was a superfluid and, as a result, a gas of charged anyons would be a superconductor. This led immediately to attempts to explain the superconductivity of high-T c materials which are layered ceramics in terms of anyons. The main challenge was to find a reasonable model for these materials which has quasiparticles obeying anyonic statistics. The goal of this article is to review the theory of anyonic superconductivity and its possible relation to high-T c materials. The emphasis in this review is on field-theoretical methods. In this paper the authors explain what an anyon is and how it can be modeled mathematically. The authors discuss the possible relationship between anyons and high-T c materials. The authors review several of the attempts to obtain anyonic quasiparticles from the Hubbard model which is commonly used to describe these materials. The authors describe the mathematical modeling of anyons in terms of their interaction with an Abelian gauge field with a Chern-Simons term. This description of anyons is used extensively in this article. The authors discuss the possible criteria for superconductivity in anyonic systems with particular emphasis on criteria which would be useful in the Chern-Simons description
Applied superconductivity handbook on devices and applications
2015-01-01
This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...
History of the theory of superconductivity
International Nuclear Information System (INIS)
Frohlich, H.
1983-01-01
This chapter points out that in the years from Onnes' discovery that the electric resistivity of mercury completely disappeared at about 4K in 1911 up to 1950, many attempts to develop a theory of superconductivity failed, and the subject became an outstanding problem in physics. Discusses the introduction of field theory into solid state physics, which proved to be the decisive step toward a theory. Describes how Schrieffer's suggestion of a wave function for the multielectron problem in terms of electron pairs led to the theory of superconductivity, or the so called B.C.S. theory
International Nuclear Information System (INIS)
Taylor, A.W.B.; Noakes, G.R.
1981-01-01
This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)
Phenomenological theory of superfluidity and superconductivity
International Nuclear Information System (INIS)
Rabinowitz, M.
1994-01-01
Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperatures T c of superfluid 3 He and 4 He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors. T c for atomic H is estimated. T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths
Niederreiter, Harald
2015-01-01
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...
Self-similarity in applied superconductivity
International Nuclear Information System (INIS)
Dresner, Lawrence
1981-09-01
Self-similarity is a descriptive term applying to a family of curves. It means that the family is invariant to a one-parameter group of affine (stretching) transformations. The property of self-similarity has been exploited in a wide variety of problems in applied superconductivity, namely, (i) transient distribution of the current among the filaments of a superconductor during charge-up, (ii) steady distribution of current among the filaments of a superconductor near the current leads, (iii) transient heat transfer in superfluid helium, (iv) transient diffusion in cylindrical geometry (important in studying the growth rate of the reacted layer in A15 materials), (v) thermal expulsion of helium from quenching cable-in-conduit conductors, (vi) eddy current heating of irregular plates by slow, ramped fields, and (vii) the specific heat of type-II superconductors. Most, but not all, of the applications involve differential equations, both ordinary and partial. The novel methods explained in this report should prove of great value in other fields, just as they already have done in applied superconductivity. (author)
Theory of high temperature superconductivity
International Nuclear Information System (INIS)
Srivastava, C.M.
1989-01-01
This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown
John Bardeen and the theory of superconductivity
International Nuclear Information System (INIS)
Schrieffer, J.R.
1992-01-01
Bardeen's knowledge of the experimental data had bounded the theory of superconductivity quite tightly before B, C and S developed their theory. When one speaks with John Bardeen's friends about him, one frequently hears words such as brilliant, quiet, persistent, generous, visionary, athletic, kind, thoughtful and remarkable. It is the author's good fortune to have the chance to recount some incidents from his life that are connected with the theory of superconductivity. This article draws on the author's personal memories; his many other friends and colleagues will set down their own recollections elsewhere. The evolution of the microscopic theory of superconductivity closely parallels the scientific life of Joh Bardeen. Starting with his PhD dissertation, done under the guidance of Eugene Wigner, he spent much of his life developing an understanding of electron interaction effects and transport properties of metals, semiconductors and superconductors. His fascination with the remarkable phenomenon of superconductivity goes back to his graduate student days at Princeton. Although interrupted during the war years and in the late 1940's at Bell Labs, he returned to this perplexing topic when he moved to the University of Illinois in 1951. 20 refs., 7 figs
Poole, Charles P; Farach, Horacio A
1995-01-01
Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high
Applied superconductivity and cryogenic research activities in NIFS
International Nuclear Information System (INIS)
Mito, T.; Sagara, A.; Imagawa, S.; Yamada, S.; Takahata, K.; Yanagi, N.; Chikaraishi, H.; Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Sato, M.; Noda, N.; Yamauchi, K.; Komori, A.; Motojima, O.
2006-01-01
Since the foundation of National Institute for Fusion Science (NIFS) in 1989, the primary mission of the applied superconductivity and cryogenic researches has been focused on the development of the large helical device (LHD): the largest fusion experimental apparatus exclusively utilizing superconducting technologies. The applied superconductivity and cryogenics group in NIFS was organized to be responsible for this activity. As a result of extensive research activities, the construction of LHD was completed in 1997. Since then, the LHD superconducting system has been demonstrating high availability of more than 97% during eight years operation and it keeps proving high reliability of large-scale superconducting systems. This paper describes the extensive activities of the applied superconductivity and cryogenic researches in NIFS during and after the development of LHD and the fundamental researches that aim at realizing a helical-type fusion reactor
Multiple scattering theory for superconducting heterostructures
Energy Technology Data Exchange (ETDEWEB)
Ujfalussy, Balazs [Wigner Research Centre for Physics, Budapest (Hungary)
2016-07-01
We generalize the screened Korringa-Kohn-Rostoker method for solving the corresponding Kohn-Sham-Bogoliubov-de Gennes equations for surfaces and interfaces. As an application of the theory, we study the quasiparticle spectrum of Au overlayers on a Nb(100) host. We find that within the superconducting gap region, the quasiparticle spectrum consists of Andreev bound states with a dispersion which is closely connected to the underlying electronic structure of the overlayer. We also find that the spectrum has a strongly k-dependent induced gap. The properties of the gap are discussed in relation to the thickness of the overlayer, and it is shown that certain states do not participate in the Andreev scattering process. From the thickness dependence of the gap size we calculate the superconducting critical temperature of Au/Nb(100) heterostructures what we compare with with experiments. Moreover, predictions are made for similar heterostructures of other compounds.
Dekkers, Rob
2017-01-01
Offering an up-to-date account of systems theories and its applications, this book provides a different way of resolving problems and addressing challenges in a swift and practical way, without losing overview and grip on the details. From this perspective, it offers a different way of thinking in order to incorporate different perspectives and to consider multiple aspects of any given problem. Drawing examples from a wide range of disciplines, it also presents worked cases to illustrate the principles. The multidisciplinary perspective and the formal approach to modelling of systems and processes of ‘Applied Systems Theory’ makes it suitable for managers, engineers, students, researchers, academics and professionals from a wide range of disciplines; they can use this ‘toolbox’ for describing, analysing and designing biological, engineering and organisational systems as well as getting a better understanding of societal problems. This revised, updated and expanded second edition includes coverage of a...
Proposed experimental test of the theory of hole superconductivity
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu
2016-06-15
Highlights: • The conventional theory of superconductivity predicts no charge flow when the normal-superconductor phase boundary moves. • The theory of hole superconductivity predicts flow and counterflow of charge. • An experiment to measure a voltage is proposed. • No voltage will be measured if the conventional theory is correct. • A voltage will be measured if the theory of hole superconductivity is correct. - Abstract: The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
International Nuclear Information System (INIS)
Kakani, S.L.; Kakani, Shubhra
2007-01-01
The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted
Report for 1994 on applied superconductivity
International Nuclear Information System (INIS)
1994-01-01
In the report for 1994, scientists and engineers interested in the applications of superconductivity are informed in as short a form as possible of a survey on the current international state of development (December 1994). The report is mainly concerned with progress made in the last 12-18 months. It is assumed that well-established results of research and development of previous years are known. (orig./MM) [de
Applied multidimensional systems theory
Bose, Nirmal K
2017-01-01
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1980-01-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1978-07-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de
Spieker, Matthew H.
2016-01-01
Some American high schools include Advanced Placement (AP) Music Theory within their course offerings. Students who pass the AP exam can receive college credit either as a music or humanities credit. An AP class, however, offers music students more than future college credit; it ultimately improves musicianship skills and promotes deeper…
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
International Nuclear Information System (INIS)
Palmieri, V.
1990-01-01
This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio
Dekkers, Rob
2014-01-01
Offering an up-to-date account of systems theories and its applications, this book provides a different way of resolving problems and addressing challenges in a swift and practical way, without losing overview and not having a grip on the details. From this perspective, it offers a different way of thinking in order to incorporate different perspectives and to consider multiple aspects of any given problem. Drawing examples from a wide range of disciplines, it also presents worked cases to illustrate the principles. The multidisciplinary perspective and the formal approach to modelling of syst
Thomas, D B
1974-01-01
A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).
Superconducting quantum circuits theory and application
Deng, Xiuhao
2015-01-01
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...
Theory of RF superconductivity for resonant cavities
Gurevich, Alex
2017-03-01
An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.
[Research programs on elementary particle and field theories and superconductivity
International Nuclear Information System (INIS)
Khuri, N.N.
1992-01-01
Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related
On the theory of twinning plane superconductivity
International Nuclear Information System (INIS)
Mishonov, T.M.
1988-01-01
The thermodynamic potential of the superconducting layer in the twinning plane (TP) vicinity for the type I superconductors is found. The corrections to the surface tension in powers of the Ginsburg-Landau parameter κ are obtained. The corresponding states law for the supercooling field for the type I twinning plane superconductivity (TPS) is obtained, as well as the critical field law for the type II TPS. A review of experimental and theoretical works on TPS and some similar systems is given. The conditions for the Berezinski-Kosterlitz-Thouless transition for the proximity effect are discussed, as well as the possible mechanisms for the conducting phase transition TPS in Nb and the pinning forces close to the twinning plane. The obtained order parameter distribution can be used for description of the superlattices from normal and superconducting metals as well. 6 figs., 44 refs
Ketterson, John B
2008-01-01
Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...
DESY: HERA superconducting magnets OK; Theory workshop
International Nuclear Information System (INIS)
Anon.
1990-01-01
The HERA electron-proton collider being built at the DESY Laboratory in Hamburg is the first accelerator using superconducting magnets manufactured by industry on a large scale. For this pioneering step several potential problems now seem to be all well under control, with important contributions coming from both the manufacturers and DESY's accelerator specialists
Energy Technology Data Exchange (ETDEWEB)
Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)
1991-11-01
A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).
Theory of superconductivity and spin excitations in cuprates
Plakida, Nikolay M.
2018-06-01
A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.
ASC 84: applied superconductivity conference. Final program and abstracts
International Nuclear Information System (INIS)
1984-01-01
Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics
ASC 84: applied superconductivity conference. Final program and abstracts
Energy Technology Data Exchange (ETDEWEB)
1984-01-01
Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)
Superconductivity: a quasiclassical theory of multiple interface geometry
International Nuclear Information System (INIS)
Rameshwar, Rudra; Prashant, Sagar; Prasad, Jagdish
2005-01-01
In many cases of interests such as a multilayer mesoscopic structure or the grain boundaries network in high technologies, one deal with the situation where multiple interfaces should be treated simultaneously on equal footing. In this paper we have focused on theoretically concept, i.e. even an isolated interface poses certain difficulties. Since abrupt changes violate the quasiclassical condition, the standard theory of superconductivity in terms of the quasiclassical matrix Green function g R is invalid at interfaces. The interface is included via the boundary condition derived by Zaitsev a cubic matrix relation in superconductivity. (author)
Chiral plaquette polaron theory of cuprate superconductivity
Tahir-Kheli, Jamil; Goddard, William A., III
2007-07-01
Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a
Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.
2018-04-01
We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.
Theory of the superconducting proximity effect below the transition temperature
International Nuclear Information System (INIS)
Silvert, W.
1975-01-01
The form of the low-temperature theory of the superconducting proximity effect depends on whether the non-linear terms are assumed to depend only on the local value of the gap or on its average value over some finite range. The local assumption leads to smaller values of the gap and to unphysical results at low temperatures. The effect of non-locality is significant even in the Ginsburg-Landau regime. (author)
Boundary condition for Ginzburg-Landau theory of superconducting layers
Czech Academy of Sciences Publication Activity Database
Koláček, Jan; Lipavský, Pavel; Morawetz, K.; Brandt, E. H.
2009-01-01
Roč. 79, č. 17 (2009), 174510/1-174510/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009
International Nuclear Information System (INIS)
Yamamoto, Akira
2011-01-01
The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)
Microscopic theory of coexistence of superconductivity and antiferromagnetism
International Nuclear Information System (INIS)
Ashkenazi, J.; Kuper, C.G.; Ron, A.
1983-01-01
A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8
On Pokrovskii's anisotropic gap equations in superconductivity theory
Yang, Yisong
2003-11-01
An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.
Superconducting vortices in Weinberg - Salam theory
International Nuclear Information System (INIS)
Garaud, J.
2010-09-01
In this dissertation, we analyze in detail the properties of new string-like solutions of the bosonic sector of the electroweak theory. The new solutions are current carrying generalizations of embedded Abrikosov-Nielsen-Olesen vortices. We were also able to reproduce all previously known features of vortices in the electroweak theory. Generically vortices are current carrying. They are made of a compact conducting core of charged W bosons surrounded by a nonlinear superposition of Z and Higgs field. Far away from the core, the solution is described by purely electromagnetic Biot and Savart field. Solutions exist for generic parameter values including experimental values of the coupling constants. We show that the current whose typical scale is the billion of Amperes can be arbitrarily large. In the second part the linear stability with respect to generic perturbations is studied. The fluctuation spectrum is qualitatively investigated. When negative modes are detected, they are explicitly constructed and their dispersion relation is determined. Most of the unstable modes can be eliminated by imposing periodic boundary conditions along the vortex. However there remains a unique negative mode which is homogeneous. This mode can probably be eliminated by curvature effects if a small piece of vortex is bent into a loop, stabilized against contraction by the electric current. (author)
A modified BCS theory of heavy fermion superconductivity
International Nuclear Information System (INIS)
Baral, P.C.; Rout, G.C.
2012-01-01
In this paper we derive an expression for the superconducting gap equation for U and Ce based heavy fermion (HF) systems within a modified weak coupling theory of superconductivity. The calculated gap equation presents a mixture of pairing amplitudes of two different quasi-particle bands α and β. These two gap equations are solved numerically and self-consistently within the cut-off energy which arises due to the Kondo energy. It is found that the energy dependence of the enhanced density of states for the HF systems clearly manifests itself in the theory and the Kondo energy naturally takes the role of cut-off energy (ω c ), as long as the effective cut-off energy is large in comparison with the Kondo energy. The numerical analysis confirms this result and shows that superconducting transition temperature is independent of effective cut-off energy employed within this approach. The temperature dependence of gap equations are studied by varying the model parameters like positions of f-level, hybridization and coupling constants of the HF systems. (author)
Theory of the isotope effect in superconducting compounds
International Nuclear Information System (INIS)
Culetto, F.J.; Rainer, D.
1978-05-01
We present a theoretical analysis of the isotope effect on the superconducting transition temperature. Our method is to calculate via formal perturbation theory the response of the transition temperature to small changes of the masses of the various constituents of the compound. We discuss the relation between the isotope effect and various more fundamental parameters in strong coupling superconductors. As illustrative examples, we consider the systems Pd-H(D) alloys and the binary Chevrel phase superconductor Mo 6 Se 8 , and show that analysis of the isotope effect can yield useful information concerning interaction mechanisms in these compounds. (orig.)
National Research Council Canada - National Science Library
Bruno, Claudio
2001-01-01
This report results from a contract tasking University of Rome as follows: The contractor will investigate the use of superconducting materials for use in high power hall effect type electric propulsion motors...
Mathematical aspects of the BCS theory of superconductivity and related theories
International Nuclear Information System (INIS)
Braeunlich, Gerhard Albert
2014-01-01
The present work starts with a introduction to the BCS theory, describing superconductivity and superfluidity. The main part consist of a collection of three publications and a paper included in a conference proceedings. The introduction (Chapter 1) includes a brief historical review of the research in the field of superconductivity and superfluidity. It ends with a short summary of the technical applications of superconductivity. In Chapter 2, a derivation of the BCS functional from quantum statistics is presented. Chapter 3 explains the results of the publications mentioned above. In a first work, the validity of the negligence of the direct and exchange energy in the derivation of the BCS functional is examined. Another work addresses the connection between the BCS theory and the Gross-Pitaevskii equation.
A Course on Applied Superconductivity Shared by Four Departments
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Abrahamsen, Asger Bech; Sørensen, Mads Peter
2011-01-01
superconductivity the focus was on an application, which could benefit from using superconductors. The application used in this course was superconducting generators for direct drive wind turbines. As part of the course the students built a small-scale superconducting machine and set up finite element models...... of that machine as well as large-scale wind turbine generators with superconductors and also permanent magnet generators. The course was assessed by a student conference contribution and reports from the students. The quality of the course was evaluated by interviewing the students after the course had finished....... The students were very pleased with the course and gave suggestions of how the course could be improved further....
Applied Linguistics: The Challenge of Theory
McNamara, Tim
2015-01-01
Language has featured prominently in contemporary social theory, but the relevance of this fact to the concerns of Applied Linguistics, with its necessary orientation to practical issues of language in context, represents an ongoing challenge. This article supports the need for a greater engagement with theory in Applied Linguistics. It considers…
Advanced Learning Theories Applied to Leadership Development
2006-11-01
Center for Army Leadership Technical Report 2006-2 Advanced Learning Theories Applied to Leadership Development Christina Curnow...2006 5a. CONTRACT NUMBER W91QF4-05-F-0026 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Advanced Learning Theories Applied to Leadership Development 5c...ABSTRACT This report describes the development and implementation of an application of advanced learning theories to leadership development. A
On the history of creation of the microscopic theories of superfluidity and superconductivity
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Isaev, P.S.
2002-01-01
The history of creation of the microscopic theory of superfluidity (1947) and the microscopic theory of superconductivity (1957) is expounded. The paper is dedicated to the 90th anniversary of the birth of our genius contemporary Academician Nikolaj Nikolaevich Bogolyubov
International Nuclear Information System (INIS)
Langone, J.
1989-01-01
This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries
International Nuclear Information System (INIS)
Onnes, H.K.
1988-01-01
The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace
Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect
Fujita, Shigeji; Godoy, Salvador
2009-01-01
Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects
Scattering theory of superconductive tunneling in quantum junctions
International Nuclear Information System (INIS)
Shumeiko, V.S.; Bratus', E.N.
1997-01-01
A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure
Effective field theories for superconducting systems with multiple Fermi surfaces
Energy Technology Data Exchange (ETDEWEB)
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.
International Nuclear Information System (INIS)
Andersen, N.H.; Mortensen, K.
1988-12-01
This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs
NORPAS - NORdic program of applied superconductivity. Final report
Energy Technology Data Exchange (ETDEWEB)
Mikkonen, R. [ed.
1995-12-31
High temperature superconducting (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration on many applications. As with any technology trying to find a niche, widespread commercialization can only occur if the new technology can match the performance of an existing technology at a lower cost, or the new technology represents a breakthrough in capabilities, irrespective of cost, in turn enabling functionality previously thought impossible. There are two obvious areas where HTS will have significant benefit. The first is all applications which will notably benefit from a reduction in refrigeration power. The second area is the market of very high field magnets where there is no viable alternative. Applications under consideration for HTS include: (1) Rotating electrical machines (synchronous ac and homopolar dc motors), (2) Underground transmission cables, (3) Superconducting Magnetic Energy Storage (SMES), (4) Utility distribution equipment such as transformers and current limiters, (5) Commercial processing applications such as magnetic separation. (6) Military applications such as mine clearing, (7) Specialty magnets such as high field inserts
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.
2015-05-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
International Nuclear Information System (INIS)
Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V
2015-01-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)
Moral theories in teaching applied ethics.
Lawlor, Rob
2007-06-01
It is argued, in this paper, that moral theories should not be discussed extensively when teaching applied ethics. First, it is argued that, students are either presented with a large amount of information regarding the various subtle distinctions and the nuances of the theory and, as a result, the students simply fail to take it in or, alternatively, the students are presented with a simplified caricature of the theory, in which case the students may understand the information they are given, but what they have understood is of little or no value because it is merely a caricature of a theory. Second, there is a methodological problem with appealing to moral theories to solve particular issues in applied ethics. An analogy with science is appealed to. In physics there is a hope that we could discover a unified theory of everything. But this is, of course, a hugely ambitious project, and much harder than, for example, finding a theory of motion. If the physicist wants to understand motion, he should try to do so directly. We would think he was particularly misguided if he thought that, to answer this question, he first needed to construct a unified theory of everything.
Process for applying a superconductive powder to a wide variety of substrates
Hooker, Matthew W.; Wise, Stephanie A.; Tran, Sang Q.
1992-12-01
A fine superconducting powder such as YBa2Cu3O(7-x), wherein x is less than one, is blended into a liquid mixture comprising an epoxy resin and a thinner. This liquid mixture with the blended superconducting powder is coated onto a substrate. Next, the thinner is evaporated and the remaining coating cured, resulting in a coating of cured epoxy resin having superconducting powder suspended therein. This coating exhibits the Meissner effect, i.e., it expels a magnetic flux which protects the substrate from external magnetic interference. Since the coated substrate need only be heated for evaporation and curing at relatively low temperatures compared to firing, the superconducting coating can be applied to a wide variety of different materials.
3-D metrology applied to superconducting dipole magnets for LHC
International Nuclear Information System (INIS)
Dupont, M.; Missiaen, D.; Peguiron, L.
1999-01-01
The construction of the Large Hadron Collider (LHC) requires the manufacture of 1232 superconducting dipole magnets containing two beam channels in a common mechanical structure. These dipole magnets, which produce the required magnetic field to deflect the particles along a circular trajectory, have to be bent in their horizontal plane in order to ensure the largest mechanical aperture. Very tight tolerances on the geometry of these magnets have to be imposed during their fabrication in order to minimise, during operation, the possible losses of particles, which circulate in rather small channels and to ensure the alignment of the adjacent magnets in the ring tunnel. This necessitates a thorough metrological inspection of the magnet geometry and an accurate positioning of some of its components. This paper presents the measuring system and the developed methodology to realize these operations. The results on the first 15 m long dipole magnet are shown. (author)
Local Finite Density Theory, Statistical Blocking and Color Superconductivity
Ying, S.
2000-01-01
The motivation for the development of a local finite density theory is discussed. One of the problems related to an instability in the baryon number fluctuation of the chiral symmetry breaking phase of the quark system in the local theory is shown to exist. Such an instability problem is removed by taking into account the statistical blocking effects for the quark propagator, which depends on a macroscopic {\\em statistical blocking parameter} $\\epsilon$. This new frame work is then applied to...
Applied group theory selected readings in physics
Cracknell, Arthur P
1968-01-01
Selected Readings in Physics: Applied Group Theory provides information pertinent to the fundamental aspects of applied group theory. This book discusses the properties of symmetry of a system in quantum mechanics.Organized into two parts encompassing nine chapters, this book begins with an overview of the problem of elastic vibrations of a symmetric structure. This text then examines the numbers, degeneracies, and symmetries of the normal modes of vibration. Other chapters consider the conditions under which a polyatomic molecule can have a stable equilibrium configuration when its electronic
International Nuclear Information System (INIS)
Caruana, C.M.
1988-01-01
Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
Self-consistent theory of normal-to-superconducting transition
International Nuclear Information System (INIS)
Radzihovsky, L.; Chicago Univ., IL
1995-01-01
I study the normal-to-superconducting (NS) transition within the Ginzburg-Landau (GL) model, taking into account the fluctuations in the m-component complex order parameter ψ α and the vector potential A in the arbitrary dimension d, for any m. I find that the transition is of second order and that the previous conclusion of the fluctuation-driven first-order transition is a possible artifact of the breakdown of the ε-expansion and the inaccuracy of the 1/m-expansion for physical values ε = 1, m 1. I compute the anomalous η(d, m) exponent at the NS transition, and find η(3, 1) ∼ -0.38. In the m → ∞ limit, η(d, m) becomes exact and agrees with the 1/m-expansion. Near d = 4 the theory is also in good agreement with the perturbative ε-expansion results for m > 183 and provides a sensible interpolation formula for arbitrary d and m. (orig.)
Theory of superconducting magnet suspension: main results survey
International Nuclear Information System (INIS)
Voevodskii, K.E.; Kochetkov, V.M.
1981-01-01
A survey is given of theoretical achievements on electro-dynamic suspension of high speed ground vehicles with superconducting magnets. The problems discussed, are calculation of lift and drag forces acting on a superconducting magnet, the latter moving above a guideway structure which may be of two different types (either conducting sheet or a series of discrete loops); influence of irregularities of the guideway structure; vertical and longitudinal stability of suspension. (author)
Self-consistent T-matrix theory of superconductivity
Czech Academy of Sciences Publication Activity Database
Šopík, B.; Lipavský, Pavel; Männel, M.; Morawetz, K.; Matlock, P.
2011-01-01
Roč. 84, č. 9 (2011), 094529/1-094529/13 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0212; GA ČR(CZ) GAP204/11/0015 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * T-matrix * superconducting gap * restricted self-consistency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
International Nuclear Information System (INIS)
Hirsch, J.E.
2005-01-01
The existence of macroscopic spin currents in the ground state of superconductors is predicted within the theory of hole superconductivity. Here it is shown that the electromagnetic Darwin interaction is attractive for spin currents and repulsive for charge currents. It is also shown that the mere existence of spin currents implies that some electrons are moving at relativistic speeds in macroscopic superconductors, which in turn implies that the Darwin interaction plays a fundamental role in stabilizing the superconducting state
International Nuclear Information System (INIS)
Clem, John R.
2011-01-01
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ(parallel)) and flux flow (ρ(perpendicular)), and their ratio r = ρ(parallel)/ρ(perpendicular). When r c (φ) that makes the vortex arc unstable.
International Nuclear Information System (INIS)
Vladimirov, A.A.; Plakida, N.M.; Ihle, D.
2010-01-01
A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found
Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan
2014-01-01
Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
International Nuclear Information System (INIS)
Chan, H.A.; Paik, H.J.
1987-01-01
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
2015-01-01
On Tuesday, 25 August, J. Georg Bednorz (Nobel prize in physics 1987, IBM Research Zurich) and Louis Taillefer (physicist and professor at the University of Sherbrooke, Canada, and at the Canadian Institute for Advanced Research) will give a conference on the fascinating theme of superconductivity. "Superconductivity: theory and practical challenges of a quantum phenonemon" Uni Dufour Tuesday, 25 August at 7 p.m. This conference is organized by the Faculty of science of the University of Geneva, as part of the International Congress Materials and Mechanisms of Superconductivity (M2S - 2015). Discovered more than 100 years ago, superconductivity remains one of the most fascinating manifestations of the laws of physics, observable only at low temperatures. This phenomenon, which allows the transport of electricity without any loss of energy, leads to various technological applications, for example in magnetically levitated vehicles, in MRI and in ...
International Nuclear Information System (INIS)
Narlikar, A.V.
1993-01-01
Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig
International Nuclear Information System (INIS)
Anon.
1988-01-01
This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject
International Nuclear Information System (INIS)
Ezawa, Z.F.; Iwazaki, A.
1991-01-01
It is shown that Chern-Simons gauge theories describe both the fractional-quantum-Hall-effect (FQHE) hierarchy and anyon superconductivity, simply by field-theoretically extracting the effects of vortex excitations. Vortices correspond to Laughlin's quasiparticles or bound states of anyons. Both of these phenomena are explained by the condensations of these vortices. We clarify why the anyon systems become incompressible (FQHE) or compressible (anyon superconductivity) depending on the statistics. It is to be emphasized that we can derive an effective Lagrangian describing fully the FQHE hierarchy from a basic Chern-Simons gauge theory
Theory of normal and superconducting properties of fullerene-based solids
International Nuclear Information System (INIS)
Cohen, M.L.
1992-10-01
Recent experiments on the normal-state and superconducting properties of fullerene-based solids are used to constrain the proposal theories of the electronic nature of these materials. In general, models of superconductivity based on electron pairing induced by phonons are consistent with electronic band theory. The latter experiments also yield estimates of the parameters characterizing these type H superconductors. It is argued that, at this point, a ''standard model'' of phonons interacting with itinerant electrons may be a good first approximation for explaining the properties of the metallic fullerenes
International Nuclear Information System (INIS)
Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.
1989-01-01
Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry
Applying organizational behavior theory to primary care.
Mullangi, Samyukta; Saint, Sanjay
2017-03-01
Addressing the mounting primary care shortage in the United States has been a focus of educators and policy makers, especially with the passage of the Affordable Care Act in 2010 and the Medicare Access and CHIP Reauthorization Act in 2015, placing increased pressure on the system. The Association of American Medical Colleges recently projected a shortage of as many as 65,000 primary care physicians by 2025, in part because fewer than 20% of medical students are picking primary care for a career. We examined the issue of attracting medical students to primary care through the lens of organizational behavior theory. Assuming there are reasons other than lower income potential for why students are inclined against primary care, we applied various principles of the Herzberg 2-factor theory to reimagine the operational flow and design of primary care. We conclude by proposing several solutions to enrich the job, such as decreasing documentation requirements, reducing the emphasis on specialty consultations, and elevating physicians to a supervisory role.
Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2
Energy Technology Data Exchange (ETDEWEB)
Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik
2015-07-01
The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).
Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2
International Nuclear Information System (INIS)
Seidel, Paul
2015-01-01
The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).
Theory-guided discovery of new superconducting materials
Kolmogorov, Aleksey
2015-03-01
Extensive theoretical effort to predict new superconductors has resulted in remarkably few discoveries. Successful examples so far have been restricted primarily to pressure- or doping-driven superconducting transformations in existing materials. In this talk I will describe our work that has led to the prediction and discovery of a brand-new superconducting FeB4 compound with a previously unknown crystal structure. First measurements supported the predicted phonon-mediated pairing mechanism, rare for an iron-based superconductor. The identification of FeB4 candidate material was a result of combined high-throughput screening, targeted evolutionary search, and rational design. The systematic study of more than 12,000 metal boride phases has identified dozens of synthesizable materials with unusual structural motifs, some of which have been confirmed experimentally. I will overview employed strategies for selecting promising superconducting compounds and describe our on-going work on accelerating the search for stable materials. Research is sponsered by the NSF.
International Nuclear Information System (INIS)
2007-01-01
During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with
Understanding and application of superconducting materials
International Nuclear Information System (INIS)
Moon, Byeong Mu; Lee, Chun Heung
1997-02-01
This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.
Perturbation theory of the periodic Anderson lattice and superconductivity
International Nuclear Information System (INIS)
Geertsuma, W.
1988-01-01
In this paper the author develops a perturbation calculation of the second and fourth order interparticle interaction in band states, based on the Periodic Anderson Lattice. The author shows that 4th order interparticle interactions giving rise to the well known Kondo effect vanish in the superconducting ground state. This term survives in the presence of a magnetic field. Pair excitations can only give rise to an appreciable attractive contribution when the d states are less than half filled and the pair energy is near the Fermi level. The only important attractive interaction comes from the normal fourth order terms
Applying Activity Theory in Multiagency Settings
Directory of Open Access Journals (Sweden)
Daniels H.,
2016-12-01
Full Text Available In this paper I explore the extent to which two approaches to the social formation of mind are compatible and may be used to enrich and extend each other. These are: Activity Theory (AT as derived from the work of the early Russian psychologists, Vygotsky and Leontiev, and the work of the sociologist Basil Bernstein. The purpose is to show how Bernstein provides a language of description which allows Vygotsky’s account of social formation of mind to be extended and enhanced through an understanding of the sociological processes which form specific modalities of pedagogic practice and their specialized scientific concepts. The two approaches engage with a common theme namely the social shaping of consciousness, from different perspectives and yet as Bernstein acknowledges both develop many of their core assumptions from the work of Marx and the French school of early twentieth century sociology. The work of the Russian linguist is also be used to further nuance the argument applied in multiagency settings.
Theory and numerics for shape optimization in superconductivity
International Nuclear Information System (INIS)
Heese, H.
2006-01-01
We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)
Theory and numerics for shape optimization in superconductivity
Energy Technology Data Exchange (ETDEWEB)
Heese, H.
2006-07-21
We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)
Microscopic theory of the current-voltage relationship across a normal-superconducting interface
International Nuclear Information System (INIS)
Kraehenbuehl, Y.; Watts-Tobin, R.J.
1979-01-01
Measurements by Pippard et al. have shown the existence of an extra resistance due to the penetration of an electrical potential into a superconductor. Previous theories of this effect are unable to explain the full temperature dependence of the extra resistance because they use oversimplified models of the normal--superconducting interface. We show that the microscopic theory for dirty superconductors leads to a good agreement with experiment over the whole temperature range
Ginzburg-Landau-type theory of nonpolarized spin superconductivity
Lv, Peng; Bao, Zhi-qiang; Guo, Ai-Min; Xie, X. C.; Sun, Qing-Feng
2017-01-01
Since the concept of spin superconductor was proposed, all the related studies concentrate on the spin-polarized case. Here, we generalize the study to the spin-non-polarized case. The free energy of nonpolarized spin superconductor is obtained, and Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by the super spin current is equal to the one induced by an equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and related topics such as the Bose-Einstein condensate of magnons and spin superfluidity.
International Nuclear Information System (INIS)
Im, I.G.; Choi, H.S.; Jung, B.I.
2013-01-01
Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types
Energy Technology Data Exchange (ETDEWEB)
Im, I.G., E-mail: asiligo@gmail.com; Choi, H.S., E-mail: hyosang@chosun.ac.kr; Jung, B.I.
2013-11-15
Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types.
Applying Theories of Deviance to Academic Cheating.
Michaels, James W.; Miethe, Terance D.
1989-01-01
Reports on a study that extends social psychological theories of deviance to explain academic cheating. Uses self-report data from college students to examine the theories of deterrence, rational choice, social bond, and social learning formulations of cheating. Supports the claim that cheating is a serious problem in higher education. (SLM)
Frustration and dual superconductivity in lattice gauge theories
International Nuclear Information System (INIS)
Orland, P.
1984-01-01
Introducing plaquette fields in SU(N) gauge theories yields a mass gap and confinement by a dual Meisnner effect. Sources for the plaquette fields are electric strings. Similiar plaquette fields exist in pure compact lattice gauge theories. In principle they make it possible to expand in h while keeping the guage field compact
Motivational theory applied to hospital pharmacy practice.
Grace, M
1980-12-01
In recent years a great deal of attention has been paid to motivation and job satisfaction among hospital pharmacy practitioners. Institutional pharmacy managers should become more aware of ways in which they can motivate members of their staff. Specifically, Frederick Herzberg's Two-Factor Theory is discussed in reference to its origination, major tenets, and practical applications in institutional pharmacy practice settings. Principally, Herzberg's theory explains needs of workers in terms of extrinsic factors called "hygienes" and intrinsic factors called "motivators." The theory suggests that job satisfaction and dissatisfaction are not opposites but two separate dimensions. According to this theory, an employee will be motivated if the task allows for the following: 1)actual achievement, 2) recognition for achievement, 3) increased responsibility, 4) opportunity for growth (professionally), and 5) chance for advancement. It is concluded that some of these suggested applications can be useful to managers who are faced with low morale among the members of their staff.
Decision theory applied to radioactive repository construction
International Nuclear Information System (INIS)
Heilbron Filho, Paulo Fernando Lavalle; Pontedeiro, Elizabeth May
2001-01-01
The objective of this article is to present, through the presentation of an example, the applicability of the decision theory on the selection and construction of a repository for low and intermediate radioactive waste. (author)
Theory of high-T{sub C} superconductivity: transition temperature
Energy Technology Data Exchange (ETDEWEB)
Harshman, Dale R [Physikon Research Corporation, Lynden, WA 98264 (United States); Fiory, Anthony T [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Dow, John D, E-mail: drh@physikon.net [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)
2011-07-27
It is demonstrated that the transition temperature (T{sub C}) of high-T{sub C} superconductors is determined by their layered crystal structure, bond lengths, valency properties of the ions, and Coulomb coupling between electronic bands in adjacent, spatially separated layers. Analysis of 31 high-T{sub C} materials (cuprates, ruthenates, ruthenocuprates, iron pnictides, organics) yields the universal relationship for optimal compounds, k{sub B}T{sub C0} ={beta}/{iota}{zeta}, where {iota} is related to the mean spacing between interacting charges in the layers, {zeta} is the distance between interacting electronic layers, {beta} is a universal constant and T{sub C0} is the optimal transition temperature (determined to within an uncertainty of {+-} 1.4 K by this relationship). Non-optimum compounds, in which sample degradation is evident, e.g. by broadened superconducting transitions and diminished Meissner fractions, typically exhibit reduced T{sub C} < T{sub C0}. It is shown that T{sub C0} may be obtained from an average of the Coulomb interaction forces between the two layers.
Theory of superconducting spintronic SIsFS devices
International Nuclear Information System (INIS)
Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M.Yu.; Bol'ginov, V.V.; Ryazanov, V.V.; Vernik, I.V.; Mukhanov, O.A.; Golubov, A.A.
2013-01-01
Full text: Motivated by recent progress in developments of cryogenic memory compatible with single flux quantum (SFQ) circuits we have performed a theoretical study of magnetic SIsFS Josephson junctions, where 'S' is a bulk superconductor, 's' is a thin superconducting film, 'F' is a metallic ferromagnet and 'I' is an insulator. We calculate the Josephson current as a function of s and F layers thickness, temperature and exchange energy of F film. We outline several modes of operation of these junctions and demonstrate their unique ability to have high I C R N product in the π-state, comparable to that in SIS tunnel junctions commonly used in SFQ circuits. We develop a model describing switching of the Josephson critical current in these devices by external magnetic field. The results are in good agreement with the experimental data for Nb-Al/AlOx-Nb-Pd0:99Fe0:01-Nb junctions. This work is supported by RFBR No. 12-02-90010-Bel a .
Energy Technology Data Exchange (ETDEWEB)
Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.
2005-07-01
Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.
Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.
Nunokawa, Kazuhiko
1996-01-01
The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)
Quark soup al dente: applied superstring theory
Energy Technology Data Exchange (ETDEWEB)
Myers, R C; Vazquez, S E [Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2 L 2Y5 (Canada)], E-mail: rmyers@perimeterinstitute.ca, E-mail: svazquez@perimeterinstitute.ca
2008-06-07
In recent years, experiments have discovered an exotic new state of matter known as the strongly coupled quark-gluon plasma (sQGP). At present, it seems that standard theoretical tools, such as perturbation theory and lattice gauge theory, are poorly suited to understand this new phase. However, recent progress in superstring theory has provided us with a theoretical laboratory for studying very similar systems of strongly interacting hot non-Abelian plasmas. This surprising new perspective extracts the fluid properties of the sQGP from physical processes in a black hole spacetime. Hence we may find the answers to difficult particle physics questions about the sQGP from straightforward calculations in classical general relativity.
Theory of superconducting tunneling without the tunneling Hamiltonian
International Nuclear Information System (INIS)
Arnold, G.B.
1987-01-01
When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling
History and theory in "applied ethics".
Beauchamp, Tom L
2007-03-01
Robert Baker and Laurence McCullough argue that the "applied ethics model" is deficient and in need of a replacement model. However, they supply no clear meaning to "applied ethics" and miss most of what is important in the literature on methodology that treats this question. The Baker-McCullough account of medical and applied ethics is a straw man that has had no influence in these fields or in philosophical ethics. The authors are also on shaky historical grounds in dealing with two problems: (1) the historical source of the notion of "practical ethics" and (2) the historical source of and the assimilation of the term "autonomy" into applied philosophy and professional ethics. They mistakenly hold (1) that the expression "practical ethics" was first used in a publication by Thomas Percival and (2) that Kant is the primary historical source of the notion of autonomy as that notion is used in contemporary applied ethics.
Selected papers from the 11th European Conference on Applied Superconductivity (EUCAS 2013)
Ferdeghini, Carlo; Putti, Marina
2014-04-01
The 11th edition of the European Conference on Applied Superconductivity (EUCAS) was held in Genoa (15-19 September 2013) and registered the participation of more than one thousand attendants from over 40 countries. During the conference seven plenary lectures, 23 invited, and 203 oral contributions and 550 posters have been presented, all focused on recent developments in the field of superconductivity applications. This issue of Superconductor Science Technology is a collection of some of the plenary and invited contributions. Moreover, the winners of the EUCAS prizes (the electronics prize dedicated to the memory of Antonio Barone), and the most significant oral contributions selected by the 125 chairs involved in the organization, have been invited to submit their papers. The remaining papers presented at the conference will be published in the Journal Physics Conference Series, edited by S Farinon, G Lamura, A Malagoli and I Pallecchi. The papers have been organized into the four traditional topics of interest of EUCAS, namely materials, wires and tapes, large scale applications, and electronics. The plenary lectures on these four topics have been collected: Potential of iron-based superconductors for practical materials in the future (J Shimoyama), Coated conductors for power applications: materials challenges (J Obradors), Challenges and status of ITER conductor production (A Devred), and the Impact of superconducting devices in imaging in neuroscience (G L Romani). We hope that this issue will let you taste the flavours, hear the sounds and see the colours of this exciting EUCAS edition. The very large participation in EUCAS 2013 has allowed debates on a wide range of topics, starting from the most basic studies on emergent materials up to the new developments in electronics and large scale applications. A round table on HTS Conductors was experimented for the first time gathering material scientists, wire manufacturers and device builders in a stimulating
Learning Theory Applied to the Biology Classroom.
Novak, Joseph D.
1980-01-01
The material presented in this article is intended to help students learn how to learn. The seven key concepts of David Ausubel's assimilation theory for cognitive learning are discussed with reference to the classroom. Concept mapping is suggested as a tool for demonstrating how the seven key concepts function. (SA)
Ab initio theory of superconductivity in a magnetic field. II. Numerical solution
Linscheid, A.; Sanna, A.; Gross, E. K. U.
2015-07-01
We numerically investigate the spin density functional theory for superconductors (SpinSCDFT) and the approximated exchange-correlation functional, derived and presented in the preceding Paper I [A. Linscheid et al., Phys. Rev. B 92, 024505 (2015), 10.1103/PhysRevB.92.024505]. As a test system, we employ a free-electron gas featuring an exchange splitting, a phononic pairing field, and a Coulomb repulsion. SpinSCDFT results are compared with Sarma, the Bardeen-Cooper-Schrieffer theory, and with an Eliashberg type of approach. We find that the spectrum of the superconducting Kohn-Sham SpinSCDFT system is not in agreement with the true quasiparticle structure. Therefore, starting from the Dyson equation, we derive a scheme that allows to compute the many-body excitations of the superconductor and represents the extension to superconductivity of the G0W0 method in band-structure theory. This superconducting G0W0 method vastly improves the predicted spectra.
Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
DEFF Research Database (Denmark)
Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.
2004-01-01
Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....
International Nuclear Information System (INIS)
Edegger, B.
2007-01-01
We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Edegger, B.
2007-08-10
We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)
Electric circuit theory applied electricity and electronics
Yorke, R
1981-01-01
Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical
Gassmann Theory Applies to Nanoporous Media
Gor, Gennady Y.; Gurevich, Boris
2018-01-01
Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.
Ginsburg-Landau theory of two antagonistic order parameters: magnetism and superconductivity
International Nuclear Information System (INIS)
Suhl, H.
1978-01-01
An attempt is made to construct a Ginsburg-Landau theory of so-called magnetic superconductors. Two order parameters, the magnetization field and the gap function, are introduced in such a way as to inhibit each others growth. It is found that the non-local character of the superconducting order parameter must be taken into account in any evaluation of effects of the critical magnetic fluctuations. Some predictions are made within the limits of Ornstein-Zoernicke-like fluctuation theory and some comparison is made with available data. (Auth.)
Morse theory applied to N=1 and 2 superconformal theories
International Nuclear Information System (INIS)
Marzban, C.
1989-12-01
Various spaces are singled-out as candidates for the space of all 2-d N=1 and 2 supersymmetric quantum field theories, respectively. This is done by treating the c-function as a Morse-function on these spaces. (author). 10 refs
Materials and mechanisms of hole superconductivity
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)
2012-01-15
We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.
Coasting beam theory applied to bunches
International Nuclear Information System (INIS)
Hereward, H.
1975-01-01
It is plausible to apply coasting beam criteria to bunches if one has short wavelength disturbances of the bunch and short memory wake fields, where short means short compared with a bunch length, for then one can argue that a piece of the bunch near the middle does not even know that the bunch has ends. Some other conditions probably required to validate this approach are discussed. The local Keil-Schnell criterion is derived from the local dispersion integral
Nodal aberration theory applied to freeform surfaces
Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.
2014-12-01
When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.
Dougherty, Ralph
2013-01-01
While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.
Superconductivity basics and applications to magnets
Sharma, R G
2015-01-01
This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.
Mirror theory applied to toroidal systems
International Nuclear Information System (INIS)
Cohen, R.H.
1987-01-01
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs
Mirror theory applied to toroidal systems
International Nuclear Information System (INIS)
Cohen, R.H.
1987-01-01
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs
International Nuclear Information System (INIS)
Cox, D.L.
1995-01-01
This is a progress report for the DOE project covering the period 2/15/94 to 2/14/95. The PI had a fruitful sabbatical during this period, and had some important new results, particularly in the area of new phenomenology for heavy fermion superconductivity. Significant new research accomplishments are in the area of odd-in-time-reversal pairing states/staggered superconductivity, the two-channel Kondo lattice, and a general model for Ce impurities which admits one-, two-, and three-channel Kondo effects. Papers submitted touch on these areas: staggered superconductivity - a new phenomenology for UPt 3 ; theory of the two-channel Kondo lattice in infinite dimensions; general model of a Ce 3+ impurity. Other work was done in the areas: Knight shift in heavy fermion alloys and compounds; symmetry analysis of singular pairing correlations for the two-channel Kondo impurity model
The diversity and beauty of applied operator theory
Potts, Daniel; Stollmann, Peter; Wenzel, David
2018-01-01
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
Directory of Open Access Journals (Sweden)
Ekkehard Krüger
2015-05-01
Full Text Available The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates.
Fermion-fermion scattering in quantum field theory with superconducting circuits.
García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E
2015-02-20
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.
Applying Social Capital Theory and the Technology Acceptance ...
African Journals Online (AJOL)
Applying Social Capital Theory and the Technology Acceptance Model in information and knowledge sharing research. ... Inkanyiso: Journal of Humanities and Social Sciences ... The paper explains the components, relevance and practical applicability of the two theories to information and knowledge sharing research.
Some Consequences of Learning Theory Applied to Division of Fractions
Bidwell, James K.
1971-01-01
Reviews the learning theories of Robert Gagne and David Ausubel, and applies these theories to the three most common approaches to teaching division of fractions: common denominator, complex fraction, and inverse operation methods. Such analysis indicates the inverse approach should be most effective for meaningful teaching, as is verified by…
The applied theory of energy substitution in production
International Nuclear Information System (INIS)
Thompson, Henry
2006-01-01
This paper reviews the applied theory of energy cross price partial elasticities of substitution, and presents it in a transparent fashion. It uses log linear and translog production and cost functions due to their economic properties and convenient estimating forms, but the theory applies other functional forms. The objective is to encourage increased empirical research that would deepen understanding and appreciation of energy substitution. (author)
Energy Technology Data Exchange (ETDEWEB)
Der, R.; Schumacher, W. (Zentralinstitut fuer Isotopen- und Strahlenforschung, Leipzig (Germany, F.R.))
1991-01-01
With the experimental detection of high temperature superconduction (HTSC) a lot of different new concepts for the explanation of this phenomenon have been developed. After a short reminiscence of the conventional theory of superconduction these new approaches are outlined and discussed. Contrarely to the conventional superconductors the isotopic effect in HTSC is generally very small or absent. The role of the isotopic effects in the investigation of new HTSC mechanisms is discussed. (orig.).
Social Justice and Lesbian Feminism: Two Theories Applied to Homophobia
Directory of Open Access Journals (Sweden)
Denise L. Levy
2007-12-01
Full Text Available Trends in contemporary social work include the use of an eclectic theory base. In an effort to incorporate multiple theories, this article will examine the social problem of homophobia using two different theoretical perspectives: John Rawls’ theory of social justice and lesbian feminist theory.Homophobia, a current social problem, can be defined as “dislike or hatred toward homosexuals, including both cultural and personal biases against homosexuals” (Sullivan, 2003, p. 2. Rawls’ theory of justice and lesbian feminist theory are especially relevant to the issue of homophobia and provide a useful lens to understanding this social problem. In this article, these two theories will be summarized, applied to the issue of homophobia, and compared and contrasted based on their utility.
Directory of Open Access Journals (Sweden)
F. Eozénou
2014-08-01
Full Text Available An advanced setup for vertical electropolishing of superconducting radio-frequency niobium elliptical cavities has been installed at CEA Saclay. Cavities are vertically electropolished with circulating standard HF-HF-H_{2}SO_{4} electrolytes. Parameters such as voltage, cathode shape, acid flow, and temperature have been investigated. A low voltage (between 6 and 10 V depending on the cavity geometry, a high acid flow (25 L/min, and a low acid temperature (20° C are considered as promising parameters. Such a recipe has been tested on single-cell and nine-cell International Linear Collider (ILC as well as 704 MHz five-cell Super Proton Linac (SPL cavities. Single-cell cavities showed similar performances at 1.6 K being either vertically or horizontally electropolished. The applied baking process provides similar benefit. An asymmetric removal is observed with faster removal in the upper half-cells. Multicell cavities (nine-cell ILC and five-cell SPL cavities exhibit a standard Q_{0} value at low and medium accelerating fields though limited by power losses due to field emitted electrons.
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Theory of high-T sub c superconductivity based on the fermion-condensation quantum phase transition
Amusia, M Ya; Shaginyan, V R
2001-01-01
A theory of high temperature superconductivity based on the combination of the fermion-condensation quantum phase transition and the conventional theory of superconductivity is presented. This theory describes maximum values of the superconducting gap which can be as big as DELTA sub 1 approx 0.1 epsilon sub F , with epsilon sub F being the Fermi level. It is shown that the critical temperature 2T sub c approx = DELTA sub 1. If there exists the pseudogap above T sub c then 2T* approx = DELTA sub 1 , and T* is the temperature at which the pseudogap vanished. A discontinuity in the specific heat at T sub c is calculated. The transition from conventional superconductors to high-T sub c ones as a function of the doping level is investigated
Theories and Modules Applied in Islamic Counseling Practices in Malaysia.
Zakaria, Norazlina; Mat Akhir, Noor Shakirah
2017-04-01
Some Malaysian scholars believe that the theoretical basis and models of intervention in Islamic counseling practices in Malaysia are deficient and not eminently identified. This study investigated and describes the nature of current Islamic counseling practices including the theories and modules of Islamic counseling that are been practiced in Malaysia. This qualitative research has employed data that mainly consist of texts gathered from literatures and semi-structured interviews of 18 informants. It employed grounded theory analysis, and the result shows that most of the practitioners had applied integrated conventional counseling theories with Islamic rituals, references, interventions and ethics. Some had also applied Islamic theories and modules formulated in Malaysia such as iCBT, al-Ghazali counseling theories, Cognitive ad-Deen, KBJ, Prophetic Counseling and Asma Allah al-Husna Counseling Therapy.
Ghatak, Ananya; Das, Tanmoy
2018-01-01
Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
International Nuclear Information System (INIS)
Chela-Flores, J.; Martin, P.; Rodriguez-Nunez, J.
1988-08-01
We emphasize the importance of performing definite experiments on quantum interferometers, basing our work on a phenomenological theory of high-T c superconductivity co-existing with antiferromagnetism. The theory satisfies all the general requirements of previous models, including minimal gauge invariant coupling terms. Yet, since no doping-dependent displacements are implied in the Mercereau diffraction pattern, this phenomenological approach underlines the urgency of performing new experiments in order to guide the theory. (author). 21 refs, 1 fig
Holzapfel, Bernhard; Schultz, Ludwig; Schlörb, Heike
2010-03-01
During the 9th European Conference on Applied Superconductivity, 6 plenary, 22 invited, 206 oral and 429 poster contributions were presented on recent developments in the field of applied superconductivity. This issue of Superconductor Science and Technology contains plenary, invited and a selection of contributed oral papers of the four main EUCAS areas: materials, wires and tapes, large scale applications and electronics. The remaining contributed papers that were selected for the conference proceedings will be published in the Journal of Physics: Conference Series. The Dresden EUCAS conference, with 712 participants from 43 countries, continued the tradition of preceding EUCAS conferences of combining basic superconductivity research contributions with the discussion of recent material advances and new developments in large scale and electronic applications. In Dresden, contributions on the recently discovered Fe-based superconductors were presented for the first time during a EUCAS conference and their potential for applications was intensively discussed. Among all the high level papers of this issue we particularly want to highlight the plenary contribution of Praveen Chaudhari on grain boundaries in cuprate superconductors. In his paper Praveen discusses the Jc limitation in HTSC tapes and tunnelling spectroscopy in LSCO thin film bicrystals. Just a few weeks ago we received the sad news that Praveen had passed away on 13 January 2010. Already fighting with his serious illness, Praveen spent all his efforts last fall finishing his plenary talk and paper. This paper will remind us always of his contributions to basic and applied aspects of superconductivity in general and especially his important work on HTSC grain boundaries. Finally we want to acknowledge the help of the International Advisory and National Committees in setting up the scientific program and we would especially like to express our gratitude to all the members of the Local Organization
Why practitioners do (not) apply crisis communication theory in practice
Claeys, An-Sofie; Opgenhaffen, Michaël
2016-01-01
Twenty-five in-depth interviews with Belgian crisis communication practitioners were conducted to examine the gap between theory and practice. Crisis communication has become an important research area within public relations. Several studies have resulted in theories and guidelines regarding the effective use of communication during organizational crises. Unfortunately, these findings are not always put into practice. This study examines to what extent public relations practitioners apply th...
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Superconductivity at the industrial scale
International Nuclear Information System (INIS)
Tixador, P.; Lebrun, Ph.
2011-01-01
The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)
Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity
Silaev, Mihail; Babaev, Egor
2011-03-01
In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.
The state of superconductivity
International Nuclear Information System (INIS)
Clark, T.D.
1981-01-01
The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)
Bridging Theory and Practice in an Applied Retail Track
Lange, Fredrik; Rosengren, Sara; Colliander, Jonas; Hernant, Mikael; Liljedal, Karina T.
2018-01-01
In this article, we present an educational approach that bridges theory and practice: an applied retail track. The track has been co-created by faculty and 10 partnering retail companies and runs in parallel with traditional courses during a 3-year bachelor's degree program in retail management. The underlying pedagogical concept is to move retail…
Faculty Forum: Applying Motivation Theory to Real-World Problems
Harpine, Elaine Clanton
2007-01-01
This article examines the effectiveness of incorporating an applied learning experience in an upper level undergraduate motivation theory class. In this 3-part course requirement, students (a) participated in a 2-hr field experience, (b) completed a homework assignment based on their participation, and (c) worked in groups to develop a deeper…
Applying Mediationist Theory to Communication about Terrorism and War.
Coufal, Kathy L.
2002-01-01
This introductory article to a forum on contemporary issues discusses the importance of communication in the transmission of social values and attitudes and applies mediation theory to the role of parents and teachers in assisting children to understand the images and rhetoric they encounter. (Contains 3 references.) (Author/DB)
Applied metrology in the production of superconducting model magnets for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Ferradas Troitino, Jose [CERN; Bestmann, Patrick [CERN; Bourcey, Nicolas [CERN; Carlon Zurita, Alejandro [CERN; Cavanna, Eugenio [ASG Supercond., Genova; Ferracin, Paolo [CERN; Ferradas Troitino, Salvador [CERN; Holik, Eddie Frank [Fermilab; Izquierdo Bermudez, Susana [CERN; Lackner, Friedrich [CERN; Löffler, Christian [CERN; Maury, Gregory [CERN; Perez, Juan Carlos [CERN; Savary, Frederic [CERN; Semeraro, Michela [CERN; Vallone, Giorgio [CERN
2017-12-22
The production of superconducting magnets for particle accelerators involves high precision assemblies and tight tolerances, in order to achieve the requirements for their appropriate performance. It is therefore essential to have a strict control and traceability over the geometry of each component of the system, and also to be able to compensate possible inherent deviations coming from the production process.
Design of a low temperature superconducting coil to be applied to current regulators
International Nuclear Information System (INIS)
Garcia-Tabares, L.; Grau Carles, A
1998-05-01
We study the magnetic design and the cryogenic stability of a superconducting coil cooled with liquid helium, which works both in DC and AC modes. In DC mode, we obtain the maximum quench current; while in AC mode, we analyze Joule losses produced by the superconductor magnetization and the generation of eddy currents inside the copper matrix. (Author)
Ginzburg-Landau theory and the superconducting transition in thin, amorphous bismuth films
International Nuclear Information System (INIS)
Van Vechten, D.
1979-01-01
The Aslamasov-Larkin (AL) theory can be derived from a classical treatment of the conductivity due to short-lived statistical fluctuations into the superconducting state if one truncates the Ginzburg-Landau free energy density expression to read F[psi] = α 0 vertical barpsi vertical bar 2 + c 0 vertical bar del psi vertical bar 2 , where psi is the superconducting order parameter. The next largest term in the GL free energy is (b/2) (vertical bar psi vertical bar 2 ) 2 and is conventionally interpreted as representing the energy associated with interactions between the fluctuations. My dissertation consists of the calculation of the effect of this term on the fluctuation conductivity in three different approximations and the comparison of my predictions to the data of R.E. Glover III and M.K. Chien on thin amorphous bismuth films. The first approximation calculates the contribution to the fluctuations' self energy of the ''tadpole'' diagrams. This approximation yields a 4 parameter equation. Its fits were particularly outstanding for the films deposited on quartz or roughened glass substrates and only for two smooth glass substrates were there non-isolated data points that were not fit at the lowest temperatures measured. (The equation runs into trouble for these films at approximately R(T)/R/sub o/ =.08.) The values of the theoretical equation's fitting parameters were determined by a least squares method and turns out to depend on film thickness in the manner predicted by the theory. The next calculation improves the self energy approximation by including all the ''ring'' diagrams
Influencing organizations to promote health: applying stakeholder theory.
Kok, Gerjo; Gurabardhi, Zamira; Gottlieb, Nell H; Zijlstra, Fred R H
2015-04-01
Stakeholder theory may help health promoters to make changes at the organizational and policy level to promote health. A stakeholder is any individual, group, or organization that can influence an organization. The organization that is the focus for influence attempts is called the focal organization. The more salient a stakeholder is and the more central in the network, the stronger the influence. As stakeholders, health promoters may use communicative, compromise, deinstitutionalization, or coercive methods through an ally or a coalition. A hypothetical case study, involving adolescent use of harmful legal products, illustrates the process of applying stakeholder theory to strategic decision making. © 2015 Society for Public Health Education.
Theory of novel normal and superconducting states in doped oxide high-Tc superconductors
International Nuclear Information System (INIS)
Dzhumanov, S.
2001-10-01
A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for
Spectral analysis and filter theory in applied geophysics
Buttkus, Burkhard
2000-01-01
This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval uated, and instructions provided for their practical application. Be sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob served data, maximum-entropy spectral analysis and maximum-like lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...
Conjugate Image Theory Applied on Capacitive Wireless Power Transfer
Ben Minnaert; Nobby Stevens
2017-01-01
Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this opti...
Applying the Theory of Contraints to Supply Chain Management
Simatupang, Togar Mangihut; Sandroto, Indah Victoria
2004-01-01
Supply chain management among independent firms often provide larger benefits form effectively satisfying customer needs and wants than working in isolation. However, many improvement initiatives often end up with devastating effects on supply chain performance. Part of the reason is sub-optimisation among the chain members resulting form a lack of awareness about the importance of the perspective of the supply chain as a whole and the existence of constraint(s). This paper applies the Theory...
Role of superconducting energy gap in extended BCS-Bose crossover theory
Chávez, I.; García, L. A.; de Llano, M.; Grether, M.
2017-10-01
The generalized Bose-Einstein condensation (GBEC) theory of superconductivity (SC) is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs (2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this a complete boson-fermion (BF) model; and (iii) inclusion in the resulting ternary ideal BF gas with particular BF vertex interactions that drive boson formation/disintegration processes. GBEC subsumes as special cases both BCS (having its 50-50 symmetry of both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf, where Tc and TF are the critical and Fermi temperatures, n is the total number density and nf that of unbound electrons at T = 0. Also, with this extended crossover one can construct the energy gap Δ(T)/Δ(0) versus T/Tc for some elemental SCs by solving at least two equations numerically: a gap-like and a number equation. In 50-50 symmetry, the energy gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads to the gap curve falling substantially below that with 50-50 symmetry which already fits the data quite well, showing that 2hCPs are indispensable to describe SCs.
100 years of superconductivity
Rogalla, Horst
2011-01-01
Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi
High-temperature superconductivity
International Nuclear Information System (INIS)
Ginzburg, V.L.
1987-07-01
After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs
GLAG theory for superconducting property variations with A15 composition in Nb3Sn wires.
Li, Yingxu; Gao, Yuanwen
2017-04-25
We present a model for the variation of the upper critical field H c2 with Sn content in A15-type Nb-Sn wires, within the Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) theory frame. H c2 at the vicinity of the critical temperature T c is related quantitatively to the electrical resistivity ρ, specific heat capacity coefficient γ and T c . H c2 versus tin content is theoretically formulated within the GLAG theory, and generally reproduces the experiment results. As Sn content gradually approaches the stoichiometry, A15-type Nb-Sn undergoes a transition from the dirty limit to clean limit, split by the phase transformation boundary. The H-T phase boundary and pinning force show different behaviors in the cubic and tetragonal phase. We dipict the dependence of the composition gradient on the superconducting properties variation in the A15 layer, as well as the curved tail at vicinity of H c2 in the Kramer plot of the Nb 3 Sn wire. This helps understanding of the inhomogeneous-composition inducing discrepancy between the results by the state-of-art scaling laws and experiments.
Systems biology: the reincarnation of systems theory applied in biology?
Wolkenhauer, O
2001-09-01
With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.
International Nuclear Information System (INIS)
Jerome, D.
1980-01-01
We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
Action learning in virtual higher education: applying leadership theory.
Curtin, Joseph
2016-05-03
This paper reports the historical foundation of Northeastern University's course, LDR 6100: Developing Your Leadership Capability, a partial literature review of action learning (AL) and virtual action learning (VAL), a course methodology of LDR 6100 requiring students to apply leadership perspectives using VAL as instructed by the author, questionnaire and survey results of students who evaluated the effectiveness of their application of leadership theories using VAL and insights believed to have been gained by the author administering VAL. Findings indicate most students thought applying leadership perspectives using AL was better than considering leadership perspectives not using AL. In addition as implemented in LDR 6100, more students evaluated VAL positively than did those who assessed VAL negatively.
Modern high-temperature superconductivity
International Nuclear Information System (INIS)
Ching Wu Chu
1988-01-01
Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs
Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state
International Nuclear Information System (INIS)
Fujimoto, Yukinobu; Miyake, Kazumasa
2012-01-01
It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.
Beringer, D. B.; Roach, W. M.; Clavero, C.; Reece, C. E.; Lukaszew, R. A.
2013-02-01
This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ˜50MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.
Directory of Open Access Journals (Sweden)
D. B. Beringer
2013-02-01
Full Text Available This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ∼50 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.
Energy Technology Data Exchange (ETDEWEB)
Beringer, D. B. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Roach, W. M. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Clavero, C. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Reece, C. E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lukaszew, R. A. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science
2013-02-05
This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ~500 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.
Teaching organization theory for healthcare management: three applied learning methods.
Olden, Peter C
2006-01-01
Organization theory (OT) provides a way of seeing, describing, analyzing, understanding, and improving organizations based on patterns of organizational design and behavior (Daft 2004). It gives managers models, principles, and methods with which to diagnose and fix organization structure, design, and process problems. Health care organizations (HCOs) face serious problems such as fatal medical errors, harmful treatment delays, misuse of scarce nurses, costly inefficiency, and service failures. Some of health care managers' most critical work involves designing and structuring their organizations so their missions, visions, and goals can be achieved-and in some cases so their organizations can survive. Thus, it is imperative that graduate healthcare management programs develop effective approaches for teaching OT to students who will manage HCOs. Guided by principles of education, three applied teaching/learning activities/assignments were created to teach OT in a graduate healthcare management program. These educationalmethods develop students' competency with OT applied to HCOs. The teaching techniques in this article may be useful to faculty teaching graduate courses in organization theory and related subjects such as leadership, quality, and operation management.
Two-fluid model of the superconductivity in the BCS's theory
International Nuclear Information System (INIS)
Rangelov, J.
1977-01-01
The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively
Directory of Open Access Journals (Sweden)
Jeffrey S. Harrison
2015-09-01
Full Text Available Objective – This article provides a brief overview of stakeholder theory, clears up some widely held misconceptions, explains the importance of examining stakeholder theory from a variety of international perspectives and how this type of research will advance management theory, and introduces the other articles in the special issue. Design/methodology/approach – Some of the foundational ideas of stakeholder theory are discussed, leading to arguments about the importance of the theory to management research, especially in an international context. Findings – Stakeholder theory is found to be a particularly useful perspective for addressing some of the important issues in business from an international perspective. It offers an opportunity to reinterpret a variety of concepts, models and phenomena across may different disciplines. Practical implications – The concepts explored in this article may be applied in many contexts, domestically and internationally, and across business disciplines as diverse as economics, public administration, finance, philosophy, marketing, law, and management. Originality/value – Research on stakeholder theory in an international context is both lacking and sorely needed. This article and the others in this special issue aim to help fill that void.
Electric Power Research Institute's role in applying superconductivity to future utility systems
International Nuclear Information System (INIS)
Rabinowitz, M.
1975-01-01
Economics has been the single most important factor in determining the future of any new commercial technology in the United States. This criterion is in need of serious examination in view of the projected sharply increasing consumption of energy in the next few decades, particularly in the form of electricity. In order to make a smooth and meaningful transition from conventional methods of generating and transmitting electricity, a coordinated effort between all segments of the private and public domains will be required. The Electric Power Research Institute (EPRI) should play a vital role in planning for both the imminent short term, and long term national electrical energy needs; and in coordinating efforts to achieve these vital goals. If, as predicted, the U. S. power consumption increases by more than a factor of six in the next 30 years, it should be clear that it is necessary to develop high power density methods of producing and transmitting electricity. Superconductivity is the natural prime candidate for a new feasible technology that can take on this responsibility
Continuous neutron slowing down theory applied to resonances
International Nuclear Information System (INIS)
Segev, M.
1977-01-01
Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient
Educational measurement for applied researchers theory into practice
Wu, Margaret; Jen, Tsung-Hau
2016-01-01
This book is a valuable read for a diverse group of researchers and practitioners who analyze assessment data and construct test instruments. It focuses on the use of classical test theory (CTT) and item response theory (IRT), which are often required in the fields of psychology (e.g. for measuring psychological traits), health (e.g. for measuring the severity of disorders), and education (e.g. for measuring student performance), and makes these analytical tools accessible to a broader audience. Having taught assessment subjects to students from diverse backgrounds for a number of years, the three authors have a wealth of experience in presenting educational measurement topics, in-depth concepts and applications in an accessible format. As such, the book addresses the needs of readers who use CTT and IRT in their work but do not necessarily have an extensive mathematical background. The book also sheds light on common misconceptions in applying measurement models, and presents an integrated approach to differ...
Applying Game Theory in 802.11 Wireless Networks
Directory of Open Access Journals (Sweden)
Tomas Cuzanauskas
2015-07-01
Full Text Available IEEE 802.11 is one of the most popular wireless technologies in recent days. Due to easiness of adaption and relatively low cost the demand for IEEE 802.11 devices is increasing exponentially. IEEE works in two bands 2.4 GHz and 5 GHz, these bands are known as ISM band. The unlicensed bands are managed by authority which set simple rules to follow when using unlicensed bands, the rules includes requirements as maximum power, out-of-band emissions control as well as interference mitigation. However these rules became outdated as IEEE 802.11 technology is emerging and evolving in hours the rules aren’t well suited for current capabilities of IEEE 802.11 devices. In this article we present game theory based algorithm for IEEE 802.11 wireless devices, we will show that by using game theory it’s possible to achieve better usage of unlicensed spectrum as well as partially decline CSMA/CA. Finally by using this approach we might relax the currently applied maximum power rules for ISM bands, which enable IEEE 802.11 to work on longer distance and have better propagation characteristics.
International Nuclear Information System (INIS)
Koch, Stephan
2009-01-01
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
International Nuclear Information System (INIS)
Banacky, P.
2010-01-01
Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.
Theories of suicidal behavior applied to Sylvia Plath.
Lester, D
1998-01-01
The suicide of Sylvia Plath is examined from the perspective of 15 theories of suicidal behavior and is found to fit best with psychoanalytic and cognitive theories of suicide, in particular those of Aaron Beck, Henry Murray, and Edwin Shneidman.
Conjugate Image Theory Applied on Capacitive Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Ben Minnaert
2017-01-01
Full Text Available Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this optimal network as a function of the characteristics of the capacitive wireless link, as well for the series as for the parallel topology. The results are compared with the inductive power transfer system. Introduction of a new concept, the coupling function, enables the description of the compensation network of both an inductive and a capacitive system in two elegant equations, valid for the series and the parallel topology. This approach allows better understanding of the fundamentals of the wireless power transfer link, necessary for the design of an efficient system.
Theory of high-Tc superconducting cuprates based on experimental evidence
International Nuclear Information System (INIS)
Abrikosov, A. A.
1999-01-01
A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc
Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence
Abrikosov, A. A.
1999-12-10
A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.
Bi-Sr-Ca-Cu-O superconducting thin films: theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Yavuz, M [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Boybay, M S [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Elbuken, C [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, M J [Los Alamos National Lab, PO Box 1663, Mail Stop B 296, Los Alamos, NM 87545 (United States); Hu, C R [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Ross, J H [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States)
2006-06-01
The interest of this paper centers on fabrication and characterization and modeling of vortices in high temperature superconducting thin films. As a first step, the magnetic vertices of the superconducting matrix were modeled. As a second, Bi-Sr-Ca-Cu-O thin films were grown using Pulsed Laser Ablation (PLD) on single crystal MgO substrates as magnetic templates for the potential use for Nano and Microelectronic circuits, and were characterized by x-ray diffraction, electron, and atomic force microscopy. The third step (future work) will be observation and pinning of these vortices using Bitter decoration.
The Theory of Caritative Leadership Applied to Education
Näsman, Yvonne
2018-01-01
Within caring science, the concept of caring leadership is well established. The aim of this study is to introduce Bondas's theory of caritative leadership into education. The theory of caritative leadership is a theory of caring leadership with the 'caritas' thought of human love and mercy at its core. The article considers a hypothetical testing…
Optimizing Computer Assisted Instruction By Applying Principles of Learning Theory.
Edwards, Thomas O.
The development of learning theory and its application to computer-assisted instruction (CAI) are described. Among the early theoretical constructs thought to be important are E. L. Thorndike's concept of learning connectisms, Neal Miller's theory of motivation, and B. F. Skinner's theory of operant conditioning. Early devices incorporating those…
Applying Information Processing Theory to Supervision: An Initial Exploration
Tangen, Jodi L.; Borders, L. DiAnne
2017-01-01
Although clinical supervision is an educational endeavor (Borders & Brown, [Borders, L. D., 2005]), many scholars neglect theories of learning in working with supervisees. The authors describe 1 learning theory--information processing theory (Atkinson & Shiffrin, 1968, 1971; Schunk, 2016)--and the ways its associated interventions may…
Applied superconductivity, metallurgy, and physics of titanium alloys, Vol. 2: Applications
International Nuclear Information System (INIS)
Collings, E.W.
1986-01-01
This book contains chapters on: the current-carrying mixed state at low and high fields; flux pinning and critical current density; current transport in a longitudinal applied magnetic field; flux in motion under the influence of a transport current; small-coil testing; stability; AC loss; conductor design; conductor fabrication; stress effects, and radiation effects
International Nuclear Information System (INIS)
Pankratov, S.G.
1987-01-01
A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular
International Nuclear Information System (INIS)
Kneipp, Marco A.C.
2003-11-01
We study the ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories. In order to do that we consider an N=4 super Yang-Mills theory with an arbitrary gauge group G and add some N=2, N=1 and N=0 deformation terms. We analyze some possible vacuum solutions and phases of the theory, depending on the deformation terms which are added. In the Coulomb phase for the N=2* theory, G is broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation terms, the theory passes to the Higgs or color superconducting phase, in which G is broken to its center CG. In this phase we construct the ZN flux tubes Ansatz and obtain the BPS string tension. We show that the monopole magnetic fluxes are linear integer combinations of the string fluxes and therefore the monopoles can become confined. Then, we obtain a bound for the threshold length of the string-breaking. We also show the possible formation of a confining system with 3 different monopoles for the SU(3) gauge group. Finally we show that the BPS string tensions of the theory satisfy the Casimir scaling law. (author)
On the theory of type-I superconductor surface tension and twinning-plane-superconductivity
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-01-01
A correction is found to the surface tension in type-I superconductors which is proportional to the square root of the Ginsburg-Landau parameter. This correction is essential for obtaining the phase diagram and other thermodynamical variables of the narrow superconducting layer arising near the twinning plane in some metals
Interband superconductivity: Contrasts between Bardeen-Cooper-Schrieffer and Eliashberg theories
Dolgov, Oleg V.; Mazin, Igor I.; Parker, David; Golubov, Alexandre Avraamovitch
2009-01-01
recently discovered iron pnictide superconductors apparently present an unusual case of interband-channel pairing superconductivity. Here we show that in the limit where the pairing occurs within the interband channel, several surprising effects occur quite naturally and generally: different density
International Nuclear Information System (INIS)
Zhang, L.; Yin, D.
1981-08-01
A method for calculating the electronic structure of a heterogeneous metal-metal interface is discussed. It combines a series of well-defined interface plane-wave orbitals and the muffin-tin orbitals. The problem of high-Tsub(c) superconductivity in systems containing metal-metal interfaces and the related problem in compounds is addressed
Perturbation theory of a superconducting 0−π impurity quantum phase transition
Czech Academy of Sciences Publication Activity Database
Žonda, M.; Pokorný, Vladislav; Janiš, Václav; Novotný, T.
2015-01-01
Roč. 5, Mar (2015), s. 8821 ISSN 2045-2322 R&D Projects: GA ČR GCP204/11/J042 Institutional support: RVO:68378271 Keywords : quantum dot * superconductivity * Josephson current * quantum phase transition * perturbation expansion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.228, year: 2015
Theory of spin-fluctuation induced superconductivity in iron-based superconductors
International Nuclear Information System (INIS)
Zhang, Junhua
2011-01-01
In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum
Concept of spatial channel theory applied to reactor shielding analysis
International Nuclear Information System (INIS)
Williams, M.L.; Engle, W.W. Jr.
1977-01-01
The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield
Optimal control theory applied to fusion plasma thermal stabilization
International Nuclear Information System (INIS)
Sager, G.; Miley, G.; Maya, I.
1985-01-01
Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research
Applying Chaos Theory to Lesson Planning and Delivery
Cvetek, Slavko
2008-01-01
In this article, some of the ways in which thinking about chaos theory can help teachers and student-teachers to accept uncertainty and randomness as natural conditions in the classroom are considered. Building on some key features of complex systems commonly attributed to chaos theory (e.g. complexity, nonlinearity, sensitivity to initial…
Applying Distributed Learning Theory in Online Business Communication Courses.
Walker, Kristin
2003-01-01
Focuses on the critical use of technology in online formats that entail relatively new teaching media. Argues that distributed learning theory is valuable for teachers of online business communication courses for several reasons. Discusses the application of distributed learning theory to the teaching of business communication online. (SG)
Attitude theory applied to in-store and online shopping
Dijst, M.J.; Farag, S.; Schwanen, T.
2005-01-01
In this study, we investigated whether our understanding of adoption of e-shopping and instore shopping could be advanced through the application of attitude theory. A shortcoming of the analytical frameworks and models featured in attitude theory is that they do not address the issue of what
Quenches in large superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.
1977-08-01
The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed
A World Apart? Bridging the Gap between Theory and Applied Social Gerontology
Hendricks, Jon; Applebaum, Robert; Kunkel, Suzanne
2010-01-01
This article is based on the premise that there is inadequate attention to the link between theory and applied research in social gerontology. The article contends that applied research studies do not often or effectively employ a theoretical framework and that theory-based articles, including theory-based research, are not often focused on…
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
Perturbation theory of a superconducting 0 - π impurity quantum phase transition.
Žonda, M; Pokorný, V; Janiš, V; Novotný, T
2015-03-06
A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.
Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.
2017-03-01
Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.
Energy Technology Data Exchange (ETDEWEB)
Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)
2013-12-15
Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.
International Nuclear Information System (INIS)
Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk
2013-01-01
Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.
Learning Theories Applied to the Teaching of Business Communication.
Hart, Maxine Barton
1980-01-01
Reviews major learning theories that can be followed by business communication instructors, including those by David Ausubel, Albert Bandura, Kurt Lewin, Edward Thorndike, B.F. Skinner, and Robert Gagne. (LRA)
Superconductivity and macroscopic quantum phenomena
International Nuclear Information System (INIS)
Rogovin, D.; Scully, M.
1976-01-01
It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)
Storberg-Walker, Julia
2007-01-01
This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…
Noddings's caring ethics theory applied in a paediatric setting.
Lundqvist, Anita; Nilstun, Tore
2009-04-01
Since the 1990s, numerous studies on the relationship between parents and their children have been reported on in the literature and implemented as a philosophy of care in most paediatric units. The purpose of this article is to understand the process of nurses' care for children in a paediatric setting by using Noddings's caring ethics theory. Noddings's theory is in part described from a theoretical perspective outlining the basic idea of the theory followed by a critique of her work. Important conceptions in her theory are natural caring (reception, relation, engrossment, motivational displacement, reciprocity) and ethical caring (physical self, ethical self, and ethical ideal). As a nurse one holds a duty of care to patients and, in exercising this duty, the nurse must be able to develop a relationship with the patient including giving the patient total authenticity in a 'feeling with' the patient. Noddings's theory is analysed and described in three examples from the paediatrics. In the first example, the nurse cared for the patient in natural caring while in the second situation, the nurse strived for the ethical caring of the patient. In the third example, the nurse rejected the impulse to care and deliberately turned her back to ethics and abandoned her ethical caring. According to the Noddings's theory, caring for the patient enables the nurse to obtain ethical insights from the specific type of nursing care which forms an important contribution to an overall increase of an ethical consciousness in the nurse.
International Nuclear Information System (INIS)
Gomez, A; Del Valle, J; Gonzalez, E M; Vicent, J L; Chiliotte, C E; Carreira, S J; Bekeris, V; Prieto, J L; Schuller, Ivan K
2014-01-01
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current I c (H), magnetization M(H) and ac-susceptibility χ ac (H) in a broad temperature range. Due to the coherence length divergence at T c , a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to T c , wire network behaviour is only present in a very narrow temperature window close to T c . In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. (papers)
International Nuclear Information System (INIS)
Rangelov, J.
1993-01-01
A physical model of an electron describing the classical Lorentz's electron (LE), nonrelativistic quantum Schroedinger's electron (SE) and relativistic quantum Dirac's electron (DE) has been discovered in order to describe the processes in metals, alloys and chemical compounds. As a result of the new point of view proposed the physical meaning of the basic electron parameters as the classical radius of LE, its self energy and rest mass, proper mechanical moment (MCHM) and frequency of de Broglie's pilot wave and causes for stability of Schroedinger's package of waves and SE's extraordinary behaviour has been discovered. A new physical interpretation of collectivized valence electrons behaviour in solid state has been established. On this basis the real processes ensuring energetically the superconductivity state has been described. All auxiliary processes increasing all superconductivity parameters have been calculated. It is pointed out that the basic parameters of electron-phonon system, electron-phonon interaction and the polarization ability of the crystal lattice structure have to be calculated also. (orig.)
APPLYING THE THEORY OF CONSTRAINTS TO INCREASE ECONOMIC VALUE ADDED: PART 1—THEORY
Directory of Open Access Journals (Sweden)
Malan Smith
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This article, presented in two parts, explains how to apply the Theory of Constraints (TOC in a business to increase Economic Value Added (EVA. The first part deals with the theory, while the second part deals with the implementation. The goal of a business, the measurements of the goal and the priority of the measurements are discussed. The future reality of a company which implements TOC principles is shown through cause and effect to lead to an increase in EVA. The increase in EVA is caused by an increase in return on investment and a reduction in the cost of capital. The actions the company must take to increase EVA is presented.
AFRIKAANSE OPSOMMING: Hierdie artikel, aangebied in twee dele, verduidelik hoe om die Teorie van Beperkinge (TVB in a besigheid toe te pas om Ekonomiese Toegevoegde Waarde (ETW te vermeerder. Die eerste gedeelte verduidelik die teorie, terwyl die tweede gedeelte die toepassing hanteer. Die doel van ’n besigheid, die maatstawwe van die doel en die prioriteit van die maatstawwe word bespreek. Deur middel van oorsaak en effek word gewys dat die toekomstige werklikheid van ’n besigheid wat TVB beginsels toepas lei tot ’n toename in ETW. Die toename in ETW word veroorsaak deur ’n toename in opbrengs op belegging en ’n afname in die koste van kapitaal. Die aksies wat ’n besigheid moet neem om ETW te vermeerder, word genoem.
An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis
2013-03-01
AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks
Superconductivity in transition metals.
Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P
2015-03-13
A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hypergame theory applied to cyber attack and defense
House, James Thomas; Cybenko, George
2010-04-01
This work concerns cyber attack and defense in the context of game theory--specifically hypergame theory. Hypergame theory extends classical game theory with the ability to deal with differences in players' expertise, differences in their understanding of game rules, misperceptions, and so forth. Each of these different sub-scenarios, or subgames, is associated with a probability--representing the likelihood that the given subgame is truly "in play" at a given moment. In order to form an optimal attack or defense policy, these probabilities must be learned if they're not known a-priori. We present hidden Markov model and maximum entropy approaches for accurately learning these probabilities through multiple iterations of both normal and modified game play. We also give a widely-applicable approach for the analysis of cases where an opponent is aware that he is being studied, and intentionally plays to spoil the process of learning and thereby obfuscate his attributes. These are considered in the context of a generic, abstract cyber attack example. We demonstrate that machine learning efficacy can be heavily dependent on the goals and styles of participant behavior. To this end detailed simulation results under various combinations of attacker and defender behaviors are presented and analyzed.
Influencing Organizations to Promote Health: Applying Stakeholder Theory
Kok, Gerjo; Gurabardhi, Zamira; Gottlieb, Nell H.; Zijlstra, Fred R. H.
2015-01-01
Stakeholder theory may help health promoters to make changes at the organizational and policy level to promote health. A stakeholder is any individual, group, or organization that can influence an organization. The organization that is the focus for influence attempts is called the focal organization. The more salient a stakeholder is and the more…
Increasing the Odds: Applying Emergentist Theory in Language Intervention
Poll, Gerard H.
2011-01-01
Purpose: This review introduces emergentism, which is a leading theory of language development that states that language ability is the product of interactions between the child's language environment and his or her learning capabilities. The review suggests ways in which emergentism provides a theoretical rationale for interventions that are…
Marketing Theory Applied to Price Discrimination in Journals.
Talaga, James; Haley, Jean Walstrom
1991-01-01
Discussion of discriminatory pricing by journal publishers and its effects on libraries focuses on six prerequisites for successful discriminatory pricing that are based on marketing theory. Strategies to eliminate some of these prerequisites--and therefore eliminate discriminatory pricing--are suggested, including the need to change the attitudes…
Applying Cognitive Load Theory Principles to Library Instructional Guidance
Pickens, Kathleen E.
2017-01-01
If the goal of library instructional guidance is to provide students with the knowledge needed to acquire new skills in order to accomplish their learning objectives, then it is prudent to consider factors that impact learning. Cognitive load theory addresses several of these factors and is applicable to a wide-range of instructional devices used…
Applying Chaos Theory to Careers: Attraction and Attractors
Pryor, Robert G. L.; Bright, Jim E. H.
2007-01-01
This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…
Rethinking wave-kinetic theory applied to zonal flows
Parker, Jeffrey
2017-10-01
Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.
Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication
Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic
Ginzburg-Landau theory of superconducting surfaces under the influence of electric fields
Czech Academy of Sciences Publication Activity Database
Lipavský, Pavel; Morawetz, K.; Koláček, Jan; Yang, T.-J.
2006-01-01
Roč. 73, č. 5 (2006), 052505/1-052505/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/04/0585; GA ČR(CZ) GA202/05/0173; GA AV ČR(CZ) IAA1010312 Grant - others:National Science Consil of Taiwan (TW) NSC 94-2112-M-009-001 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * thin layers Subject RIV: BE - Theoretical Physics Impact factor: 3.107, year: 2006
Intelligent mathematics II applied mathematics and approximation theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing
International Nuclear Information System (INIS)
Wood, R.F.
1993-06-01
The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons
Investment risk management by applying contemporary modern portfolio theory
Directory of Open Access Journals (Sweden)
Jakšić Milena
2015-01-01
Full Text Available Investment risk is the principal threat to the assets side of the balance sheets of financial institutions. It is evident that investors who concentrate their wealth on one type of securities can rarely be found. Instead, they tend to invest diversified portfolio of securities. This reduces the degree of risk of the expected return, which depends both on the absolute risk of each investment in the portfolio, and the relationship that exists between individual investments within the portfolio. The paper analyzes the investment risk management by using modern portfolio theory in both national and global financial f lows. At the same time, the paper considers the risk management models that ensures efficient portfolio diversification, aiming at investment risk reduction. It is pointed out that the investment risk management in modern financial f lows is a complex process, and that the development of financial theory goes towards improving, soft risk management method.
Applying Graph Theory to Problems in Air Traffic Management
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
System theory as applied differential geometry. [linear system
Hermann, R.
1979-01-01
The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.
Applying thematic analysis theory to practice: a researcher's experience.
Tuckett, Anthony G
2005-01-01
This article describes an experience of thematic analysis. In order to answer the question 'What does analysis look like in practice?' it describes in brief how the methodology of grounded theory, the epistemology of social constructionism, and the theoretical stance of symbolic interactionism inform analysis. Additionally, analysis is examined by evidencing the systematic processes--here termed organising, coding, writing, theorising, and reading--that led the researcher to develop a final thematic schema.
Stochastic Control Theory, Nonlinear Structural Mechanics and Applied Combinatorics
1989-05-12
More specifically: (") x 3 PAS and Steiner triple systems; (") x 4 PAS and Steiner triple systems which can be nested; and (’) x 5 PAS and Steiner ...am Rudolf Wille CONCEPTUAL SCALING Technische Hochschule Darmstadt Abstract: Scaling of empirical data uses formal patterns to lead to a better...of Arizona Jan 18 - 22 Wille, Rudolf Technische Hochschule Darmstadt Jan 17 - 23 21 APPLICATIONS OF COMBINATORICS AND GRAPH THEORY TO THE BIOLOGICAL
How Could Nurse Researchers Apply Theory to Generate Knowledge More Efficiently?
Lor, Maichou; Backonja, Uba; Lauver, Diane R
2017-09-01
Reports of nursing research often do not provide adequate information about whether, and how, researchers applied theory when conducting their studies. Unfortunately, the lack of adequate application and explication of theory in research impedes development of knowledge to guide nursing practice. To clarify and exemplify how to apply theory in research. First we describe how researchers can apply theory in phases of research. Then we share examples of how three research teams applied one theory to these phases of research in three different studies of preventive behaviors. Nurse researchers can review and refine ways in which they apply theory in guiding research and writing publications. Scholars can appreciate how one theory can guide researchers in building knowledge about a given condition such as preventive behaviors. Clinicians and researchers can collaborate to apply and examine the usefulness of theory. If nurses had improved understanding of theory-guided research, they could better assess, select, and apply theory-guided interventions in their practices. © 2017 Sigma Theta Tau International.
Non local theory of excitations applied to the Hubbard model
International Nuclear Information System (INIS)
Kakehashi, Y; Nakamura, T; Fulde, P
2010-01-01
We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.
DEFF Research Database (Denmark)
Hansen, Morten Balle; Heilesen, J. B.
In the broader context of evaluation design, this paper examines and compares pros and cons of a theory-based approach to evaluation (TBE) with the Theory-Based Stakeholder evaluation (TSE) model, introduced by Morten Balle Hansen and Evert Vedung (Hansen and Vedung 2010). While most approaches...... to TBE construct one unitary theory of the program (Coryn et al. 2011), the TSE-model emphasizes the importance of keeping theories of diverse stakeholders apart. This paper applies the TSE-model to an evaluation study conducted by the Danish Evaluation Institute (EVA) of the Danish system of quality......-model, as an alternative to traditional program theory evaluation....
3rd International Conference on Applied Mathematics and Approximation Theory
Duman, Oktay
2016-01-01
This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.
Optimal state estimation theory applied to safeguards accounting
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.
1977-01-01
This paper presents a unified theory for the application of modern state estimation techniques to nuclear material accountability. First a summary of the current MUF/LEMUF approach is detailed. It is shown that when inventory measurement error is large in comparison to transfer measurement error, improved estimates of the losses can be achieved using the cumulative summation technique. However, the optimal estimator is shown to be the Kalman filter. An enhancement of the retrospective estimation of losses can be achieved using linear smoothing. State space models are developed for a mixed oxide fuel fabrication facility and examples are presented
Applying strategic management theories in public sector organizations
DEFF Research Database (Denmark)
Hansen, Jesper Rosenberg; Ewan, Ferlie
2016-01-01
This article discusses the utility of two different strategic management theories in different types of public organizations including contemporary New Public Management-based public organizations, namely Porter's strategic positioning model and the resource-based view of strategy. We argue...... conditions: the degree of administrative autonomy, performance-based budgeting and market-like competition. We give empirical examples drawn from public servives in the UK and Denmark. We call for more exploration of these (and other) strategic management approaches within contemporary public services...
DEFF Research Database (Denmark)
Toft, Katrine Nørgaard
The field-induced magnetic structures of ErNi2B2C and TmNi2B2C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength ofsuperconductivity. ErNi2B2C: For magnetic fields along all.......483,0,0). The appearance of the QN phase wasinitially believed to be caused by the suppression of superconductivity. This suppression should make it favorable to create a magnetic order with a Q-vector determined by the maximum in the magnetic susceptibility at the Fermi surface nesting vector QN.The phase diagram...... three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures.Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (QNB = (0,Q...
Action Learning in Virtual Higher Education: Applying Leadership Theory
Curtin, Joseph
2016-01-01
This paper reports the historical foundation of Northeastern University's course, LDR 6100: Developing Your Leadership Capability, a partial literature review of action learning (AL) and virtual action learning (VAL), a course methodology of LDR 6100 requiring students to apply leadership perspectives using VAL as instructed by the author,…
Applying Organizational Commitment and Human Capital Theories to Emigration Research
Verkhohlyad, Olga; McLean, Gary N.
2012-01-01
Purpose: This study aims to bring some additional insight into the issue of emigration by establishing a relationship between emigration and psychic return of citizens to their human capital investment in the country. Design/methodology/approach: The article adopts a quantitative research strategy. It applies organizational commitment and human…
Enhanced Thomson scattering theory applied to eight experiments
International Nuclear Information System (INIS)
Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.
1985-01-01
The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks
Decision theory applied to image quality control in radiology.
Lessa, Patrícia S; Caous, Cristofer A; Arantes, Paula R; Amaro, Edson; de Souza, Fernando M Campello
2008-11-13
The present work aims at the application of the decision theory to radiological image quality control (QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Finding the Right Fit: Helping Students Apply Theory to Service-Learning Contexts
Ricke, Audrey
2018-01-01
Background: Although past studies of service-learning focus on assessing student growth, few studies address how to support students in applying theory to their service-learning experiences. Yet, the task of applying theory is a central component of critical reflections within the social sciences in higher education and often causes anxiety among…
Aslam, Shahid; Jones, Hollis H.
2011-01-01
Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.
Does Social Value Orientation Theory Apply to Social Relations?
Directory of Open Access Journals (Sweden)
Patricia Danielle Lewis
2017-03-01
Full Text Available This research asks whether Social Value Orientations (SVOs apply to the social relations of exchange networks. SVO literature identifies three types of orientation to rational action, determined by how actors value outcomes to self and other. Only the individualist is the self-interested, rational actor previously seen in exchange networks. The prosocial actor seeks to maximize joint outcomes and equality whereas the competitor seeks to maximize differences between self and other. The competitor and individualist are frequently collapsed into a proself type. Whereas SVO research has focused on games and social dilemmas, this research places prosocials and proselfs in equal, weak, and strong power exchange structures. We show that, if SVO applies, the behaviors of proself and prosocial will be very different. Experimental results demonstrate, however, that prosocials’ actions in exchanges are indistinguishable from activities of proselfs.
Theory and modelling of quench in cable-in-conduit superconducting magnets
International Nuclear Information System (INIS)
Shajii, A.
1994-04-01
A new simple, self consistent theoretical model is presented that describes the phenomena of quench propagation in Cable-In-Conduit superconducting magnets. The model (Quencher) circumvents many of the difficulties associated with obtaining numerical solutions in more general existing models. Specifically, a factor of 30-50 is gained in CPU time over the general, explicit time dependent codes used to study typical quench events. The corresponding numerical implementation of the new model is described and the numerical results are shown to agree very well with those of the more general models, as well as with experimental data. Further, well justified approximations lead to the MacQuench model that is shown to be very accurate and considerably more efficient than the Quencher model. The MacQuench code is suitable for performing quench studies on a personal computer, requiring only several minutes of CPU time. In order to perform parametric studies on new conductor designs it is required to utilize a model such as MacQuench because of the high computational efficiency of this model. Finally, a set of analytic solutions for the problem of quench propagation in Cable-In-Conduit Conductors is presented. These analytic solutions represent the first such results that remain valid for the long time scales of interest during a quench process. The assumptions and the resulting simplifications that lead to the analytic solutions are discussed, and the regimes of validity of the various approximations are specified. The predictions of the analytic results are shown to be in very good agreement with numerical as well as experimental results. Important analytic scaling relations are verified by such comparisons, and the consequences of some of these scalings on currently designed superconducting magnets are discussed
International Nuclear Information System (INIS)
Sole, J.
1967-01-01
The author derives the very simple equations governing the operation of a transformer with superconducting windings supplying direct current to a non-dissipative superconducting charge circuit. An analysis of the various possible modes of operation with direct or slowly varying current raises the problem of the magnetic core. The study. leads to a conclusion which a priori might be surprising: the elimination of the magnetic core and the use of a primary super-conductor. An example of a possible realization of such a transformer is given as an indication, and the present prospects for different applications are considered. (author) [fr
Applying social theory to understand health-related behaviours.
Holman, Daniel; Borgstrom, Erica
2016-06-01
Health-related behaviours are a concern for contemporary health policy and practice given their association with a range of illness outcomes. Many of the policies and interventions aimed at changing health-related behaviours assume that people are more or less free to choose their behaviour and how they experience health. Within sociology and anthropology, these behaviours are viewed not as acts of choice but as actions and practices situated within a larger sociocultural context. In this paper, we outline three theoretical perspectives useful in understanding behaviours that may influence one's health in this wider context: theories of social practice, social networks and interactionism. We argue that by better understanding how health-related behaviours are performed in people's everyday lives, more suitable interventions and clinical management can be developed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Fostering engagement during termination: Applying attachment theory and research.
Marmarosh, Cheri L
2017-03-01
Therapists often struggle to determine the most important things to focus on during termination. Reviewing the treatment, identifying plans for the future, summarizing positive gains, and saying goodbye receive the most attention. Despite our best intentions, termination can end up becoming intellectualized. Attachment theory and recent developments in neuroscience offer us a road map for facilitating endings that address client's underlying relational needs, direct us to foster engagement, and help us facilitate new relational experience that can be transformative for clients. We argue that endings in therapy activate client's and therapist's attachments and these endings trigger emotion regulating strategies that can elicit client's engagement or more defensiveness. The current paper will highlight through de-identified case examples how clients automatically respond termination and how therapists can foster rich relational experiences in the here-and-now that clients can take with them. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Information theory applied to econophysics: stock market behaviors
Vogel, Eugenio E.; Saravia, Gonzalo
2014-08-01
The use of data compressor techniques has allowed to recognize magnetic transitions and their associated critical temperatures [E.E. Vogel, G. Saravia, V. Cortez, Physica A 391, 1591 (2012)]. In the present paper we introduce some new concepts associated to data recognition and extend the use of these techniques to econophysics to explore the variations of stock market indicators showing that information theory can help to recognize different regimes. Modifications and further developments to previously introduced data compressor wlzip are introduced yielding two measurements. Additionally, we introduce an algorithm that allows to tune the number of significant digits over which the data compression is due to act complementing, this with an appropriate method to round off the truncation. The application is done to IPSA, the main indicator of the Chilean Stock Market during the year 2010 due to availability of quality data and also to consider a rare effect: the earthquake of the 27th of February on that year which is as of now the sixth strongest earthquake ever recorded by instruments (8.8 Richter scale) according to United States Geological Survey. Along the year 2010 different regimes are recognized. Calm days show larger compression than agitated days allowing for classification and recognition. Then the focus turns onto selected days showing that it is possible to recognize different regimes with the data of the last hour (60 entries) allowing to determine actions in a safer way. The "day of the week" effect is weakly present but "the hour of the day" effect is clearly present; its causes and implications are discussed. This effect also establishes the influence of Asian, European and American stock markets over the smaller Chilean Stock Market. Then dynamical studies are conducted intended to search a system that can help to realize in real time about sudden variations of the market; it is found that information theory can be really helpful in this respect.
Superconductivity in bad metals
International Nuclear Information System (INIS)
Emery, V.J.; Kivelson, S.A.
1995-01-01
It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described
2016-03-01
Oaks, CA: Sage, 2001), 2. 30 Donaldson, “The Contingency Theory of Organizational Design,” 22. 18 theory emphasizes the necessity of fit,31 but it...ORGANIZATIONAL FIT: APPLYING CONFIGURATION THEORY TO THE SNOHOMISH COUNTY (WA) EMERGENCY OPERATIONS CENTER by Jason M. Biermann March 2016...CONFIGURATION THEORY TO THE SNOHOMISH COUNTY (WA) EMERGENCY OPERATIONS CENTER 5. FUNDING NUMBERS 6. AUTHOR(S) Jason M. Biermann 7. PERFORMING
Energy Technology Data Exchange (ETDEWEB)
Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)
2016-07-01
The quest for novel high-temperature superconductors in the family of hydrogen-rich compounds has recently been crowned with the experimental discovery of a record critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa. In the present contribution, we investigate the phase diagram of the H-S system, comparing the stability of H{sub n}S (n = 1,2,3,4) by means of the minima hopping method for structure prediction. Our extensive crystal structure search confirms the H{sub 3}S stoichiometry as the most stable configuration at high pressure. Superconducting properties are calculated using the fully ab-initio parameter-free approach of density functional theory for superconductors. We find a T{sub c} of 180 K at 200 GPa, in excellent agreement with experiment. We also show that Se-H has a phase diagram similar to its sulfur counterpart. We predict H{sub 3}Se to be superconducting at temperatures higher than 120 K at 100 GPa. We furthermore investigate the phase diagram of PH{sub n} (n = 1,2,3,4,5,6). The results of our crystal-structure search do not support the existence of thermodynamically stable PH{sub n} compounds, which exhibit a tendency for elemental decomposition at high pressure. Although the lowest energy phases of PH{sub n=1,2,3} display T{sub c} values comparable to experiment, it remains uncertain if the measured values of T{sub c} can be fully attributed to a phase-pure compound of PH{sub n}.
The modern portfolio theory applied to wind farm financing
Energy Technology Data Exchange (ETDEWEB)
Chaves-Schwinteck, P. [DEWI GmbH, Oldenburg (Germany)
2011-02-15
An alternative to the application of the principles of the Modern Portfolio Theory as a strategy to the reduction of the risks around the energy production of wind farms was presented in the last sections. The potential of geographical diversification to reduce the risks related to the availability of wind as a primary resource was demonstrated by the results of the first case study. Furthermore, the results of the second case study have shown that, once a sufficient history of technical performance data is available, a reduction of the risks linked to the technical performance of the wind turbines can be achieved in a similar way. Nevertheless, the existence of 'non-diversifiable' risks still presents a challenge for the financing of wind farms. In this sense, it is important to point out that the financing performance of a portfolio of wind farms is extremely dependent on the individual performance of the single projects. In other words, a portfolio analysis is not a miracle. A 'bad' project remains a 'bad' project even when this project is bundled with a 'good' one. For this reason, other risk management strategies, as for example, a well performed technical due diligence should be always taken into consideration. (orig.)
One-Group Perturbation Theory Applied to Measurements with Void
International Nuclear Information System (INIS)
Persson, Rolf
1966-09-01
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020
One-Group Perturbation Theory Applied to Measurements with Void
Energy Technology Data Exchange (ETDEWEB)
Persson, Rolf
1966-09-15
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.
Extreme Value Theory Applied to the Millennial Sunspot Number Series
Acero, F. J.; Gallego, M. C.; García, J. A.; Usoskin, I. G.; Vaquero, J. M.
2018-01-01
In this work, we use two decadal sunspot number series reconstructed from cosmogenic radionuclide data (14C in tree trunks, SN 14C, and 10Be in polar ice, SN 10Be) and the extreme value theory to study variability of solar activity during the last nine millennia. The peaks-over-threshold technique was used to compute, in particular, the shape parameter of the generalized Pareto distribution for different thresholds. Its negative value implies an upper bound of the extreme SN 10Be and SN 14C timeseries. The return level for 1000 and 10,000 years were estimated leading to values lower than the maximum observed values, expected for the 1000 year, but not for the 10,000 year return levels, for both series. A comparison of these results with those obtained using the observed sunspot numbers from telescopic observations during the last four centuries suggests that the main characteristics of solar activity have already been recorded in the telescopic period (from 1610 to nowadays) which covers the full range of solar variability from a Grand minimum to a Grand maximum.
Robust Bayesian decision theory applied to optimal dosage.
Abraham, Christophe; Daurès, Jean-Pierre
2004-04-15
We give a model for constructing an utility function u(theta,d) in a dose prescription problem. theta and d denote respectively the patient state of health and the dose. The construction of u is based on the conditional probabilities of several variables. These probabilities are described by logistic models. Obviously, u is only an approximation of the true utility function and that is why we investigate the sensitivity of the final decision with respect to the utility function. We construct a class of utility functions from u and approximate the set of all Bayes actions associated to that class. Then, we measure the sensitivity as the greatest difference between the expected utilities of two Bayes actions. Finally, we apply these results to weighing up a chemotherapy treatment of lung cancer. This application emphasizes the importance of measuring robustness through the utility of decisions rather than the decisions themselves. Copyright 2004 John Wiley & Sons, Ltd.
Bifurcation theory applied to buckling states of a cylindrical shell
Chaskalovic, J.; Naili, S.
1995-01-01
Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.
Modern aspects of Josephson dynamics and superconductivity electronics
Askerzade, Iman; Cantürk, Mehmet
2017-01-01
In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.
D. B. Beringer; W. M. Roach; C. Clavero; C. E. Reece; R. A. Lukaszew
2013-01-01
This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ∼50 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)APPLAB0003-695110.1063/1.2162...
Describing function theory as applied to thermal and neutronic problems
International Nuclear Information System (INIS)
Nassersharif, B.
1983-01-01
Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. In this work the describing function concept has been extended to include nonlinear, distributed parameter partial differential equations. A three-stage solution algorithm is presented which can be applied to any nonlinear partial differential equation. Two generalized integral transforms were developed as the T-transform for the time domain and the B-transform for the spatial domain. The thermal diffusion describing function (TDDF) is developed for conduction of heat in solids and a general iterative solution along with convergence criteria is presented. The proposed solution method is used to solve the problem of heat transfer in nuclear fuel rods with annular fuel pellets. As a special instance the solid cylindrical fuel pellet is examined. A computer program is written which uses the describing function concept for computing fuel pin temperatures in the radial direction during reactor transients. The second problem investigated was the neutron diffusion equation which is intrinsically different from the first case. Although, for most situations, it can be treated as a linear differential equation, the describing function method is still applicable. A describing function solution is derived for two possible cases: constant diffusion coefficient and variable diffusion coefficient. Two classes of describing functions are defined for each case which portray the leakage and absorption phenomena. For the specific case of a slab reactor criticality problem the comparison between analytical and describing function solutions revealed an excellent agreement
Quantum group based theory for antiferromagnetism and superconductivity: proof and further evidence
Energy Technology Data Exchange (ETDEWEB)
Alam, Sher; Mamun, S.M.; Yanagisawa, T.; Khan, Hayatullah; Rahman, M.O.; Termizi, J.A.S
2003-10-15
Previously one of us presented a conjecture to model antiferromagnetism and high temperature superconductivity and their 'unification' by quantum group symmetry rather than the corresponding classical symmetry in view of the critique by Baskaran and Anderson of Zhang's classical SO(5) model. This conjecture was further sharpened, experimental evidence and the important role of 1-d systems (stripes) was emphasized and moreover the relationship between quantum groups and strings via WZWN models were given in an earlier paper. In this brief note we give and discuss mathematical proof of this conjecture, which completes an important part of this idea, since previously an explicit simple mathematical proof was lacking. It is important to note that in terms of physics that the arbitrariness (freedom) of the d-wave factor g{sup 2}(k) is tied to quantum group symmetry whereas in order to recover classical SO(5) one must set it to unity in an adhoc manner. We comment on the possible connection between this freedom and the pseudogap behaviour in the cuprates.
Reed, Cajah S.
2012-01-01
This study sought to find evidence for a beneficial learning theory to teach computer software programs. Additionally, software was analyzed for each learning theory's applicability to resolve whether certain software requires a specific method of education. The results are meant to give educators more effective teaching tools, so students…
Superconductivity: Heike's heritage
van der Marel, D.; Golden, M.
2011-01-01
A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.
Connor, Joseph P; Troendle, Karen
2007-08-01
This article applies two well-known management and leadership models-Theory X and Theory Y, and Situational Leadership-to dental education. Theory X and Theory Y explain how assumptions may shape the behaviors of dental educators and lead to the development of "cop" and "coach" teaching styles. The Situational Leadership Model helps the educator to identify the teaching behaviors that are appropriate in a given situation to assist students as they move from beginner to advanced status. Together, these models provide a conceptual reference to assist in the understanding of the behaviors of both students and faculty and remind us to apply discretion in the education of our students. The implications of these models for assessing and enhancing the educational environment in dental school are discussed.
Quantum kinetics of a superconducting tunnel junction: Theory and comparison with experiment
International Nuclear Information System (INIS)
Chow, K.S.; Browne, D.A.; Ambegaokar, V.
1988-01-01
We develop a kinetic theory for the real-time response of a quantum particle interacting with a macroscopic reservoir. We discuss the equilibrium and long-time behavior of the solution of the kinetic equation for such a system. In the limit of low damping, the kinetic equation reduces to a master equation. Using the theory to model a Josephson junction loaded with an external impedance, we make contact with the experiments of Clark, Devoret, Esteve, and Martinis. We argue that a stationary solution of the master equation sufficiently describes the experiments, and make detailed comparison with data
Identifying and applying psychological theory to setting and achieving rehabilitation goals.
Scobbie, Lesley; Wyke, Sally; Dixon, Diane
2009-04-01
Goal setting is considered to be a fundamental part of rehabilitation; however, theories of behaviour change relevant to goal-setting practice have not been comprehensively reviewed. (i) To identify and discuss specific theories of behaviour change relevant to goal-setting practice in the rehabilitation setting. (ii) To identify 'candidate' theories that that offer most potential to inform clinical practice. The rehabilitation and self-management literature was systematically searched to identify review papers or empirical studies that proposed a specific theory of behaviour change relevant to setting and/or achieving goals in a clinical context. Data from included papers were extracted under the headings of: key constructs, clinical application and empirical support. Twenty-four papers were included in the review which proposed a total of five theories: (i) social cognitive theory, (ii) goal setting theory, (iii) health action process approach, (iv) proactive coping theory, and (v) the self-regulatory model of illness behaviour. The first three of these theories demonstrated most potential to inform clinical practice, on the basis of their capacity to inform interventions that resulted in improved patient outcomes. Social cognitive theory, goal setting theory and the health action process approach are theories of behaviour change that can inform clinicians in the process of setting and achieving goals in the rehabilitation setting. Overlapping constructs within these theories have been identified, and can be applied in clinical practice through the development and evaluation of a goal-setting practice framework.
The theory of interpersonal relations applied to the preceptor-new graduate relationship.
Washington, Georgita T
2013-01-01
This article presents research results applying Peplau's Theory of Interpersonal Relations to the preceptor-new graduate relationship and describes implications for successful transition. These results will help nursing professional development educators with more appropriate preparation and assignment of preceptors.
Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.
Emmons, Mark; Wilkinson, Frances C.
2001-01-01
Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)
THE RELEVANCE OF DUESENBERRY CONSUMPTION THEORY! AN APPLIED CASE TO LATIN AMERICA
Parada Corrales, Jairo; Bacca Mejia, William
2009-01-01
In this paper we examine the to-date relevance of Duesenberry's Consumption Theory through an applied case to four economies in Latin America: Mexico, Brazil, Argentina and Colombia. Using annual time series of these countries we show that some empirical evidence of Duesenberry's theory still holds and should not be discarded in modern macroeconomics as it has happened in regular macro text books in mainstream economics. Duesenberry's theory includes important institutional factors that canno...
MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).
Energy Technology Data Exchange (ETDEWEB)
ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.
2001-07-12
Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron
An Analysis of Oppositional Culture Theory Applied to One Suburban Midwestern High School
Blackard, Tricia; Puchner, Laurel; Reeves, Alison
2014-01-01
This study explored whether and to what extent Ogbu and Fordham's Oppositional Culture Theory applied to African American high school students at one Midwestern suburban high school. Based on multiple interviews with six African American students, the study found support for some aspects of the theory but not for others.
Applying Social Cognitive Theory in Coaching Athletes: The Power of Positive Role Models
Connolly, Graeme J.
2017-01-01
The purpose of this article is to help coaches apply specific principles of psychology to the coaching process. More specifically, the work of Albert Bandura and his social cognitive theory form the basis for the article. This article begins with a brief overview of Bandura's social cognitive theory. It then examines four types of behaviors worthy…
How Settings Change People: Applying Behavior Setting Theory to Consumer-Run Organizations
Brown, Louis D.; Shepherd, Matthew D.; Wituk, Scott A.; Meissen, Greg
2007-01-01
Self-help initiatives stand as a classic context for organizational studies in community psychology. Behavior setting theory stands as a classic conception of organizations and the environment. This study explores both, applying behavior setting theory to consumer-run organizations (CROs). Analysis of multiple data sets from all CROs in Kansas…
Applied Systemic Theory and Educational Psychology: Can the Twain Ever Meet?
Pellegrini, Dario W.
2009-01-01
This article reflects on the potential benefits of applying systemic theory to the work of educational psychologists (EPs). It reviews developments in systemic thinking over time, and discusses the differences between more directive "first order" versus collaborative "second order" approaches. It considers systemic theories and…
Second Person Singular Address Forms in Caleno Spanish: Applying a Theory of Language Regard
Newall, Gregory M.
2012-01-01
Language regard is defined as the opinions and norms that speakers have about language. In this dissertation, a theory of language regard is applied to variation in second-person singular address forms in Cali Colombian Spanish (["tuteo," "voseo", and "ustedeo" ]). This theory claims that language production and…
Masculinity Theory in Applied Research with Men and Boys with Intellectual Disability
Wilson, Nathan John; Shuttleworth, Russell; Stancliffe, Roger; Parmenter, Trevor
2012-01-01
Researchers in intellectual disability have had limited theoretical engagement with mainstream theories of masculinity. In this article, the authors consider what mainstream theories of masculinity may offer to applied research on, and hence to therapeutic interventions with, men and boys with intellectual disability. An example from one research…
International Nuclear Information System (INIS)
Wilczek, F.
1997-01-01
The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken
Energy Technology Data Exchange (ETDEWEB)
Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)
1997-09-22
The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.
Hirsch, J. E.
2018-05-01
Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.
Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity
Directory of Open Access Journals (Sweden)
A. Di Bernardo
2015-11-01
Full Text Available In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic or attract (paramagnetic external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.
Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program
International Nuclear Information System (INIS)
1987-12-01
The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately
Potential Performance Theory (PPT): A General Theory of Task Performance Applied to Morality
Trafimow, David; Rice, Stephen
2008-01-01
People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task…
Theory of superconductivity. II. Excited Cooper pairs. Why does sodium remain normal down to 0 K?
International Nuclear Information System (INIS)
Fujita, S.
1992-01-01
Based on a generalized BCS Hamiltonian in which the interaction strengths (V 11 , V 22 , V 12 ) among and between electron (12) and hole (2) Cooper pairs are differentiated, the thermodynamic properties of a type-I superconductor below the critical temperature T c are investigated. An expression for the ground-state energy, W - W 0 , relative to the unperturbed Block system is obtained. The usual BCS formulas are obtained in the limits: (all) V jl = V 0 , N 1 (0) = N 2 (0). Any excitations generated through the BCS interaction Hamiltonian containing V jl must involve Cooper pairs of antiparallel spins and nearly opposite momenta. The nonzero momentum or excited Cooper pairs below T c are shown to have an excitation energy band minimum lower than the quasi-electrons, which were regarded as the elementary excitations in the original BCS theory. The energy gap var-epsilon g (T) defined relative to excited and zero-momentum Copper pairs (when V jl > 0) decreases from var-epsilon g (0) to 0 as the temperature T is raised from 0 to T c . If electrons only are available as in a monovalent metal like sodium (V 12 = 0), the energy constant Δ 1 is finite but the energy gap vanishes identically for all T. In agreement with the BCS theory, the present theory predicts that a pure nonmagnetic metal in any dimensions should have a Cooper-pair ground state whose energy is lower than that of the Bloch ground state. Additionally it predicts that a monovalent metal should remain normal down to 0 K, and that there should be no strictly one-dimensional superconductor
On the Nature of Applied Linguistics: Theory and Practice Relationships from a Critical Perspective
Sánchez, William
2007-01-01
This article explores the relationships between Applied Linguistics and other related disciplines concerning language use and language teaching issues. It seeks to trace the changes in the view of the relationship between theory and practice in Applied Linguistics, to explain the reason for those changes, and to discuss the implications for…
Arpaia, P.; Coppier, H.; De Paola, D.; di Bernardo, M.; Guarino, A.; Pedemonte, B. Luz; Pezzetti, M.
2017-12-01
Industrial process controllers for cryogenic systems used in test facilities for superconducting magnets are typically PIDs, tuned by operational expertise according to users’ requirements (covering cryogenic transients and associated thermo-mechanical constraints). In this paper, an alternative fully-automatic solution, equally based on PID controllers, is proposed. Following the comparison of the operational expertise and alternative fully-automatic approaches, a new process control configuration, based on an estimated multiple-input/multiple-output (MIMO) model is proposed. The new MIMO model-based approach fulfils the required operational constraints while improving performance compared to existing solutions. The analysis and design work is carried out using both theoretical and numerical tools and is validated on the case study of the High Field Magnet (HFM) cryogenic test bench running at the SM18 test facility located at CERN. The proposed solution have been validated by simulation using the CERN ECOSIMPRO software tools using the cryogenic library (CRYOLIB [1]) developed at CERN.
Applying Differential Coercion and Social Support Theory to Intimate Partner Violence.
Zavala, Egbert; Kurtz, Don L
2017-09-01
A review of the current body of literature on intimate partner violence (IPV) shows that the most common theories used to explain this public health issue are social learning theory, a general theory of crime, general strain theory, or a combination of these perspectives. Other criminological theories have received less empirical attention. Therefore, the purpose of this study is to apply Differential Coercion and Social Support (DCSS) theory to test its capability to explain IPV. Data collected from two public universities ( N = 492) shows that three out of four measures of coercion (i.e., physical abuse, emotional abuse, and anticipated strain) predicted IPV perpetration, whereas social support was not found to be significant. Only two social-psychological deficits (anger and self-control) were found to be positive and significant in predicting IPV. Results, as well as the study's limitations and suggestions for future research, are discussed.
International Nuclear Information System (INIS)
Radtke, R.J.; Norman, M.R.
1994-01-01
Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling
Superconductivity: A critical analysis
International Nuclear Information System (INIS)
Sacchetti, Nicola
1997-01-01
It is some forty years now that superconductivity has entered into the field of applied Physics. Countless applications have been proposed some of which have been successfully tested in the form of prototypes and relatively few have become widely used products. This article offers an objective examination of what applied superconductivity represents in the area of modern technology highlighting its exclusive advantages and its inevitable limitations
Applying circular economy innovation theory in business process modeling and analysis
Popa, V.; Popa, L.
2017-08-01
The overall aim of this paper is to develop a new conceptual framework for business process modeling and analysis using circular economy innovative theory as a source for business knowledge management. The last part of the paper presents an author’s proposed basic structure for a new business models applying circular economy innovation theories. For people working on new innovative business models in the field of the circular economy this paper provides new ideas for clustering their concepts.
Abrahams, Elihu; Wölfle, Peter
2012-01-01
We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893
Multisided Media Markets: Applying the Theory of Multisided Markets to Media Markets
Nadine Lindstädt
2009-01-01
Media markets recently have been identified as multisided markets. The application of the theory of multisided markets provides a better understanding of such markets. It enriched the hitherto economic approach and led to new insights and perspectives especially for the antitrust authorities when evaluating competition constraints and mergers. This paper reviews the theory of multisided markets and subsequently applies it to media markets. Finally the paper draws attention to the new perspect...
Superconductivity in doped insulators
International Nuclear Information System (INIS)
Emery, V.J.; Kivelson, S.A.
1995-01-01
It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described
Masculinity theory in applied research with men and boys with intellectual disability.
Wilson, Nathan John; Shuttleworth, Russell; Stancliffe, Roger; Parmenter, Trevor
2012-06-01
Researchers in intellectual disability have had limited theoretical engagement with mainstream theories of masculinity. In this article, the authors consider what mainstream theories of masculinity may offer to applied research on, and hence to therapeutic interventions with, men and boys with intellectual disability. An example from one research project that explored male sexual health illustrates how using masculinity theory provided greater insight into gendered data. Finally, we discuss the following five topics to illustrate how researchers might use theories of masculinity: (a) fathering, (b) male physical expression, (c) sexual expression, (d) men's health, and (e) underweight and obesity. Theories of masculinity offer an additional framework to analyze and conceptualize gendered data; we challenge researchers to engage with this body of work.
Coupled channel theory of pion--deuteron reaction applied to threshold scattering
International Nuclear Information System (INIS)
Mizutani, T.; Koltun, D.S.
1977-01-01
Scattering and absorption of pions by a nuclear target are treated together in a coupled channel theory. The theory is developed explicitly for the problem of pion scattering and absorption by a deuteron. The equations are presented in terms of the integral equations of three-body scattering theory. The method is then applied in an approximate from to calculate the contribution of pion absorption to the scattering length for pion--deuteron scattering. The sensitivity of the calculated results to the model assumptions and approximations is investigated
International Nuclear Information System (INIS)
Canfield, P.C.; Bud'ko, S.L.; Ni, N.; Kreyssig, A.; Goldman, A.I.; McQueeney, R.J.; Torikachvili, M.S.; Argyriou, D.N.; Luke, G.; Yu, W.
2009-01-01
At ambient pressure CaFe 2 As 2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T ∼ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ∼0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ∼1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe 2 As 2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
RESEARCH: Theory in Practice: Applying Participatory Democracy Theory to Public Land Planning
Moote; Mcclaran; Chickering
1997-11-01
/ Application of participatory democracy theory to public participation in public land planning, while widely advocated, has not been closely examined. A case study is used here to explicate the application of participatory democracy concepts to public participation in public land planning and decision making. In this case, a Bureau of Land Management resource area manager decided to make a significant shift from the traditional public involvement process to a more participatory method-coordinated resource management (CRM). This case was assessed using document analysis, direct observation of CRM meetings, questionnaires, and interviews of key participants. These sources were used to examine the CRM case using participatory democracy concepts of efficacy, access and representation, continuous participation throughout planning, information exchange and learning, and decision-making authority. The case study suggests that social deliberation in itself does not ensure successful collaboration and that establishing rules of operation and decision making within the group is critical. Furthermore, conflicts between the concept of shared decision-making authority and the public land management agencies' accountability to Congress, the President, and the courts need further consideration.KEY WORDS: Case study; Coordinated resource management; Public participation; Administrative discretion; Representation; Consensus; Collaboration
First-principles approach for superconducting slabs and heterostructures
Energy Technology Data Exchange (ETDEWEB)
Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)
2016-07-01
We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.
Perkins, Matthew B; Jensen, Peter S; Jaccard, James; Gollwitzer, Peter; Oettingen, Gabriele; Pappadopulos, Elizabeth; Hoagwood, Kimberly E
2007-03-01
Despite major recent research advances, large gaps exist between accepted mental health knowledge and clinicians' real-world practices. Although hundreds of studies have successfully utilized basic behavioral science theories to understand, predict, and change patients' health behaviors, the extent to which these theories-most notably the theory of reasoned action (TRA) and its extension, the theory of planned behavior (TPB)-have been applied to understand and change clinician behavior is unclear. This article reviews the application of theory-driven approaches to understanding and changing clinician behaviors. MEDLINE and PsycINFO databases were searched, along with bibliographies, textbooks on health behavior or public health, and references from experts, to find article titles that describe theory-driven approaches (TRA or TPB) to understanding and modifying health professionals' behavior. A total of 19 articles that detailed 20 studies described the use of TRA or TPB and clinicians' behavior. Eight articles describe the use of TRA or TPB with physicians, four relate to nurses, three relate to pharmacists, and two relate to health workers. Only two articles applied TRA or TPB to mental health clinicians. The body of work shows that different constructs of TRA or TPB predict intentions and behavior among different groups of clinicians and for different behaviors and guidelines. The number of studies on this topic is extremely limited, but they offer a rationale and a direction for future research as well as a theoretical basis for increasing the specificity and efficiency of clinician-targeted interventions.
Eliashberg theory applied to the study of an Nb-Ge series
International Nuclear Information System (INIS)
Baquero, R.; Gutierrez-Ibarra, J.; Kihlstrom, K.E.
1991-07-01
We use strong coupling theory of superconductivity to perform a detailed analysis of the Eliashberg functions α 2 F(ω), for thirteen samples of Nb-Ge with critical temperatures ranging from 7.0 K to 21.1K. As critical temperature increases, we analyze the general trends of the electron-phonon coupling parameter λ, of the integral of α 2 F(ω)''A'', and of other characteristics of α 2 F(ω) on the basis of qualitative or empirical criteria. While we find that the samples have in general the behavior expected, a closer analysis points to an overall attenuation in α 2 F(ω) of unclear origin. Though the gap edge, Δ 0 , appears to be well described by the α 2 F(ω) obtained, the thermodynamic critical field agrees poorly with that reproduced by α 2 F(ω) in the only case where the necessary (tunneling α 2 F(ω), critical field measurements) data are available. Our analysis suggests there is a gross uncertainty in the measured H c (0). The overall analysis shows that the samples obtained are of enough quality to already give meaningful results upon inversion of the tunneling data. (author). 23 refs, 14 figs, 6 tabs
Applying Social Cognitive Theory to Academic Advising to Assess Student Learning Outcomes
Erlich, Richard J.; Russ-Eft, Darlene
2011-01-01
Review of social cognitive theory constructs of self-efficacy and self-regulated learning is applied to academic advising for the purposes of assessing student learning. A brief overview of the history of student learning outcomes in higher education is followed by an explanation of self-efficacy and self-regulated learning constructs and how they…
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2012-01-01
In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…
Digital linear control theory applied to automatic stepsize control in electrical circuit simulation
Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.
2006-01-01
Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep
ICOM-ICTOP 14 October 2015 Workshop : Applying Global Theory to Local Practice
Ariese, C.E.; Con, Aguilar E.O.; Martin, J.A.
2015-01-01
This workshop is connected to the presentation ‘Transforming global theory to local practice: Case studies from museums and education in the Caribbean’ and provides a practical and creative exercise for participants. The objective of the workshop is to support participants in exploring how to apply
Unlocking Hospitality Managers Career Transitions through Applying Schein's Career Anchors Theory
McGuire, David; Polla, Giovana; Heidl, Britta
2017-01-01
Purpose: This paper seeks to unlock the career transitions of hospitality managers through applying Schein's career anchors theory. It seeks to understand how Schein's Career Anchors help explain the career transitions of managers in the Scottish hospitality industry. Design/methodology/approach: The paper adopts a non-sequential multi-method…
Leading Critically: A Grounded Theory of Applied Critical Thinking in Leadership Studies
Jekins, Daniel M.; Cutchens, Amanda B.
2011-01-01
This study describes the development of a grounded theory of applied critical thinking in leadership studies and examines how student-centered experiential learning in leadership education bridged critical thinking with action. Over three semester undergraduate students in an upper level leadership studies course at a large four-year public…
Digital linear control theory applied to automatic stepsize control in electrical circuit simulation
Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.
2005-01-01
Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep
Kubota, Ryuko
2016-01-01
In applied linguistics and language education, an increased focus has been placed on plurality and hybridity to challenge monolingualism, the native speaker norm, and the modernist view of language and language use as unitary and bounded. The multi/plural turn parallels postcolonial theory in that they both support hybridity and fluidity while…
Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro
2016-11-01
Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.
Superconductivity - applications
International Nuclear Information System (INIS)
The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de
Horwitz, Sujin K; Horwitz, Irwin B; Barshes, Neal R
2011-01-01
Previous research has demonstrated that communication failure and interpersonal conflicts are significant impediments among health-care teams to assess complex information and engage in the meaningful collaboration necessary for optimizing patient care. Despite the prolific research on the role of effective teamwork in accomplishing complex tasks, such findings have been traditionally applied to business organizations and not medical contexts. This chapter, therefore, reviews and applies four theories from the fields of organizational behavior (OB) and organization development (OD) as potential means for improving team interaction in health-care contexts. This study is unique in its approach as it addresses the long-standing problems that exist in team communication and cooperation in health-care teams by applying well-established theories from the organizational literature. The utilization and application of the theoretical constructs discussed in this work offer valuable means by which the efficacy of team work can be greatly improved in health-care organizations.
the tj model and superconductivity
African Journals Online (AJOL)
DJFLEX
Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).
Energy Technology Data Exchange (ETDEWEB)
Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)
2013-07-01
The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.
International Nuclear Information System (INIS)
Hartwig, W.H.; Passow, C.
1975-01-01
Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines
Quantum theory as plausible reasoning applied to data obtained by robust experiments.
De Raedt, H; Katsnelson, M I; Michielsen, K
2016-05-28
We review recent work that employs the framework of logical inference to establish a bridge between data gathered through experiments and their objective description in terms of human-made concepts. It is shown that logical inference applied to experiments for which the observed events are independent and for which the frequency distribution of these events is robust with respect to small changes of the conditions under which the experiments are carried out yields, without introducing any concept of quantum theory, the quantum theoretical description in terms of the Schrödinger or the Pauli equation, the Stern-Gerlach or Einstein-Podolsky-Rosen-Bohm experiments. The extraordinary descriptive power of quantum theory then follows from the fact that it is plausible reasoning, that is common sense, applied to reproducible and robust experimental data. © 2016 The Author(s).
Robust algorithms and system theory applied to the reconstruction of primary and secondary vertices
International Nuclear Information System (INIS)
Fruehwirth, R.; Liko, D.; Mitaroff, W.; Regler, M.
1990-01-01
Filter techniques from system theory have recently been applied to the estimation of track and vertex parameters. In this paper, vertex fitting by the Kalman filter method is discussed. These techniques have been applied to the identification of short-lived decay vertices in the case of high multiplicities as expected at LEP (Monte Carlo data in the DELPHI detector). Then in this context the need of further rebustification of the Kalman filter method is discussed. Finally results of an application with real data at a heavy ion experiment (NA36) will be presented. Here the vertex fit is used to select the interaction point among possible targets
Laukkanen, Sanna; Kangas, Annika; Kangas, Jyrki
2002-02-01
Voting theory has a lot in common with utility theory, and especially with group decision-making. An expected-utility-maximising strategy exists in voting situations, as well as in decision-making situations. Therefore, it is natural to utilise the achievements of voting theory also in group decision-making. Most voting systems are based on a single criterion or holistic preference information on decision alternatives. However, a voting scheme called multicriteria approval is specially developed for decision-making situations with multiple criteria. This study considers the voting theory from the group decision support point of view and compares it with some other methods applied to similar purposes in natural resource management. A case study is presented, where the approval voting approach is introduced to natural resources planning and tested in a forestry group decision-making process. Applying multicriteria approval method was found to be a potential approach for handling some challenges typical for forestry group decision support. These challenges include (i) utilising ordinal information in the evaluation of decision alternatives, (ii) being readily understandable for and treating equally all the stakeholders in possession of different levels of knowledge on the subject considered, (iii) fast and cheap acquisition of preference information from several stakeholders, and (iv) dealing with multiple criteria.
The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics
Basdevant, Jean-Louis
2006-01-01
The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.
MODELLING AND SIMULATING RISKS IN THE TRAINING OF THE HUMAN RESOURCES BY APPLYING THE CHAOS THEORY
Eugen ROTARESCU
2012-01-01
The article approaches the modelling and simulation of risks in the training of the human resources, as well as the forecast of the degree of human resources training impacted by risks by applying the mathematical tools offered by the Chaos Theory and mathematical statistics. We will highlight that the level of knowledge, skills and abilities of the human resources from an organization are autocorrelated in time and they depend on the level of a previous moment of the training, as well as on ...
Tutorial - applying extreme value theory to characterize food-processing systems
DEFF Research Database (Denmark)
Skou, Peter Bæk; Holroyd, Stephen E.; van der Berg, Franciscus Winfried J
2017-01-01
This tutorial presents extreme value theory (EVT) as an analytical tool in process characterization and shows its potential to describe production performance, eg, across different factories, via reliable estimates of the frequency and scale of extreme events. Two alternative EVT methods...... are discussed: point over threshold and block maxima. We illustrate the theoretical framework for EVT by process data from two different examples from the food-processing industry. Finally, we discuss limitations, decisions, and possibilities when applying EVT for process data....
International Nuclear Information System (INIS)
Hou Jingmin; Tian, Li-Jim
2010-01-01
We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes-Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Effective theory of exotic superconductivity in LaAlO3/SrTiO3 interfaces
Esmailzadeh, Haniyeh; Moghaddam, Ali G.
2018-05-01
Motivated by experimental and theoretical works about superconductivity at the oxide interfaces, we provide a simple model for possible unconventional pairings inside the exotic two-dimensional electron gas formed in heterostructures of SrTiO3 and LaAlO3. At the low energy limit, the electron gas at the interfaces is usually modeled with an effective three band model considering of 3d t2g orbitals which are slightly coupled by atomic spin-orbit couplings (SOC). Considering direct superconducting pairing in two higher delocalized bands and by exploiting a perturbative scheme based on canonical transformation, we derive the effective pairing amplitudes with possibly exotic nature inside the localized dxy band as well as various inter-band pairing components. In particular we show that equal-spin triplet pairings are possible between the band dxy and any of other dxz and dyz bands. In addition weaker effective pairings take place inside the localized band itself and between delocalized dxz and dyz bands with singlet and opposite-spin triplet characters. These unconventional effective pairings are indeed mediated by SOC-induced higher order virtual transitions between the bands and particularly into the localized band. Our model suggest that unconventional effective superconductivity is possible at oxide interfaces, simply, due to the special band structure and important role of atomic SOC and perhaps other magnetic effects present at these heterostructures.
Emergent Higgsless Superconductivity
Directory of Open Access Journals (Sweden)
Cristina Diamantini M.
2017-01-01
Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.
Process of producing superconducting bar magnets
International Nuclear Information System (INIS)
Wilson, M.A.
1988-01-01
A method of forming a magnet having an established magnetic field is described comprising; (1) establishing a magnetic field of the desired extent and shape; (2) providing a superconducting material of desired shape; (3) positioning the material of (2) in field (1) while at a temperature above the critical temperature of the superconducting material so as to apply a magnetic field on the superconducting material; (4) cooling the superconducting material while in magnetic field (1) to below the critical temperature of the superconducting material; (5) removing the superconducting material from the magnetic field while in the supercooled condition; and (6) maintaining the material at or below the critical temperature
Neutron star cooling constraints for color superconductivity in hybrid stars
International Nuclear Information System (INIS)
Popov, S.; Grigoryan, Kh.; Blaschke, D.
2005-01-01
We apply the recently developed LogN-LogS test of compact star cooling theories for the first time to hybrid stars with a color superconducting quark matter core. While there is not yet a microscopically founded superconducting quark matter phase which would fulfill constraints from cooling phenomenology, we explore the hypothetical 2SC+X phase and show that the magnitude and density-dependence of the X-gap can be chosen to satisfy a set of tests: temperature-age (T-t), the brightness constraint, LogN-LogS, and the mass spectrum constraint. The latter test appears as a new conjecture from the present investigation
Prevention of sexual harassment in the medical setting applying Inoculation Theory.
Matusitz, Jonathan; Breen, Gerald Mark
2005-01-01
This paper is an examination of how Inoculation Theory can be applied in the prevention of sexual harassment in the medical setting. The basic tenet of the theory is the study of the processes through which we withstand and oppose attitude transformation during social interactions that may influence or change our attitudes. More importantly, this paper analyzes sexual harassment as a pervasive phenomenon in the medical setting. As such, it defines what sexual harassment is, explains the prevalence of sexual harassment between the physician and the patient, describes some of the general studies conducted in medical settings, provides a case scenario of doctor-patient sexual harassment, and identifies some key consequences to doctors, patients, and society.
Control Theory Concepts Applied to Retail Supply Chain: A System Dynamics Modeling Environment Study
Directory of Open Access Journals (Sweden)
Balaji Janamanchi
2013-01-01
Full Text Available Control theory concepts have been long used to successfully manage and optimize complex systems. Using system dynamics (SD modeling methodology, which is continuous deterministic simulation modeling methodology, we apply control theory concepts to develop a suitable performance functional (or objective function that optimizes the performance of a retail supply chain. The focus is to develop insights for inventory management to prevent stock-outs and unfilled orders and to fill customer orders at the lowest possible cost to supply chain partners under different scenarios, in a two-player supplier-retailer supply chain. Moderate levels of inventory, defining appropriate performance functional, appear to be crucial in choosing the right policies for managing retail supply chain systems. The study also demonstrated how multiple objectives can be combined in a single performance functional (or objective function by carefully assigning suitable weights to the components of objectives based on their priority and the existence of possible trade off opportunities.
Valente, Thomas W; Pitts, Stephanie R
2017-03-20
The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.
ACTIVITY THEORY APPLIED AT CHANNEL EXPANSIONS IN SMALL AND MEDIUM ENTERPRISES
Directory of Open Access Journals (Sweden)
Siw Lundqvist
2017-06-01
Full Text Available Today’s commonly carried out channel expansions of commerce could be both costly and problematic to manage. Especially for small and medium-sized enterprises (SMEs that often suffer from a lack of digital competence, time and monetary resources in generally. Still, these transitions would be necessary to carry out because of customer demands and expectations concerning 24/7 availability, and access to digital commerce alternatives. Scarce resources are important reasons to search for how to carry out channel expansions with minimized problems. Activity theory (AT focuses on the whole in order to detect problems that hinder successful outcomes. Hence, this theory was applied to prior findings, from a project about SME’s channel expansions, highlighting several problems that could appear during these activities. Implications for research foremost involve issues connected to the use of AT; implications for practice particularly concern if and how AT could be used to support channel broadening activities.
Directory of Open Access Journals (Sweden)
Tumpal Sihombing
2013-01-01
Full Text Available The world is entering the era of recession when the trend is bearish and market is not so favorable. The capital markets in every major country were experiencing great amount of loss and people suffered in their investment. The Jakarta Composite Index (JCI has shown a great downturn for the past one year but the trend bearish year of the JCI. Therefore, rational investors should consider restructuring their portfolio to set bigger proportion in bonds and cash instead of stocks. Investors can apply modern portfolio theory by Harry Markowitz to find the optimum asset allocation for their portfolio. Higher return is always associated with higher risk. This study shows investors how to find out the lowest risk of a portfolio investment by providing them with several structures of portfolio weighting. By this way, investor can compare and make the decision based on risk-return consideration and opportunity cost as well. Keywords: Modern portfolio theory, Monte Carlo, linear programming
The agency problem and medical acting: an example of applying economic theory to medical ethics.
Langer, Andreas; Schröder-Bäck, Peter; Brink, Alexander; Eurich, Johannes
2009-03-01
In this article, the authors attempt to build a bridge between economic theory and medical ethics to offer a new perspective to tackle ethical challenges in the physician-patient encounter. They apply elements of new institutional economics to the ethically relevant dimensions of the physician-patient relationship in a descriptive heuristic sense. The principal-agent theory can be used to analytically grasp existing action problems in the physician-patient relationship and as a basis for shaping recommendations at the institutional level. Furthermore, the patients' increased self-determination and modern opportunities for the medical laity to inform themselves lead to a less asymmetrical distribution of information between physician and patient and therefore require new interaction models. Based on the analysis presented here, the authors recommend that, apart from the physician's necessary individual ethics, greater consideration should be given to approaches of institutional ethics and hence to incentive systems within medical ethics.
Applying the theory of planned behavior to promotion of whole-grain foods by dietitians.
Chase, Kellie; Reicks, Marla; Jones, Julie Miller
2003-12-01
The objective of this preliminary study was to apply the theory of planned behavior to explain dietitians' intentions to promote whole-grain foods. Surveys were mailed to a random national sample of registered dietitians to assess knowledge and attitudinal, normative, and control beliefs regarding intention to promote whole-grain foods, with a 39% return rate (n=776, with 628 usable surveys from those working in direct patient care). About half of the respondents had a master's degree, and 58% had substantial experience in the dietetics field. The theory of planned behavior explained intention to promote whole grains to a moderate extent (df=3, F=74.5, R(2)=0.278, Pconsume more whole-grain foods. Continuing education for dietitians should use strategies that enhance self-efficacy regarding ability to promote whole-grain foods.
Superconducting devices at Brookhaven National Laboratory
International Nuclear Information System (INIS)
Dahl, P.F.
1978-04-01
The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices
Phenomenological theory of the normal and superconductive states of Cu-O and Bi-O metals
International Nuclear Information System (INIS)
Varma, C.M.
1991-01-01
The universal normal state anomalies in the CuO metals follow from a marginal Fermi liquid hypothesis: there exists a contribution to the polarizability over most of momentum space proportional to omega/T for omega/T much less than 1 and constant thereafter up to a cutoff omega(sub c). Using the same excitation spectrum, the properties of the superconductive state were calculated. The right order of T(sub c) can be obtained, the zero temperature gap, 2 delta (0)/T(sub c) and the nuclear relaxation rate near T(sub c). The possible microscopic physics leading to the marginal Fermi liquid hypothesis is discussed
König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H
2010-04-01
Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use
Applied Physics of Carbon Nanotubes Fundamentals of Theory, Optics and Transport Devices
Rotkin, Slava V
2005-01-01
The book describes the state-of-the-art in fundamental, applied and device physics of nanotubes, including fabrication, manipulation and characterization for device applications; optics of nanotubes; transport and electromechanical devices and fundamentals of theory for applications. This information is critical to the field of nanoscience since nanotubes have the potential to become a very significant electronic material for decades to come. The book will benefit all all readers interested in the application of nanotubes, either in their theoretical foundations or in newly developed characterization tools that may enable practical device fabrication.
Gill, Chelsea; Packer, Jan; Ballantyne, Roy
2018-02-06
Attention Restoration Theory is applied to explore the causes and consequences of mental fatigue in clergy and suggest practical interventions to restore cognitive wellbeing. Previous research has investigated the physical and emotional health and wellbeing of clergy, but has largely neglected clergy cognitive wellbeing. Due to the demanding nature of their work, clergy are particularly susceptible to mental fatigue and depletion of their capacity to maintain attention. Symptoms include inability to focus attention, inhibit distractions, make decisions or solve problems. Mental fatigue can be overcome, and cognitive capacity restored, by spending time in restorative environments that allow directed attention to rest.
The Bayesian statistical decision theory applied to the optimization of generating set maintenance
International Nuclear Information System (INIS)
Procaccia, H.; Cordier, R.; Muller, S.
1994-11-01
The difficulty in RCM methodology is the allocation of a new periodicity of preventive maintenance on one equipment when a critical failure has been identified: until now this new allocation has been based on the engineer's judgment, and one must wait for a full cycle of feedback experience before to validate it. Statistical decision theory could be a more rational alternative for the optimization of preventive maintenance periodicity. This methodology has been applied to inspection and maintenance optimization of cylinders of diesel generator engines of 900 MW nuclear plants, and has shown that previous preventive maintenance periodicity can be extended. (authors). 8 refs., 5 figs
New world of Gossamer superconductivity
Energy Technology Data Exchange (ETDEWEB)
Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)
2006-09-15
Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
New world of Gossamer superconductivity
International Nuclear Information System (INIS)
Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila
2006-01-01
Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Superconductivity in doped semiconductors
Energy Technology Data Exchange (ETDEWEB)
Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr
2015-07-15
A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
International Nuclear Information System (INIS)
Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori
2016-01-01
Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.
International Nuclear Information System (INIS)
Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.
1988-01-01
Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed
Cressey’s fraud triangle (1953 and agency theory: study applied to brazilian banking institutions
Directory of Open Access Journals (Sweden)
Michele Rílany Rodrigues Machado
2017-08-01
Full Text Available This research examined if Cressey’s (1953 fraud triangle and the agency theory, jointly, enables investigate corporate fraud occurrence in Brazilian banking institutions. It was formulated six research hypotheses were segregated in fraud triangle – pressure, opportunity and rationalization – and measured by variables taken from the agency theory, criminology and empirical papers on corporate fraud. The identification of probability of fraud occurrence was operationalized from multinomial logistic model, applied to data of 44 banking, for the period between January 2001 and December 2012. For element pressure, hypotheses No. 01 was confirmed, since this showed that the lower an institution’s previous performance, the greater probability there is of fraudulent events occurring in the future. In the element of opportunity, the hypothesis No. 03 was confirmed, which showed that low corporate governance indicators increased the possibility of fraud occurrences. In rationalization element, the hypothesis No. 08 was confirmed, therefore, the predominance of women in management reduces the probability of fraud. We thereby conclude that Cressey’s Triangle, when combined with the theory of agency is an appropriate research instrument to use when carrying out an investigation into corporate fraud occurrence in banking institutions.
APPLYING THE APOS THEORY TO IMPROVE STUDENTS ABILITY TO PROVE IN ELEMENTARY ABSTRACT ALGEBRA
Directory of Open Access Journals (Sweden)
I Made Arnawa
2007-04-01
Full Text Available This study is a quasi-experimental nonrandomized pretest-posttest control group design. The experiment group is treated by APOS theory instruction (APOS,that implements four characteristics of APOS theory, (1 mathematical knowledge was constructed through mental construction: actions, processes, objects, and organizing these in schemas, (2 using computer, (3 using cooperative learning groups, and (4 using ACE teaching cycle (activities, class discussion, and exercise. The control group is treated by conventional/traditional mathematics instruction (TRAD. The main purpose of this study is to analyze about achievement in proof. 180 students from two different universities (two classes at the Department of Mathematics UNAND and two classes atthe Department of Mathematics Education UNP PADANG were engaged as the research subjects. Based on the result of data analysis, the main result of this study is that the proof ability of students' in the APOS group is significantly better than student in TRAD group, so it is strongly suggested to apply APOS theory in Abstract Algebra course.
Shaw, Jennifer
2016-02-01
The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Fujita, Masahiko
2013-06-01
A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.
International Nuclear Information System (INIS)
2010-01-01
Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)
Applying ecological models to communities of genetic elements: the case of neutral theory.
Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan
2015-07-01
A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)
2015-07-15
Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.
Applying network theory to animal movements to identify properties of landscape space use.
Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George
2018-04-01
Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a
International Nuclear Information System (INIS)
Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.
1989-01-01
We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology
Development of superconducting equipment for fusion device
International Nuclear Information System (INIS)
Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou
1993-01-01
At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)
The theory of critical distances applied to problems in fracture and fatigue of bone
Directory of Open Access Journals (Sweden)
Emma Brazel
2009-10-01
Full Text Available The theory of critical distances (TCD has been applied to predict notch-based fracture and fatigue in a wide range of materials and components. The present paper describes a series of projects in which we applied this approach to human bone. Using experimental data from the literature, combined with finite element analysis, we showed that the TCD was able to predict the effect of notches and holes on the strength of bone failing in brittle fracture due to monotonic loading, in different loading regimes. Bone also displays short crack effects, leading to R-curve data for both fracture toughness and fatigue crack propagation thresholds; we showed that the TCD could predict this data. This analysis raised a number of questions for discussion, such as the significance of the L value itself in this and other materials. Finally, we applied the TCD to a practical problem in orthopaedic surgery: the management of bone defects, showing that predictions could be made which would enable surgeons to decide on whether a bone graft material would be needed to repair a defect, and to specify what mechanical properties this material should have.
Forecasting of superconducting compounds
International Nuclear Information System (INIS)
Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.
1981-01-01
In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning
Electrical Conduction and Superconductivity
Indian Academy of Sciences (India)
When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...
Yang, Chao-Ming; Hsu, Tzu-Fan
2017-01-01
Visual communication design (VCD) is a form of nonverbal communication. The application of relevant linguistic or semiotic theories to VCD education renders graphic design an innovative and scientific discipline. In this study, actual teaching activities were examined to verify the feasibility of applying narrative theory to graphic design…
Earlier and recent aspects of superconductivity
International Nuclear Information System (INIS)
Bednorz, J.G.; Muller, K.A.
1990-01-01
Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Applying generalizability theory to examine the antecedents of perceived coach support.
Coussens, Adam Howard; Rees, Tim; Freeman, Paul
2015-02-01
Although social support is integral to the coaching process, there is only a limited understanding of the antecedents of perceived coach support. We applied generalizability theory to examine perceived coach support and its antecedents at perceiver, provider, and relational levels of analysis. Two studies were conducted in which athletes rated the degree to which they identified with a selection of coaches, and the personality, competency, and supportiveness of those coaches. Univariate analyses demonstrated that the relational component accounted for a significant amount of variance in perceived coach support in both studies. Multivariate analyses demonstrated that when athletes perceive specific coaches to be highly agreeable, competent, and individuals with whom they share a common identity, they also perceive these same coaches to be particularly supportive in comparison with other coaches.
Z-1 perturbation theory applied to the correlation energy problem of atoms
International Nuclear Information System (INIS)
Robinson, B.H.
1975-01-01
Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered
Applying Bayesian decision theory to assess reprocessing economic and social cost-benefits
International Nuclear Information System (INIS)
Heising, C.D.
1978-01-01
Bayesian decision theory, combined with conventional systems analysis techniques into the discipline called decision analysis, has been applied in this work to assess economic and social cost-benefits associated with reprocessing nuclear fuel. Particular attention in this paper is given to the models which have been developed to place numerical estimates in dollar terms on the three categories of social risks that have been identified with reprocessing. These categories include: (1) health, environment, and safety, (2) diversion of fissile material, including sabotage, terrorist acts, and subnational diversion, and (3) nuclear proliferation, defined to be a diversion at the national level to obtain weapons capability. The emphasis is placed on the third category, as proliferation risk has not been treated elsewhere in a quantitative fashion; most arguments have in the main been qualitative conjectures put forth by political scientists
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Energy Technology Data Exchange (ETDEWEB)
Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)
2013-10-01
Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.
Vortex properties of mesoscopic superconducting samples
Energy Technology Data Exchange (ETDEWEB)
Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)
2010-10-01
In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).
Murray, James M; Tesanović, Zlatko
2010-07-16
A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.
International Nuclear Information System (INIS)
Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.
1978-01-01
This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures
International Nuclear Information System (INIS)
Kormann, R.; Loiseau, R.; Marcilhac, B.
1989-01-01
The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr
International Nuclear Information System (INIS)
Hirsch, J.E.; Marsiglio, F.
1989-01-01
The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero
Connectivity and superconductivity
Rubinstein, Jacob
2000-01-01
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
Current leads for superconducting magnets
International Nuclear Information System (INIS)
Ishibashi, Kenji
1989-01-01
Current leads for superconducting magnets have been studied since 1960's. The technology of current leads may seem to have been established both in theory and experiment before the middle of 1970's. Nevertheless, a wide variety of superconducting magnets have been introduced in the last 15 years, and the demands for special current leads have increased in accordance to the variety. A steady advance has been made in the design theory and fabrication of current leads. This paper describes the recent current lead technology regarding the design theory, safety in accidents, and high current capability. (author)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1988-09-15
Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.
Superconductivity: Phenomenology
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect
Morgenstern Horing, Norman J
2017-01-01
This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...
Quantum correlated cluster mean-field theory applied to the transverse Ising model.
Zimmer, F M; Schmidt, M; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Energy Technology Data Exchange (ETDEWEB)
Duarte-Galvan, C.; Torres-Pacheco, I.; Guevara-Gonzalez, R. G.; Romero-Troncoso, R. J.; Contreras-Medina, L. M.; Rios-Alcaraz, M. A.; Millan-Almaraz, J. R.
2012-07-01
Today agriculture is changing in response to the requirements of modern society, where ensuring food supply through practices such as water conservation, reduction of agrochemicals and the required planted surface, which guarantees high quality crops are in demand. Greenhouses have proven to be a reliable solution to achieve these goals; however, a greenhouse as a means for protected agriculture has the potential to lead to serious problems. The most of these are related to the inside greenhouse climate conditions where controlling the temperature and relative humidity (RH) are the main objectives of engineering. Achieving appropriate climate conditions to ensure high yield and quality crops reducing energy consumption have been the objective of investigations for some time. Different schemes in control theories have been applied in this field to solve the aforementioned problems. Therefore, the objective of this paper is to present a review of different control techniques applied in protected agriculture to manage greenhouse climate conditions, presenting advantages and disadvantages of developed control platforms in order to suggest a design methodology according to results obtained from different investigations. (Author) 64 refs.
Brown, Jonathan M.; Petersen, Jeremy D.
2014-01-01
NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.
Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics
Directory of Open Access Journals (Sweden)
J.D. Clayton
2016-08-01
Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.
Applying Fear Appeals Theory for Preventing Drug Abuse among Male High School Students in Tehran
Directory of Open Access Journals (Sweden)
K. Witte
2006-10-01
Full Text Available Introduction & Objective: Drug abuse is one of the complicated phenomenons in the human communities that it produces health problems. The effect of applying fear appeal message on attitudes and intention against drug abuse, drug resistance skills, knowledge about side effect of drugs and drug abuse related behaviors among male high school students was studied based on applying extended parallel process model as a theoretical framework. Materials & Methods: Two high schools were chosen from six state high schools as an intervention (n=86 and control (n=97 groups. Educational curriculum, that was designed, based on students’ educational needs, appealed students’ fear and recommended messages developed students' ability for resisting against drugs. Before intervention 5-6 students who were known as a favourite and leader of students, were selected by student’s opinion in each class as students' leaders. The each leader of the group had a coordinator and mediate role between his group and health educators. Henceforth a favourite teacher was chosen by students’ vote for helping health educators and participated in the educational intervention program.Results: The result showed that educational manipulation had significant effect on intervention group’s average response for intention (t= -4.03, p<0.000 and attitude against drug abuse (t= -6.19, p<0.000, peer resistance skills (t=-0.82, p<0.000, and knowledge (t= -10.88, p<0.000. In addition, it was not found positive urinary rapid immune-chromatography test for opium and marijuana in the intervention group whereas 6.3% in the control groups.Conclusion: This findings suggest that applying fear appeals theories and effective health risk message would be an efficient tool for preventing drug abuse education programs but further studies are needed to define function of EPPM as a effective model for creating social inoculation against drug abuse among non- drug expose adolescents.
Shortell, Stephen M
2016-12-01
This commentary highights the key arguments and contributions of institutional thoery, transaction cost economics (TCE) theory, high reliability theory, and organizational learning theory to understanding the development and evolution of Accountable Care Organizations (ACOs). Institutional theory and TCE theory primarily emphasize the external influences shaping ACOs while high reliability theory and organizational learning theory underscore the internal fctors influencing ACO perfromance. A framework based on Implementation Science is proposed to conside the multiple perspectives on ACOs and, in particular, their abiity to innovate to achieve desired cost, quality, and population health goals. © The Author(s) 2016.
Nucleation of superconductivity under rapid cycling of an electric field
International Nuclear Information System (INIS)
Bandyopadhyay, Malay
2008-01-01
The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2
Unconventional superconductivity near inhomogeneities
International Nuclear Information System (INIS)
Poenicke, A.F.
2008-01-01
After the presentation of a quasi-classical theory the specific heat of Sr 2 RuO 4 is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO 2 as example, and an interface model. (HSI)
Unconventional superconductivity near inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Poenicke, A F
2008-01-25
After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)
Chiu, Michelle; Posner, Glenn; Humphrey-Murto, Susan
2017-01-27
Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern's approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution.
Lee, Jounghee; Jeong, Soyeon; Ko, Gyeongah; Park, Hyunshin; Ko, Youngsook
2016-08-01
The purpose of this study was to develop an educational model regarding food safety and nutrition. In particular, we aimed to develop educational materials, such as middle- and high-school textbooks, a teacher's guidebook, and school posters, by applying social cognitive theory. To develop a food safety and nutrition education program, we took into account diverse factors influencing an individual's behavior, such as personal, behavioral, and environmental factors, based on social cognitive theory. We also conducted a pilot study of the educational materials targeting middle-school students (n = 26), high-school students (n = 24), and dietitians (n = 13) regarding comprehension level, content, design, and quality by employing the 5-point Likert scale in May 2016. The food safety and nutrition education program covered six themes: (1) caffeine; (2) food additives; (3) foodborne illness; (4) nutrition and meal planning; (5) obesity and eating disorders; and (6) nutrition labeling. Each class activity was created to improve self-efficacy by setting one's own goal and to increase self-control by monitoring one's dietary intake. We also considered environmental factors by creating school posters and leaflets to educate teachers and parents. The overall evaluation score for the textbook was 4.0 points among middle- and high-school students, and 4.5 points among dietitians. This study provides a useful program model that could serve as a guide to develop educational materials for nutrition-related subjects in the curriculum. This program model was created to increase awareness of nutrition problems and self-efficacy. This program also helped to improve nutrition management skills and to promote a healthy eating environment in middle- and high-school students.
Applying Psychological Theories to Promote Long-Term Maintenance of Health Behaviors
Joseph, Rodney P.; Daniel, Casey L.; Thind, Herpreet; Benitez, Tanya J.; Pekmezi, Dori
2014-01-01
Behavioral health theory provides a framework for researchers to design, implement, and evaluate the effects of health promotion programs. However, limited research has examined theories used in interventions to promote long-term maintenance of health behaviors. The purpose of this review was to evaluate the available literature and identify prominent behavioral health theories used in intervention research to promote maintenance of health behaviors. We reviewed theories used in intervention research assessing long-term maintenance (≥ 6 months post-intervention) of physical activity, weight loss, and smoking cessation. Five prominent behavioral theories were referenced by the 34 studies included in the review: Self-Determination Theory, Theory of Planned Behavior, Social Cognitive Theory, Transtheoretical Model, and Social Ecological Model. Descriptions and examples of applications of these theories are provided. Implications for future research are discussed. PMID:28217036
Wang, Luyang; Vafek, Oskar
2014-02-01
We investigate the superconducting instability of a two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling αR. Using renormalization group approach, we find the superconducting transition temperature as a function of the dimensionless ratio Θ=1}/{2}mαR2/EF where EF = 0 when the smaller Fermi surface shrinks to a (Dirac) point. The general trend is that superconductivity is enhanced as Θ increases, but in an intermediate regime Θ ∼ 0.1, a dome-like behavior appears. At a very small value of Θ, the angular momentum channel jz in which superconductivity occurs is quite high. With increasing Θ, jz decreases with a step of 2 down to jz = 6, after which we find the sequence jz = 6, 4, 6, 2, the last value of which continues to Θ → ∞. In an extended range of Θ, the superconducting gap predominantly resides on the large Fermi surface, while Josephson coupling induces a much smaller gap on the small Fermi surface. Below the superconducting transition temperature, we apply mean field theory to derive the self-consistent equations and find the condensation energies. The state with the lowest condensation energy is an unconventional superconducting state which breaks time-reversal symmetry, and in which singlet and triplet pairings are mixed. In general, these states are topologically nontrivial, and the Chern number of the state with total angular momentum jz is C = 2jz.
Directory of Open Access Journals (Sweden)
Peter G. Schrader
2016-01-01
Full Text Available User You are logged in as... mocak My Profile Log Out Log Out as User Journal Content Search Search Scope Browse By Issue By Author By Title Indexing/Abstracting -Doaj -Google Scholar -J Gate/Informatics -Ulrich's Under review by: -Ebsco -Journal Seek -info BASE INDEX -ERIC -Ulakbim/tr index Article Tools Abstract Print this article Indexing metadata How to cite item Finding References Review policy Email this article Email the author Related Items Show all The fourth issue of Journal of Learning and Teaching in Digital Age(JOLTIDA has been published. Editorial Board Open Journal Systems Journal Help Notifications View (564 new Manage Information For Readers For Authors For Librarians Creative Commons License Font Size Make font size smaller Make font size default Make font size larger Home About User Home Search Current Archives Announcements Home > Vol 1, No 1 (2016 > Schrader DOES MULTIMEDIA THEORY APPLY TO ALL STUDENTS? THE IMPACT OF MULTIMEDIA PRESENTATIONS ON SCIENCE LEARNING Peter G. Schrader University of Nevada Las Vegas, USA pg.schrader@unlv.edu Eric E. Rapp ericrapp@icloud.com ABSTRACT In K-12 school settings in the United States, there is a preponderance of information delivered via multimedia to students everyday (e.g., visual aids found in science textbooks, electronic tablets, streamed video content, web pages, animations, and PowerPoint presentations. The cognitive theory of multimedia learning (CTML outlines numerous principles associated with learning from and with multimedia (Mayer, Hegarty, Mayer, & Cambell, 2005. However, the bulk of the research like the CTML has been conducted using college age students (Jones, 2010; McTigue, 2009. There is ample evidence that college age students and younger students exhibit numerous and important differences when learning from multimedia content (Hannus & Hyona, 1999; McTique, 2009; Moreno, 2007; Van Parreren, 1983. As a result, the objective of the current study is to examine the
Superconductivity and magnet technology
International Nuclear Information System (INIS)
Lubell, M.S.
1975-01-01
The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described
Gossamer superconductivity, new paradigm?
Energy Technology Data Exchange (ETDEWEB)
Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)
2006-01-01
We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Kinetic theory of situated agents applied to pedestrian flow in a corridor
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
CR-Calculus and adaptive array theory applied to MIMO random vibration control tests
Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.
2016-09-01
Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.
Latent interaction effects in the theory of planned behaviour applied to quitting smoking.
Hukkelberg, Silje Sommer; Hagtvet, Knut A; Kovac, Velibor Bobo
2014-02-01
This study applies three latent interaction models in the theory of planned behaviour (TPB; Ajzen, 1988, Attitudes, personality, and behavior. Homewood, IL: Dorsey Press; Ajzen, 1991, Organ. Behav. Hum. Decis. Process., 50, 179) to quitting smoking: (1) attitude × perceived behavioural control on intention; (2) subjective norms (SN) × attitude on intention; and (3) perceived behavioural control × intention on quitting behaviour. The data derive from a longitudinal Internet survey of 939 smokers aged 15-74 over a period of 4 months. Latent interaction effects were estimated using the double-mean-centred unconstrained approach (Lin et al., 2010, Struct. Equ. Modeling, 17, 374) in LISREL. Attitude × SN and attitude × perceived behavioural control both showed a significant interaction effect on intention. No significant interaction effect was found for perceived behavioural control × intention on quitting. The latent interaction approach is a useful method for investigating specific conditions between TPB components in the context of quitting behaviour. Theoretical and practical implications of the results are discussed. © 2013 The British Psychological Society.
Applying cognitive load theory to the redesign of a conventional database systems course
Mason, Raina; Seton, Carolyn; Cooper, Graham
2016-01-01
Cognitive load theory (CLT) was used to redesign a Database Systems course for Information Technology students. The redesign was intended to address poor student performance and low satisfaction, and to provide a more relevant foundation in database design and use for subsequent studies and industry. The original course followed the conventional structure for a database course, covering database design first, then database development. Analysis showed the conventional course content was appropriate but the instructional materials used were too complex, especially for novice students. The redesign of instructional materials applied CLT to remove split attention and redundancy effects, to provide suitable worked examples and sub-goals, and included an extensive re-sequencing of content. The approach was primarily directed towards mid- to lower performing students and results showed a significant improvement for this cohort with the exam failure rate reducing by 34% after the redesign on identical final exams. Student satisfaction also increased and feedback from subsequent study was very positive. The application of CLT to the design of instructional materials is discussed for delivery of technical courses.
Directory of Open Access Journals (Sweden)
Abbas Moghimbeigi
2011-07-01
Full Text Available Background: Use of anabolic androgenic steroids (AAS has been associated with adversephysical and psychiatric effects and it is known as rising problem among youth people. Thisstudy was conducted to evaluate anabolic steroids preventative intervention efficiency amonggym users in Iran and theory of planned behaviour was applied as theoretical framework.Methods: Overall, 120 male gym users participated in this study as intervention and controlgroup. This was a longitudinal randomized pretest - posttest series control group design panelstudy to implement a behaviour modification based intervention to prevent AAS use. Cross -tabulation and t-test by using SPSS statistical package, version 13 was used for the statisticalanalysis.Results: It was found significant improvements in average response for knowledge about sideeffects of AAS (P<0.001, attitude toward, and intention not to use AAS. Additionally afterintervention, the rate of AAS and supplements use was decreased among intervention group.Conclusion: Comprehensive implementation against AAS abuse among gym users and adolescenceswould be effective to improve adolescents’ healthy behaviors and intend them notto use AAS.
Theory and design of broadband matching networks applied electricity and electronics
Chen, Wai-Kai
1976-01-01
Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp
Can magnetism and superconductivity coexist
International Nuclear Information System (INIS)
Ishikawa, M.
1982-01-01
Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)
Eisenberg, Paul
2016-01-01
This study applies the prevailing scholarly theories of strategic management, employment decisions, cost accounting and share reward schemes to a panel of questions raised by Colin Drury (2012) in the case study of the fictitious company Integrated Technology Services (UK) Ltd., ITS (UK). The paper provides model answers which can be used when working with the case study at institutions of higher education. The merit of the work lies in three areas. First, it provides an overview of theories ...
An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model
Energy Technology Data Exchange (ETDEWEB)
Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)
2014-11-15
We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.
Institute of Scientific and Technical Information of China (English)
Zhang Yu[1
2016-01-01
The traditional Japanese grammar teaching often only pays attention to the interpretation of syntax and the integrity of grammar structure. This violates the cultivation of communicative competence, and is not in conformity with the society’s requirements of applied foreign language talents. Cognitive linguistics theory, which links language form with semantic concept, reveals the internal relation of man’s thinking and language. If we can subtly apply cognitive linguistic theory into Japanese grammar teaching to explore the cognitive process in the speakers’ brain while expressing, we can get a good understanding of diffi cult points and “special case”. This paper explores the introductory methods and efficacy of the cognitive linguistics theory applied in Japanese grammar teaching method, by lecturing causative sentences an example.
INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER
GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D
1994-01-01
We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to
International Nuclear Information System (INIS)
Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.
1976-01-01
Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons
Applying theory of planned behavior to predict exercise maintenance in sarcopenic elderly
Directory of Open Access Journals (Sweden)
Ahmad MH
2014-09-01
Full Text Available Mohamad Hasnan Ahmad,1 Suzana Shahar,2 Nur Islami Mohd Fahmi Teng,2 Zahara Abdul Manaf,2 Noor Ibrahim Mohd Sakian,3 Baharudin Omar41Centre of Nutrition Epidemiology Research, Institute of Public Health, Ministry of Health, Kuala Lumpur, Malaysia; 2Dietetics Program, 3Occupational Therapy Program, 4Department of Biomedical Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Abstract: This study aimed to determine the factors associated with exercise behavior based on the theory of planned behavior (TPB among the sarcopenic elderly people in Cheras, Kuala Lumpur. A total of 65 subjects with mean ages of 67.5±5.2 (men and 66.1±5.1 (women years participated in this study. Subjects were divided into two groups: 1 exercise group (n=34; 25 men, nine women; and 2 the control group (n=31; 22 men, nine women. Structural equation modeling, based on TPB components, was applied to determine specific factors that most contribute to and predict actual behavior toward exercise. Based on the TPB’s model, attitude (ß=0.60 and perceived behavioral control (ß=0.24 were the major predictors of intention to exercise among men at the baseline. Among women, the subjective norm (ß=0.82 was the major predictor of intention to perform the exercise at the baseline. After 12 weeks, attitude (men’s, ß=0.68; women’s, ß=0.24 and subjective norm (men’s, ß=0.12; women’s, ß=0.87 were the predictors of the intention to perform the exercise. “Feels healthier with exercise” was the specific factor to improve the intention to perform and to maintain exercise behavior in men (ß=0.36 and women (ß=0.49. “Not motivated to perform exercise” was the main barrier among men’s intention to exercise. The intention to perform the exercise was able to predict actual behavior regarding exercise at the baseline and at 12 weeks of an intervention program. As a conclusion, TPB is a useful model to determine and
Barth-Cohen, Lauren A.; Wittmann, Michael C.
2017-01-01
This article presents an empirical analysis of conceptual difficulties encountered and ways students made progress in learning at both individual and group levels in a classroom environment in which the students used an embodied modeling activity to make sense of a specific scientific scenario. The theoretical framework, coordination class theory,…
Four-junction superconducting circuit
Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.
2016-01-01
We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619
International Nuclear Information System (INIS)
Samuelsson, P.
2007-01-01
We present a theory for the full distribution of current fluctuations in incoherent diffusive superconducting junctions, subjected to a voltage bias. This theory of full counting statistics of incoherent multiple Andreev reflections is valid for an arbitrary applied voltage. We present a detailed discussion of the properties of the first four cumulants as well as the low and high voltage regimes of the full counting statistics. (orig.)
Superconductivity in multilayer perovskite. Weak coupling analysis
International Nuclear Information System (INIS)
Koikegami, Shigeru; Yanagisawa, Takashi
2006-01-01
We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)
Correlated Dirac particles and superconductivity on the honeycomb lattice
Wu, Wei; Scherer, Michael M.; Honerkamp, Carsten; Le Hur, Karyn
2013-03-01
We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t-J1-J2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott-insulating state, we confirm the emergence of d-wave superconductivity, in agreement with earlier works. We show that a small but finite J2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extendeds-wave scenario. At small hole doping, to minimize the energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+id singlet pairing assigned to one valley and a d-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+id symmetry and breaking time-reversal symmetry. Then, we apply the functional renormalization group and study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half filling. We discuss possible applications to strongly correlated compounds with copper hexagonal planes such as In3Cu2VO9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.
Applying Portfolio Theory to EU Electricity Planning and Policy-Making
Energy Technology Data Exchange (ETDEWEB)
Awerbuch, Shimon; Berger, Martin
2003-02-01
This study introduces mean-variance portfolio theory and evaluates its potential application to the development of efficient (optimal) European Union (EU-15) generating portfolios that enhance energy security and diversification objectives. The analysis extends to European countries the previous work done by Awerbuch in the US, and applies a significantly more detailed portfolio model that reflects the risk of the relevant generating cost streams: fuel, operation and maintenance and construction period costs. It illustrates the portfolio effects of different generating mixes. The study offers preliminary findings on the effects of including more renewable energy sources in the typical EU portfolio mix and suggests interesting directions for further study. The study arises from the perception that these standard, finance-oriented analyses may offer valuable enhancements to energy planning, and concepts of energy security and diversity. Clearly the combination of better portfolio construction and more accurate pricing should lead to more optimal decisions in the round. This study, therefore, represents an effort to complement traditional approaches and point researchers and planners into new territory. The results generally indicate that the existing and projected EU generating mixes are sub optimal - though slightly - from a risk-return perspective, which implies that feasible portfolios with lower cost and risk exist. These can be developed by adjusting the conventional mix and by including larger shares of wind or similar renewable technologies. The results of the portfolio analysis suggest that fixed cost technologies such as renewables must be a part of any efficient generating portfolio. Our assessment of all technologies is limited to risk and cost measures, although other benefits, including low externality costs and sustainability, are often cited for renewables.
Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.
2018-06-01
Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations
Applying theory of planned behavior to predict exercise maintenance in sarcopenic elderly
Ahmad, Mohamad Hasnan; Shahar, Suzana; Teng, Nur Islami Mohd Fahmi; Manaf, Zahara Abdul; Sakian, Noor Ibrahim Mohd; Omar, Baharudin
2014-01-01
This study aimed to determine the factors associated with exercise behavior based on the theory of planned behavior (TPB) among the sarcopenic elderly people in Cheras, Kuala Lumpur. A total of 65 subjects with mean ages of 67.5±5.2 (men) and 66.1±5.1 (women) years participated in this study. Subjects were divided into two groups: 1) exercise group (n=34; 25 men, nine women); and 2) the control group (n=31; 22 men, nine women). Structural equation modeling, based on TPB components, was applied to determine specific factors that most contribute to and predict actual behavior toward exercise. Based on the TPB’s model, attitude (β=0.60) and perceived behavioral control (β=0.24) were the major predictors of intention to exercise among men at the baseline. Among women, the subjective norm (β=0.82) was the major predictor of intention to perform the exercise at the baseline. After 12 weeks, attitude (men’s, β=0.68; women’s, β=0.24) and subjective norm (men’s, β=0.12; women’s, β=0.87) were the predictors of the intention to perform the exercise. “Feels healthier with exercise” was the specific factor to improve the intention to perform and to maintain exercise behavior in men (β=0.36) and women (β=0.49). “Not motivated to perform exercise” was the main barrier among men’s intention to exercise. The intention to perform the exercise was able to predict actual behavior regarding exercise at the baseline and at 12 weeks of an intervention program. As a conclusion, TPB is a useful model to determine and to predict maintenance of exercise in the sarcopenic elderly. PMID:25258524
Item response theory analysis applied to the Spanish version of the Personal Outcomes Scale.
Guàrdia-Olmos, J; Carbó-Carreté, M; Peró-Cebollero, M; Giné, C
2017-11-01
The study of measurements of quality of life (QoL) is one of the great challenges of modern psychology and psychometric approaches. This issue has greater importance when examining QoL in populations that were historically treated on the basis of their deficiency, and recently, the focus has shifted to what each person values and desires in their life, as in cases of people with intellectual disability (ID). Many studies of QoL scales applied in this area have attempted to improve the validity and reliability of their components by incorporating various sources of information to achieve consistency in the data obtained. The adaptation of the Personal Outcomes Scale (POS) in Spanish has shown excellent psychometric attributes, and its administration has three sources of information: self-assessment, practitioner and family. The study of possible congruence or incongruence of observed distributions of each item between sources is therefore essential to ensure a correct interpretation of the measure. The aim of this paper was to analyse the observed distribution of items and dimensions from the three Spanish POS information sources cited earlier, using the item response theory. We studied a sample of 529 people with ID and their respective practitioners and family member, and in each case, we analysed items and factors using Samejima's model of polytomic ordinal scales. The results indicated an important number of items with differential effects regarding sources, and in some cases, they indicated significant differences in the distribution of items, factors and sources of information. As a result of this analysis, we must affirm that the administration of the POS, considering three sources of information, was adequate overall, but a correct interpretation of the results requires that it obtain much more information to consider, as well as some specific items in specific dimensions. The overall ratings, if these comments are considered, could result in bias. © 2017
Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.
Flegg, M B; Poole, C M; Whittaker, A K; Keen, I; Langton, C M
2010-06-07
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Applying the Theory of the Firm to Examine a Technology Startup at the Investment Stage
Directory of Open Access Journals (Sweden)
Michael Ayukawa
2012-05-01
Full Text Available The investment stage of a new technology firm is when resources, opportunities, investors, and early customers first converge. Currently, technology entrepreneurs make many expensive mistakes. They invest in assets and develop capabilities that prove to have limited value. They take too long to discover and validate the product-market fit for their firms during the investment stage and run out of time and money. Understanding how theory can help entrepreneurs make decisions during the investment stage is important to accelerate new-firm formation and growth as well as to reduce the uncertainty of founders and stakeholders of technology firms. This article introduces a model developed to examine deal making during the investment stage of a new technology firm. It is an extension of a model of lateral firm scope proposed by Oliver Hart and Bengt Holmstrom. The extensions come from considering a technology firm as being both a deal-making entity and a pool of resources during the investment stage. A deal is the result of a decision the entrepreneur and others make to coordinate (i.e., work together to achieve a common objective. Benefits from a deal include cash profits for the firm and private benefits for the entrepreneur. This extended model is then applied to examine the author’s firm which is still in the investment stage. Application of the extended model to a real-life situation generated two important insights: i when private benefits include learning from experimentation, the number of deals increases and ii at the start of the investment stage, private benefits drive deal-making, whereas at the end of the investment stage, cash profits derived from asset ownership drive deal-making.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-05-01
The development of a basic technology to improve superconductivity characteristics has performed (1) studies on the high-temperature superconductivity mechanism, (2) studies on the critical current mechanism, and (3) search for materials. In Item (1), composition and temperature dependence were investigated by measuring superconductivity gap and change in the electron state of pseudo gap using photo-electron spectra and Raman scattering spectra. In Item (2), magnetic flux behavior in the vicinity of the irreversible line was investigated on magnetic flux dynamics of Bi2212 by measuring magnetic resistance and magnetization. High viscosity condition having strong magnetic flux liquid zone was discovered. In Item (3), Sr was used in place of Ba as the constituting element, and several new mercury-based superconductors were synthesized successfully by using the high pressure synthesizing method. In developing superconductive bulk materials and wire materials, elucidation was given on (1) an element technology for high magnetic power bulk materials, (2) an element technology for high critical temperature bulk materials, (3) a fundamental technology for manufacturing next generation wire materials, (4) a fundamental technology for manufacturing next generation large current conductors, and (5) growth mechanism in wire material crystals. Development of laminating and processing technologies for superconductive materials has worked on (1) a single crystal substrate technology, (2) a thin film lamination technology, (3) a standard bonding technology, (4) an advanced bonding technology, and (5) a thin film and bond evaluation technology. (NEDO)
An empirical test of the Theory of Planned Behaviour applied to contraceptive use in rural Uganda.
Kiene, Susan M; Hopwood, Sarah; Lule, Haruna; Wanyenze, Rhoda K
2014-12-01
There is a high unmet need for contraceptives in developing countries such as Uganda, with high population growth, where efforts are needed to promote family planning and contraceptive use. Despite this high need, little research has investigated applications of health-behaviour-change theories to contraceptive use among this population. This study tested the Theory of Planned Behaviour's ability to predict contraceptive-use-related behaviours among post-partum women in rural Uganda. Results gave modest support to the theory's application and suggest an urgent need for improved theory-based interventions to promote contraceptive use in the populations of developing countries. © The Author(s) 2013.
Bridging the Gap in Port Security; Network Centric Theory Applied to Public/Private Collaboration
National Research Council Canada - National Science Library
Wright, Candice L
2007-01-01
...." Admiral Thad Allen, 2007 The application of Network Centric Warfare theory enables all port stakeholders to better prepare for a disaster through increased information sharing and collaboration...
Ortega, Johis; Huang, Shi; Prado, Guillermo
2012-01-03
HIV/AIDS is listed as one of the top 10 reasons for the death of Hispanics between the ages of 15 and 54 in the United States. This cross sectional, descriptive secondary study proposed that using both the systemic (ecodevelopmental) and the individually focused (theory of reasoned action) theories together would lead to an increased understanding of the risk and protective factors that influence HIV risk behaviors in this population. The sample consisted of 493 Hispanic adolescent 7th and 8th graders and their immigrant parents living in Miami, Florida. Structural Equation Modeling (SEM) was used for the data analysis. Family functioning emerged as the heart of the model, embedded within a web of direct and mediated relationships. The data support the idea that family can play a central role in the prevention of Hispanic adolescents' risk behaviors.
International Nuclear Information System (INIS)
Ruvalds, J.
1990-01-01
This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors
International Nuclear Information System (INIS)
Murphy, J.H.
1982-01-01
A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings
International Nuclear Information System (INIS)
1994-08-01
This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature
International Nuclear Information System (INIS)
Willen, E.
1996-01-01
Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine
International Nuclear Information System (INIS)
Gray, K.E.
1978-01-01
A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor
Normal and superconducting metals at microwave frequencies-classic experiments
International Nuclear Information System (INIS)
Dheer, P.N.
1999-01-01
A brief review of experimental and theoretical work on the behaviour of normal and superconducting materials at microwave frequencies before the publication of Bardeen, Cooper and Schrieffer's theory of superconductivity is given. The work discussed is mostly that of Pippard and his coworkers. It is shown that these investigations lead not only to a better understanding of the electrodynamics of normal and superconducting state but also of the nature of the superconducting state itself. (author)
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Stenner, A. Jackson; Rohlf, Richard J.
The merits of generalizability theory in the formulation of construct definitions and in the determination of reliability estimates are discussed. The broadened conceptualization of reliability brought about by Cronbach's generalizability theory is reviewed. Career Maturity Inventory data from a sample of 60 ninth grade students is used to…
Pratt, Cornelius B.
1994-01-01
Links ethical theories to the management of the product recall of the Perrier Group of America. Argues for a nonsituational theory-based eclectic approach to ethics in public relations to enable public relations practitioners, as strategic communication managers, to respond effectively to potentially unethical organizational actions. (SR)
Dongyu, Zhang; Fanyu, B.; Wanyi, Du
2013-01-01
This paper discusses the sociocultural theory (SCT). In particular, three significant concepts of Vyogtsky's theory: self-regulation, the Zone of Proximal Development (ZPD), and scaffolding all of which have been discussed in numerous second language acquisition (SLA) and second language learning (SLL) research papers. These concepts lay the…
Set Theory Applied to Uniquely Define the Inputs to Territorial Systems in Emergy Analyses
The language of set theory can be utilized to represent the emergy involved in all processes. In this paper we use set theory in an emergy evaluation to ensure an accurate representation of the inputs to territorial systems. We consider a generic territorial system and we describ...
Katsarou-Tzeveleki, Stella
on the search for the exception or difference in material culture as the secure way to describe any certain cultural identity. When Knapp applies his theory to Cyprus, he divides the period under examination into two general chronological horizons, and introduces two interesting neologisms: the prehistoric Bronze Age (down to 1650) and the protohistoric Bronze Age (1650-10th century BC), the conventional boundary between them being the appearance of literary sources. Unfortunately, we find that there is no reference to the Chalcolithic, Neolithic and Epipalaeolithic prehistory of Cyprus, since he axiomatically takes the end of the Cypriot Chalcolithic (the Philia culture) as a point of catalytic social change. I believe, however, that one thought (and here we have a challenge to future research) is missing: the contribution made by the earlier societies of the island to the formation of its later tradition, since Knapp himself repeatedly accepts in his book the historical-comparative dimension of identity in the long term, and ultimately resorts to hybridization, in which the local tradition contributes equally as the intrusive factors do. I welcome the distinction of the Bronze Age in prehistoric and protohistoric. Concerning the term protohistory, familiar in Cypriot archaeology since Peltenburg (1982), I strongly recommend it to Greek archaeologists who have enough textual evidence to finally decide to distinguish the proto-literary Late Bronze Age from the vast depths of the Early-Middle Bronze Age, Neolithic and Palaeolithic prehistory of Greece. As for the prehistoric Bronze Age of Cyprus (Late Chalcolithic-1650 BC), Knapp adopts a social/socio-economic approach that involves aspects of elite formation, copper production and exchange, gender representations and individuality. He eschews references to evolutionary typologies and revises Webb and Frankel's (1999) theory of direct migration or colonization from Anatolia, in favour of hybridization, repeating that
Bos-Nehles, Anna Christina; van Riemsdijk, Maarten; Looise, Jan C.
2013-01-01
Line managers are today seen as increasingly important in effectively implementing HRM practices. Based on the Ability-Motivation-Opportunity (AMO) theory, we predict that line managers' performance in this regard will depend on their ability to apply HRM practices, and that their motivation and the
Kwon, Nahyun
2017-01-01
Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Grosz, Nathaniel
2014-01-01
We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after…
Schneider, Claudia; Arnot, Madeleine
2018-01-01
This article explores the modes of school communication associated with language and cultural diversity, demonstrating how organisational communication theory can be applied to the analysis of schools' communication responses to the presence of pupils who have English as an additional language (EAL). The article highlights three analytical…
Dijkstra, T.; Meulenberg, M.T.G.; Tilburg, van A.
2001-01-01
This article shows that marketing channel theory, which has been extensively applied in developed countries, can also be of great value to the developing world. Notably, the channel approach makes it possible to explain the number of trade levels observed in food marketing systems. We propose here a
Hartmann, Anita
2011-01-01
In the current economic climate, many colleges and universities face similar challenges: the need to increase external sponsorship for research activities and the need to benefit from additional indirect cost recovery. Preparing funding proposals for submission to sponsors is a faculty behavior that can be modified by applying behavioral theory to…
Briggs, Harold Eugene; Sharkey, Caroline; Briggs, Adam Christopher
2016-01-01
In this article the authors tie the emergence of an empirical practice research culture, which enabled the rise in evidence-based practice in social work to the introduction of applied behavior analysis and behavioral theory to social work practice and research. The authors chronicle the: (1) scientific foundations of social work, (2) influence and push by corporatized university cultures for higher scholarship productivity among faculty, (3) significance of theory in general, (4) importance of behavioral theory in particular as a major trigger of the growth in research on effective social work practice approaches, and (5) commonalities between applied behavior analysis and evidence-based practice. The authors conclude with implications for addressing the dual challenges of building an enhanced research culture in schools of social work and the scholarship of transferring practice research to adoption in real world practice settings.
Shweiki, Ehyal; Martin, Niels D; Beekley, Alec C; Jenoff, Jay S; Koenig, George J; Kaulback, Kris R; Lindenbaum, Gary A; Patel, Pankaj H; Rosen, Matthew M; Weinstein, Michael S; Zubair, Muhammad H; Cohen, Murray J
2015-01-01
Medical resident education in the United States has been a matter of national priority for decades, exemplified initially through the Liaison Committee for Graduate Medical Education and then superseded by the Accreditation Council for Graduate Medical Education. A recent Special Report in the New England Journal of Medicine, however, has described resident educational programs to date as prescriptive, noting an absence of innovation in education. Current aims of contemporary medical resident education are thus being directed at ensuring quality in learning as well as in patient care. Achievement and work-motivation theories attempt to explain people's choice, performance, and persistence in tasks. Expectancy Theory as one such theory was reviewed in detail, appearing particularly applicable to surgical residency training. Correlations between Expectancy Theory as a work-motivation theory and residency education were explored. Understanding achievement and work-motivation theories affords an opportunity to gain insight into resident motivation in training. The application of Expectancy Theory in particular provides an innovative perspective into residency education. Afforded are opportunities to promote the development of programmatic methods facilitating surgical resident motivation in education.
International Nuclear Information System (INIS)
Nagato, Yasushi; Nagai, Katsuhiko
1993-01-01
Proximity contact N-S double-layer with infinite layer widths is studied in the clean limit. The finite reflection at the interface is taken into account. Starting from a recent theory of finite width double-layer by Ashida et al., the authors obtain explicit expressions for the quasi-classical Green's function which already satisfy the boundary condition and include no exploding terms at infinities. The self-consistent pair potentials are obtained numerically with sufficient accuracy. The Andreev reflection at the N-S interface is discussed on the basis of the self-consistent pair potential. It is shown that there exists a resonance state in a potential valley formed between the depressed pair potential and the partially reflecting interface, which leads to a peak of the Andreev reflection coefficient with the height unity slightly below the bulk superconductor energy gap. They also find general relationship between the Andreev reflection coefficient and the local density of states of the superconductor just at the interface
Applying Modern Stage Theory to Mauritania: A Prescription to Encourage Entrepreneurship
2014-12-01
STAGE THEORY TO MAURITANIA: A PRESCRIPTION TO ENCOURAGE ENTREPRENEURSHIP by Jennifer M. Warren December 2014 Thesis Advisor: Robert E...PRESCRIPTION TO ENCOURAGE ENTREPRENEURSHIP 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. Warren 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...a chapter in which Dr. Looney relates modern stage theory to emerging economies. With an understanding that entrepreneurship is key for sustained
Analytical methods applied to the study of lattice gauge and spin theories
International Nuclear Information System (INIS)
Moreo, Adriana.
1985-01-01
A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es
Directory of Open Access Journals (Sweden)
Shweiki E
2015-04-01
Full Text Available Ehyal Shweiki,1 Niels D Martin,2 Alec C Beekley,1 Jay S Jenoff,1 George J Koenig,1 Kris R Kaulback,1 Gary A Lindenbaum,1 Pankaj H Patel,1 Matthew M Rosen,1 Michael S Weinstein,1 Muhammad H Zubair,2 Murray J Cohen1 1Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA; 2Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Abstract: Medical resident education in the United States has been a matter of national priority for decades, exemplified initially through the Liaison Committee for Graduate Medical Education and then superseded by the Accreditation Council for Graduate Medical Education. A recent Special Report in the New England Journal of Medicine, however, has described resident educational programs to date as prescriptive, noting an absence of innovation in education. Current aims of contemporary medical resident education are thus being directed at ensuring quality in learning as well as in patient care. Achievement and work-motivation theories attempt to explain people's choice, performance, and persistence in tasks. Expectancy Theory as one such theory was reviewed in detail, appearing particularly applicable to surgical residency training. Correlations between Expectancy Theory as a work-motivation theory and residency education were explored. Understanding achievement and work-motivation theories affords an opportunity to gain insight into resident motivation in training. The application of Expectancy Theory in particular provides an innovative perspective into residency education. Afforded are opportunities to promote the development of programmatic methods facilitating surgical resident motivation in education. Keywords: learning, education, achievement
1985-01-01
Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.
Melt formed superconducting joint between superconducting tapes
International Nuclear Information System (INIS)
Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.
1992-01-01
This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes
Quench protection in superconducting magnets
International Nuclear Information System (INIS)
Shajii, A.; Freidberg, J.P.
1993-01-01
The purpose of this obviously non-plasma physics research is to demonstrate that many of the powerful and sophisticated theoretical techniques widely used by the plasma physics community can be applied to engineering problems of direct interest to the magnetic fusion program. Quench protection is such a problem. If a sudden pulse of energy is delivered (usually by accident) to a small section of a superconducting magnet, it may go normal. Under such conditions, the magnet current flows in the surrounding copper matrix, which is essentially in parallel with the superconductor. Although the copper is a good conductor, it still dissipates ohmic power, further adding to the energy input. It is important to detect the quench as early as possible in order to shut off the current, thereby preventing irreversible damage to the conductor. This a non-trivial problem since the cables comprising a coil can be as long as one kilometer. The theory presented here starts with a set of multi-dimensional Navier-Stokes and heat transport equations for the coupled system of helium coolant, superconducting/copper cable, and surrounding jacket. A combination of multiple time scale expansions and asymptotic analysis reduces the problem to a nonlinear fourth order system of 1-D plus time equations. A code has been written whose numerical results are in excellent agreement with more complex engineering codes. There is at least an order of magnitude savings in CPU over the existing codes where a typical run requires one hour Cray CPU. By investigating a number of different cases the authors have been able to introduce further analytic approximations which reduce the problem to quasi-analytic form, a set of three ODE's in time. The results here too are in excellent agreement with the engineering code and requires only several seconds of CPU time. More important, the critical dimensionless parameters have been identified, as well as practical scaling information for the magnet design
Energy Technology Data Exchange (ETDEWEB)
Toft, K.N
2004-01-01
The field-induced magnetic structures of ErNi{sub 2}B{sub 2}C and TmNi{sub 2}B{sub 2}C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength of superconductivity. ErNi{sub 2}B{sub 2}C: For magnetic fields along all three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures. Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (Q{sub N}{sup B} = (0,Q,0) with moments perpendicular to the field) shows no signs of hysteresis. I expected it to be a meta-stable state, which would be gradually suppressed by a magnetic field, and when decreasing the field it would not reappear until some small field of approximately 0.1 T. 2. When the field is applied along [110], the magnetic structure rotates a small angle of 0.5 degrees away from the symmetry direction. TmNi{sub 2}B{sub 2}C: A magnetic field applied in the [100] direction suppresses the zero field magnetic structure Q{sub F} = (0.094,0.094,0) (T{sub N} = 1.6 K), in favor of the Fermi surface nesting structure Q{sub N} = (0.483,0,0). The appearance of the Q{sub N} phase was initially believed to be caused by the suppression of superconductivity. This suppression should make it favorable to create a magnetic order with a Q-vector determined by the maximum in the magnetic susceptibility at the Fermi surface nesting vector Q{sub N}. The phase diagram for the magnetic structures is presented, however several properties of the Q{sub N} magnetic structure cannot be explained within any known models. Quadrupolar ordering is suggested as a possible candidate for explaining these features of the Q{sub N} structure. (au)
Applying Item Response Theory methods to design a learning progression-based science assessment
Chen, Jing
Learning progressions are used to describe how students' understanding of a topic progresses over time and to classify the progress of students into steps or levels. This study applies Item Response Theory (IRT) based methods to investigate how to design learning progression-based science assessments. The research questions of this study are: (1) how to use items in different formats to classify students into levels on the learning progression, (2) how to design a test to give good information about students' progress through the learning progression of a particular construct and (3) what characteristics of test items support their use for assessing students' levels. Data used for this study were collected from 1500 elementary and secondary school students during 2009--2010. The written assessment was developed in several formats such as the Constructed Response (CR) items, Ordered Multiple Choice (OMC) and Multiple True or False (MTF) items. The followings are the main findings from this study. The OMC, MTF and CR items might measure different components of the construct. A single construct explained most of the variance in students' performances. However, additional dimensions in terms of item format can explain certain amount of the variance in student performance. So additional dimensions need to be considered when we want to capture the differences in students' performances on different types of items targeting the understanding of the same underlying progression. Items in each item format need to be improved in certain ways to classify students more accurately into the learning progression levels. This study establishes some general steps that can be followed to design other learning progression-based tests as well. For example, first, the boundaries between levels on the IRT scale can be defined by using the means of the item thresholds across a set of good items. Second, items in multiple formats can be selected to achieve the information criterion at all
Lagrangian neoclassical transport theory applied to the region near the magnetic axis
Energy Technology Data Exchange (ETDEWEB)
Satake, Shinsuke [The Graduate Univ. for Advanced Studies, Dept. of Fusion Science, Toki, Gifu (Japan); Okamoto, Masao; Sugama, Hideo [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-06-01
Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively wide ''potato'' orbits play an important role in transport. Lagrangian formulation of transport theory, which has been investigated to reflect finiteness of guiding-center orbit widths to transport equations, is developed in order to analyze neoclassical transport near the axis for a low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised to retain momentum conservation property of it. With directly reflecting the orbital properties of all the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease than from that predicted by conventional neoclassical theory. This result supports recent numerical simulations which show the reduction of thermal conductivity near the magnetic axis. (author)
Lagrangian neoclassical transport theory applied to the region near the magnetic axis
International Nuclear Information System (INIS)
Satake, Shinsuke; Okamoto, Masao; Sugama, Hideo
2002-01-01
Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively wide 'potato' orbits play an important role in transport. Lagrangian formulation of transport theory, which has been investigated to reflect finiteness of guiding-center orbit widths to transport equations, is developed in order to analyze neoclassical transport near the axis for a low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised to retain momentum conservation property of it. By directly reflecting the orbital properties of all the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease from that predicted by conventional neoclassical theory. This result supports recent numerical simulations which show the reduction of thermal conductivity near the magnetic axis
Applying the expectancy disconfirmation and regret theories to online consumer behavior.
Liao, Chechen; Liu, Chuang-Chun; Liu, Yu-Ping; To, Pui-Lai; Lin, Hong-Nan
2011-04-01
This study synthesizes the expectancy disconfirmation theory with empirical theories pertaining to customer regret in an e-commerce environment. The study begins by examining the roles that information quality (IQ), system quality (SYQ), and service quality (SEQ) play in determining customer regret and satisfaction. Then the consequences of regret and satisfaction on reuse intention are examined. Survey data collected from 445 respondents are analyzed using structural equation modeling with partial least squares (PLS-Graph 3.0) to provide support for the hypothesized links. Results show that IQ disconfirmation, SYQ disconfirmation and SEQ disconfirmation are related to regret and satisfaction. Both regret and satisfaction are related to reuse intention. In addition, satisfaction mediates the effect of regret on reuse intention. Based on these results, implications for theory and practice are discussed.
Lagrangian neoclassical transport theory applied to the region near the magnetic axis
International Nuclear Information System (INIS)
Satake, Shinsuke; Okamoto, Masao; Sugama, Hideo
2002-06-01
Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively wide ''potato'' orbits play an important role in transport. Lagrangian formulation of transport theory, which has been investigated to reflect finiteness of guiding-center orbit widths to transport equations, is developed in order to analyze neoclassical transport near the axis for a low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised to retain momentum conservation property of it. With directly reflecting the orbital properties of all the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease than from that predicted by conventional neoclassical theory. This result supports recent numerical simulations which show the reduction of thermal conductivity near the magnetic axis. (author)
Schumacher, Daniel J; Englander, Robert; Carraccio, Carol
2013-11-01
As a result of the paradigm shift to a competency-based framework, both self-directed lifelong learning and learner-centeredness have become essential tenets of medical education. In the competency-based framework, learners drive their own educational process, and both learners and teachers share the responsibility for the path and content of learning. This learner-centered emphasis requires each physician to develop and maintain lifelong learning skills, which the authors propose culminate in becoming a "master leaner." To better understand the development of these skills and the attainment of that goal, the authors explore how learning theories inform the development of master learners and how to translate these theories into practical strategies for the learner, the teacher, and the learning environment so as to optimize this development.The authors begin by exploring self-determination theory, which lays the groundwork for understanding the motivation to learn. They next consider the theories of cognitive load and situated cognition, which inform the optimal context and environment for learning. Building from this foundation, the authors consider key educational theories that affect learners' abilities to serve as primary drivers of their learning, including self-directed learning (SDL); the self-assessment skills necessary for SDL; factors affecting self-assessment (self-concept, self-efficacy, illusory superiority, gap filling); and ways to mitigate the inaccuracies of self-assessment (reflection, self-monitoring, external information seeking, and self-directed assessment seeking).For each theory, they suggest practical action steps for the learner, the teacher, and the learning environment in an effort to provide a road map for developing master learners.
An applied test of the social learning theory of deviance to college alcohol use.
DeMartino, Cynthia H; Rice, Ronald E; Saltz, Robert
2015-04-01
Several hypotheses about influences on college drinking derived from the social learning theory of deviance were tested and confirmed. The effect of ethnicity on alcohol use was completely mediated by differential association and differential reinforcement, whereas the effect of biological sex on alcohol use was partially mediated. Higher net positive reinforcements to costs for alcohol use predicted increased general use, more underage use, and more frequent binge drinking. Two unexpected finding were the negative relationship between negative expectations and negative experiences, and the substantive difference between nondrinkers and general drinkers compared with illegal or binge drinkers. The discussion considers implications for future campaigns based on Akers's deterrence theory.
Business Strategy in Mexican Beer Industry: A Case Applying Game Theory
José G. Vargas-Hernández; Armando Francisco Cambroni-de-Anda
2012-01-01
In this paper the two major breweries in Mexico, Grupo Modelo and Cuauhtémoc Moctezuma Brewering Company (Cervecería Cuahtemoc-Moctezuma) are analyzed which already have long formed part of an oligopoly because these two companies account for more than 99% of beer market in this country. All this analysis is made from the perspective of game theory. The main objective is to analyze the effects of competition and advertising from one to another brewer from a standpoint of game theory. This ana...
Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.
Davis, B K; Johnston, W M; Saba, R F
1994-01-01
The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.
Aizawa, Hirohito; Kuroki, Kazuhiko
2018-03-01
We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.
Catalano, Hannah Priest; Knowlden, Adam P.; Sharma, Manoj; Franzidis, Alexia
2016-01-01
Although college-aged women are at high risk for human papillomavirus (HPV) infection, many college women remain unvaccinated against HPV. Testing health behavior theory can assist sexuality educators in identifying behavioral antecedents to promote behavior change within an intervention. The purpose of this pilot study was to utilize social…
Applying Developmental Theory and Research to the Creation of Educational Games
Revelle, Glenda
2013-01-01
The field of developmental psychology has produced abundant theory and research about the physical, cognitive, social, and emotional development of children; however, to date there has been limited use of this wealth of knowledge by developers creating games for children. This chapter provides an overview of key theoretical observations and…
Applying Semiotic Theories to Graphic Design Education: An Empirical Study on Poster Design Teaching
Yang, Chao-Ming; Hsu, Tzu-Fan
2015-01-01
The rationales behind design are dissimilar to those behind art. Establishing an adequate theoretical foundation for conducting design education can facilitate scientising design methods. Thus, from the perspectives of the semiotic theories proposed by Saussure and Peirce, we investigated graphic design curricula by performing teaching…
Brief Report: The Theory of Planned Behaviour Applied to Physical Activity in Young People Who Smoke
Everson, Emma S.; Daley, Amanda J.; Ussher, Michael
2007-01-01
It has been hypothesised that physical activity may be useful as a smoking cessation intervention for young adults. In order to inform such interventions, this study evaluated the theory of planned behaviour (TPB) for understanding physical activity behaviour in young smokers. Regular smokers aged 16-19 years (N=124), self-reported physical…
DeShields, Oscar W., Jr.; Kara, Ali; Kaynak, Erdener
2005-01-01
Purpose: This paper focuses on the determinants of student satisfaction and retention in a college or university that are assumed to impact students' college experience. Design/methodology/approach: Using empirical data and Herzberg's two-factor theory, a modified version of the questionnaire developed by Keaveney and Young was administered to…
Mumford, Michael D.
1983-01-01
Reviewed characteristics of peer evaluations and notes their striking industrial validity. A review of the conditions under which peer evaluations yield strong validity coefficients as well as certain factor analytic and experimental studies indicated that social comparison theory might be useful for elucidating the nature of peer evaluation…
Theories of Family Labor as Applied to Gender Differences in Caregiving for Elderly Parents.
Finley, Nancy J.
1989-01-01
Examined four popular hypotheses of family labor--time-available, socialization/ideology, external-resources, and specialization-of-tasks--to explain gender differences in caregiving to elderly parents. Data from adults with mother over age 70 revealed that these theories of gender differences in divisions of family labor did not adequately…
When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model.
Troost, T.A.; Kooi, B.W.; Kooijman, S.A.L.M.
2005-01-01
In evolutionary history, several events have occurred at which mixotrophs specialized into pure autotrophs and heterotrophs. We studied the conditions under which such events take place, using the Dynamic Energy Budget (DEB) theory for physiological rules of the organisms' metabolism and Adaptive
Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory
Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott
2016-01-01
The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…
Public Relations as "Practice": Applying the Theory of Alasdair MacIntyre.
Leeper, Roy V.; Leeper, Kathie A.
2001-01-01
Considers how public relation's search for a unifying theory may be fulfilled through application of Alasdair MacIntyre's concept of a "practice," a very specific and value-laden concept. Explores what it would mean to be a public relations practice in MacIntyre's concept of the term and argues that such an approach to public relations…
Storberg-Walker, Julia; Chermack, Thomas J.
2007-01-01
The purpose of this article is to describe four methods for completing the conceptual development phase of theory building research for single or multiparadigm research. The four methods selected for this review are (1) Weick's method of "theorizing as disciplined imagination" (1989); (2) Whetten's method of "modeling as theorizing" (2002); (3)…
The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool
Liaw, Shu-Sheng
2004-01-01
Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…
Noel, Kristine K.; Westby, Carol
2014-01-01
This study employed a multiple baseline, across-participants, single-subject design to investigate the feasibility of an individual, narrative-based, social problem-solving intervention on the social problem-solving, narrative, and theory of mind (ToM) abilities of 3 incarcerated adolescent youth offenders identified as having emotional…
Utilizing Theory of Mind for Action Selection Applied in the Domain of Fighter Pilot Training
Hoogendoorn, M.; Merk, R.J.
2013-01-01
When developing intelligent agents, approaches that allow the anticipation of other agents is of utmost importance. For humans, this has also been shown to be crucial to establish good interactions. In this paper, a design for an agent that is equipped with theory of mind based reasoning
Wimshurst, Kerry
2011-01-01
Criminal justice education is a relatively new program in higher education in many countries, and its curriculum and parameters remain unsettled. An exploratory study investigated whether threshold concepts theory provided a useful lens by which to explore student understandings of this multidisciplinary field. Eight high-performing final-year…
Behavioral Finance in Brazil: applying the prospect theory to potential investors
Directory of Open Access Journals (Sweden)
Claudia Emiko Yoshinaga
2014-12-01
Full Text Available The premise of unbounded rationality defended by the Efficient Market Hypothesis is challenged by the theoretical framework that involves Behavioral Finance, whose basis, Kahneman and Tversky’s Prospect Theory (1979, questions the Expected Utility Theory, an important element of Neoclassical Economics, as basis for decisionmaking. This research aims to replicate the empirical research of Kahneman and Tversky’s seminal article (1979 to evaluate the decisionmaking process of employees (potential investors from a major national financial institution. The results of this study were compared to those obtained in the original article and to other similar studies. The questionnaire employed was an adaptation of the one originally used, so that we could test, in the studied sample, the applicability of the Prospect Theory, more specifically with regard to Certainty, Reflection and Isolation Effects. We also analyzed differences in the decision-making process considering respondents’ attributes (gender, age and income. The results confirmed that behavioral effects do exist, and proved that a large portion of the sample presented significant inconsistency in their choices according to Expected Utility Theory principles, highlighting that their decisions were not made according to strictly rational behavior. Furthermore, we analyzed the relationship between violations and investor characteristics by estimating a linear model. Results indicate that both age and level of income were negatively related to total violations.
Hydraulic theory of sea straits applied to the onset of the Messinian Salinity Crisis
Meijer, P.Th.
2012-01-01
Theory for the dynamics of flow in sea straits holds promise to provide, in addition to geological evidence, insight into the configuration of the connection between the Mediterranean Sea and the Atlantic Ocean at the onset of the Messinian Salinity Crisis. This paper, for the first time,
Willner, Paul; Smith, Mark
2008-01-01
Introduction: Attribution theory posits that helping behaviour is determined in part by the potential helper's attributions and emotions regarding the behaviour that requires help. Specifically, helping is considered to be more likely if stability is perceived as low, generating optimism for change, and if controllability is perceived as low,…
Applying Bourdieu’s Field Theory to Analyze the Changing Status of the Research Librarian
DEFF Research Database (Denmark)
Wien, Charlotte; Dorch, Bertil F.
2018-01-01
to how this demand can be met. We argue that changes that has taken place in the research library has also led to a loss of prestige for the research librarians. We use Bourdieu’s field theory to analyse the power struggles in the academic field and in the field of the research library and to identify...
Kruger-Ross, Matthew J.; Waters, Richard D.
2013-01-01
Following the trend of increased interest by students to take online courses and by institutions to offer them, scholars have taken many different approaches to understand what makes one student successful in online learning while another may fail. This study proposes that using the situational theory of publics will provide a better understanding…
International Nuclear Information System (INIS)
Nasu, K.
1987-01-01
The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent
Cho, Yoon-Min; Lee, Seohyun; Islam, Sheikh Mohammed Shariful; Kim, Sun-Young
2018-02-13
Recently there has been dramatic increase in the use of mobile technologies for health (m-Health) in both high and low- and middle-income countries (LMICs). However, little is known whether m-Health interventions in LMICs are based on relevant theories critical for effective implementation of such interventions. This review aimed to systematically identify m-Health studies on health behavioral changes in LMICs and to examine how each study applied behavior change theories. A systematic review was conducted using the standard method from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. By searching electronic databases (MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials [CENTRAL]), we identified eligible studies published in English from inception to June 30, 2017. For the identified m-Health studies in LMICs, we examined their theoretical bases, use of behavior change techniques (BCTs), and modes of delivery. A total of 14 m-Health studies on behavioral changes were identified and, among them, only 5 studies adopted behavior change theory. The most frequently cited theory was the health belief model, which was adopted in three studies. Likewise, studies have applied only a limited number of BCTs. Among the seven BCTs identified, the most frequently used one was the social support (practical) technique for medication reminder and medical appointment. m-Health studies in LMICs most commonly used short messaging services and phone calls as modes of delivery for behavior change interventions. m-Health studies in LMICs are suboptimally based on behavior change theory yet. To maximize effectiveness of m-Health, rigorous delivery methods as well as theory-based intervention designs will be needed.
Bonetti, Debbie; Johnston, Marie; Clarkson, Jan E; Grimshaw, Jeremy; Pitts, Nigel B; Eccles, Martin; Steen, Nick; Thomas, Ruth; Maclennan, Graeme; Glidewell, Liz; Walker, Anne
2010-04-08
Psychological models are used to understand and predict behaviour in a wide range of settings, but have not been consistently applied to health professional behaviours, and the contribution of differing theories is not clear. This study explored the usefulness of a range of models to predict an evidence-based behaviour -- the placing of fissure sealants. Measures were collected by postal questionnaire from a random sample of general dental practitioners (GDPs) in Scotland. Outcomes were behavioural simulation (scenario decision-making), and behavioural intention. Predictor variables were from the Theory of Planned Behaviour (TPB), Social Cognitive Theory (SCT), Common Sense Self-regulation Model (CS-SRM), Operant Learning Theory (OLT), Implementation Intention (II), Stage Model, and knowledge (a non-theoretical construct). Multiple regression analysis was used to examine the predictive value of each theoretical model individually. Significant constructs from all theories were then entered into a 'cross theory' stepwise regression analysis to investigate their combined predictive value. Behavioural simulation - theory level variance explained was: TPB 31%; SCT 29%; II 7%; OLT 30%. Neither CS-SRM nor stage explained significant variance. In the cross theory analysis, habit (OLT), timeline acute (CS-SRM), and outcome expectancy (SCT) entered the equation, together explaining 38% of the variance. Behavioural intention - theory level variance explained was: TPB 30%; SCT 24%; OLT 58%, CS-SRM 27%. GDPs in the action stage had significantly higher intention to place fissure sealants. In the cross theory analysis, habit (OLT) and attitude (TPB) entered the equation, together explaining 68% of the variance in intention. The study provides evidence that psychological models can be useful in understanding and predicting clinical behaviour. Taking a theory-based approach enables the creation of a replicable methodology for identifying factors that may predict clinical behaviour
Directory of Open Access Journals (Sweden)
Maclennan Graeme
2010-04-01
Full Text Available Abstract Background Psychological models are used to understand and predict behaviour in a wide range of settings, but have not been consistently applied to health professional behaviours, and the contribution of differing theories is not clear. This study explored the usefulness of a range of models to predict an evidence-based behaviour -- the placing of fissure sealants. Methods Measures were collected by postal questionnaire from a random sample of general dental practitioners (GDPs in Scotland. Outcomes were behavioural simulation (scenario decision-making, and behavioural intention. Predictor variables were from the Theory of Planned Behaviour (TPB, Social Cognitive Theory (SCT, Common Sense Self-regulation Model (CS-SRM, Operant Learning Theory (OLT, Implementation Intention (II, Stage Model, and knowledge (a non-theoretical construct. Multiple regression analysis was used to examine the predictive value of each theoretical model individually. Significant constructs from all theories were then entered into a 'cross theory' stepwise regression analysis to investigate their combined predictive value Results Behavioural simulation - theory level variance explained was: TPB 31%; SCT 29%; II 7%; OLT 30%. Neither CS-SRM nor stage explained significant variance. In the cross theory analysis, habit (OLT, timeline acute (CS-SRM, and outcome expectancy (SCT entered the equation, together explaining 38% of the variance. Behavioural intention - theory level variance explained was: TPB 30%; SCT 24%; OLT 58%, CS-SRM 27%. GDPs in the action stage had significantly higher intention to place fissure sealants. In the cross theory analysis, habit (OLT and attitude (TPB entered the equation, together explaining 68% of the variance in intention. Summary The study provides evidence that psychological models can be useful in understanding and predicting clinical behaviour. Taking a theory-based approach enables the creation of a replicable methodology for
Mila Kryjevskaia; MacKenzie R. Stetzer; Nathaniel Grosz
2014-01-01
We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after instruction specifically designed to address student conceptual and reasoning difficulties identified by rigorous research, many undergraduate physics s...