WorldWideScience

Sample records for superconducting toroidal field

  1. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  2. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  3. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  4. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  5. Superconducting toroidal field coil current densities for the TFCX

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits

  6. A novel superconducting toroidal field magnetic concept using advanced materials

    International Nuclear Information System (INIS)

    Schwartz, J.

    1991-01-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: Low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high-T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high-T c superconductors within a low-T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress rate, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated. 54 refs., 14 figs., 5 tabs

  7. About the Toroidal Magnetic Field of a Tokamak Burning Plasma Experiment with Superconducting Coils

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    In tokamaks, the strong dependence on the toroidal magnetic field of both plasma pressure and energy confinement is what makes possible the construction of small and relatively inexpensive burning plasma experiments using high-field resistive coils. On the other hand, the toroidal magnetic field of tokamaks using superconducting coils is limited by the critical field of superconductivity. In this article, we examine the relative merit of raising the magnetic field of a tokamak plasma by increasing its aspect ratio at a constant value of the peak field in the toroidal magnet. Taking ITER-FEAT as an example, we find that it is possible to reach thermonuclear ignition using an aspect ratio of approximately 4.5 and a toroidal magnetic field of 7.3 T. Under these conditions, fusion power density and neutron wall loading are the same as in ITER [International Thermonuclear Experimental Reactor], but the normalized plasma beta is substantially smaller. Furthermore, such a tokamak would be able to reach an energy gain of approximately 15 even with the deterioration in plasma confinement that is known to occur near the density limit where ITER is forced to operate

  8. Tore-Supra: a Tokamak with superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Turck, B.

    1987-07-01

    Tore Supra is a tokamak under construction on the site of Cen Cadarache by the Euratom-CEA Association. The machine technology integrates all problems related to the fabrication and the operation of large superconducting coils and of the associated cryogenic system. Tore Supra will provide a significant experience to prepare the next generation of machines for plasma physics and controlled fusion. Tore Supra is specially designed to implement a large physics program. The superconducting coils make possible the study of plasma confinement in long pulses (more than 60s), the impurities and the stability, and the efficiency of additional heating sources (neutral particle beams and radio frequency heating). The opportunity is taken to recall the particular features and requirements of the superconducting coils of the large future tokamaks in order to point out the problems that have to be faced by any new material (superconducting or not)

  9. Computational model for superconducting toroidal-field magnets for a tokamak reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Abdou, M.A.

    1978-01-01

    A computational model for predicting the performance characteristics and cost of superconducting toroidal-field (TF) magnets in tokamak reactors is presented. The model can be used to compare the technical and economic merits of different approaches to the design of TF magnets for a reactor system. The model has been integrated into the ANL Systems Analysis Program. Samples of results obtainable with the model are presented

  10. Superconducting endcap toroid design report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  11. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  12. Experimental and calculating study on the stressed state of superconducting coils of toroidal field in the T-15 tokamak

    International Nuclear Information System (INIS)

    Vaulina, I.G.; Gusev, S.V.; Sivkova, G.N.

    1987-01-01

    Results of calculational and experimental atudy of stress-deformed state of superconducting coils of the T-15 tokamak toroidal field are presented. The calculations are made using the method of finite elements and refined theory of cores. Experimental studies were carried out using elastic tensometric model of polymer materials. Test results are compared with the calculational results. Divergence between calculational and experimental values of displacement of characteristic points in the unit does not exceed 20 %. Results of model studies confirm the expediency of the calculational model used for designing SOTP unit for the T-15 tokamak

  13. Numerical analyses of magnetic field and force in toroidal superconducting magnetic energy storage using unit coils (abstract)

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Nakayama, T.; Amemiya, Y.

    1997-01-01

    Superconducting magnetic energy storage (SMES) is more useful than other systems of electric energy storage because of its larger amounts of stored energy and its higher efficiency. There are two types of SMES. One is the solenoid type and the other is the toroidal type. Some models of solenoid-type SMES are designed in the U.S. and in Japan. But the large scale SMES causes a high magnetic field in the living environment, and causes the erroneous operation of electronic equipment. The authors studied some suitable designs of magnetic shielding for the solenoidal-type SMES to reduce the magnetic field in the living environment. The toiroidal type SMES is studied in this article. The magnetic leakage flux of the toiroidal-type SMES is generally lower than that of the solenoid-type SMES. The toroidal-type SMES is constructed of unit coils, which are convenient for construction. The magnetic leakage flux occurs between unit coils. The electromagnetic force of the coils is very strong. Therefore analyses of the leakage flux and electromagnetic force are important to the design of SMES. The authors studied the number, radius, and length of unit coils. The storage energy is 5 G Wh. The numerical analyses of magnetic fields in the toroidal type SMES are obtained by analytical solutions. copyright 1997 American Institute of Physics

  14. Pure tension superconducting toroidal-field coil system design studies for the Argonne Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Purcell, J.R.; Demichele, D.W.; Turner, L.R.

    1975-11-01

    As part of the Argonne Tokamak Experimental Power Reactor (TEPR) design studies, a toroidal field (TF) coil system has been designed. NbTi was chosen as the most suitable superconductor and 8T was regarded as a practical peak field level in this study. The 16-coil design was chosen as a reasonable compromise between 2 percent field ripple and 3 m access gap. To minimize the coil structure and the bending moments on the conductor, a pure tension coil shape is necessary. A correct approach for determining the pure tension coil profile in a bumpy TF coil system is given. Verification of the pure tension coil by a three-dimensional stress analysis is presented. For coil quench protection, a series-connected scheme is proposed

  15. Stress analysis of the conceptual design configurations of constant tension D-shaped superconducting toroidal field coils for TNS

    International Nuclear Information System (INIS)

    Fernades, R.; Smith, R.A.

    1977-01-01

    Conceptual design configurations of D-shaped toroidal field coils applicable to the TNS program are studied under the action of the toroidal field loading condition and the vertical field loading condition, but not the fault condition. Although the analysis is specific to an 8 Tesla design using a niobium titanium superconductor, the results can be extended to a coil with a different conductor material and subjected to a field of different magnitude provided the condition of linear elasticity is not violated. The analysis technique used is the finite element method, with three dimensional finite elements defined in the ANSYS computer code, and supplemented by closed form analytical solutions

  16. Effect of plasma current breakaway on the operating stability of the superconducting coil of the toroidal magnetic field in the T-10M installation

    International Nuclear Information System (INIS)

    Kostenko, A.I.; Kravchenko, M.Yu.; Monoszon, N.A.; Trokhachev, G.V.

    1979-01-01

    The method and calculation results of stability of a superconducting coil of the toroidal magnetic field in the T-10M installation to plasma current breakaway are presented. The calculations were performed for two values of the magnetic field induction in the centre of the plasma cross section: 3.5 and 5 T. The calculation of energy losses and heating of the superconducting coil was performed assuming the plasma current in case of breakaway decreases to zero with an infinite rate, so that the estimations obtained are maxiaum. It is shown that in case of 3.5 T induction the superconducting coil exhibits resistance to plasma current breakaways, and in case of 5 T it is necessary to use electromagnetic screening to provide stability

  17. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  18. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  19. Tokamak with liquid metal toroidal field coil

    International Nuclear Information System (INIS)

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  20. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  1. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  2. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-10-15

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  3. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    International Nuclear Information System (INIS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-01-01

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy

  4. Progress in the design of a superconducting toroidal magnet for the ATLAS detector on LHC

    International Nuclear Information System (INIS)

    Baze, J.M.; Berriaud, C.; Cure, C.

    1996-01-01

    The toroidal system consists of three air core superconducting toroids. The barrel toroid covers the central region over a length of 26 m with an inner bore of 9.4 m and an outer diameter of 19.5 m. The two end cap toroids are inserted in the barrel at each end over a length of 5.6 m with an inner bore of 1.26 m. Each toroid consists of eight flat coils assembled around the beam axis and carrying 3 MAt each. The present paper describes the barrel toroid. Features of the design which are presented include the electromagnetic design, field and forces calculations, the basic concept of indirectly cooled aluminium conductor and monolithic fully impregnated winding, the description of the alu-alloy mechanical structure, the thermal analysis and the quench protection. Cryogenics principles, cryostat and toroid assembly procedures are summarized. Unsymmetric loadings, fault sensing and stability are discussed, in relation with the requirements of transparency

  5. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  6. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  7. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  8. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  9. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  10. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  11. Improved plasma confinement by modulated toroidal current on HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Zhao Junyu; Shen Biao; Luo Jiarong

    2004-01-01

    The improved confinement phase was observed during modulating toroidal current on the Hefei superconducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by suppressing magnetohydrodynamic (MHD) instabilities effectively, thus increased the central line averaged electron density and the central electron temperature about 33%, out-put steeper density profiles, and reduced hydrogen radiation from the edge as well. The global energy confinement time was increased by 27%-45%; The impurity radiation was reduced by modulation of plasma toroidal current; particle confinement time was increased about two times; a stronger radial negative electric field formed inside the limiter. The radial electric field during modulating current was calculated and disscused. (authors)

  12. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  13. Toroidal field ripple effects in large tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  14. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  15. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  16. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  17. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  18. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  19. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  20. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  1. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  2. Procedures for parametric studies of costs of superconducting toroidal test assemblies

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1976-05-01

    A cost scaling procedure, based on a detailed reference conceptual design, has been developed to determine the effects of variations in the characteristic parameters of superconducting toroidal field coils on project costs. The primary purpose was to provide reasonably simple rational formulae for obtaining approximate costs of a complete installation, focusing on the trends and sensitivities of costs to changes in various parameters such as field strength, coil size, number of coils, and current density rather than establishing absolute costs. No results are included here because early studies applying these procedures are no longer pertinent to the present Superconducting Magnet Development Program. However, planning for the Large Coil Project and the preliminary conceptual design of the Technology Test Assembly with Plasma have employed the techniques described and results will be reported in the appropriate project documents

  3. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  4. Final report on cost estimate of forward superconducting air core toroid

    International Nuclear Information System (INIS)

    Fields, T.

    1992-12-01

    An independent cost-estimate for key components of the forward superconducting air core toroid (ACT) was obtained in May 1992 from an experienced manufacturer of large cryogenic vessels. This new cost estimate is summarized in this report. It implies that a suitably designed ACT may have a cost which is approximately equal to that of the presently designed SDC forward iron core toroid

  5. Statistical analysis of the Nb3Sn strand production for the ITER toroidal field coils

    NARCIS (Netherlands)

    Vostner, A.; Jewell, M.C.; Pong, I.; Sullivan, N.; Devred, A.; Bessette, D.; Bevillard, G.; Mitchell, N.; Romano, G.; Zhou, Chao

    2017-01-01

    The ITER toroidal field (TF) strand procurement initiated the largest Nb3Sn superconducting strand production hitherto. The industrial-scale production started in Japan in 2008 and finished in summer 2015. Six ITER partners (so-called Domestic Agencies, or DAs) are in charge of the procurement and

  6. TIBER-II TF [toroidal-field] winding pack design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Miller, J.R.; Slack, D.S.; Summers, L.T.

    1987-01-01

    The superconducting, toroidal-field (TF) coils in the Tokamak Ignition/Burn Engineering Reactor (TIBER II) are designed with cable-in-conduit conductor (CICC) using Nb 3 Sn composite strands. To design the CICC winding pack, we used an optimization technique that maximizes the conductor stability without violating the constraints imposed by the structure, electrical insulation, quench protection, and fabrication technique. Detailed helium-properties codes calculate the heat removal along a flow path, and detailed field calculations determine the temperature, current, and stability margins. The conductor sheath is designed as distributed structure to partially support the combined in-plane and out-of-plane loads generated within the winding pack. Pancakes of the coil are wound, reacted, and insulated before being potted in the case. This design is aggressive but fully consistent with good engineering practice. 5 refs., 4 figs., 2 tabs

  7. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  8. Commercial tokamak reactors with resistive toroidal field magnets

    International Nuclear Information System (INIS)

    Bombery, L.; Cohn, D.R.; Jassby, D.L.

    1984-01-01

    Scaling relations and design concepts are developed for commercial tokamak reactors that use watercooled copper toroidal field (TF) magnets. Illustrative parameters are developed for reactors that are scaled up in size from LITE test reactor designs, which use quasi-continuous copper plate magnets. Acceptably low magnet power requirements may be attainable in a moderate beta (β = 0.065) commercial reactor with a major radius of 6.2 m. The shielding thickness and magnet size are substantially reduced relative to values in commercial reactors with superconducting magnets. Operation at high beta (β = 0.14) leads to a reduction in reactor size, magnet-stored energy, and recirculating power. Reactors using resistive TF magnets could provide advantages of physically smaller devices, improved maintenance features, and increased ruggedness and reliability

  9. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  10. On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field

    International Nuclear Information System (INIS)

    Singh, R.; Weiland, J.

    1989-01-01

    The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)

  11. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  12. Heat treatment trials for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Hemmi, Tsutomu; Koizumi, Norikiyo; Nakajima, Hideo; Kimura, Satoshi; Nakamoto, Kazunari

    2012-01-01

    Cable-in-conduit (CIC) conductors using Nb 3 Sn strands are used in ITER toroidal fields (TF) coils. Heat treatment generates thermal strain in CIC conductors because of the difference in thermal expansion between the Nb 3 Sn strands and the stainless-steel jacket. The elongation/shrinkage of the TF conductor may make it impossible to insert a wound TF conductor into the groove of a radial plate. In addition, it is expected that the deformation of the winding due to heat treatment-based release of the residual force in the jacket may also make it impossible to insert the winding in the groove, and that correcting the winding geometry to allow insertion of the winding may influence the superconducting performance of the TF conductor. The authors performed several trials using heat treatment as the part of activities in Phase II of TF coil procurement aiming to resolve the above-mentioned technical issues, and evaluated the elongations of 0.064, 0.074 and 0.072% for the straight and curved conductors and 1/3-scale double-pancake (DP) winding, respectively. It was confirmed that correction if the deformed winding did not influence the superconducting performance of the conductor. (author)

  13. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  14. Some characteristics of the superconducting magnetic system of toroidal spectrometer STORS

    International Nuclear Information System (INIS)

    Andreev, S.V.; Vorozhtsov, S.B.; Kakurin, S.I.

    1993-01-01

    A superconducting toroidal spectrometer (STORS) has been suggested to provide precision measurements of structure functions in muon beams. In this paper we present the calculation of the magnet induction and forces influencing the elements of the magnet, requirements to the reliability and rigidity of the carrying elements of the magnet construction. (author.) 14 refs.; 50 figs.; 4 tabs

  15. Engineering status of the superconducting end cap toroid magnets for the ATLAS experiment at LHC

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Courthold, M J D; Cragg, D A; Densham, C J; Evans, D; Holtom, E; Rochford, J; Sole, D; Towndrow, Edwin F; Warner, G P

    2000-01-01

    The ATLAS experiment at LHC, CERN will utilise a large, superconducting, air-cored toroid magnet system for precision muon measurements. The magnet system will consist of a long barrel and two end-cap toroids. Each end-cap toroid will contain eight racetrack coils mounted as a single cold mass in cryostat vessel of ~10 m diameter. The project has now moved from the design/specification stage into the fabrication phase. This paper presents the engineering status of the cold masses and vacuum vessels that are under fabrication in industry. Final designs of cold mass supports, cryogenic systems and control/protection systems are presented. Planning for toroid integration, test and installation is described. (3 refs).

  16. Toroidal field effects on the stability of Heliotron E

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  17. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  18. Considerations of coil protection and electrical connection schemes in large superconducting toroidal magnet system

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1976-03-01

    A preliminary comparison of several different coil protection and electrical connection schemes for large superconducting toroidal magnet systems (STMS) is carried out. The tentative recommendation is to rely on external dump resistors for coil protection and to connect the coils in the toroidal magnet in several parallel loops (e.g., every fourth coil is connected into a single series loop). For the fault condition when a single coil quenches, the quenched coil should be isolated from its loop by switching devices. The magnet, as a whole, should probably be discharged if more than a few coils have quenched

  19. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    Science.gov (United States)

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  20. Program for development of toroidal superconducting magnets for fusion research

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1976-04-01

    Research progress on the following subprograms is described/: (1) system design, (2) coil design, (3) conductor selection and test, (4) radiation effects on superconducting coils, (5) coil protection, eddy current shielding, and power supply, (6) structural analysis and materials investigation, (7) cryogenics and refrigeration, (8) subsize coil fabrication, (9) large coil project, (10) coil testing and evaluation, (11) administrative plan, and (12) quality assurance and reliability

  1. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  2. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    International Nuclear Information System (INIS)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-01-01

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended

  3. Regularity conditions of the field on a toroidal magnetic surface

    International Nuclear Information System (INIS)

    Bouligand, M.

    1985-06-01

    We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr

  4. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  5. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  6. Neoclassical diffusion in toroidal three-cut magnetic field

    International Nuclear Information System (INIS)

    Nemov, V.V.; Shishkin, A.A.

    1975-01-01

    Quasi-classical diffusion is investigated in the regime of toroidal drift of 'bananas' in a three cut magnetic field. Unlike previous papers, it is supposed that the inhomogeneity of a helical magnetic field epsilonsub(k) is of the same order or less than that of the toroidal inhomogeneity epsilonsub(t). The case is considered when the efficient frequency of particle collisions exceeds that of the 'banana' precession around the magnetic axis. Expressions for diffusion flows and coefficients are obtained that transform into available ones at epsilonsub(h) > > epsilonsub(t) [ru

  7. HTMR: an experimental tokamak reactor with hybrid copper/superconductor toroidal field magnet

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Raia, G.; Rosatelli, F.; Zampaglione, V.

    1985-01-01

    The feasibility of a hybrid configuration superconducting coils/copper coils for a next generation tokamak TF magnet has been investigated. On the basis of this hybrid solution, the conceptual design has been developed for a medium-high toroidal field tokamak reactor (HTMR). The results of this study show the possibility of designing a tokamak reactor with reduced size in comparison with other INTOR like devices, still gaining some margins in front of the uncertainties in the scaling laws for plasma physics parameters and retaining the presence of a blanket with a tritium breeding ratio of about 1

  8. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  9. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  10. Toroidal equilibrium in an iron-core reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1984-04-01

    An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale

  11. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  12. Poloidal and toroidal plasmons and fields of multilayer nanorings

    International Nuclear Information System (INIS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  13. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  14. Development of high field superconducting Tokamak 'TRIAM-1M'

    International Nuclear Information System (INIS)

    Ito, Satoshi; Suzuki, Takao; Suzuki, Shohei; Nishi, Masatsugu; Kawasaki, Takahide.

    1984-01-01

    The tokamak nuclear fusion apparatus ''TRIAM-1M'' which is constructed in the Research Institute for Applied Mechanics, Kyushu University, has a number of distinctive features as compared with other tokamak projects, that is, the toroidal field coils are made of superconductors for the first time in Japan, and the apparatus is small and has strong magnetic field. Hitachi Ltd. designed and has forwarded the manufacture of the TRIAM-1M. In this paper, the total constitution of the apparatus and the design and manufacture of the plasma vacuum vessel, superconducting toroidal coils and others are reported. The objectives of research are the containment of strong field tokamak plasma and the establishment of the law of proportion, the development of turbulent flow heating method, the adoption of mixed wave current driving method and the practical use of Nb 3 Sn superconducting coils. The apparatus is composed of the vacuum vessel containing plasma, toroidal field coils, poloidal field coils, current transformer coils and turbulent flow heating coils for plasma heating, heat insulating vacuum vessel and supporting structures. The evacuating facility, helium liquefying refrigerator and cooling water facility are installed around the main body. (Kako, I.)

  15. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  16. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  17. The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs

  18. Closed expressions for the magnetic field of toroidal multipole configurations

    International Nuclear Information System (INIS)

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration

  19. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC [Superconducting Super Collider] detectors

    International Nuclear Information System (INIS)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm 2 over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm 3 of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs

  20. Eddy current calculations for the Tore Supra toroidal field magnet

    International Nuclear Information System (INIS)

    Blum, J.

    1983-01-01

    An outline is given of the calculation of the eddy currents in the magnetic structures of a Tokamak, which can be assimilated to thin conductors, so that the three-dimensional problem can be reduced mathematically to a two-dimensional one, the variables being two orthogonal coordinates of the considered surface. A finite element method has been used in order to treat the complicated geometry of the set of the 18 toroidal field coil casings and mechanical structures of Tore Supra. This eddy current code has been coupled with an axisymmetric equilibrium code in order to simulate typical phases of a Tokamak discharge (plasma current rise, additional heating, disruption, cleaning discharge) and the losses in the toroidal field magnet have thus been calculated. (author)

  1. Poloidal and toroidal plasmons and fields of multilayer nanorings

    OpenAIRE

    Garapati, Kumar Vijay; Salhi, Marouane; Kouchekian, Sherwin; Siopsis, George; Passian, Ali

    2017-01-01

    Composite and janus type metallo-dielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieve invisibility cloaks, and obtain quantum correlations between qubits. We investigate the surface modes of a toroidal nano-structure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle pla...

  2. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  3. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  4. Hamiltonian description of toroidal magnetic fields in vacuum

    International Nuclear Information System (INIS)

    Lewis, H.R.; Bates, J.W.

    1996-01-01

    An investigation of vacuum magnetic fields in toroidal geometry has been initiated. Previously, the general form of the magnetic scalar potential for fields regular at the poloidal axis was given. Here, these results have been expanded to obtain the magnetic scalar potential in a vacuum region that may surround a toroidal current distribution. Using this generalized magnetic scalar potential in conjunction with Boozer's canonical representation of a magnetic field, a field-line Hamiltonian for nonaxisymmetric vacuum fields has been derived. These fields axe being examined using a novel, open-quotes time-dependentclose quotes perturbation theory, which permits the iterative construction of invariants associated with magnetic field-line Hamiltonians that consist of an axisymmetric zeroth-order term, plus a nonaxisymmetric perturbation. By choosing appropriate independent variables, an explicit constructive procedure is developed which involves only a single canonical transformation. Such invariants are of interest because they provide a means of investigating the topology of magnetic field lines. Our objective is to elucidate the existence of magnetic surfaces for nonaxisymmetric vacuum configurations, as well as to provide an approach for studying the onset of stochastic behavior

  5. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  6. Toroidal inhomogeneity of the vertical field in a tokamak apparatus

    International Nuclear Information System (INIS)

    Sometani, Taro; Takashima, Hidekazu

    1977-01-01

    An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)

  7. Dynamic processes in field-reversed-configuration compact toroids

    International Nuclear Information System (INIS)

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs

  8. System design of toroidal field power supply of CDD tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng Zhi

    1996-12-01

    This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs.

  9. System design of toroidal field power supply of CDD tokamak

    International Nuclear Information System (INIS)

    Liu, Zheng Zhi.

    1996-12-01

    This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs

  10. Results of the ITER toroidal field model coil project

    International Nuclear Information System (INIS)

    Salpietro, E.; Maix, R.

    2001-01-01

    In the scope of the ITER EDA one of the seven largest projects was devoted to the development, manufacture and testing of a Toroidal Field Model Coil (TFMC). The industry consortium AGAN manufactured the TFMC based on on a conceptual design developed by the ITER EDA EU Home Team. The TFMC was completed and assembled in the test facility TOSKA of the Forschungszentrum Karlsruhe in the first half of 2001. The first testing phase started in June 2001 and lasted till October 2001. The first results have shown that the main goals of the project have been achieved

  11. Representation of magnetic fields with toroidal topology in terms of field-line invariants

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1990-01-01

    Beginning with Boozer's representation of magnetic fields with toroidal topology [Phys. Fluids 26, 1288 (1983)], a general formalism is presented for the representation of any magnetic field with toroidal topology in terms of field-line invariants. The formalism is an application to the magnetic field case of results developed recently by Lewis et al. (submitted for publication to J. Phys. A) for arbitrary time-dependent Hamiltonian systems with one degree of freedom. Every magnetic field with toroidal topology can be associated with time-dependent Hamiltonian systems with one degree of freedom and every time-dependent Hamiltonian system with one degree of freedom can be associated with magnetic fields with toroidal topology. In the Hamiltonian context, given any particular function I(q,p,t), Lewis et al. derived those Hamiltonians for which I(q,p,t) is an invariant. In addition, for each of those Hamiltonians, they derived a function canonically conjugate to I(q,p,t) that is also an invariant. They applied this result to the case where I(q,p,t) is expressed as a function of two canonically conjugate functions. This general Hamiltonian formalism provides a basis for representing magnetic fields with toroidal topology in terms of field-line invariants. The magnetic fields usually contain plasma with flow and anisotropic pressure. A class of fields with or without rotational symmetry is identified for which there are magnetic surfaces. The formalism is developed for application to the case of vacuum magnetic fields

  12. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  13. Photoelastic analyses of stresses in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.

    1977-02-01

    Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended

  14. Stress analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1990-02-01

    The International Thermonuclear Experimental Reactor (ITER) is intended as an experimental thermonuclear tokamak reactor for testing the basic physics, performance and technologies essential to future fusion reactors. The ITER design will be based on extensive new design work, supported by new physical and technological results, and on the great body of experience built up over several years from previous national and international reactor studies. Conversely, the ITER design process should provide the fusion community with valuable insights into what key areas need further development or clarification as we move forward towards practical fusion power. As part of the design process of the ITER toroidal field coils the mechanical behaviour of the magnetic system under fault conditions has to be analysed in more detail. This paper describes the work carried out to create a detailed finite element model of two toroidal field coils as well as some results of linear elastic analyses with fault conditions. The analyses have been performed with the finite element code ANSYS. (author). 5 refs.; 8 figs.; 2 tabs

  15. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1985-01-01

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented

  16. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  17. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  18. Non-invasive diagnostics of ion beams in strong toroidal magnetic fields with standard CMOS cameras

    Science.gov (United States)

    Ates, Adem; Ates, Yakup; Niebuhr, Heiko; Ratzinger, Ulrich

    2018-01-01

    A superconducting Figure-8 stellarator type magnetostatic Storage Ring (F8SR) is under investigation at the Institute for Applied Physics (IAP) at Goethe University Frankfurt. Besides numerical simulations on an optimized design for beam transport and injection a scaled down (0.6T) experiment with two 30°toroidal magnets is set up for further investigations. A great challenge is the development of a non-destructive, magnetically insensitive and flexible detector for local investigations of an ion beam propagating through the toroidal magnetostatic field. This paper introduces a new way of beam path measurement by residual gas monitoring. It uses a single board camera connected to a standard single board computer by a camera serial interface all placed inside the vacuum chamber. First experiments with one camera were done and in a next step two under 90 degree arranged cameras were installed. With the help of the two cameras which are moveable along the beam pipe the theoretical predictions are experimentally verified successfully. Previous experimental results have been confirmed. The transport of H+ and H2+ ion beams with energies of 7 keV and at beam currents of about 1 mA is investigated successfully.

  19. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  20. Compact toroid development: activity plan for field reversed configurations

    International Nuclear Information System (INIS)

    1984-06-01

    This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC). This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives

  1. Field-reversed experiments (FRX) on compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-11-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10/sup 15/ cm/sup -3/ to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10/sup 15/ cm/sup -3/. Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 ..mu..sec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed.

  2. Field-reversed experiments (FRX) on compact toroids

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10 15 cm -3 to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10 15 cm -3 . Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 μsec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed

  3. Superconducting poloidal field magnet engineering for the ARIES-ST

    International Nuclear Information System (INIS)

    Bromberg, Leslie; Pourrahimi, S.; Schultz, J.H.; Titus, P.; Jardin, S.; Kessel, C.; Reiersen, W.

    2003-01-01

    The critical issues of the poloidal systems for the ARIES-ST design have been presented in this paper. Because of the large plasma current and the need of highly shaped plasmas, the poloidal field (PF) coils should be located inside the toroidal field in order to reduce their current. Even then, the divertor coils carry large currents. The ARIES-ST PF coils are superconducting using the internally cooled cable-in-conduit conductor. The peak self field in the divertor coils is about 15 T and the highest field in the non-divertor coils is about 6 T. The PF magnets have built-in margins that are sufficient to survive disruptions without quenching. The costing study indicates that the specific cost of the PF system is $80/kg. Detailed design and trade-off studies of ARIES-ST are presented and remaining R and D issues are identified

  4. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NARCIS (Netherlands)

    Crombe, K.; Andrew, Y.; Biewer, T. M.; Blanco, E.; de Vries, P. C.; Giroud, C.; Hawkes, N. C.; Meigs, A.; Tala, T.; von Hellermann, M.; Zastrow, K. D.

    2009-01-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been

  5. Fabrication of Nb3Sn cables for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Isono, Takaaki; Tsutsumi, Fumiaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Takahashi, Yoshikazu; Nakajima, Hideo; Ishibashi, Tatsuji; Sato, Go; Chida, Kenji; Suzuki, Rikio; Tanji, Tsutomu

    2012-01-01

    Cable-in-conduit conductors for ITER toroidal field (TF) coils will be operated at 68 kA and 11.8 T. The cable is composed of 1,422 strands with a diameter of 0.82 mm. There were two options for initial procurement. For option 2, the twist pitches at lower stages are longer than in option 1. Trials were performed to assess the feasibility of these options. In the trials for option 1, the nominal outer diameter of sub-cables and reduction schedule of final cables were evaluated and finalized. In the trials for option 2, problems were encountered at the third stage cabling. These problems were resolved through increasing the die size in that stage and improving the tension balance of the second-stage cables to reduce friction between the die and the cable, and also through avoiding loose twisting at both edges of the third cables. Option 2 was finally selected in 2009 based on superconducting performance enhancement of the cable. After the qualification of the fabrication procedure using fabrication of a 760-m dummy cable and a 415-m superconducting cable, mass production of the cables started in March 2010. (author)

  6. Status of European manufacture of Toroidal Field conductor and strand for JT-60SA project

    Energy Technology Data Exchange (ETDEWEB)

    Zani, Louis, E-mail: louis.zani@jt60sa.org [Fusion for Energy, D-85748 Garching (Germany); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro; Di Pietro, Enrico [Fusion for Energy, D-85748 Garching (Germany)

    2013-10-15

    In the framework of the JT-60SA project, part of the Broader Approach (BA) agreement, EURATOM provides to Japan, the Toroidal Field (TF) magnet system, consisting of 18 superconducting coils. The procurement of the conductor for the TF coils is managed by Fusion for Energy, acting as EU representative in the BA agreement. The TF conductor procurement is split into two contracts, one dedicated to the production of Niobium Titanium (NbTi) and Cu strand and the other to TF conductor production through strand cabling and cable jacketing operations. The TF conductor is a rectangular-shaped cable-in-conduit conductor formed by 486 (0.81 mm diameter) strands (2/3 NbTi–1/3 Cu) wrapped in a stainless steel foil and embedded into a stainless steel jacket. The 18 TF coils require (including spares) 115 ‘Unit Lengths’ (UL) of such conductor, each 240 m long for a total of about 28 km. Correspondingly about 10,000 km for NbTi and 5000 km for Cu strand are produced. The Japanese company Furukawa Electric Co. (FEC) is in charge of TF strand manufacture while the Italian company Italian Consortium for Applied Superconductivity (ICAS) is in charge of cabling and jacketing of TF conductor ULs. In the paper, we provide information on the production stages presently achieved in TF strand and conductor contracts.

  7. Extension of TFTR operations to higher toroidal field levels

    International Nuclear Information System (INIS)

    Woolley, R.D.

    1995-01-01

    For the past year, TFTR has sometimes operated at extended toroidal field (TF) levels. The extension to 5.6 Tesla (79 kA) was crucial for TFTR's November 1994 10.7 MW DT fusion power record. The extension to 6.0 Tesla (85 kA) was commissioned on 9 September 1995. There are several reasons that one could expect the TF coils to survive the higher stresses that develop at higher fields. They were designed to operate at 5.2 Tesla with a vertical field of 0.5 Tesla, whereas the actual vertical field needed for the plasma does not exceed 0.35 Tesla. Their design specification explicitly required they survive some pulses at 6.0 Tesla. TF coil mechanical analysis computer models available during coil design were crude, leading to conservative design. And design analyses also had to consider worst-case misoperations that TFTR's real time Coil Protection Calculators (CPCs) now positively prevent from occurring

  8. High-field superconducting nested coil magnet

    Science.gov (United States)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  9. Structural analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    ITER (International Thermonuclear Experimental Reactor) is intended to be an experimental thermonuclear tokamak reactor testing the basic physics performance and technologies essential to future fusion reactors. The magnet system of ITER consists essentially of 4 sub-systems, i.e. toroidal field coils (TFCs), poloidal field coils (PFCs), power supplies, and cryogenic supplies. These subsystems do not contain significant radioactivity inventories, but the large energy inventory is a potential accident initiator. The aim of the structural analyses is to prevent accidents from propagating into vacuum vessel, tritium system and cooling system, which all contain significant amounts of radioactivity. As part of design process 3 conditions are defined for PF and TF coils, at which mechanical behaviour has to be analyzed in some detail, viz: normal operating conditions, upset conditions and fault conditions. This paper describes the work carried out by ECN to create a detailed finite element model of 16 TFCs as well as results of some fault condition analyses made with the model. Due to fault conditions, either electrical or mechanical, magnetic loading of TFCs becomes abnormal and further mechanical failure of parts of the overall structure might occur (e.g. failure of coil, gravitational supports, intercoil structure). The analyses performed consist of linear elastic stress analyses and electro-magneto-structural analyses (coupled field analyses). 8 refs.; 5 figs.; 5 tabs

  10. Steady state toroidal magnetic field at earth's core-mantle boundary

    Science.gov (United States)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  11. Sacral Theater, a code to simulate the propagation of the superconducting magnet LHC atlas barrel toroid transition

    International Nuclear Information System (INIS)

    Gastineau, B.

    2000-06-01

    Sacral Theater has been developed for the toroid magnet Atlas of the CERN LHC project. This three dimensional calculations code calculates the propagation of the transition of a superconducting coil in 25 m long hippodrome. Procedures to study low currents have been included. This work is a part of the magnet safety system because the coils protection is made by warmers activating the quench propagation in case of default detection. This allows the complete dissipation of storage energy that can reach 1080 MJ on Atlas. (N.C.)

  12. Toroidal field magnet and poloidal divertor field coil systems adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1985-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils, that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization requires a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  13. The ASDEX upgrade toroidal field magnet and poloidal divertor field coil system adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.; Blaumoser, M.; Ennen, K.; Gruber, J.; Gruber, O.; Jandl, O.; Kaufmann, M.; Kollotzek, H.; Kotzlowski, H.; Lackner, E.; Lackner, K.; Larcher, T. von; Noterdaeme, J.M.; Pillsticker, M.; Poehlchen, R.; Preis, H.; Schneider, H.; Seidel, U.; Sombach, B.; Speth, E.; Streibl, B.; Vernickel, H.; Werner, F.; Wesner, F.; Wieczorek, A.

    1986-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) , and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization require a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  14. Design of superconducting toroidal magnet coils and testing facility in the USA

    International Nuclear Information System (INIS)

    Luton, J.N.; Haubenreich, P.N.; Thompson, P.B.

    1977-01-01

    In the U.S. Large Coil Program, three industrial teams are presently designing test coils to general specifications prepared by the Oak Ridge National Laboratory with guidance from USERDA. Each test coil is approximately half the bore size of reactor coils, being oval or D-shaped, with a bore of 2.5 x 3.5 m. The dimensions and operating requirements of the coils are identical for all test coils. The coils are designed to produce a peak field of at least 8 tesla at the winding of a selected coil operated at its design current. This condition is met when the selected coil is operated in a compact toroidal array of 6 coils, with the other five coils being operated at 0.8 of their design current. The six coils are of three different designs. Both pool boiling and forced flow designs are included. The coils are housed in a single large vacuum chamber for economy and testing convenience. Auxiliary coils provide a pulse field over the test coil winding volume. This auxiliary system is designed to produce a pulse field which rises to a peak of 0.14 T in 1 sec. With the exception of material damage due to neutron irradiation, all reactor requirements and environments will be either duplicated, approximated, or simulated. The test facility is being designed to accept coils producing up to 12 tesla in later phases of the program

  15. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb$_{3}$Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, a...

  16. Study on usage of fluorocarbon for toroidal field coil cooling

    International Nuclear Information System (INIS)

    Miyata, Hiroshi; Arai, Takashi

    1998-09-01

    In JT-60 machine, usage of fluorocarbon as an alternate coolant to a cooling channel of toroidal field coil (TF coil) in which a crack was detected is investigated. Fluorinert (a registered trademark of 3M) liquid which is one of fluorocarbon was reviewed, and liquid 'FC-43' was found as an appropriate one for TF coils cooling because of its physical properties about boiling point and thermal capacity. Fortunately, Fluorinert does not have impact on the greenhouse effect for the earth under the temperature of its boiling point. And thermal analysis shows that the cooling effectiveness obtained with liquid 'FC-43' for TF coils is rather well. Moreover, corrosion tests were carried out between liquid 'FC-43' and materials used in JT-60 by considering deterioration of TF coils. The test results demonstrate that there is no problem in applying liquid 'FC-43' as a coolant to cooling channel of TF coils. Results obtained above conclude that usage of fluorocarbon is one of the effective means to perform further experiments in JT-60. (author)

  17. Validation of helium inlet design for ITER toroidal field coil

    International Nuclear Information System (INIS)

    Boyer, C.; Seo, K.; Hamada, K.; Foussat, A.; Le Rest, M.; Mitchell, N.; Decool, P.; Savary, F.; Sgobba, S.; Weiss, K.P.

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb 3 Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are preparing the helium inlet mock-up for a qualification test. (authors)

  18. Design, manufacture and performance of the JET Toroidal field coils

    International Nuclear Information System (INIS)

    Huguet, M.; Booth, J.; Pohlchen, R.

    1983-01-01

    The JET Toroidal field magnet compromises 32 D shaped coils each 5.7 m high, 3.8 wide and weighing 12 tonnes. The field produced is 3.45 Tesla at 2.9 m radius when operating at the maximum current of 66.5 kA. The coils are wound with water cooled hollow conductor and operate with an equivalent rectangular current pulse length of 20 seconds at full current. A description of the evolution of the design in relation to the constraints imposed is given first. These design constraints included the low aspect ratio of the Torus, the long pulse duration, the large mechanical forces and also the availability of suitable copper conductor sections. The stress analysis of the coil is outlined as well as the cooling requirements and some specific stresses. The construction of the D shaped coils in hard copper presents problems due to the spring back effect of the conductor. The methods adopted to solve these difficulties together with other problems related to the winding process are given. A large number of tests were carried out in order to establish the conditions necessary to obtain reliable brazed joints. During production the non destructive tests for each joint were very severe and included X-ray examination. In order to meet the JET delivery programme, a large effort has been required in terms of production tools and organization of the work at the supplier's works. This effort and the construction schedule is outlined. After assembly on the JET machine the TF coils have been tested and their initial performances in electrical, mechanical and thermal terms are compared with predicted values

  19. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  20. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  1. Compact-toroid fusion reactor based on the field-reversed theta pinch: reactor scaling and optimization for CTOR

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  2. Experiments on a Toroidal Screw Pinch with Various Field Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, H.; Wilhelm, R.; Krause, H. [Max-Planck-Institut Fuer Plasmaphysik, EURATOM-Association, Garching, Munich, Federal Republic of Germany (Germany)

    1971-10-15

    In the toroidal screw pinch ISAR-IV (large diameter 60 cm, aspect ratio 5, maximum storage, energy 140 kj) attempts were made to get an improved stability of the plasma by different kinds of field programming. The best results were obtained with positive trapped B{sub z}-fields and simultaneous switching of main B{sub z}-field and I{sub z}-current. In this case the dense plasma column (n{sub e} Almost-Equal-To 2-3 x 10{sup 16} , kT Almost-Equal-To 50-100 eV, {beta} Almost-Equal-To 15-20%) is surrounded by a force-free plasma ({beta} = 1%) with weak shear and it behaves stably for, at least, 25 {mu}s. The resulting containment time nr of near 10{sup 12} s cm{sup -3} remains a factor of 2-3 below the upper limit given by the classical diffusion. The following loss of the equilibrium position near the coil axis ({Delta} Almost-Equal-To 1-2 cm) is connected to a strong damping of the axial plasma current which starts near the end of the containment. It may be assumed that the increase of the effective plasma resistance mainly results from a contact of the force-free regions with the tube wall. Attempts were made to improve the containment by suitable programming of a plasma z-current. The results are presented. Experiments with one quartz limiter inside the torus improved the equilibrium but introduced instabilities at the new surface of the dilute plasma. To obtain more information about the outer region, the dilute plasma was produced without a dense core and separated from the tube walls by weak adiabatic compression. Under these Tokamak-like conditions the q-value was varied. In the region of q Almost-Equal-To 1 there appeared instabilities which seem to haver higher m-modes and rather short wavelengths. In a different kind of field programming the field distribution of the ''diffuse pinch'' was realized within an accuracy of 5-10% (kT Almost-Equal-To 100 eV, {beta} Almost-Equal-To 30%). In contrast to the predictions of MHD-theory, stability was observed only for

  3. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II

    International Nuclear Information System (INIS)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E.

    1992-03-01

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  4. Trial manufacture of ITER toroidal field coil radial plate

    International Nuclear Information System (INIS)

    Takano, Katsutoshi; Koizumi, Norikiyo; Shimizu, Tatsuya; Nakajima, Hideo; Esaki, Koichi; Nagamoto, Yoshifumi; Makino, Yoshinobu

    2012-01-01

    In an ITER toroidal field (TF) coil, tight tolerances of 1 mm in flatness and a few millimeters in profile are required to manufacture a radial plate (RP), although the height and width of the RP are 13 m and 9 m, respectively. In addition, since cover plates (CPs) should be fitted to a groove in the RP with tolerance of 0.5 mm, tight tolerances are also required for the CPs. The authors therefore performed preliminary and full-scale trials to achieve tight tolerances that meet the required RP manufacturing schedule, such as one RP every three weeks. Before the full-scale trials, preliminary trials were performed to optimize machining procedures, welding conditions and assembly procedures for the RP, and the manufacturing processes for the straight and curved CP segments. Based on these preliminary trial results, full-scale RP and CPs were fabricated. The flatness achieved for the RP is 1 mm, except at the top and bottom where gravity support is insufficient. If the gravity support is suitable, it is expected that a flatness of 1 mm is achievable. The profile of the RP was measured to be within the targeted range, better than 2 mm. In addition, most of the CPs fit the corresponding groove of the RP. Although the issue of hot-cracking in the weld still remains, the test results indicate that this problem can be prevented by improving the geometry of the welding joint. Thus, we can conclude that the manufacturing procedures for RP and CP have been demonstrated. (author)

  5. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  6. Barrel Toroid fully charged to nominal field, and it works!

    CERN Multimedia

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  7. Toroidal electric field in front of the lower hybrid grill of the castor tokamak

    International Nuclear Information System (INIS)

    Zacek, F.; Petrzilka, V.; Devynck, P.; Goniche, M.

    2003-01-01

    A small tokamak Castor (R/a = 0.4/0.85 m) with low plasma energy density and short pulses (20 ms) offers a unique possibility to carry out probe measurements in front of the grill antenna and as a consequence to provide direct information about the local electric fields in this region. For measurements of the toroidal electrical field, a small double probe with 2 tips separated by 3.5 mm in the toroidal direction has been used. The tips are oriented in the radial direction. The probe is radially movable in front of the central grill waveguide. Cross-correlations and FFT (fast Fourier transform) analysis of the measured V fl signals are given together with an attempt to investigate characteristics of toroidal electric field E tor (up to 500 kHz), derived from V fl measured by 2 toroidally separated tips

  8. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  9. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  10. Critical field measurements in a superconducting networks

    International Nuclear Information System (INIS)

    Pannetier, B.; Chaussy, J.; Rammal, R.

    1984-01-01

    We have measured the critical field of a periodic two-dimensional network of superconducting indium. At low fields, the critical line Hsub(c)(T) reflects the network topology and exhibits well-defined cusps due to flux quantization corresponding to both integer and rational number of flux quanta phi 0 = h/2e per unit loop of the network [fr

  11. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  12. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  13. Results of ITER toroidal field coil cover plate welding test

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Matsui, Kunihiro; Shimizu, Tatsuya; Nakajima, Hideo; Iijima, Ami; Makino, Yoshinobu

    2012-01-01

    In ITER Toroidal Field (TF) coils, cover plates (CP) are welded to the teeth of the radial plate (RP) to fix conductors in the grooves of the RP. Though the total length of the welds is approximately 1.5 km and the height and width of the RP are 14 and 9 m, respectively, welding deformation of smaller than 1 mm for local out-of-plane distortion and smaller than several millimeters for in-plane deformation is required. Therefore, laser welding is used for CP welding to reduce welding deformation as much as possible. However, the gap in welding joints is expected to be a maximum of 0.5 mm. Thus, a laser welding technique to enable welding of joints with a gap of 0.5 mm in width has been developed. Applying this technology, a CP welding trial using an RP mock-up was successfully performed. The achieved local flatness, that is, the flatness of the cross-section of the RP mock-up, is 0.6 mm. The analysis using inherent strains, which are derived from the welding test using flat plates, also indicates that better local flatness can be achieved if the initial distortion is zero. In addition, the welding deformation of a full-scale RP is evaluated via analysis using the inherent strain. The analytical results show that in-plane deformation is approximately 5 mm and large out-of-plane deformation, consisting of approximately 5 mm-long wave distortion and a twist of approximately 1.5 mm in the RP cross-section, is generated. It is expected that the required profile can be achieved by determining the original geometry of an RP by simulating deformation during welding. It is also expected that the required local flatness of a DP can be achieved, since out-of-plane deformation can be reduced by increasing the number of RPs turned over during CP welding. A more detailed study is required. (author)

  14. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-01-01

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H c2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H c2 . This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  15. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given

  16. Force-free field inside a toroidal magnetic cloud

    Czech Academy of Sciences Publication Activity Database

    Romashets, E. P.; Vandas, Marek

    2003-01-01

    Roč. 30, č. 20 (2003), s. 2065, /SSC 8-1 - SSC 8-4/ ISSN 0094-8276 R&D Projects: GA AV ČR IBS1003006; GA ČR GA205/03/0953 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic clouds * toroid al flux rope * analytical solution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.422, year: 2003

  17. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  18. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  19. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  20. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  1. Calculation about a modification to the toroidal magnetic field of the Tokamak Novillo. Part I

    International Nuclear Information System (INIS)

    Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E.

    1991-07-01

    The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)

  2. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Melton, J.G.; Linton, T.W.

    1983-01-01

    The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell

  3. Passing particle toroidal precession induced by electric field in a tokamak

    International Nuclear Information System (INIS)

    Andreev, V. V.; Ilgisonis, V. I.; Sorokina, E. A.

    2013-01-01

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles

  4. Passing particle toroidal precession induced by electric field in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); Ilgisonis, V. I.; Sorokina, E. A. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); NRC “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles.

  5. Effect of eddy currents in the toroidal field coils of a tokamak with an air-core transformer

    International Nuclear Information System (INIS)

    Tani, Keiji; Kobayashi, Tomofumi; Tamura, Sanae

    1975-02-01

    The effect of eddy currents in the copper parts of the toroidal field coils is evaluated for a tokamak with the air-core transformer windings located inside the bore of the toroidal field coils. By introducing appropriate weights to the solutions obtained for a simplified cylindrical model, calculation is made of the induction toroidal electric field on the plasma axis in the presence of the eddy currents. The result shows that, to reduce the influence of the eddy currents on the induction one-turn voltage to the permissible level, it is necessary to choose the optimal number of turns and shape of the single conductor of the toroidal field coil. (auth.)

  6. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  7. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  8. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    International Nuclear Information System (INIS)

    Qin, Hong; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-01-01

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ((var e psilon) -1 ) larger than the E x B velocity, where (var e psilon) is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  9. Calculation about a modification to the toroidal magnetic field of the Tokamak Novillo. Part I; Calculo sobre una modificacion al campo magnetico toroidal del Tokamak Novillo. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1991-07-15

    The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)

  10. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    Energy Technology Data Exchange (ETDEWEB)

    Crombe, K [Postdoctoral Fellow of the Research Foundation - Flanders (FWO), Department of Applied Physics, Ghent University, Rozier 44, B-9000 Gent (Belgium); Andrew, Y; De Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Biewer, T M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, TN (United States); Blanco, E [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Tala, T [VTT Technical Research Centre of Finland, Association EURATOM-Tekes, PO Box 1000, FIN-02044 VTT (Finland); Von Hellermann, M [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: Kristel.Crombe@jet.uk

    2009-05-15

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v{sub {theta}}) in the ITB region is measured to be of the order of a few tens of km s{sup -1}, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v{sub {theta}} is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E{sub r}), with the largest gradient in E{sub r} measured in the radial region coinciding with the ITB.

  11. Toroidal simulation magnet tests

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  12. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    DEFF Research Database (Denmark)

    Sun, Y; Liang, Y; Koslowski, H R

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value...

  13. Magnetic-Field-Tunable Superconducting Rectifier

    Science.gov (United States)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  14. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  15. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  16. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  17. Reduction of toroidal magnetic field ripple in the advanced material tokamak experiment on JFT-2M

    International Nuclear Information System (INIS)

    Sato, M.; Miura, Y.; Kimura, H.; Yamamoto, M.; Koike, T.; Nakayama, T.; Hasegawa, M.; Urata, K.

    1998-01-01

    In order to reduce fast ion losses due to the toroidal field ripple, the reduction of ripple amplitude (δ) by inserting ferritic steel is studied, taking its toroidal mode number into account. The guideline of the design for reduction is wider and thicker ferritic board (FB) is located at further position from VV. The δ depends on the toroidal magnetic field. The value of B r21 /B t in the case of displacement of few cm is about 1 x 10 -5 which is one order smaller than the critical value. The offsetting of FB is not a problem for locked mode. Preliminary experiments with insertion of one or two FB's indicate no adverse effect on global plasma parameters. (author)

  18. Reduction of toroidal magnetic field ripple in the advanced material tokamak experiment on JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Miura, Y.; Kimura, H.; Yamamoto, M.; Koike, T. [Japan Atomic Energy Research Inst. (Japan); Nakayama, T. [Hitachi Ltd. (Japan); Hasegawa, M. [Mitsubishi Electric Corp. (Japan); Urata, K. [Mitsubishi Heavy Industries Ltd. (Japan)

    1998-07-01

    In order to reduce fast ion losses due to the toroidal field ripple, the reduction of ripple amplitude ({delta}) by inserting ferritic steel is studied, taking its toroidal mode number into account. The guideline of the design for reduction is wider and thicker ferritic board (FB) is located at further position from VV. The {delta} depends on the toroidal magnetic field. The value of B{sub r21} /B{sub t} in the case of displacement of few cm is about 1 x 10{sup -5} which is one order smaller than the critical value. The offsetting of FB is not a problem for locked mode. Preliminary experiments with insertion of one or two FB's indicate no adverse effect on global plasma parameters. (author)

  19. Suspension of a field-cooled BiPbSrCaCuO high-T sub c superconductor under a toroidal permanent magnet

    CERN Document Server

    Lee, S H; Choe, W; Lee, T S

    2002-01-01

    Magnetic flux measurements of a toroidal magnet revealed a concave-shaped field distribution with a single minimum and a null field along the axis of the torus at the point where the field reversed. The non-linear magnetic field of the toroidal magnet perpendicular to the Ag sub 2 O-doped superconducting disc sample with trapped magnetic flux distorted the field line distribution. As a result, the interaction force between the magnet and the sample exhibited regions of repulsive, null, attractive, null and finally repulsive force. The asymmetrical concave-shaped force pattern along the axis with two null force points indicates that the force exerted on the sample changes direction, the transition from repulsive to attractive at the null force point, and the force becomes repulsive again beyond the second null force point as the distance along the axis increases. The magnetic field simulation using the Poisson numerical code for the toroidal magnet of 46 mm OD, 12 mm ID and 10 mm thickness was in close agreeme...

  20. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.

    1990-01-01

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  1. Stability properties of a toroidal z-pinch in an external magnetic multipole field

    International Nuclear Information System (INIS)

    Eriksson, H.G.

    1987-01-01

    MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)

  2. Effect of toroidal field ripple on the formation of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P C de; Hawkes, N C; Challis, C D; Andrew, Y; Beurskens, M; Brix, M; Giroud, C; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Joffrin, E [EFDA-JET CSU, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Litaudon, X [Association EURATOM-CEA, DSM/DFRC, CEA Cadarache, 13108, St Paul lez Durance (France); Brzozowski, J; Johnson, T [Association EURATOM-VR, Fusion Plasma Physics, EES, KTH, Stockholm (Sweden); Crombe, K [Department of Applied Physics, Ghent University, Ghent (Belgium); Hobirk, J [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany); Loennroth, J; Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100, 02015 TKK (Finland); Tala, T [Association Euratom-Tekes, VTT, PO Box 1000, 02044 VTT (Finland); Yavorskij, V [Institute for Theoretical Physics, Association EURATOM-OEAW, University of Innsbruck (Austria)], E-mail: Peter.de.Vries@jet.uk

    2008-06-15

    The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to {delta} = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.

  3. Self-similar solutions for toroidal magnetic fields in a turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1989-01-01

    Self-similar solutions for weak toroidal magnetic fields transported by a turbulent jet of incompressible fluid are obtained. It is shown that radial profiles of the self-similar solutions form a discrete spectrum of eigenfunctions of a linear differential operator. The strong depatures from the magnetic flux conservation law, used frequently in turbulent jet models for extragalactic radio sources, are found

  4. Edge pedestal characteristics in JET and JT-60U tokamaks under variable toroidal field ripple

    NARCIS (Netherlands)

    Urano, H.; Saibene, G.; Oyama, N.; Parail, V.; P. de Vries,; Sartori, R.; Kamada, Y.; Kamiya, K.; Loarte, A.; Lonnroth, J.; Sakamoto, Y.; Salmi, A.; Shinohara, K.; Takenaga, H.; Yoshida, M.

    2011-01-01

    The effects of toroidal field (TF) ripple on the edge pedestal characteristics were examined in the TF ripple scan experiments at the plasma current I(p) of 1.1 MA in JET and JT-60U. The TF ripple amplitude delta(R) was defined as a value averaged over the existing ripple wells at the separatrix on

  5. Superconductive magnetic-field-trapping device

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1965-01-01

    An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.

  6. Anisotropic critical fields in superconducting superlattices

    International Nuclear Information System (INIS)

    Banerjee, I.; Yang, Q.S.; Falco, C.M.; Schuller, I.K.

    1983-01-01

    The temperature and angular dependence of critical fields (H/sub c/) have been studied as a function of layer thickness for superconducting Nb/Cu superlattices. For layer thicknesses between 100 and 300 A, dimensional crossover has been observed in the temperature dependence of H/sub c/. Associated with the crossover we find a change in the angular dependence of H/sub c/ to that given by the effective-mass theory. This is the first time that a relationship has been found between dimensional crossover observed in the temperature dependence and that in the angular dependence of critical fields

  7. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  8. Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan

    2018-05-01

    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.

  9. Suppression of m = 0 in a RFP by toroidal field coils

    International Nuclear Information System (INIS)

    Alexander, D.; Robertson, S.

    1993-01-01

    The Reversatron RFP is normally operated with the toroidal field coils connected in series. The time-integrated voltage applied to the circuit determines the sum of the fluxes linking each turn but not the flux within each turn. Each winding may have a different flux determined by the external drive and by currents within the plasma. A parallel connection of the field coils results in the flux within each coil being determined by the volt-seconds applied to the windings; thus the toroidal flux is the same within each coil. This configuration suppresses any toroidal variation in the toroidal flux and effectively reduces the level of the m = 0 component of the radial field. The m = 0 fluctuations are expected to arise due to nonlinear coupling of the m = 1 modes. A parallel connection of field coils is impractical due to the low impedance required for driving the coils. The authors have tested the effect of parallel connected coils by adding an auxiliary set of 36 coils. These are connected in parallel but are not connected to any supply. The toroidal flux is generated by the series-connected coils which generate voltage but not current in the parallel-connected coils. With the auxiliary coils, the discharge duration is increased from 500 to 550 μsec, the plasma current is increased from 50 kA to 60 kA, F is more negative, Θ is larger, and there is less shot-to-shot variation in the discharges. The m = 0 fluctuations measured by 43 surface coils are, however, only slightly reduced

  10. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  11. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  12. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Peter A., E-mail: gilman@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2017-06-20

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both have e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.

  13. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  14. Formation of magnetic islands due to field perturbations in toroidal stellarator configurations

    International Nuclear Information System (INIS)

    Lee, D.K.; Harris, J.H.; Lee, G.S.

    1990-06-01

    An explicit formulation is developed to determine the width of a magnetic island separatrix generated by magnetic field perturbations in a general toroidal stellarator geometry. A conventional method is employed to recast the analysis in a magnetic flux coordinate system without using any simplifying approximations. The island width is seen to be proportional to the square root of the Fourier harmonic of B ρ /B ζ that is in resonance with the rational value of the rotational transform, where B ρ and B ζ are contravariant normal and toroidal components of the perturbed magnetic field, respectively. The procedure, which is based on a representation of three-dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate calculation of the island widths in real vacuum field configurations, without the need to follow field lines through numerical integration of the field line equations. Numerical results of the island width obtained in the flux coordinate representation for the Advanced Toroidal Facility agree closely with those determined from Poincare puncture points obtained by following field lines. 22 refs., 5 tabs

  15. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    International Nuclear Information System (INIS)

    Sun, Y; Liang, Y; Koslowski, H R; Harting, D; Wiegmann, C; Wiesen, S; Jachmich, S; Alfier, A; Asunta, O; Corrigan, G; Giroud, C; Gryaznevich, M P; Hender, T; Nardon, E; Parail, V; Naulin, V; Tala, T

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value of this torque is at the plasma core region (ρ - √ν regime in the plasma core, but it is close to the transition between the 1/ν and ν - √ν regimes. The neoclassical toroidal viscosity (NTV) torque in the 1/ν and ν - √ν regimes is calculated. The observed torque is of a magnitude in between that of the NTV torque in the 1/ν and ν - √ν regimes. The NTV torque in the ν - √ν regimes is enhanced using the Lagrangian variation of the magnetic field strength. However, it is still smaller than the observed torque by one order of magnitude.

  16. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  17. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  18. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.

    Science.gov (United States)

    Cole, A J; Hegna, C C; Callen, J D

    2007-08-10

    A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.

  19. On the choice of toroidal magnetic field for thermonuclear tokamaks

    International Nuclear Information System (INIS)

    Segre, S.E.

    1981-01-01

    The value of the magnetic field chosen for tokamak experiments is the result of a compromise between physics requirements, technological limits and financial constraints. The consequences of some physics requirements and limitations, in the light of recent results on the scaling of energy confinement and on limits of density are examined. (author)

  20. Photoelastic and analytical investigation of stress in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.; Gray, W.H.

    1975-01-01

    A series of two-dimensional photoelastic stress analyses on circular and oval toroidal magnetic field coils for fusion reactors were made. The circumferential variation of the coil's magnetic force was simulated by applying different pressures to sixteen segmented regions of the inner surface of the models. Isochromatics and isoclinics were measured at selected points on the loaded model in a transmission polariscope using a microphotometer. Separate principal stresses were obtained using the combination of photoelastic information and isopachic data measured from the solution of Laplace's equation by the electrical analog method. Analysis of the same coil geometries, loadings, and boundary conditions were made using the finite element method. General agreement between theory and experiment was realized. From this investigation several variations of coil geometry and methods of support were evaluated. Based upon this experiment, suggestions for optimum structural design of toroidal field coils are presented

  1. High current superconductors for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Fietz, W.A.

    1976-01-01

    Conductors rated at 10,000 A for 8 T and 4.2 K are being purchased for the first large coil segment tests at ORNL. Requirements for these conductors, in addition to the high current rating, are low pulse losses, cryostatic stability, and acceptable mechanical properties. The conductors are required to have losses less than 0.4 W/m under pulsed fields of 0.5 T with a rise time of 1 sec in an ambient 8-T field. Methods of calculating these losses and techniques for verifying the performance by direct measurement are discussed. Conductors stabilized by two different cooling methods, pool boiling and forced helium flow, have been proposed. Analysis of these conductors is presented and a proposed definition and test of stability is discussed. Mechanical property requirements, tensile and compressive, are defined and test methods are discussed

  2. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    Science.gov (United States)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  3. Topological symmetry breaking of self-interacting fractional Klein-Gordon field theories on toroidal spacetime

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2008-01-01

    Quartic self-interacting fractional Klein-Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta-function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate regions or values of compactified dimensions where symmetry-breaking mechanisms appear

  4. The importance of the toroidal magnetic field for the feasibility of a tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2000-01-01

    The next step in the demonstration of the scientific feasibility of a tokamak fusion reactor is a DT burning plasma experiment for the study and control of self-heated plasmas. In this paper, the authors examine the role of the toroidal magnetic field on the confinement of a tokamak plasma in the ELMy H-mode regime--the operational regime foreseen for ITER

  5. Resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized

  6. First Cool-down and Test at 4.5 K of the ATLAS Superconducting Barrel Toroid Assembled in the LHC Experimental Cavern

    CERN Document Server

    Barth, K; Dudarev, A; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirrote, O; Ten Kate, H; Baynham, E; Mayri, C

    2008-01-01

    The large ATLAS superconducting magnets system consists of the Barrel, two End-Caps Toroids and the Central Solenoid. The eight separate coils making the Barrel Toroid (BT) have been individually tested with success in a dedicated surface test facility in 2004 and 2005 and afterwards assembled in the underground cavern of the ATLAS experiment. In order to fulfil all the cryogenic scenarios foreseen for these magnets with a cold mass of 370 tons, two separate helium refrigerators and a complex helium distribution system have been used. This paper describes the results of the first cool-down, steady-state operation at 4.5 K and quench recovery of the BT in its final configuration.

  7. Mean-field approach to unconventional superconductivity

    International Nuclear Information System (INIS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2014-01-01

    Highlights: • A model Hamiltonian for unconventional superconductivity (SC) is proposed. • The pseudogap (PG) state is described in terms of pair fluctuations. • SC coherence is restored by a new pair–pair interaction, which counteracts fluctuations. • Given the temperature dependence of the parameters, the SC to PG transition is examined. • The theory fits the ‘peak–dip–hump’ features of cuprate and pnictide excitation spectra. - Abstract: We propose a model that connects the quasiparticle spectral function of high-T c superconductors to the condensation energy. Given the evidence for pair correlations above T c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair–pair interaction term that restores long-range superconducting (SC) coherence below T c . A mean-field solution then leads to a self-consistent gap equation containing the new pair–pair coupling. The corresponding spectral function A(k,E) reveals the characteristic peak–dip–hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed

  8. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    International Nuclear Information System (INIS)

    Alizadeh Pahlavani, M.R.; Shoulaie, A.

    2010-01-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  9. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  10. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata.

    1977-06-01

    The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)

  11. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata

    1978-01-01

    The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)

  12. Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Benson, R.D.

    1985-01-01

    The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs

  13. The Pre-compression System of the Toroidal Field Coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Jong, C.; Vollmann, T.; Ferrari, M.

    2006-01-01

    The Toroidal Field (TF) coils of ITER will undergo out-of-plane forces caused by the machine poloidal fields required to maintain the toroidal stability of the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the Inner Intercoil Structure (IIC), which are composed by 2 sets of 4 poloidal shear keys inserted in slots between adjacent coils placed at the top and bottom part of the inboard leg, and the Outer Intercoil Structure (OIS) formed by 4 bands of shear panels at the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations a toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN per coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by 2 sets of 3 fibre-glass epoxy composite rings submitted to a toroidal hoop force of 100 MN per set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼ 25 mm) is required, and it will be less than 30% of its ultimate stress. The imposed elongation to reach that force and the lower Young modulus of the composite compared with the stainless steel one will ease component tolerances and/or settlement effects in the final assembly. (author)

  14. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  15. Compact toroid formation using barrier fields and controlled reconnection in the TRX-1 field reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Armstrong, W.T.

    1982-01-01

    TRX-1 is a new 20 cm diameter, 1-m long field reversed theta pinch with a magnetic field swing of 10 kG in 3 μsec. It employs z discharge preionization and octopole barrier fields to maximize flux trapping on first half cycle operation. Cusp coils are used at the theta pinch ends to delay reconnection and fast mirror coils are used to trigger reconnection at a time designed to maximize axial heating efficiency and toroid lifetime. These controls are designed to study toroid formation methods which are claimed to be especially efficient by Russian experimenters. Studies have been conducted on flux trapping efficiency, triggered reconnection, and equilibrium and lifetime

  16. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  17. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  18. Characterization of compact-toroid injection during formation, translation, and field penetration

    Science.gov (United States)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  19. Characterization of compact-toroid injection during formation, translation, and field penetration

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  20. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  1. Realization of toroidal field power supply control system for J-TEXT tokamak

    International Nuclear Information System (INIS)

    Qiu Shengshun; Zhuang Ge; Zhang Ming; Feng Jianming

    2009-01-01

    Based on the integrated development environment provided by QNX real-time operation system, the control system of toroidal field power supply is designed and developed. The system is proved to be reliable, stable and in real-time. It can control the power supply successfully to produce a constant current up to 92.5kA lasting for 1s and 1.74T at the magnetic axis. In conclusion, the control system can meet the requirements of the J-TEXT routine operation at present. (authors)

  2. Mechanical stress calculations for toroidal field coils by the finite element method

    International Nuclear Information System (INIS)

    Soell, M.; Jandl, O.; Gorenflo, H.

    1976-09-01

    After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de

  3. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Burke, C.

    1977-01-01

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  4. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  5. Some analytical results for toroidal magnetic field coils with elongated minor cross-sections

    International Nuclear Information System (INIS)

    Raeder, J.

    1976-09-01

    The problem of determining the shape of a flexible current filament forming part of an ideal toroidal magnetic field coil is solved in a virtually analytical form. Analytical formulae for characteristic coil dimensions, stored magnetic energies, inductances and forces are derived for the so-called D-coils. The analytically calculated inductances of ideal D-coils are compared with numerically calculated ones for the case of finite numbers of D-shaped current filaments. Finally, the magnetic energies stored in ideal rectangular, elliptic and D-coils are compared. (orig.) [de

  6. Comparative investigation of ELM control based on toroidal modelling of plasma response to RMP fields

    Science.gov (United States)

    Liu, Yueqiang

    2016-10-01

    The type-I edge localized mode (ELM), bursting at low frequency and with large amplitude, can channel a substantial amount of the plasma thermal energy into the surrounding plasma-facing components in tokamak devices operating at the high-confinement mode, potentially causing severe material damages. Learning effective ways of controlling this instability is thus an urgent issue in fusion research, in particular in view of the next generation large devices such as ITER and DEMO. Among other means, externally applied, three-dimensional resonant magnetic perturbation (RMP) fields have been experimentally demonstrated to be successful in mitigating or suppressing the type-I ELM, in multiple existing devices. In this work, we shall report results of a comparative study of ELM control using RMPs. Comparison is made between the modelled plasma response to the 3D external fields and the observed change of the ELM behaviour on multiple devices, including MAST, ASDEX Upgrade, EAST, DIII-D, JET, and KSTAR. We show that toroidal modelling of the plasma response, based on linear and quasi-linear magnetohydrodynamic (MHD) models, provides essential insights that are useful in interpreting and guiding the ELM control experiments. In particular, linear toroidal modelling results, using the MARS-F code, reveal the crucial role of the edge localized peeling-tearing mode response during ELM mitigation/suppression on all these devices. Such response often leads to strong peaking of the plasma surface displacement near the region of weak equilibrium poloidal field (e.g. the X-point), and this provides an alternative practical criterion for ELM control, as opposed to the vacuum field based Chirikov criteria. Quasi-linear modelling using MARS-Q provides quantitative interpretation of the side effects due to the ELM control coils, on the plasma toroidal momentum and particle confinements. The particular role of the momentum and particle fluxes, associated with the neoclassical toroidal

  7. Effects of toroidal field ripple on injected deuterons in the FED device

    International Nuclear Information System (INIS)

    Fowler, R.H.; Rome, J.A.

    1981-07-01

    A Monte Carlo beam deposition and thermalization code is used to assess the effects of toroidal field (TF) ripple on injected fast deuterons in the Fusion Engineering Device (FED). The code uses realistic geometry for the beam, plasma equilibrium, TF ripple, and vacuum chamber. For injection at an angle of 35 0 (co) from perpendicular, no particles were ripple trapped and less than 1% of the injected power went to the wall and the limiter. However, due to the large amounts of computer time required by these programs, only 100 particles were followed in the rippled case and the results must be regarded as preliminary

  8. Toroid field coil shear key installation study, DOE task No. 22

    International Nuclear Information System (INIS)

    Jones, C.E.; Meier, R.W.; Yuen, J.L.

    1995-01-01

    Concepts for fitting and installation of the scissor keys, triangular keys, and truss keys in the ITER Toroidal Field (TF) Coil Assembly were developed and evaluated. In addition, the process of remote removal and replacement of a failed TF coil was considered. Two concepts were addressed: central solenoid installed last (Naka Option 1) and central solenoid installed first (Naka Option 2). In addition, a third concept was developed which utilized the favorable features of both concepts. A time line for installation was estimated for the Naka Option 1 concept

  9. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  10. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  11. Toroidal fusion reactor design based on the reversed-field pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.

    1978-07-01

    The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system

  12. Acceleration of calculation of nuclear heating distributions in ITER toroidal field coils using hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Polunovskiy, Eduard; Loughlin, Michael J.; Grove, Robert E.; Sawan, Mohamed E.

    2016-01-01

    Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the

  13. Acceleration of calculation of nuclear heating distributions in ITER toroidal field coils using hybrid Monte Carlo/deterministic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Ahmad M., E-mail: ibrahimam@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Polunovskiy, Eduard; Loughlin, Michael J. [ITER Organization, Route de Vinon Sur Verdon, 13067 St. Paul Lez Durance (France); Grove, Robert E. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Sawan, Mohamed E. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2016-11-01

    Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the

  14. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  15. The pre-compression system of the toroidal field coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Ferrari, M.; Jong, C.; Vollmann, T.

    2007-01-01

    The toroidal field (TF) coils of ITER will undergo out-of-plane forces caused by the poloidal fields required to confine the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the inner intercoil structure (IIC), which is composed of two pairs (placed at the top and bottom part of the inboard leg) of four sets of poloidal shear keys inserted in slots between adjacent coils, and the outer intercoil structure (OIS) formed by four bands of shear panels on the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations at toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN/coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by two sets of three glass fibre/epoxy composite rings submitted to a toroidal hoop force of 100 MN/set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼25 mm) is required, and it reaches 1/5 of the composite presently estimated ultimate stress. The imposed elongation to reach that force and the lower Young's modulus of the composite compared with that of stainless steel will ease component tolerances and/or settlement effects in the final assembly. The paper describes the evolution in the design of the pre-compression system, from the conceptual phase when two circular cross-sections rings were considered to the present definitive one with three rectangular cross-section rings

  16. Electromagnetic torque on the toroidal plasma and the error-field induced torque

    International Nuclear Information System (INIS)

    Pustovitov, V. D.

    2007-01-01

    The electromagnetic torque on the toroidal plasma is calculated assuming a linear plasma response to the applied perturbation, which may be the error field or the field created by the correction coils, or both. The result is compared with recently published expressions for the error field induced torque (Zheng et al 2006 Nucl. Fusion 46 L9, Zheng and Kotschenreuther 2006 Phys. Rev. Lett. 97 165001), and the conclusions of these papers are revised. We resolve the problem of the torque resonance raised there. It is shown that the strong increase in the torque due to the static error field must occur at the resistive wall mode stability limit and not at the no-wall stability limit

  17. Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.

    1976-01-01

    To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)

  18. Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma

    International Nuclear Information System (INIS)

    Kalfsbeek, H.W.

    1978-12-01

    A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)

  19. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  20. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.

    Science.gov (United States)

    Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu

    2018-04-25

    In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.

  1. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  2. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  3. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ohkubo, Monoru; Sasajima, Hiroshi

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 kG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. In section 1, specifications of the TF coils are given. In section 2, the ultrasonic inspection method and the detectability of this apparatus are described in detail, the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspectionresults. In section 3, mechanical strength of the brazed joints with initial defects is discussed on the basis of Fracture Mechanics theory and results of the fatigue crack growth test. The inspection criteria in accordance with the descriptions of section 2 and 3 are given in section 4. (author)

  4. Rotation and toroidal magnetic field effects on the stability of two-component jets

    Science.gov (United States)

    Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria

    2017-09-01

    Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.

  5. Effects of magnetic geometry, fluctuations, and electric fields on confinement in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1992-01-01

    Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments

  6. World's largest DC flywheel generator for the toroidal field power supply of JAERI's JFT-2M Tokamak nuclear fusion reactor

    International Nuclear Information System (INIS)

    Tani, Takashi; Nakanishi, Yuji; Horita, Tsuyoshi; Kawase, Chiharu; Oyabu, Isao; Kishimoto, Takeshi.

    1996-01-01

    Mitsubishi Electric has delivered the world's largest DC generator for the toroidal field coil power supply of the JFT-2M Tokamak at the Japan Atomic Energy Research Institute. The unit rotates at 225 or 460 rpm, providing a maximum rated output of 2,700 V, 19,000 A and 51.3 MW. The toroidal field is a DC field, so use of a DC generator permits a simpler design consuming less floor space than an AC drive system. The generator was manufactured following extensive studies on commutation, mechanical strength and insulation. (author)

  7. The vacuum-arc plasma motion in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Timoshenko, A.I.; Gnybida, M.V.; Taran, V.S.; Tereshin, V.I.; Chechelnitskij, O.G.

    2005-01-01

    The separation of the vacuum-arc plasma from macro-particles in the curvilinear plasma filters allows obtaining coatings with especially high characteristics. However, inside such filters the significant plasma losses also have been occurred. At the same time, increasing in the filter's efficiency is a difficult task without an effective mathematical model that really would describe the vacuum-arc plasma motion in a toroidal magnetic field. The description based on the flax-tube model was in fact only the first approximation in the decision of this problem. According to detailed flax-tube analysis of ions passage through the quarter torus plasma guide, the efficiency of the filter should grow up to 85% as the positive potential U, applied to the body of the plasma guide, is on the increase. However, the experiment showed that maximum of transparency reach up to ∼ 12%, at potential about of +18 Volts, and comes down under the further increase in potential. Such big digression from experiment does not justify the use of flux-tube model for designing of curvilinear plasma filters. We offer the new approach to the description of the vacuum-arc plasma motion in a toroidal magnetic field based on the solutions of steady-state (∂/∂t=0) Vlasov-Maxwell equations for the long plasma column aligned parallel to a constant axial magnetic field. The relations for the self-consistent electric polarization fields, which appear due to displacement of the electron component from ionic one on the curvilinear part of motion, were derived within a framework of the drift approximation. The dynamics of the central part of the plasma flow in the electric polarization fields was considered in detail. The displacement of the plasma flow at the output of the plasma guide was calculated for the carbon and titanium plasmas. The good agreement with the experimental data was obtained. (author)

  8. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  9. Steady-state resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1979-12-01

    If spatially-averaged values of the beta ratio can reach 5 to 10% in tokamaks, as now seems likely, resistive toroidal-field coils may be advantageous for use in reactors intended for fusion-neutron applications. The present investigation has parameterized the design of steady-state water-cooled copper coils of rectangular cross section in order to maximize figures of merit such as the ratio of fusion neutron wall loading to coil power dissipation. Four design variations distinguished by different ohmic-heating coil configurations have been examined. For a wall loading of 0.5 MW/m 2 , minimum TF-coil lifetime costs (including capital and electricity costs) are found to occur with coil masses in the range 2400 to 4400 tons, giving 200 to 250 MW of resistive dissipation, which is comparable with the total power drain of the other reactor subsystems

  10. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  11. Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Horie, T.

    1987-07-01

    Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses

  12. Implementation of vertically asymmetric toroidal-field ripple for beam heating of tokamak reactor plasmas

    International Nuclear Information System (INIS)

    Jassby, D.L.; Sheffield, G.V.; Towner, H.H.; Weissenburger, D.W.

    1976-10-01

    The neutral-beam energy required for adequate penetration of tokamak plasmas of high opacity can be reduced by a large factor if the beam is injected vertically into a region of large TF (toroidal-field) ripple. Energetic ions are trapped in local magnetic wells and drift vertically toward the midplane (z = 0). If the ripple is made very small on the opposite side of the midplane, drifting ions are detrapped and thermalized in the central plasma region. This paper discusses design considerations for establishing the required vertically asymmetric ripple. Examples are given of special TF-coil configurations, and of the use of auxiliary coil windings to create the prescribed ripple profiles

  13. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1980-02-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, beam ions become trapped in local magnetic wells near their banana tips due to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, near-perpendicular untrapped ions are captured (again near a banana tip) due to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced variable lingering period near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* identical with epsilon/sin theta/Nqdelta is of order unity or smaller

  14. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1981-01-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, ions become trapped in local magnetic wells near their banana tips owing to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, ions are captured (again near a banana tip) owing to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced 'variable lingering period' near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* is identical with epsilonsinthetaNqdelta is of order unity or smaller. (author)

  15. Analysis of the TFTR toroidal field power supply and its interactions with other loads

    International Nuclear Information System (INIS)

    Newell, W.E.

    1976-01-01

    The rectifiers which supply the four major pulsed loads of the Tokamak Fusion Test Reactor (TFTR) share two flywheel generators. Thus there is a possibility of significant interaction between these rectifiers by way of the notched voltage waveforms which they create at the generator terminals. This paper presents an analysis of the build up of current in the toroidal field (TF) coil, which is the largest load. From this analysis, the notched waveform caused by the TF rectifier is derived and its effect on the other rectifiers is investigated. It is concluded that with the present conceptual design parameters, the external effects of the interactions are likely to be small. However, the internal control circuits of the rectifiers must be carefully designed to minimize those effects

  16. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.

    1989-01-01

    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  17. A short introduction to the status and motivation for reversed field pinch and compact toroid research

    International Nuclear Information System (INIS)

    Dreicer, H.

    1987-09-01

    Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direst cost (UDC) in ($/kWe). These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost etc., and are, thus, influenced by technological complexity. In a attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper

  18. A commercial tokamak reactor using super high field superconducting magnets

    International Nuclear Information System (INIS)

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  19. Upgrade of DIII-D toroidal magnetic field power supply controls

    International Nuclear Information System (INIS)

    Petrach, P.M.; Rouleau, A.R.; McNulty, R.D.; Patrick, D.B.; Walin, J.L.

    1993-11-01

    The toroidal magnetic field power supply for the DIII-D tokamak is of the 12 pulse line commutated variety. It consists of four individual modules and a main system control cabinet which are combined to deliver 127,000 A and 1000 V to the toroidal field coil. The modules are connected in a series-parallel configuration but can be run alone or two at a time as well. Normally on DIII-D experiments, the series-parallel configuration is required. The original design provided each individual module with its own voltage and current control loop and a main control loop. A problem with this design was that the individual control loops would cause a current sharing imbalance in the parallel modules if the calibrated loops drifted by the slightest amount. It was determined that individual control loops were not needed and a single phase lock firing circuit was employed in the system cabinet with fiber optic links to the modules for gate drive signals. Since all four modules have to be on line for DIII-D to operate, a problem in any of the five E ampersand I control loops resulted in the supply, and, therefore, the tokamak, being idled. By reducing the number of control loops to one, the sharing problem was eliminated, as well as 4 out of 5 potential control failures. The original supply employed relay logic for sequence control and fault monitoring. There were over 130 relays in each module plus an additional 100 in the system cabinet. The combination of the number of relays with the required interconnecting wiring, the age of the supply, the vibrations of the cabinets and the harsh environment, resulted in a continuously escalating number of phantom, and often intermittent, faults. The fault and sequence logic relays were replaced by a new Programmable Logic Controller (PLC). All existing interconnect wire was removed and replaced with multiconductor cables that connect directly from fault sensors and input devices to the PLC

  20. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  1. Ferritic insertion for reduction of toroidal magnetic field ripple on JT-60U

    International Nuclear Information System (INIS)

    Shinohara, K.; Sakurai, S.; Ishikawa, M.; Tsuzuki, K.; Suzuki, Y.; Masaki, K.; Naito, O.; Kurihara, K.; Suzuki, T.; Koide, Y.; Fujita, T.; Miura, Y.

    2007-01-01

    Ferritic steel tiles (FSTs) have been installed to improve the energetic ion confinement by reducing a toroidal magnetic field ripple. Aiming at cost-effective installation, orbit-following calculations of energetic ions were carried out for a design of the installation of ferritic steel on the JT-60U by using the fully three dimensional magnetic field orbit-following Monte-Carlo (F3D OFMC) code, which had been developed for ferritic insert experiments on the JFT-2M and can treat the complex magnetic field structure produced by ferritic inserts. The installed FSTs add a non-linear magnetic field on magnetic sensors for plasma control and an equilibrium calculation. The code for real-time control has been modified to take into account the magnetic field by the FSTs. The plasma operation was successfully resumed after usual conditioning processes and real-time plasma control was successfully carried out. The heat load measurement indicates the improved confinement of energetic ions. These results are important for practical application of the ferritic steel, which is a leading candidate of a structural material on a DEMO reactor

  2. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  3. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  4. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    International Nuclear Information System (INIS)

    Smith, B.R.

    1995-01-01

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document

  5. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  6. Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  7. Design features of HTMR-Hybrid Toroidal Magnet Tokamak Reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Brunelli, B.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Zampaglione, V.

    1985-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfill the scientific and technological objectives expected from next generation devices (e.g. INTOR-NET) with size and costs as small as possible. An hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. In this paper the authors describe the optimization procedure for the hybrid magnet configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils

  8. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils are described. (author)

  9. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  10. Construction of force-free fields which have toroidal surfaces about a given surface

    International Nuclear Information System (INIS)

    Bouligand, G.

    1983-05-01

    A study of two-fields (B vector, rotB vector) of conservative flux which admits a family of toroidal surfaces of parameter phi on a domain limited by a given surface S, suggests their construction by a Cauchy-Arzela method of step by step. Taking into account the Newcomb condition this method is consistent with force-free magnetic fields and with helical equilibria with scalar pressure. The method supposes that B vector is of class C 1 . This construction makes use of the remarkable property of the field B vector to be the surface gradient of a generating multivalued function Q on a closed surface. Consequently, the initial surface will be given with its normal metric coefficient K; that is to say, B vector admits a family F of homotopic surfaces on a infinitesimal domain about S, an element of F. From this, the periodic part of Q is a solution of a Beltrami equation for the flux conservation of which numerical resolution is envisaged. The study of these fields is made in a biorthogonal system of coordinates. The coeffficients of the two fundamental metric forms of magnetic surfaces vary with phi and are interrelated by a sixth order differential system of equations which gives their variation [fr

  11. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    International Nuclear Information System (INIS)

    1976-01-01

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn 3 conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended

  12. Modeling the static fringe field of superconducting magnets.

    Science.gov (United States)

    Jeglic, P; Lebar, A; Apih, T; Dolinsek, J

    2001-05-01

    The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.

  13. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.

  14. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  15. Current, temperature and confinement time scaling in toroidal reversed-field pinch experiments ZT-I and ZT-S

    International Nuclear Information System (INIS)

    Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.

    1977-01-01

    The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)

  16. Stability of high field superconducting dipole magnets

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Stevens, A.

    1977-01-01

    Superconducting dipole magnets of the window-frame type were constructed and operated successfully at Brookhaven National Laboratory. Examples of this type of magnet are the 6 T ''Model T'' magnet, and the 4 T 8 0 superconducting bending magnet. The latter magnet operated reliably since October 1973 as part of the proton beam transport to the north experimental area at the BNL AGS with intensities of typically 8 x 10 12 protons at 28.5 GeV/c passing through the magnet in a curved trajectory with the proton beam center only 2.0 cm from the beam pipe at both ends and the middle of each of the two units comprising the magnet. The energy in the beam is approximately 40 kJ per 3 μsec pulse. Targets were inserted in the beam at locations 2 m and 5.6 m upstream of the first magnet unit to observe the effects of radiation heating. The 8 0 magnet demonstrated ultrastability, surviving 3 μsec thermal pulses delivering up to 1 kJ into the cold magnet at repetition periods as short as 1.3 sec

  17. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  18. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  19. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    Science.gov (United States)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  20. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  1. Parallel magnetic field suppresses dissipation in superconducting nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.; Aranson, Igor S.; Thoutam, Laxman R.; Xiao, Zhi-Li; Berdiyorov, Golibjon R.; Peeters, François M.; Crabtree, George W.; Kwok, Wai-Kwong

    2017-11-13

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  2. Parallel magnetic field suppresses dissipation in superconducting nanostrips.

    Science.gov (United States)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J; Aranson, Igor S; Thoutam, Laxman R; Xiao, Zhi-Li; Berdiyorov, Golibjon R; Peeters, François M; Crabtree, George W; Kwok, Wai-Kwong

    2017-11-28

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo 0.79 Ge 0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  3. Superconducting Material - A study on the near field of a superconducting antenna

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Chil; Lee, Seung Chul; Doe, Joong Hoe; Hoe, Mi Ra [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The pulse spectroscopy in combination with piezoelectric resonance makes an ideal non-disturbing tool for the measurement of electric field near an antenna. This new field sensing technique was used to investigate the field of a ring antenna the near field of which is widely used such as the plasma generation and NMR. The superconducting wire also have the dominant capacitive AC field in near regions, meaning that the net charge on the ring surface is not due to the ohm`s law as in DC. 23 refs., 8 figs. (author)

  4. Compact toroid challenge experiment with the increasing in the energy input into plasma and the level of trapped magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romadanov, I.V.; Ryzhkov, S.V., E-mail: ryzhkov@power.bmstu.ru

    2014-12-15

    Highlights: • Compact torus formation method with high level of magnetic flux is proposed. • A compact torus is produced in a theta-pinch-coil with pulse mode of operation. • Key feature is a pulse of current in an axial direction. • We report a level of linked magnetic flux is higher than theta-pinch results. - Abstract: The present work reports on compact toroid hydrogen plasma creation by means of a specially designed discharge system and results of magnetic fields introduction. Experiments in the compact toroid challenge (CTC) device at P.N. Lebedev Physical Institute (FIAN) have been conducted since 2005. The CTC device differs from the conventional theta-pinch formation in the use of an axial current for enhanced efficiency. We have used a novel technique to maximize the flux linked to the plasma. The purpose of this method is to increase the energy input into the plasma and the level of trapped magnetic flux using an additional toroidal magnetic field. A study of compact torus formation with axial and toroidal currents was done and a new method is proposed and implemented.

  5. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    Science.gov (United States)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  6. Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    International Nuclear Information System (INIS)

    McGann, M.; Hudson, S.R.; Dewar, R.L.; Nessi, G. von

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  7. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  8. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    Science.gov (United States)

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  9. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    International Nuclear Information System (INIS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.

    2017-01-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.

  10. Supporting structures of the toroidal field coils of intor-net

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Biggio, M.; Macco, A.; Perfumo, A.; Reale, M.

    1984-01-01

    The design of the toroidal field (TF) coil supporting structures for INTOR-NET Phase 2A (European Configuration) is described. In order to identify the proposed design several preliminary evaluations were performed. These evaluations indicated that suitable supporting structures are those shown in the annexed figures, where each coil is guided and centered by a separate reinforcing structure, on which the intercoil structures are attached. A simplified structural analysis was carried out considering only the cyclic out-of-plane loads due to the poloidal field, acting on the coils, since this constitutes the most critical loading condition due to its impact on the fatigue behavior of the material. This analysis was performed with finite element method for displacements and stresses calculations by using the SAP IV-code. The calcaulation model was made with the aid of the GIFTS system. The results show that the maximum equivalent stress does not exceed the stress limit assumed in the INTOR specifications for stainless steel (AISI 316 type) at cryogenic temperature and under cyclic loading, for the operating conditions of INTOR. Consequently the proposed concept for the support of the TF coils can be considered a workable scheme. Further detailed analysis must be done, so as to demonstrate the complete feasibility of the system. (orig.)

  11. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1

    International Nuclear Information System (INIS)

    Caldino H, U.; Francois L, J. L.

    2014-10-01

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  12. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  13. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  14. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  15. Young's moduli of cables for high field superconductive dipole magnet

    International Nuclear Information System (INIS)

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  16. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  17. Toroidal field magnets for ZEPHYR tape and bitter concepts conductor and insulation materials

    International Nuclear Information System (INIS)

    Breit, E.; Brossmann, U.; Gruber, J.E.; Haubenberger, W.D.; Jandl, O.; Kamm, S.; Mast, F.; Mukherjee, S.; Soell, M.; Springmann, E.

    1981-08-01

    The general design aspects of the Toroidal Field Magnet System for a compact ignition experiment ZEPHYR are discussed. The 17 Tesla field calls for a steel reinforcement of the copper conductor. Two different types of magnet systems, a tape magnet and a Bitter magnet, are possible. In both systems the coils will be arranged in a steel casing. Force transfer is achieved by steel wedges between the coil casings. The mechanical stresses of the magnet structure were calculated by employing finite element methods. The pulse-operated magnet system will be force-cooled by liquid nitrogen to an initial starting temperature of 80 K before each single field pulse is applied. The problems of spacer cooling as well as the finally chosen channel cooling are discussed. The steel-reinforced copper conductor was developed in collaboration with industry, resulting in a high strength (700 N/mm 2 ) copper/austenite compound. The insulation system consisting of a glass/kapton wrapping of the conductors and of vacuum impregnation with an epoxy resin has to withstand high mechanical loads and a neutron/gamma irradiation in the order of 5 x 10 9 rad. The static and cyclic fatigue strength of different insulation systems at ambient and liquid nitrogen temperature has been investigated in mechanical tests of tension, compression and shear samples. The radiation resistance of the insulation resin was tested with gamma and neutron/gamma irradiation to doses of 10 10 rad. The aspects of field diffusion in the tape magnet are given in the appendix. (orig.)

  18. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  19. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  20. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  1. Basic analysis of weldability and machinability of structural materials for ITER Toroidal Field coils

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan)], E-mail: masanori_onozuka@mnes-us.com; Shimizu, Katsusuke; Urata, Kazuhiro; Kimura, Masahiro; Kadowaki, Hirokazu; Okamoto, Mamoru [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan); Nakajima, Hideo; Hamada, Kazuya; Okuno, Kiyoshi [Japan Atomic Energy Agency, Mukouyama 801-1, Naka-shi, Ibaraki 311-0193 (Japan)

    2007-10-15

    A manufacturing study has been conducted to examine the welding and machining capabilities for strengthened austenitic stainless steels with a high nitrogen content, JJ1 and ST-SS316LN, to be employed for ITER Toroidal Field (TF) coil structural components. It was found that the applicable EB welding condition for JJ1 was limited to up to 40 mm thick plates. A wider range of welding conditions was found in the vertical upward direction. Based on those results, a verification test up to 900 mm in length was successfully conducted. With respect to TIG welding, an average deposition rate of 26 g/min (i.e. the filler wire supplying speed of 3000 mm/min) was achieved. In addition to the welding tests, a series of machining tests has been conducted to examine the machinability of JJ1 and ST-SS316LN. Various types of machining tools were examined. In practical application, the cutting speed should be low to extend the tool life. At a cutting speed of 40 m/min, a tool life of more than 2 h (at a traveling distance of up to 9 m) was attained. The degree of cutter wear after 30 min of operation, at a cutting speed of 40 m/min, was found to be around 0.1 mm, which is within an acceptable range.

  2. Development of optimum manufacturing technologies of radial plates for the ITER toroidal field coils

    International Nuclear Information System (INIS)

    Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Shimizu, T.; Kakui, H.; Yamaoka, H.; Maruyama, N.; Takayanagi, T.

    2007-01-01

    Japan Atomic Energy Agency is studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates used in the toroidal field coils for the International Thermonuclear Experimental Reactor (ITER) in collaboration with the Japanese industries. Three sector form pieces were cut by plasma cutting machine from a hot rolled plate without any difficulties and one of them was machined to a 1.32-m long curved segment of the radial plate having the same size as the actual one. However, unacceptable large deformation about 5 mm flatness, which was not observed in 1-m long straight radial plate, was found after intermediate machining. Since it would be caused by groove direction against the hot rolled direction and/or curved shape of grooves, two trial manufactures of 0.4-m long straight radial plates have been performed to clarify the cause of the large deformation. Detailed investigation showed that the large deformation could be avoided if the groove direction would have been parallel to a rolling direction of the plate. Welding trials by using fiber laser technique was also performed and penetration of 15 mm could be obtained in a welding speed of 0.1 m/min at 5 kW laser power. An optimum manufacturing method has been proposed based on the development of manufacturing technologies

  3. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.; Warwick, J.E.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mm copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs

  4. Irradiation and testing of compact ignition tokamak toroidal field coil insulation materials

    International Nuclear Information System (INIS)

    Kanemoto, G.K.; Sherick, M.J.; Sparks, D.C.

    1990-05-01

    This report documents the results of an irradiation and testing program performed on behalf of Martin Marietta Energy Systems, Inc. in support of the Compact Ignition Tokamak Research and Development program. The purpose of the irradiation and testing program was to determine the effects of neutron and gamma irradiation on the mechanical and electrical properties of candidate toroidal field coil insulation materials. Insulation samples were irradiated in the Advanced Test Reactor (ATR) in a large I-hole. The insulation samples were irradiated within a lead shield to reduce exposure to gamma radiation to better approximate the desired ration of neutron to gamma exposure. Two different exposure levels were specified for the insulation samples. To accomplish this, the samples were encapsulated in two separate aluminum capsules; the capsules positioned at the ATR core mid-plane and at the top of the fueled region to take advantage of the axial cosine distribution of the neutron and gamma flux; and by varying the length of irradiation time of the two capsules. Disassembly of the irradiated capsules and testing of the insulation samples were performed at the Test Reactor Area (TRA) Hot Cell Facilities. Testing of the samples included shear compression static, shear compression fatigue, flexure static, and electrical resistance measurements

  5. Ion heating at the cyclotron resonance in plasmas magnetically confined in a toroidal octupole field

    International Nuclear Information System (INIS)

    Barter, J.D.

    1976-01-01

    Ion temperatures as high as 600 eV have been produced using rf wave heating at the ion cyclotron resonance frequency in a toroidal octupole magnetic field. Rf is coupled to the plasma with an externally driven ''fifth'' hoop which forms the inductive leg of an oscillator tank circuit. Power levels up to 1 MW at 1 to 3 MHz have been applied for periods up to 2 msec. Plasmas produced either by ECRH or by gun injection are simulated with a computer program in which known particle and energy production and loss mechanisms are used to predict the spatially averaged time behaviour of the plasma in the presence of the applied ion heating. The program can be used to calculate the consequences of the heating model in the presence of many cooling mechanisms which may each have a separate dependence on instantaneous plasma parameters. Experimental quantities compared to computer predictions include density, ion temperature, and loading of the hoop by the plasma, both resistive and reactive, and neutral reflux from the wall by electron and ion impact. Wave penetration to the resonance zone is good up to the highest densities available (6 x 10 12 cm -3 by gun injection) in good agreement with theory. Neutral reflux from the walls and the large charge exchange cooling which results is the dominant loss mechanism at the higher hoop voltages

  6. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.

    2002-01-01

    A Monte-Carlo code is used to study neutral beam current drive in Spheromaks. The exact particle trajectories are followed in the self-consistent equilibria calculated including the beam current. Reducing Z(eff) does not increase the current drive efficiency because the reduction of the stopping cross section is compensated by an increase in the electron canceling current. Significant changes in the safety factor profile can be produced with relatively low beam currents. Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found; one has a central core of open flux surrounded by a toroidal region of closed flux surfaces and the other has the open flux wrapped around the closed flux surfaces. Non-uniform resistivity effects can be very important due to the changes they produce in the safety factor profile. A hybrid, fluid electrons particle ions, code is employed to study ion dynamics in FRCs sustained by rotating magnetic fields. (author)

  7. Design considerations for ITER [International Thermonuclear Experimental Reactor] toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (USSR), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb/sub 3/Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the US TIBER concept. The nuclear heating generated during operation is removed from the windings by helium flowing through the conductor. The heat in the coil case is removed through a separate cooling circuit operating at approximately 20 K. Manifold concepts are presented for the complete coil cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils. 6 refs., 5 figs., 1 tab

  8. The forming of a superconductor cable during the winding of a large toroidal field coil

    International Nuclear Information System (INIS)

    Messemer, G.; Zehlein, H.

    1984-01-01

    The feasible range for the tension force which acts on a superconductor cable during the winding of a large D-shaped toroidal field coil depends strongly on the mechanical properties of the cable, on the geometry of the winding pack and on the arrangement of the equipment. The upper limit is imposed by possible damage within the cable. The lower limit is set by the need to assure enough compaction and to overcome the friction forces between the layers. Within this 'corridor' optimal control of elastic prestresses is desirable: this may be chosen with regard to the residual stresses and/or the elastic springback after removal of the coil former. This paper presents a simplified elastica conductor model built by a finite chain of intervals with constant bending moment and curvature. This paper describes the discrete model as well as the iterative shooting method, which finds the equilibrium shape of the conductor. The distributions of bending moment and shear forces around the D-shaped contour, as well as along the conductor, are given. Desirable improvements are outlined. In particular, the possibility of mitigating the stress concentration effect by supporting rollers suitably placed along the 'free' conductor near the bobbin is discussed. (author)

  9. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  10. STRUCTURAL RESPONSE OF THE DIII-D TOROIDAL FIELD COIL TO INCREASED LATERAL LOADS

    International Nuclear Information System (INIS)

    REIS, E.E; CHIN, E.

    2004-03-01

    OAK-B135 Recent calibration shots in which full toroidal field (TF) coil current interacted with the maximum poloidal field coils have produced increased lateral loads on the outer sections of the TF-coil. The increased lateral loads have resulted in deflections that have been sufficient to cause the TF-coil to contact adjacent equipment and produce a transient short to ground within the coil. The six outer turns of each TF-coil bundle are clamped together by insulated preloaded studs to provide increased bending stiffness. These sections of the outer bundles depend on friction to react the lateral loads as a bundle rather than six individual turns. A major concern is that the increased loads will produce slip between turns resulting in excessive lateral deflections and possible damage to the insulating sleeve on the preloaded studs. A finite element structural model of the TF-coil was developed for the calculation of deflections and the shear load distribution throughout the coil for the applied lateral loads from a full current calibration shot. The purpose of the updated structural model is to correlate the applied lateral loads to the total shear force between the unbonded sections of the outer turns. An allowable integrated lateral load applied to the outer turns is established based on the maximum shear force that can be reacted by friction. A program that calculates the magnetic fields and integrated lateral load along the outer turns can be incorporated into the plasma control system. The integrated load can then be compared to the calculated allowable value prior to execution of calibration shots. Calibration shots with a calculated total lateral load greater than the allowable value will be prevented

  11. Finite element and node point generation computer programs used for the design of toroidal field coils in tokamak fusion devices

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-06-01

    The structural analysis of toroidal field coils in Tokamak fusion machines can be performed with the finite element method. This technique has been employed for design evaluations of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The application of the finite element method can be simplified with computer programs that are used to generate the input data for the finite element code. There are three areas of data input where significant automation can be provided by supplementary computer codes. These concern the definition of geometry by a node point mesh, the definition of the finite elements from the geometric node points, and the definition of the node point force/displacement boundary conditions. The node point forces in a model of a toroidal field coil are computed from the vector cross product of the coil current and the magnetic field. The computer programs named PDXNODE and ELEMENT are described. The program PDXNODE generates the geometric node points of a finite element model for a toroidal field coil. The program ELEMENT defines the finite elements of the model from the node points and from material property considerations. The program descriptions include input requirements, the output, the program logic, the methods of generating complex geometries with multiple runs, computational time and computer compatibility. The output format of PDXNODE and ELEMENT make them compatible with PDXFORC and two general purpose finite element computer codes: (ANSYS) the Engineering Analysis System written by the Swanson Analysis Systems, Inc., and (WECAN) the Westinghouse Electric Computer Analysis general purpose finite element program. The Fortran listings of PDXNODE and ELEMENT are provided

  12. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  13. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  14. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1; Diseno mecanico del encapsulado de las bobinas de campo toroidal del Tokamak TPM1

    Energy Technology Data Exchange (ETDEWEB)

    Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  15. Strength-limited magnetic field intensity of toroidal magnet systems fabricated or the base of layer-by-layer shrouded solenoids

    International Nuclear Information System (INIS)

    Litvinnko, Yu.A.

    1982-01-01

    The possibilities, as to the ultimate magnetic field strength, of tokamak magnet systems made on the base of layer-by-laeyer shrouded coils are considered numerically. The toroidal magnet system is considered which consists of N skewe, layer-by-layer shrouded, equistrong coils in the ideal torus approximation. The dependences of the ragnetic field strength on the internal- and external torus radii, pulse duration and aspect ratio for copper coils shrouded with fiberglass are calculated as an example. The analysis of the obtained results shows that using of the layer-by-layer shrouding scheme for toroidal solenoid coils leads to a considerable growth of the ultimate magnetic field strengths in a wide duration range. For example, the limiting field strength along the toroidal solenoid axis of the considered type inside the ''FT'' installation toroidal solenoid at equivalent field pulse duration of approximately 0.3 s reaches H 0 =1.3zx10 7 A/m

  16. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field

  17. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  18. Distortion of magnetic field lines caused by radial displacements of ITER toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Amoskov, V.M., E-mail: sytch@niiefa.spb.su [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Gribov, Y.V. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lamzin, E.A.; Sytchevsky, S.E. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    2017-05-15

    An assessment of distortions of ideal (circle) field lines caused by random radial displacements of the TF coils by |∆R| ≤ 5 mm has been performed from the statistical analysis assuming a uniform probability density function for displacements.

  19. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  20. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  1. Field flattening in superconducting beam transport magnets

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1994-01-01

    Dipoles in which the beam traverses the midplane well away from tie magnet axis may benefit from flattening of the vertical field on the midplane. A procedure is described for doing so, making use of Chebyshev polynomials. In the case of the large aperture ''DX'' magnets located immediately on each side of the six intersection regions of the Relativistic Heavy Ion Powder (RHIC), a comparison is made of the field of coils optimized in this way and of coils optimized in the more common way by minimizing the leading coefficients of the Fourier expansion about the magnet axis. The comparison is of the integrated Fourier coefficients of the field expanded locally along the beam trajectory

  2. Field load and displacement boundary condition computer program used for the finite element analysis and design of toroidal field coils in a tokamak

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-06-01

    The design evaluation of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX) and the Tokamak Fusion Test Reactor (TFTR) has been performed by structural analysis with the finite element method. The technique employed has been simplified with supplementary computer programs that are used to generate the input data for the finite element computer program. Significant automation has been provided by computer codes in three areas of data input. These are the definition of coil geometry by a mesh of node points, the definition of finite elements via the node points and the definition of the node point force/displacement boundary conditions. The computer programs by name that have been used to perform the above functions are PDXNODE, ELEMENT and PDXFORC. The geometric finite element modeling options for toroidal field coils provided by PDXNODE include one-fourth or one-half symmetric sections of circular coils, oval shaped coils or dee-shaped coils with or without a beveled wedging surface. The program ELEMENT which defines the finite elements for input to the finite element computer code can provide considerable time and labor savings when defining the model of coils of non-uniform cross-section or when defining the model of coils whose material properties are different in the R and THETA directions due to the laminations of alternate epoxy and copper windings. The modeling features provided by the program ELEMENT have been used to analyze the PLT and the TFTR toroidal field coils with integral support structures. The computer program named PDXFORC is described. It computes the node point forces in a model of a toroidal field coil from the vector crossproduct of the coil current and the magnetic field. The model can be of one-half or one-fourth symmetry to be consistent with the node model defined by PDXNODE, and the magnetic field is computed from toroidal or poloidal coils

  3. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  4. Compact toroid injection fueling in a large field-reversed configuration

    Science.gov (United States)

    Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.

    2017-07-01

    A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5  ×  1021 m-3, ~30 eV and 0.5-1.0  ×  1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.

  5. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  6. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  7. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  8. Energy measurement of fast ions trapped in the toroidal field ripple of Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Hutter, T.; Martin, G.; Pecquet, A.L.; Saoutic, B.

    1993-09-01

    During additional heating in Tore Supra (ICRF or NBI) fast ion losses due to the toroidal field ripple were clearly measured by a set of graphite probes. This diagnostic collects the flow of fast ions entering a vertical port and usually shows a maximum flux for ions originating from the vicinity of surface δ * = 0. During the monster sawteeth regime, achieved with ICRF, a remarkable phenomenon was observed: the ejection of fast ions, not correlated with any measured MHD activity. The radial distribution of these ions is quite different from that usually observed exhibiting a peak located in the central section of the plasma. In order to measure the energy distribution of these ions, from 80 keV (energy of the neutral beam injected in Tore Supra) up to 1 MeV (expected during ICRF), a new diagnostic is under construction. The principle of the diagnostic is to discriminate the ions in energy using their Larmor radius (p = 1.3 cm for 100 keV → p = 3.6 cm for 700 keV, B = 4T). The detector is made of a hollow graphite cylinder with a small entrance slot, located in a vertical port on the ion drift side. An array of six metallic collectors placed inside the graphite cylinder intercepts the ions. The current on each collector was estimated at 10 → 100 nA, during ICRF heating. The energy resolution of this diagnostic is expected to be about 20 keV for the lowest energy range and 100 keV for the highest. This type of ruggedized detector might be extrapolated for the measurements of alpha particle losses in future DT experiments. It should also be suitable for the studies of stochastic ripple diffusion. (authors). 3 refs., 9 figs

  9. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  10. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  11. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  12. Divertor experiments in a toroidal plasma, with E x B drift due to an applied radial electric field

    International Nuclear Information System (INIS)

    Strait, E.J.

    1979-09-01

    It is proposed that the E x B drift arising from an externally applied electric field could be used in a tokamak or other toroidal magnetic plasma confinement device to remove plasma and impurities from the region near the wall and reduce the amount of plasma striking the wall. This could either augment or replace a conventional magnetic field divertor. Among the possible advantages of this scheme are easy external control over the rate of removal of plasma, more rapid removal than the naturally occurring rate in a magnetic divertor, and simplification of construction if the magnetic divertor is eliminated. Results of several related experiments performed in the Wisconsin Levitated Octupole are presented

  13. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  14. Magnetic field systems employing a superconducting D.C. field coil

    International Nuclear Information System (INIS)

    Bartram, T.C.; Hazell, P.A.

    1977-01-01

    Method and equipment for transferring energy to or from a direct-current superconducting field coil to change the magnetic field generated by the coil in which a second direct-current superconducting coil is used as a storage coil, and energy transfer between the field coil and the storage coil is effected automatically in dependence upon a control program. Preferably, the control program acts upon a variable transformer which is coupled by respective rectifier/inverters to the field and storage coils and also serves for intital supply of energy to the coils

  15. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    CERN Document Server

    Mordik, S N

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  16. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    International Nuclear Information System (INIS)

    Mordik, S.N.; Ponomarev, A.G.

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model

  17. High field superconducting magnets for accelerators and particle beams

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Jackson, J.

    1975-01-01

    Experience in designing precision superconducting magnets for fields up to 60 kG is described. Realizable construction tolerances and their impact on field accuracy are discussed. For dipole fields up to 60 kG or more, rectangular coil window frame type magnets are compared with circular or elliptical coil designs. In all cases, the same superconductor current density versus maximum field performance is assumed. The comparison will include field quality and correction required as a function of aperture size, stored energy, ampere turns required, and overall magnet size. In quadrupole design the impact of the allowed superconductor current density being roughly inversely proportional to peak field is severe. For gradients up to one Tesla/cm or greater, similar comparisons for different types of quadrupole construction are made. (U.S.)

  18. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  19. Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    Science.gov (United States)

    Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.

    2018-05-01

    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.

  20. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  1. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  2. Exploring the limits of a very large Nb3Sn conductor: the 80 kA conductor of the ITER toroidal field model coil

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L.

    2003-01-01

    In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb 3 Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb 3 Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb 3 Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)

  3. Basic study on weldability and machinability of structural materials for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Onozuka, M.; Shimizu, K.; Urata, K.; Kimura, M.; Kadowaki, H.; Okamoto, M.; Nakajima, H.; Hamada, K.; Okuno, K.

    2006-01-01

    The toroidal field (TF) coils for ITER are very large components. The main structural component of the coil is the coil case, which requires a massive complex geometry with high fabrication accuracy to attain the required magnetic performance for plasma operations. To provide high mechanical strength and toughness at cryogenic temperature, the structural components employ high-strength austenite stainless steels that have been specially developed for ITER. However, one of the main drawbacks of using those materials is the difficulty of manufacturing capabilities. A manufacturing study has been conducted to examine welding and machining capabilities for JJ1 and ST-SS316LN, to be employed for TF coil structural components. Both materials include a high nitrogen content up to around 0.2%, which makes welding and machining difficult compared with conventional stainless steels. Electron beam welding conditions were studied for the JJ1 material. The applicable welding condition was found for a bead length of up to about 300 mm in the case of 40 mm thick plates. No optimal condition was found for plates thicker than 40 mm. An additional experimental study was also conducted to explore suitable welding conditions for different welding positions and directions. It was found that the appearance of defects depends on the welding positions and directions. A wider range of welding conditions was found for cases in the vertical upward direction, as opposed to those in the vertical downward and horizontal directions. Based on those results, a verification test up to 900 mm in length was conducted. The test results showed that vertical upward EB welding should be used for the coil case wherever possible. With respect to TIG welding, an average deposition rate as high as 26 g/min (i.e. the filler wire supplying speed of 3,000 mm/min) was achieved. A series of tests have been conducted to examine machinability of JJ1 and ST-SS316LN. Various types of milling tools, including face

  4. Development of Optimum Manufacturing Technologies of Radial Plates for the ITER Toroidal Field Coils

    International Nuclear Information System (INIS)

    Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Kakui, H.; Yamaoka, H.; Maruyama, N.

    2006-01-01

    A stainless steel structure called a radial plate is used in the toroidal field (TF) coils of the International Thermonuclear Experimental Reactor (ITER) in order to support large electromagnetic force generated in the conductors. It is a 13.7 m x 8.7 m D-shaped plate having 11 grooves on each side in which conductors are wound. Although severe dimensional accuracy, for example flatness within 2 mm, and tight schedule that all radial plates for 9 TF coils (63 plates) have to be manufactured in about 4 years are required in manufacture of the radial plates, there are no industries in the world who have manufactured a large complicated structure like the radial plate with high accuracy. Japan Atomic Energy Agency (JAEA) has been studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates in order to satisfy the above requirements in collaboration with the Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). Several trial manufactures of radial plates have been performed to clarify the following key points: · Effect of nitrogen content in material on machinability · Effect of cutting direction of a piece on deformation caused by machining · Effect of machining shape (curve or straight) on machining condition · Effect of laser welding technique on penetration and welding deformation Three different 316LN materials having nitrogen content of 0.12 %, 0.17%, and 0.20% were used to investigate nitrogen content effect on machinability. Machinability of lower nitrogen content material was slightly better than that of higher nitrogen content material. Three sectoral pieces were cut by plasma cutting technique from a hot rolled plate without any difficulties and one of them was machined to a curved segment of the radial plate having the same size as actual one. However, unacceptable large deformation over 5 mm flatness was found during machining which would be caused by curved shape of grooves and/or cutting direction

  5. Superconducting toroidal field coil power supply and protection system for NET

    International Nuclear Information System (INIS)

    Hicks, J.B.

    1986-01-01

    A power supply and quench protection system is proposed in which alternate coils are connected in series to produce two separate circuits, each with 8 coils. Both circuits are provided with power supplies comprising rectifier transformers and thyristor equipped Graetz bridges, which are operated at maximum forward voltage (125 V) to charge the coils to 24 kA, 17.75 GJ in ≅ 2 hours and are fully inverted for scheduled discharges. Pulsed firing of the thyristors allows the same power supplies to be used to maintain the currents against resistive losses, without increasing the reactive power consumption or harmonic current generation. Rapid discharges are initiated by opening d.c. circuit breakers to introduce discharge resistors between the coils of each circuit. The maximum possible value of peak voltage-to-ground is then limited to 2.25 times the discharge voltage applied to each coil. A 5 kV discharge voltage allows the coils to be discharged with a time constant of 18.5 s, which is sufficiently rapid to limit the quench ''hot spot'' temperature to 68 K. The coil connections impose sufficient symmetry on the coil current distribution to ensure that no out-of-plane forces are produced on the coils. Even if one circuit breaker fails to interrupt, the variation of coil currents is sufficiently small that the resulting symmetric variation of radial centring forces is acceptable

  6. Study of the Tokamak-15 Superconducting Toroidal Field Coil (STFC) heating under the quench

    International Nuclear Information System (INIS)

    Anashkin, I.O.; Kabanovsky, S.V.; Chudnovsky, A.N.; Khvostenko, P.P.; Vertiporokh, A.N.; Ivanov, D.P.; Posadsky, I.A.

    1994-01-01

    Experiments in Tokamak-15 were performed to study the STFC heating under the quench. The quench was specially caused by current introduction into STFC at the unchanged input helium temperature. The experimental results and simulation data on temperature heating and amount of heat realized in the pancakes under the quench are given. In the experiments was shown that quench occurs in the internal turns of pancakes and estimations of maximal temperature heating corresponds to calculated ones

  7. Tore Supra: a tokamak with superconducting coils for the toroidal field

    International Nuclear Information System (INIS)

    Turck, B.

    1984-01-01

    It is under construction on the site of CEN/Cadarache for the EURATOM-CEA Association. The design has been lead by a group including teams of the DRFC of Fontenay-aux-Roses and Grenoble and the DPh/PE-STI of CEN/Saclay [fr

  8. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  9. Toroidal modeling of plasma response and resonant magnetic perturbation field penetration

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.Q.; Kirk, A.; Sun, Y.; Cahyna, Pavel; Chapman, I.T.; Denner, P.; Fishpool, G.; Garofalo, A.M.; Harrison, J.R.; Nardon, E.

    2012-01-01

    Roč. 54, č. 12 (2012), s. 124013-124013 ISSN 0741-3335 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * resonant magnetic perturbation * neoclassical toroidal viscosity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/12/124013/pdf/0741-3335_54_12_124013.pdf

  10. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  11. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  12. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  13. Losses in superconducting multifilament composites under alternating changing fields

    International Nuclear Information System (INIS)

    Turck, B.

    1979-03-01

    The first part of this report presents a brief review of the losses in superconducting composites in a changing external field. The losses are expressed for a single triangular shaped pulse and for a field varying exponentially with time. The losses are calculated as a function of two important time constants. The first is due to the coupling currents between the filaments, the second is due to the eddy currents induced in the matrix. In the second part of the report, the case of an oscillating sinusoidal field is considered. In particular, in a rapidly varying field, several layers of filaments can be saturated by returning currents. Complete expressions of the losses are provided together with simplified expressions which enable one to calculate the losses in most cases. In the third part, a comparison between several kinds of conductors shows that in some cases the losses are reduced by increasing the twist pitch of the conductor

  14. Plasma-wall interaction and locked modes in the toroidal pinch experiment TPE-RX reversed-field pinch

    International Nuclear Information System (INIS)

    Pasqualini, D.; Martin, P.; Koguchi, H.; Yagi, Y.; Hirano, Y.; Sakakita, H.; Spizzo, G.

    2006-01-01

    The MHD instabilities that sustain the reversed-field pinch (RFP) configuration tend to phase-lock together and also to wall-lock, forming a bulging of the plasma column, called 'locked mode'. This phenomenon is of particular interest, since the locked mode causes a larger plasma resistivity, plasma cooling, and, in some cases, anomalous discharge termination. Up to now, studies of the locked mode have been focused on m=1 modes (being m the poloidal mode number). In this Letter we show that m=0 modes also play a role, based on the cross-check between magnetic spectra and toroidally resolved D α array measurements. (author)

  15. Magnetic field optimisation and orbit calculation for VEC superconducting cyclotron

    International Nuclear Information System (INIS)

    Debnath, J.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2003-01-01

    At VECC, Kolkata preparations are underway to measure the magnetic field of the cyclotron. Also once the superconducting cyclotron is assembled prediction of beam related parameters will be a very important exercise to carry out. Considering this the beam behaviour in the cyclotron will be crucial to achieve these goals. The present paper deals with the efforts in this direction and using a test beam of He 1+ 20 MeV/n the trim coil currents, the tune variation and the (r,Pr) behaviour of the central trajectory

  16. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  17. Self-field AC losses in Bi-2223 superconducting tapes

    International Nuclear Information System (INIS)

    Mueller, K. H.; Leslie, K.E.

    1996-01-01

    Full text: The self-field AC loss in Bi-2223 silver sheathed tapes for AC currents of up to 100 A was measured at 77 K and frequencies of 60 Hz and 600 Hz using a lock-in amplifier. The frequency dependence indicated a purely hysteretic loss which can be well described in terms of the critical state model for a flat superconducting strip. The only parameter needed to predict the self-field AC loss is the critical current of the critical state. Because the loss voltage is extremely small compared with the inductive voltage, a very high accuracy of the lock-in amplifier phase setting is required. Unlike in loss measurements on cylindrical superconducting samples, in the case of the tape the measuring circuit leads have to be brought out from the surface forming a loop where the changing magnetic field induces an additional voltage. Only if the loop formed by the leads at the voltage tabs is large enough will the apparent power dissipation approach the real AC loss associated with the length of the sample probed

  18. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  19. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  20. Residual gas analysis of a cryostat vacuum chamber during the cool down of SST - 1 superconducting magnet field coil

    International Nuclear Information System (INIS)

    Semwal, P.; Joshi, K.S.; Thankey, P.L.; Pathan, F.S.; Raval, D.C.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    One of the most important feature of Steady state Superconducting Tokamak -1 (SST-l) is the Nb-Ti superconducting magnet field coils. The coils will be kept in a high vacuum chamber (Cryostat) and liquid Helium will be flown through it to cool it down to its critical temperature of 4.5K. The coil along with its hydraulics has four types of joints (1) Stainless Steel (S.S.) to Copper (Cu) weld joints (2) S. S. to S. S. weld joints (3) Cu to Cu brazed joints and (4) G-10 to S. S. joints with Sti-cast as the binding material. The joints were leak tested with a Helium mass spectrometer leak detector in vacuum as well as in sniffer mode. However during the cool-down of the coil, these joints may develop leaks. This would deteriorate the vacuum inside the cryostat and coil cool-down would subsequently become more difficult. To study the effect of cooling on the vacuum condition of the Cryostat, a dummy Cryostat chamber was fabricated and a toroidal Field (TF) magnet was kept inside this chamber and cooled down to 4.5 K.A residual gas analyzer (RGA) was connected to the Cryostat chamber to study the behaviour of major gases inside this chamber with temperature. An analysis of the RGA data acquired during the coo-down has been presented in this chamber. (author)

  1. Upper critical field measurements in high-Tc superconducting oxides

    Science.gov (United States)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  2. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  3. 18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Motter

    2016-08-01

    Full Text Available The formation of relativistic jets in Active Galactic Nuclei (AGN is related to accretion onto their central supermassive black holes, and magnetic (B fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3, which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets.

  4. TOROID II

    Science.gov (United States)

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  5. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  6. Performance of a superconducting, high field subcentimeter undulator

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Ingold, G.; Sampson, W.; Woodle, M.

    1991-01-01

    A Superconducting 8.80mm wavelength undulator is under construction for the 500nm Free-Electron Laser at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. We present results on the design, construction and performance of this novel undulator structure. A field on axis of 0.51T has been measured for a 4.40mm gap, with a current 20% below the quench current. Our simple design focuses on minimizing the accumulation of errors by minimizing the numbers of parts and by using a ferromagnetic yoke. The magnetic field error is less than 0.30% rms as manufactured (without shimming). The third harmonic content is less than 0.1% of the fundamental

  7. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  8. Toroidal Extrap Equilibria

    International Nuclear Information System (INIS)

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  9. Ambient temperature field measuring system for LHC superconducting dipoles

    International Nuclear Information System (INIS)

    Billan, J.; De Panfilis, S.; Giloteaux, D.; Pagano, O.

    1996-01-01

    It is foreseen to perform acceptance tests including field measurements of the collared coils assembly of the LHC superconducting dipoles to estimate, at an early production stage, the possible significant deviations from the expected multipole component value of these magnets. A sensitive measuring probe and efficient data acquisition are the consequence of a low magnetizing current necessary to limit the coils heating. This demands a high signals sensitivity and an enhanced signal-to-noise ratio to retrieve the higher multipole component. Moreover, the correlation with the multipoles content of the magnets at cryogenic temperature and nominal excitation current need to be identified before the manufacturing process may continue. The field probe of the mole-type is equipped with three radial rotating search coils, an angular encoder and gravity sensor. It has been designed to slide inside the bore of the dipole coils and to measure the local field at fixed positions. The field analysis resulting in terms of multipole components, field direction and field integrals, measured on four 10 m long, twin-aperture LHC dipole prototypes, will be described together with the performance of the measuring method

  10. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  11. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  12. Analysis and test to predict the fatigue life of the ISX-B toroidal field coils' finger joints

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Ojalvo, I.U.; Raynor, G.E.; Zatz, I.J.; Johnson, N.E.; Walls, J.C.; Nelson, B.E.; Cain, W.D.; Walstrom, P.L.; Pearce, J.W.

    1979-01-01

    A new and more rigorous structural evaluation of the ISX toroidal field (TF) coil fingers joints was undertaken to assess the effects of high-/beta/ operation of ISX-B. A new poloidal field (PF) coil set which allows high-/beta/ operation and produces larger out-of-plane loads on the TF coils was installed as part of the change to ISX-B. It was determined that the iron core significantly affects the out-of-plane load distribution and forces were calculated using the GFUN-3D code which considers 3-D iron core effects. These loads were applied to a half-symmetric finite element NASTRAN code model in which the TF coils were modeled as a string of beam elements. 8 refs

  13. Configuration development of a hydraulic press for preloading the toroidal field coils of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Lee, V.D.

    1987-01-01

    The Fusion Engineering Design Center (FEDC) is part of a national design team that is developing the conceptual design of the Compact Ignition Tokamak (CIT). To achieve a compact device with the minimum major radius, a vertical preload system is being developed to react the vertical separating force normally carried by the inboard leg of the toroidal field (TF) coils. The preload system is in the form of a hydraulic press. Challenges in the design include the development of hydraulic and structural systems for very large force requirements, which could interface with the CIT machine, while allowing maximum access to the top, bottom, and radial periphery of the machine. Maximum access is necessary for maintenance, diagnostics, instrumentation, and control systems. Materials used in the design must function in the nuclear environment and in the presence of high magnetic fields. This paper presents the configuration development of the hydraulic press used to vertically preload the CIT device

  14. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  15. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  16. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  17. Trapped magnetic field of a superconducting bulk magnet in high- Tc RE-Ba-Cu-O

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken; Murakami, Masato

    1999-01-01

    Superconducting magnets made of high-T c superconductors are promising for industrial applications. It is well known that REBa 2 Cu 3 O 7-x and LRE (light rare-earth) Ba 2 Cu 3 O 7-x superconductors prepared by melt processes have a high critical current density, J c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J c in high magnetic fields and a much improved irreversibility field, H irr , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train

  18. Field stabilization in superconducting cavities under pulsed operating

    International Nuclear Information System (INIS)

    Tessier, J.M.

    1996-01-01

    Within the framework of Tesla linear accelerator project, superconducting cavity battery is used to accelerate electrons and positrons. These cavities require pulsed running and must reach very high accelerating gradients. Under the action of the Lorentz force, the resonance frequency shifts and leaves the band-pass width, which hinders the field from taking its maximal value inside the cavity. The setting of an auto-oscillating loop allows to bring the generator frequency under the control of the cavity frequency. A feedback system is needed to reduce the energy dispersion inside the particle packets. The effects of the mechanical vibrations that disturb the accelerating voltage phase between two impulses are also compensated by a feedback loop. This thesis describes all these phenomena and computes their effects on the energy dispersion of the beam in both cases of relativistic and non-relativistic particles. (A.C.)

  19. Voltage spike detection in high field superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  20. Voltage spike detection in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.

    2004-01-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are ∼15mV in magnitude and lasts for ∼30(micro)sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb3Sn magnets at currents up to ∼20KA will also be shown

  1. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  2. Studies on Nb3Sn field coils for superconducting machine

    International Nuclear Information System (INIS)

    Fujino, H.; Nose, S.

    1981-01-01

    This paper describes experimental studies on several coils wound with multifilamentary (MF) Nb 3 Sn cables with reinforcing strip for superconducting rotating machine application. To use a Nb 3 Sn superconductor to field winding of a rotating machine, several coil performances of pre-reacted, bronze processed and stranded MF Nb 3 Sn cables were investigated, mainly in relation to stress effect. Bending strain up to 0.64% in strand and winding stress of 5 kg/mm 2 have resulted in nondegradation in coil performance. A pair of impregnated race-track coils designed for a 30 MVA synchronous condenser was energized successfully up to 80% of critical current without quench. 8 refs

  3. On analogy between the magnetic field of pulsars and that of magnetized superconducting sphere

    International Nuclear Information System (INIS)

    Mkrtchyan, G.S.; Sedraksyan, D.M.

    1984-01-01

    The field is calculated, which is induced by a superconducting sphere homogeneously magnetized over the volume. It is assumed that such a field is generated within a neutron star due to an entrainment of superfluid protons by neutrons

  4. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  5. Specific feature of critical fields of inhomogeneous superconducting films

    International Nuclear Information System (INIS)

    Glazman, L.I.; Dmitrenko, I.M.; Kolin'ko, A.E.; Pokhila, A.S.; Fogel', N.Ya.; Cherkasova, V.G.

    1988-01-01

    Experimental studies on thin vanadium films (d=250-400 A) have revealed anomaly in the temperature dependence of the upper critical field H cparallel (T), when H is parallel to the sample plane. At certain temperature T 0 the dependence H cparallel 2 (T) has a sharp kink separating two linear portions. The anomalous behaviour of H cparallel (T) of thin V films can be accounted for assuming the film separation into two parallel layers having different parameters (critical temperature T c , coherence length ξ, thickness d). At temperatures above and lower T 0 the dependence H cparallel (T) is mainly dependent on the characteristics of only one layer. The kink in the dependence H cparallel 2 (T) is due to a jump-like transition of the superconducting nucleus from one layer to the other at T c . The anomalous behaviour of the dependence H cparallel (T) is also observed in sandwiches consisting of two identical films separated with a high (about 30 A) dielectric interlayer; however, the transition from one linear portion to the other is smooth. In the case of identical films a specific crossover occurs if at T-T c the critical field H cparallel (T) coinsides with that for the layer of doubled thickness, then at lowering temperature H cparallel (T) asymptotically approaches the critical field of one layer. The calculation within the model described provides a good description for the experimental results

  6. Determination of the electromagnetic field in a high-Tc linear superconducting resonator

    International Nuclear Information System (INIS)

    Trotel, A.; Sautrot, S.; Pyee, M.

    1994-01-01

    In this paper, the electromagnetic field configuration in a linear SHTC resonator is described. Two areas are considered: 1) the superconducting strip, 2) the dielectric around the strip. The calculation is based on the current density given by Bowers for an infinite superconducting line. The current density in the resonator is defined by these relations and the resonance conditions. (orig.)

  7. Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.; Moisio, M.F.

    1992-01-01

    The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype

  8. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  9. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  10. Dynamic ELM and divertor control using resonant toroidal multi-mode magnetic fields in DIII-D and EAST

    Science.gov (United States)

    Sun, Youwen

    2017-10-01

    A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.

  11. Toroidal drift magnetic pumping

    International Nuclear Information System (INIS)

    Canobbio, E.

    1977-01-01

    A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail

  12. Study on magnetic field distribution in superconducting magnetic systems with account of magnetization of a superconducting winding

    International Nuclear Information System (INIS)

    Shakhtarin, V.N.; Koshurnikov, E.K.

    1977-01-01

    A method for investigating a magnetic field in a superconducting magnetic system with an allowance for magnetization of the superconducting winding material is described. To find the field, use was made of the network method for solving a nonlinear differential equation for the scalar magnetic potential of the magnetization field with adjustment of the boundary conditions by the boundary relaxation method. It was assumed that the solenoid did not pass into the normal state, and there were no flow jumps. The calculated dependences for the magnetization field of a superconducting solenoid with an inner diameter of 43 mm, an outer diameter of 138 mm, and a winding of 159 mm length are presented. The solenoid is wound with a 37-strand niobium-titanium wire. The magnetization field gradient in the area of the geometrical centre with a magnetic field strength of 43 kOe was equal to 1 Oe/cm, this meaning that within a sphere of 1 cm radius the inhomogeneity of the magnetization field was 2.5 x 10 -5

  13. Variation of the poloidal field during a disruption and consequences on the vacuum chamber, the poloidal system and the toroidal magnet (Tore II)

    International Nuclear Information System (INIS)

    Gatineau, F.; Leloup, C.; Pariente, M.

    1977-12-01

    The currents induced into the vacuum vessel and into the poloidal field coils and the overvoltages on the generators during a plasma current disruption are calculated. The subsequent applied mechanical forces and the poloidal field variations at the toroidal field conductor are deduced. The current decrease rate considered, during a disruption, ranges from d Ip/dt=0.810 9 A/s to 0.410 11 A/s [fr

  14. The superconducting magnet system for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.; O'Connor, T.G.; Slack, D.S.; Wong, R.L.; Zbasnik, J.P.; Schultz, J.H.; Diatchenko, N.; Montgomery, D.B.

    1994-01-01

    The superconducting magnet system for the Tokamak Physics eXperiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three pairs of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (Nb 3 Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper. The majority of the design and all fabrication of the superconducting magnet system will be ,accomplished by industry, which will shortly be taking over the preliminary design. The magnet system is expected to be completed in early 2000

  15. Conceptual design of a Bitter-magnet toroidal-field system for the ZEPHYR Ignition Test Reactor

    International Nuclear Information System (INIS)

    Williams, J.E.C.; Becker, H.D.; Bobrov, E.S.; Bromberg, L.; Cohn, D.R.; Davin, J.M.; Erez, E.

    1981-05-01

    The following problems are described and discussed: (1) parametric studies - these studies examine among other things the interdependence of throat stresses, plasma parameters (margins of ignition) and stored energy. The latter is a measure of cost and is minimized in the present design; (2) magnet configuration - the shape of the plates are considered in detail including standard turns, turns located at beam ports, diagnostic and closure flanges; (3) ripple computation - this section describes the codes by which ripple is computed; (4) field diffusion and nuclear heating - the effect of magnetic field diffusion on heating is considered along with neutron heating. Current, field and temperature profiles are computed; (5) finite element analysis - the two and three dimensional finite element codes are described and the results discussed in detail; (6) structures engineering - this considers the calculation of critical stresses due to toroidal and overturning forces and discusses the method of constraint of these forces. The Materials Testing Program is also discussed; (7) fabrication - the methods available for the manufacture of the constituent parts of the Bitter plates, the method of assembly and remote maintenance are summarized

  16. Minimum Contradictions Physics and Propulsion via Superconducting Magnetic Field Trapping

    Science.gov (United States)

    Nassikas, A. A.

    2010-01-01

    All theories are based on Axioms which obviously are arbitrary; e.g. SRT, GRT, QM Axioms. Instead of manipulating the experience through a new set of Arbitrary Axioms it would be useful to search, through a basic tool that we have at our disposal i.e. Logic Analysis, for a set of privileged axioms. Physics theories, beyond their particular axioms, can be restated through the basic communication system as consisting of the Classical Logic, the Sufficient Reason Principle and the Anterior-Posterior Axiom. By means of a theorem this system can be proven as contradictory. The persistence in logic is the way for a set of privileged axioms to be found. This can be achieved on the basis of the Claim for Minimum Contradictions. Further axioms beyond the ones of the basic communications imply further contradictions. Thus, minimum contradictions can be achieved when things are described through anterior-posterior terms; due to existing contradictions through stochastic space-time, which is matter itself, described through a Ψ wave function and distributed, in a Hypothetical Measuring Field (HMF), through the density probability function P(r, t). On this basis, a space-time QM is obtained and this QM is a unified theory satisfying the requirements of quantum gravity. There are both mass-gravitational space-time (g) regarded as real and charge-electromagnetic (em) space-time that could be regarded as imaginary. In a closed system energy conversion-conservation and momentum action take place through photons, which can be regarded either as (g) or (em) space-time formation whose rest mass is equal to zero. Universe Evolution is described through the interaction of the gravitational (g) with the electromagnetic (em) space-time-matter field and not through any other entities. This methodology implies that there is no need for dark matter. An experiment is proposed relative to the (g)+(em) interaction based on Superconducting Magnetic Field Trapping to validate this approach.

  17. ZZ di-boson measurements with the ATLAS detector at the LHC and study of the toroidal magnetic field sensors

    International Nuclear Information System (INIS)

    Protopapadaki, Eftychia-Sofia

    2014-01-01

    Elementary particles and their interactions are described by the Standard Model. Even successful, there are still some unanswered questions which need to be addressed. In this work, the ZZ Standard Model process was studied in the leptonic decay channel. The data used were collected by the ATLAS detector during 2012 and correspond to an integrated luminosity of 20 fb -1 . The center of mass energy was 8 TeV. All the analysis elements, such as the signal selection and efficiencies, the background estimation, the measurement uncertainties and the statistical method employed for the cross section extraction, are discussed in this document. The total ZZ on-shell cross section is measured to be 6.98±0.41(stat.)±0.36(syst.)±0.20(lumi) pb. A measurement of the on-shell 'fiducial' cross section, defined in a volume close to the reconstructed one, was also performed for each decay channel. Both total and fiducial measurements are in agreement, within uncertainties, with the SM predictions. The neutral boson-self interactions are forbidden in the SM. Therefore, if triple gauge boson couplings are observed, they will indirectly point to the existence of new physics. Observables sensitive to the presence of anomalous triple gauge couplings, along with the optimal binning were investigated. The traverse momentum of the most energetic boson was among the most sensitive observables, and it was thus used in order to extract 95% CL limits on the anomalous coupling parameters. All observed limits are found to be compatible with the SM expectations. In the framework of this thesis a performance study was conducted. In order to increase particles mass measurement precision, the accurate knowledge of the toroidal magnetic field inside the detector is essential. The sensors used for the production of the ATLAS toroidal magnetic field map were studied, and it was found that more than 97% of these sensors are reliable. The existing magnetic field map was probed, and even

  18. Theoretical study of structure of electric field in helical toroidal plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2001-06-01

    A set of transport equations is analyzed, including the bifurcation of the electric field. The structure of the electric field is studied by use of the theoretical model for the anomalous transport diffusivities. The steep gradient of the electric field is obtained at the electric domain. The suppression of the anomalous transport diffusivity is studied in the presence of the strong shear of the electric field. The hard transition with the multiple ambipolar solutions is examined in the structure of the radial electric field. The details of the structure of the electric domain interface are investigated. (author)

  19. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    Science.gov (United States)

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  20. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  1. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  2. Study of first harmonic field effects on beam extraction for VEC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Mallik, C.; Bhandari, R.K.

    2002-01-01

    In superconducting cyclotron large momentum compaction at extraction region makes the turn separation very small. The first harmonic effects on the He +1 beam using simulated magnetic field for VEC K500 cyclotron is reported

  3. New analytical results in the electromagnetic response of composite superconducting wire in parallel fields

    NARCIS (Netherlands)

    Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.

    1993-01-01

    Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation

  4. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  5. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [College of Science and Technology, Nihon University, 1-8-14 Kanda, Chiyoda-ku, Tokyo 1018308 (Japan); Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-05-15

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.

  6. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    Science.gov (United States)

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.

  7. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-01-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10"2"1 m"−"3, ∼40 eV, and 0.5–1.0 × 10"1"9, respectively.

  8. Performance of cable-in-conduit conductors in ITER [International Thermonuclear Experimental Reactor] toroidal field coils with varying heat loads

    International Nuclear Information System (INIS)

    Kerns, J.A.; Wong, R.L.

    1989-01-01

    The toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) will operate with varying heat loads generated by ac losses and nuclear heating. The total heat load is estimated to be 2 kW per TF coil under normal operation and can be higher for different operating scenarios. Ac losses are caused by ramping the poloidal field (PF) for plasma initiation, burn, and shutdown; nuclear heating results from neutrons that penetrate into the coil past the shield. Present methods to reduce or eliminate these losses lead to larger and more expensive machines, which are unacceptable with today's budget constraints. A suitable solution is to design superconductors that operate with high heat loads. The cable-in-conduit conductor (CICC) can operate with high heat loads. One CICC design is analyzed for its thermal performance using two computer codes developed at LLNL. One code calculates the steady state flow conditions along the flow path, while the other calculates the transient conditions in the flow. We have used these codes to analyze the superconductor performance during the burn phase of the ITER plasma. The results of these analyses give insight to the choice of flow rate on superconductor performance. 4 refs., 5 figs

  9. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Directory of Open Access Journals (Sweden)

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  10. Hofstadter's Butterfly and Phase Transition of Checkerboard Superconducting Network in a Magnetic Field

    International Nuclear Information System (INIS)

    Hou Jingmin; Tian, Li-Jim

    2010-01-01

    We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes-Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  12. A device for regulating the field generated by a superconducting winding or the gradient of same

    International Nuclear Information System (INIS)

    Duret, Denis; Dunand, J.-J.

    1974-01-01

    Description is given of a stabilizing device which does not require the use of a specific solvent. Changes occurring in the field generated by the main winding and the correcting winding are transmitted by a superconducting unit to a quantum superconducting interferometer. An impedance measurement provides an error-signal, the latter being integrated for feeding the correcting winding. A form of embodiment relates to the regulation of a modulated field. This can be applied to nuclear magnetic resonance spectrometers [fr

  13. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  14. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    International Nuclear Information System (INIS)

    Rossi, Paolo; Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G.; Gabriele, M.; Di Muzio, F.; Philips, G.; Tomarchio, V.

    2014-01-01

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  15. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  16. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  17. Study of the behaviour of magnetic lines after perturbation of a toroidal field with magnetic surfaces

    International Nuclear Information System (INIS)

    Mercier, C.

    1989-02-01

    The effect of a perturbing magnetic field on a field whose magnetic surfaces are tori nested around a closed central line is studied. This perturbation effect creates magnetic islands around surfaces with rational rotational transform. These islands are investigated analytically, which makes it possible to evaluate their size. The resulting turbulence of the medium can then be studied by calculating the interaction of two neighbouring islands

  18. Energy measurement of fast ions trapped in the toroidal magnetic field ripple of Tore Supra during ICRF heating

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Grisolia, C.; Hutter, T.; Mayaux, G.; Martin, G.; Saoutic, B.; Vartanian, S.

    1995-01-01

    Direct losses of ions trapped in the toroidal field ripple of Tore Supra using two techniques were made. The first (DRIPPLE I) correlates the ion loss current measured by an electric probe with the ion loss power measured by a calorimeter. As the calorimeter integrates over all particle energies and time, it yields only the averaged lost ion energy. The second technique (DRIPPLE II), still under development, is a Faraday cup positioned and filtered so as to select ions by their Larmor radius. The currents measured are small (1-100 nA), and improvements in instrumentation are needed to take full advantage of the data, but the preliminary results are still useful. During ICRH (hydrogen minority regime, resonance on axis) a direct correlation between the lost ion mean energy and the density of hydrogen was seen. The energy increased when the hydrogen minority density decreased. Moreover, the line averaged density and the lower hybrid heating (LH) had also an effect on fast ion losses. (authors). 3 refs., 7 figs

  19. A parametric study of AC electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames

    KAUST Repository

    Xiong, Yuan

    2017-05-02

    This study presents an experimental work investigating the controlling parameters on the formation of an electrically-induced inner toroidal vortex (ITV) near a nozzle rim in small, laminar nonpremixed coflow flames, when an alternating current is applied to the nozzle. A systematic parametric study was conducted by varying the flow parameters of the fuel and coflowing-air velocities, and the nozzle diameter. The fuels tested were methane, ethylene, ethane, propane, n-butane, and i-butane, each representing different ion-generation characteristics and sooting tendencies. The results showed that the fluid dynamic effects on ITV formation were weak, causing only mild variation when altering flow velocities. However, increased fuel velocity resulted in increased polycyclic aromatic hydrocarbon (PAH) formation, which promoted ITV formation. When judging the ITV-formation tendency based on critical applied voltage and frequency, it was qualitatively well correlated with the PAH concentration and the relative location of PAHs to the nozzle rim. The sooting tendency of the fuels did not affect the results much. A change in the nozzle diameter highlighted the importance of the relative distance between the PAH zone and the nozzle rim, indicating the role of local electric-field intensity on ITV formation. Detailed onset conditions, characteristics of near-nozzle flow patterns, and PAH distributions are also discussed.

  20. Contributions to the design and to the fabrication of the magnet of the toroidal field of Tore Supra

    International Nuclear Information System (INIS)

    Turck, B.

    1992-03-01

    This report is a collection of published papers in French and in English about the design and the qualification of the magnet of the toroidal field of Tore Supra. The development test programme, the controls during conductor manufacturing and the acceptance tests have shown to be the bases for achieving a very low level of rejection for the whole production. A systematic study of the performances correlated to the fabrication conditions has provided valuable informations for the optimization of the manufacturing processes of superconductors. The tests of single coils have enabled the commissioning of a monitoring and protection system specially adapted for this magnet of 18 coils cooled in a superfluid helium bath. After the accident caused by an arcing in one coil of the Torus, and the replacement of the faulty coil, the monitoring and safety discharge system have been adapted. The current in the magnet has been increased up to 1 455 A for 9.3 T on the conductors (nominal values 1 400 A and 9 T). During the last three years (1989-1991) only one transition to normal state has been observed in one coil strongly irradiated after a severe plasma disruption. In these conditions the protection system acted very well and as expected

  1. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  2. Numerical computation of the transport matrix in toroidal plasma with a stochastic magnetic field

    Science.gov (United States)

    Zhu, Siqiang; Chen, Dunqiang; Dai, Zongliang; Wang, Shaojie

    2018-04-01

    A new numerical method, based on integrating along the full orbit of guiding centers, to compute the transport matrix is realized. The method is successfully applied to compute the phase-space diffusion tensor of passing electrons in a tokamak with a stochastic magnetic field. The new method also computes the Lagrangian correlation function, which can be used to evaluate the Lagrangian correlation time and the turbulence correlation length. For the case of the stochastic magnetic field, we find that the order of magnitude of the parallel correlation length can be estimated by qR0, as expected previously.

  3. On the role of poloidal and toroidal fluctuating electric fields in tokamak transport

    International Nuclear Information System (INIS)

    Isichenko, M.B.; Wootton, A.J.

    1995-01-01

    The two different expressions for the radial particle flux Λ found in the literature, as given by equations (2) and (4), are identical if the parallel electric field is small. The first expression is derivable in a fluid approach, whereas the second follows from the analysis of individual particle orbits. These expressions, without change, are also valid for an arbitrary axisymmetric magnetic geometry. In a situation where the parallel electric field is significant, the more accurate expression for the particle flux is in terms of the standard E x B velocity

  4. Transverse magnetic field penetration through the JET toroidal coil and support structure

    International Nuclear Information System (INIS)

    Core, W.G.F.; Noll, P.

    1988-01-01

    This report contains the results of a study of transverse magnetic field penetration through the JET magnetic field coil systems and supporting structures. The studies were carried out during the initial JET design phase (1973-78) and were part of a major radius compression plasma heating feasibility study. In view of the interest in this problem the authors have decided to re-issue the original work as a JET report. The material basically remains unchanged although better estimates of the penetration times have been obtained and typographical errors which occurred in the original have been corrected. (author)

  5. Letter report for the Superconducting Magnet Development Program, April 1, 1977--June 30, 1977

    International Nuclear Information System (INIS)

    Fietz, W.A.; Lubell, M.S.

    1977-11-01

    The results and accomplishments of the Superconducting Magnet Development Program (SCMDP) for the second quarter of the calendar year 1977 are summarized. The presentations are arranged according to projects rather than the group organization by discipline of the Magnetics and Superconductivity Section. The design, procurement, and fabrication of the Large Coil Segment are well under way. Significant progress is reported on the conductor stability and loss experiments for both toroidal field coils and poloidal field coils

  6. Configuration development of a hydraulic press for preloading the toroidal field coils of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Lee, V.D.

    1987-01-01

    The Fusion Engineering Design Center (FEDC) is part of a national design team that is developing the conceptual design of the Compact Ignition Tokamak (CIT). To achieve a compact device with the minimum major radius, a vertical preload system is being developed to react the vertical separating force normally carried by the inboard leg of the toroidal field (TF) coils. The preload system is in the form of a hydraulic press. Challenges in the design include the development of hydraulic and structural systems for very large force requirements, which could interface with the CIT machine, while allowing maximum access to the top, bottom, and radial periphery of the machine. Maximum access is necessary for maintenance, diagnostics, instrumentation, and control systems. Materials used in the design must function in the nuclear environment and in the presence of high magnetic fields. The structural system developed is an arrangement in which the CIT device is installed in the jaws of the press. Large built-up beams above and below the CIT span the machine and deliver the vertical force to the center cylinder formed by the inboard legs of the TF coils. During the conceptual design study, the vertical force requirement has ranged between 25,000 and 52,000 t. The access requirement on top and bottom limits the width of the spanning beams. Nonmagnetic steel materials are also required because of operation in the high magnetic fields. In the hydraulic system design for the press, several options are being explored. These range from small-diameter jacks operating at very high pressure [228 MPa (33 ksi)] to large-diameter jacks operating at pressures up to 69 MPa (10 ksi). Configurations with various locations for the hydraulic cylinders have also been explored. The nuclear environment and maintenance requirements are factors that affect cylinder location. This paper presents the configuration development of the hydraulic press used to vertically preload the CIT device

  7. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.

    2003-01-01

    The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)

  8. Reviews of large superconducting machines: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Bogner, G.

    1981-01-01

    This paper reviews large superconducting machines presently in place or in experiment. The ''Cello'' particle detector magnet for the positron-electron colliding beam facility PETRA at DESY in Hamburg is shown, and the Fermi Lab, and the Brookhaven ISABELLE also described. Electrodynamic levitation systems are specified, as researched and developed in Germany and Japan. Of superconducting coils for magnetic separation, a high gradient magnetic separator with superconducting magnet and steel wool, and a Jones type high gradient magnetic separator are schematicized. Turbogenerators with superconductor field winding are studied. Superconducting high power cables include the flexible coaxial cable core consisting of a perforated polyethylene tube and test cables at Siemens and at Brookhaven. Magnet systems for fusion reactors include tokamaks and tandem mirrors, and the toroidal coil experiment at Oak Ridge National Laboratory is described, among others. Superconducting magnets for MHD plants, and superconducting magnet energy storage (SME storage) are also discussed

  9. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    International Nuclear Information System (INIS)

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  10. Random errors in the magnetic field coefficients of superconducting magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Wanderer, P.; Willen, E.

    1985-01-01

    Random errors in the multipole magnetic coefficients of superconducting magnet have been of continuing interest in accelerator research. The Superconducting Super Collider (SSC) with its small magnetic aperture only emphasizes this aspect of magnet design, construction, and measurement. With this in mind, we present a magnet model which mirrors the structure of a typical superconducting magnet. By taking advantage of the basic symmetries of a dipole magnet, we use this model to fit the measured multipole rms widths. The fit parameters allow us then to predict the values of the rms multipole errors expected for the SSC dipole reference design D, SSC-C5. With the aid of first-order perturbation theory, we then give an estimate of the effect of these random errors on the emittance growth of a proton beam stored in an SSC. 10 refs., 6 figs., 2 tabs

  11. Ambipolar electric fields and turbulence studies in the Wisconsin levitated toroidal octupole

    International Nuclear Information System (INIS)

    Armentrout, C.J.

    1977-01-01

    Detailed studies of hot ion plasmas (T/sub i/ > T/sub e/) in the poloidal field octupole show that the ambipolar electric field which is perpendicular to the flux surfaces is well explained by the observed properties of the microturbulence structures in the plasma. The turbulence structure has been measured by correlation techniques which are carefully described. In these experiments, signals were studied which are aperiodic in time and space, short lived compared to the decay times of the bulk plasma parameters, short ranged compared to the machine size, and are therefore classified as microturbulence structures. The resulting spatial and temporal correlation functions (CFs) are well fitted to a Gaussian function and the associated correlation lengths or times are the half width at half maximum of the CFs. The correlation length is measured to be the ion gyro radius for the hot hydrogen plasma and somewhat less for the helium plasma

  12. Stochastic layers of magnetic field lines and formation of ITB in a toroidal plasma

    International Nuclear Information System (INIS)

    Volkov, E.D.; Bererzhnyi, V.L.; Bondarenko, V.N.

    2003-01-01

    The results of local measurements of RF discharge plasma parameters in the process of ITB formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The next phenomena were observed in the process of ITB formation: the widening of the radial density distribution, the formation of pedestals on radial density and electron temperature distributions, the formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, the decrease of density fluctuations and their radial correlation length, the decorrelation of density fluctuations, the increase of the bootstrap current. After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed. (orig.)

  13. Toroidal Thermonuclear device

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro; Shizuoka, Yoshihide.

    1982-01-01

    Purpose: To reduce the shielding capacity of a current breaker for a current transformer coil and to facilitate the manufacture and the assembly of the current transformer coil. Constitution: A first current transformer coil is provided between a vacuum container for enclosing a plasma and a toroidal magnetic field coil, and a secon current transformer coil is provided outside the toroidal magnetic field coil. The rise of the plasma current is performed by the variation in the current of the coil of the first transformer having high electromagnetic coupling with the plasma current, and the variation in the magnetic flux necessary for maintaining the plasma is performed by the variation in the current of the second transformer coil. In this manner, the current shielding capacity of the first transformer coil can be reduced to decrease the number of coil turns, thereby facilitating the manufacture and assembly. (Seki, T.)

  14. Bio-field array: a dielectrophoretic electromagnetic toroidal excitation to restore and maintain the golden ratio in human erythrocytes.

    Science.gov (United States)

    Purnell, Marcy C; Butawan, Matthew B A; Ramsey, Risa D

    2018-06-01

    Erythrocytes must maintain a biconcave discoid shape in order to efficiently deliver oxygen (O 2 ) molecules and to recycle carbon dioxide (CO 2 ) molecules. The erythrocyte is a small toroidal dielectrophoretic (DEP) electromagnetic field (EMF) driven cell that maintains its zeta potential (ζ) with a dielectric constant (ԑ) between a negatively charged plasma membrane surface and the positively charged adjacent Stern layer. Here, we propose that zeta potential is also driven by both ferroelectric influences (chloride ion) and ferromagnetic influences (serum iron driven). The Golden Ratio, a function of Phi φ, offers a geometrical mathematical measure within the distinct and desired curvature of the red blood cell that is governed by this zeta potential and is required for the efficient recycling of CO 2 in our bodies. The Bio-Field Array (BFA) shows potential to both drive/fuel the zeta potential and restore the Golden Ratio in human erythrocytes thereby leading to more efficient recycling of CO 2 . Live Blood Analyses and serum CO 2 levels from twenty human subjects that participated in immersion therapy sessions with the BFA for 2 weeks (six sessions) were analyzed. Live Blood Analyses (LBA) and serum blood analyses performed before and after the BFA immersion therapy sessions in the BFA pilot study participants showed reversal of erythrocyte rheological alterations (per RBC metric; P = 0.00000075), a morphological return to the Golden Ratio and a significant decrease in serum CO 2 (P = 0.017) in these participants. Immersion therapy sessions with the BFA show potential to modulate zeta potential, restore this newly defined Golden Ratio and reduce rheological alterations in human erythrocytes. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. ITER toroidal field model coil (TFMC). Test and analysis summary report (testing handbook) chapter 3 TOSKA FACILITY

    International Nuclear Information System (INIS)

    Ulbricht, A.

    2001-05-01

    In the frame of a contract between the ITER (International Thermonuclear Experimental Reactor) Director and the European Home Team Director was concluded the extension of the TOSKA facility of the Forschungszentrum Karlsruhe as test bed for the ITER toroidal field model coil (TFMC), one of the 7 large research and development projects of the ITER EDA (Engineering Design Activity). The report describes the work and development, which were performed together with industry to extend the existing components and add new components. In this frame a new 2 kW refrigerator was added to the TOSKA facility including the cold lines to the Helium dewar in the TOSKA experimental area. The measuring and control system as well as data acquisition was renewed according to the state-of-the-art. Two power supplies (30 kA, 50 kA) were switched in parallel across an Al bus bar system and combined with an 80 kA dump circuit. For the test of the TFMC in the background field of the EURATOM LCT coil a new 20 kA power supply was taken into operation with the existing 20 kA discharge circuit. Two forced flow cooled 80 kA current leads for the TFMC were developed. The total lifting capacity for loads in the TOSKA building was increased by an ordered new 80 t crane with a suitable cross head (125 t lifting capacity +5 t net mass) to 130 t for assembling and installation of the test arrangement. Numerous pre-tests and development and adaptation work was required to make the components suitable for application. The 1.8 K test of the EURATOM LCT coil and the test of the W 7-X prototype coil count to these tests as overall pre-tests. (orig.)

  16. Magnetic field measurement and correction of VECC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Bhunia, U.; Pradhan, J.; Rashid, H.; Paul, S.; Dutta, A.; Naser, Z.A.; Singh, V.; Pal, G.; Nandi, C.; Dasgupta, S.; Bhattacharya, S.; Pal, S.; Roy, A.; Bhattacharya, T.; Bhole, R.B.; Bhale, D.; Chatterjee, M.; Prasad, R.; Nabhiraj, P.Y.; Hazra, D.P.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    The VECC K500 superconducting cyclotron magnet is commissioned and magnetic field measurement and correction program was successfully completed in March 2006. Here we report the analysis of the measured field data and subsequent correction of the magnet to improve the field quality. (author)

  17. Field quality evaluation of the superconducting magnets of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.C.; Jain, A.; Peggs, S.G.; Trahern, C.G.; Trbojevic, D.; Wanderer, P.

    1995-01-01

    In this paper, the authors first present the procedure established to evaluate the field quality, quench performance, and alignment of the superconducting magnets manufactured for the Relativistic Heavy Ion Collider (RHIC), and then discuss the strategies used to improve the field quality and to minimize undesirable effects by sorting the magnets. The field quality of the various RHIC magnets is briefly summarized

  18. Superconducting Coset Topological Fluids in Josephson Junction Arrays

    CERN Document Server

    Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.

    2006-01-01

    We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.

  19. Single-particle spectra and magnetic field effects within precursor superconductivity

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.; Perali, A.

    2004-01-01

    We study the single-particle spectra below the superconducting critical temperature from weak to strong coupling within a precursor superconductivity scenario. The spectral-weight function is obtained from a self-energy that includes pairing-fluctuations within a continuum model representing the hot spots of the Brillouin zone. The effects of strong magnetic fields on the pseudogap temperature are also discussed within the same scenario

  20. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...... are quantitatively reproduced by existing theories, which take into account the reduced scattering of the conduction electrons by the magnetic ions due to the creation of the superconducting energy gap 2Δ(T)....

  1. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  2. Optimization of confinement in a toroidal plasma subject to strong radial electric fields

    International Nuclear Information System (INIS)

    Roth, J.R.

    1977-01-01

    A preliminary report on the identification and optimization of independent variables which affect the ion density and confinement time in a bumpy torus plasma is presented. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under condition when most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 x 10 to the 12th power/cc, the highest ion heating efficiency is 47 percent, and the longest particle containment time is 2.0 milliseconds

  3. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  4. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  5. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  6. Elastic stability and vibration of toroidal magnets for fusion reactors. Final report

    International Nuclear Information System (INIS)

    Moon, F.C.; Swanson, C.

    1975-09-01

    The vibration and elastic stability of a set of discrete superconducting toroidal field magnets arranged to form a ''bumpy'' torus is examined. The mutual destabilizing magnetic forces between magnet pairs are calculated using a numerical differential inductance technique. It is shown that the mutual attractive magnetic forces can produce elastic buckling of the entire toroidal set. The vibration modes of the set are also found as functions of the coil current. The response of the set of magnets to an earthquake type motion of the toroidal base is calculated. The calculations have been incorporated in a computer code which accompanies the report. Measurements are made of the lateral stiffness of a flexible, planar, superconducting coil between two rigid coils in series. These tests show a dramatic decrease in the natural bending frequency with subsequent elastic instability or ''buckling'' at a critical value of the current in the coils. These observations support a magnetoelastic analysis which shows that proposed designs, of toroidal field coils for Tokamak fusion reactors, have insufficient lateral support for mechanical stability of the magnets

  7. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  8. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  9. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  10. Analytical study of cover plate welding deformation of the radial plate of the ITER toroidal field coil

    International Nuclear Information System (INIS)

    Ohmori, Junji; Koizumi, Norikiyo; Shimizu, Tatsuya; Okuno, Kiyoshi; Hasegawa, Mitsuru

    2009-09-01

    The winding pack (WP) of the Toroidal Field (TF) coil of ITER consists of 7 double-pancakes (DPs). In the DP, the conductor is embedded in a groove of a radial plate (RP), and cover plates (CP) are welded to the RP teeth to fix the conductors in the RP groove. The dimensions of the DP are 15 m in height and 9 m in width while the tolerances of the DP are very severe, such as a flatness of 2 mm and an in-plane deviation of a few millimeters. It is therefore required to reduce the deformation of the DP by CP welding. In order to estimate welding deformation, the authors apply an analytical method in which the CP welding deformation of the DP can be calculated using inherent strain evaluated from welding deformation measured using a RP mock-up. Calculated results indicate that out-of-plane distortion can be kept to within required tolerances, but in-plane deformation is larger than allowed when welding thickness is 2.5 mm. The in-plane deformation is mainly caused by the bending of the curved RP region. Therefore, reducing the welding thickness at the curved region emerges as the most promising solution of this issue. Calculated results assuming a welding thickness of 1 mm at the curved region show that the in-plane deformation conforms to required tolerances. Furthermore, since the maximum out-of-plane deformation is within tolerances but marginal, an alternative design in which the number of welding lines is half that of the reference design, is proposed not only to improve the out-of-plane distortion but also to simplify the manufacture of the DP. It is found that the alternative design is effective in reducing welding distortion. (author)

  11. High field superconducting beam transport in a BNL primary proton beam

    International Nuclear Information System (INIS)

    Allinger, J.; Brown, H.N.; Carroll, A.S.; Danby, G.; DeVito, B.; Glenn, J.W.; Jackson, J.; Keith, W.; Lowenstein, D.; Prodell, A.G.

    1979-01-01

    Construction of a slow external beam switchyard at the BNL AGS requires a rapid 20.4 0 bend in the upstream end of the beam line. Two curved superconducting window dipole magnets, operating at 6.0 T and about 80% of short sample magnetic field, will be utilized with two small superconducting sextupoles to provide the necessary deflection for a 28.5 GeV/c primary proton beam. Because the magnets will operate in a primary proton beam environment, they are designed to absorb large amounts of radiation heating from the beam without quenching. The field quality of the superconducting magnets is extremely good. Computer field calculations indicate a field error, ΔB/B 0 , equivalent to approx. = 1 x 10 -4 up to 75% of the 8.26 cm full aperture diameter in the magnet

  12. The spheromak as a prototype for ultra-high-field superconducting magnets

    International Nuclear Information System (INIS)

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs

  13. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  14. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  15. Effect of magnetic field on charge imbalance relaxation of non-equilibrium superconductivity

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Ryuta

    2010-01-01

    We have studied relaxation of charge imbalance of non-equilibrium superconductivity in magnetic field. We found that excess current due to charge imbalance showed striking dependence on magnitude of magnetic field and its orientation. We discussed origin of the relaxation.

  16. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  17. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  18. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  19. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  20. Effects of fast ions and an external inductive electric field on the neoclassical parallel flow, current, and rotation in general toroidal systems

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Okamoto, Masao.

    1992-05-01

    Effects of external momentum sources, i.e., fast ions produced by the neutral beam injection and an external inductive electric field, on the neoclassical ion parallel flow, current, and rotation are analytically investigated for a simple plasma in general toroidal systems. It is shown that the contribution of the external sources to the ion parallel flow becomes large as the collision frequency of thermal ions increases because of the momentum conservation of Coulomb collisions and sharply decreasing viscosity coefficients, with collision frequency. As a result, the beam-driven parallel flow of thermal ions becomes comparable to that of electrons in the Pfirsh-Schluter collisionality regime, whereas in the 1/μ or banana regime it is smaller than that of electrons by the order of √(m e /m i ) (m e and m i are electron and ion masses). This beam-driven ion parallel flow can not produce a large beam-driven current because of the cancellation with electron parallel flow, but produces a large toroidal rotation of ions. As both electrons and ions approach the Pfirsh-Schluter collisionality regime the contribution of thermodynamical forces becomes negligibly small and the large toroidal rotation of ions is predominated by the beam-driven component in the non-axisymmetric configuration with large helical ripples. (author)

  1. Time variations of fields in superconducting magnets and their effects on accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Herrup, D.A.; Syphers, M.J.; Johnson, D.E.; Johnson, R.P.; Tollestrup, A.V.; Hanft, R.W.; Brown, B.C.; Lamm, M.J.; Kuchnir, M.; McInturff, A.D.

    1988-08-22

    A report on the time dependence of magnetic fields in the superconducting magnets of the Fermilab Tevatron has been published. A field variation of order 1 gauss at the aperture radius is observed. Studies on both full sized Tevatron, dipoles and prototype magnets have been used to elucidate these effects. Explanations based on eddy currents in the coil matrix or on flux creep in the superconducting filaments are explored with these tests. Measurement results and techniques for controlling the effect based on new laboratory tests and the latest accelerator operation are presented. 9 refs., 4 figs.

  2. Time variations of fields in superconducting magnets and their effects on accelerators

    International Nuclear Information System (INIS)

    Herrup, D.A.; Syphers, M.J.; Johnson, D.E.

    1988-01-01

    A report on the time dependence of magnetic fields in the superconducting magnets of the Fermilab Tevatron has been published. A field variation of order 1 gauss at the aperture radius is observed. Studies on both full sized Tevatron, dipoles and prototype magnets have been used to elucidate these effects. Explanations based on eddy currents in the coil matrix or on flux creep in the superconducting filaments are explored with these tests. Measurement results and techniques for controlling the effect based on new laboratory tests and the latest accelerator operation are presented. 9 refs., 4 figs

  3. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  4. Field theory methods applied for the study of superconductivity in one-dimensional systems

    International Nuclear Information System (INIS)

    Martins, M.J.

    1986-01-01

    It is shown that the Froehlich's hamiltonian in one spatial dimension is identical to that of an exactly solvable field Theory. The spectrum of the theory is computed. A critical coupling is found above which the system becomes unstable, indicating a superconducting transition. It is also proposed and investigated a renormalizable relativistic field theory model in two space-time dimensions, with quartic self-interaction among N species of fermions, which undergoes dynamical generation of a superconducting gap and is asymptotically free. A finite temperature is introduced and, for N -> ∞ a critical value T c is found above which the gap vanishes. (author)

  5. Heating of toroidal plasmas by neutral injection

    International Nuclear Information System (INIS)

    Stix, T.H.

    1971-08-01

    This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs

  6. Peak Fields of Nb$_{3}$Sn Superconducting Undulators and a Scaling Law

    CERN Document Server

    Kim, S H

    2005-01-01

    The peak fields on the beam axis and the maximum fields in the conductor of Nb$_{3}$Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb$_{3}$Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

  7. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    International Nuclear Information System (INIS)

    Tong Wang

    2002-01-01

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radio frequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ∼140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ∼140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ∼140 MV

  8. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  9. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  10. Harmonic current layer method for the design of superconducting quadrupole magnetic field

    International Nuclear Information System (INIS)

    Zizek, F.

    1977-01-01

    The magnetic field of a superconducting quadrupole is investigated by the method of harmonic current layers of cylindrical shape. The superconducting winding is replaced by a system of thin current layers with a harmonically distributed density of the surface current along the circumference. The effect of the outer ferromagnetic circuit with an arbitrary constant permeability over the cross section is replaced analogically. The resultant magnetic field is then given by the superposition of the contributions from the individual current layers. The calculation method can be modified for the selection of the geometry of the winding for the latter to meet the demand for the high homogeneity of the gradient of magnetic induction in the working space of the superconducting quadrupole. (author)

  11. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-01-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems

  12. Application of an analytical method for the field calculation in superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.

    1983-01-01

    Superconducting magnets are taking on ever-growing importance due to their increasing prospects of utilization in electrical machines, nuclear fusion, MHD conversion and high-energy physics. These magnets are generally composed of cylindrical or saddle coils, while a ferromagnetic shield is generally situated outside them. This paper uses an analytical method for calculating the magnetic field at every point in a superconducting magnet composed of cylindrical or saddle coils. The method takes into account the real lengths and finite thickness of the coils as well as their radial and axial ferromagnetic shields, if present. The values and distribution of the flux density for some superconducting magnets of high dimensions and high magnetic field, composed of cylindrical or saddle coils, are also given. The results obtained with analytical method are compared with those obtained using numerical methods

  13. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  14. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Science.gov (United States)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  15. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    International Nuclear Information System (INIS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-01-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label

  16. Critical current degradation in superconducting niobium-titanium alloys in external magnetic fields under loading

    International Nuclear Information System (INIS)

    Bojko, V.S.; Lazareva, M.B.; Starodubov, Ya.D.; Chernyj, O.V.; Gorbatenko, V.M.

    1992-01-01

    The effect of external magnetic fields on the stress at which the critical current starts to degrade (the degradation threshold σ 0 e ) under mechanical loads in superconducting Nb-Ti alloys is studied and a possible mechanism of realization of the effect observed is proposed.It is assumed that additional stresses on the transformation dislocation from the external magnetic fields are beneficial for the growth of martensite inclusions whose superconducting parameters (critical current density j k and critical temperature T k ) are lower then those in the initial material.The degradation threshold is studied experimentally in external magnetic fields H up to 7 T.The linear dependence σ 0 e (H) is observed.It is shown that external magnetic fields play an important role in the critical current degradation at the starting stages of deformation.This fact supports the assumption that the degradation of superconducting parameters under loading are due to the phenomenon of superelasticity,i.e. a reversible load-induced change in the martensite inclusions sizes rather than the reversible mechanical twinning.The results obtained are thought to be important to estimating superconducting solenoid stability in a wide range of magnetic fields

  17. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  18. Magnetic field simulation and shimming analysis of 3.0T superconducting MRI system

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Tang, G. S.; Zhang, X. C.; Duan, L. J.; Liu, W. C.

    2018-04-01

    3.0T superconducting magnetic resonance imaging (MRI) system has become the mainstream of modern clinical MRI system because of its high field intensity and high degree of uniformity and stability. It has broad prospects in scientific research and other fields. We analyze the principle of magnet designing in this paper. We also perform the magnetic field simulation and shimming analysis of the first 3.0T/850 superconducting MRI system in the world using the Ansoft Maxwell simulation software. We guide the production and optimization of the prototype based on the results of simulation analysis. Thus the magnetic field strength, magnetic field uniformity and magnetic field stability of the prototype is guided to achieve the expected target.

  19. High field septum magnet using a superconducting shield for the Future Circular Collider

    Directory of Open Access Journals (Sweden)

    Dániel Barna

    2017-04-01

    Full Text Available A zero-field cooled superconducting shield is proposed to realize a high-field (3–4 T septum magnet for the Future Circular Collider hadron-hadron (FCC-hh ring. Three planned prototypes using different materials and technical solutions are presented, which will be used to evaluate the feasibility of this idea as a part of the FCC study. The numerical simulation methods are described to calculate the field patterns around such a shield. A specific excitation current configuration is presented that maintains a fairly homogeneous field outside of a rectangular shield in a wide range of field levels from 0 to 3 Tesla. It is shown that a massless septum configuration (with an opening in the shield is also possible and gives satisfactory field quality with realistic superconducting material properties.

  20. High field septum magnet using a superconducting shield for the Future Circular Collider

    CERN Document Server

    AUTHOR|(CDS)2069375

    2017-01-01

    A zero-field cooled superconducting shield is proposed to realize a high-field (3–4 T) septum magnet for the Future Circular Collider hadron-hadron (FCC-hh) ring. Three planned prototypes using different materials and technical solutions are presented, which will be used to evaluate the feasibility of this idea as a part of the FCC study. The numerical simulation methods are described to calculate the field patterns around such a shield. A specific excitation current configuration is presented that maintains a fairly homogeneous field outside of a rectangular shield in a wide range of field levels from 0 to 3 Tesla. It is shown that a massless septum configuration (with an opening in the shield) is also possible and gives satisfactory field quality with realistic superconducting material properties.

  1. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe

    Energy Technology Data Exchange (ETDEWEB)

    Levy, F; Huxley, A [CEA, SPSMS, DRFMC, F-38054 Grenoble, (France); Levy, F; Sheikin, I [CNRS, GHMFL, F-38042 Grenoble, (France); Huxley, A [Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, (United Kingdom)

    2007-07-01

    When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material's easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material's magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5 K, we find that it can survive in extremely high magnetic fields, exceeding 28 T. (authors)

  2. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  3. Project and analysis of the toroidal magnetic field production circuits and the plasma formation of the ETE (Spherical Tokamak Experiment) tokamak

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe F.P.W.; Bosco, Edson del.

    1994-01-01

    This report presents the project and analysis of the circuit for production of the toroidal magnetic field in the Tokamak ETE (Spherical Tokamak Experiment). The ETE is a Tokamak with a small-aspect-ratio parameter to be used for studying the plasma physics for the research on thermonuclear fusion. This machine is being constructed at the Laboratorio Associado de Plasma (LAP) of the Instituto Nacional de Pesquisas Espaciais (INPE) in Sao Jose dos Campos, SP, Brazil. (author). 20 refs., 39 figs., 4 tabs

  4. Berry phase in superconducting charge qubits interacting with a cavity field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2009-01-01

    We propose a method for analyzing Berry phase for a multi-qubit system of superconducting charge qubits interacting with a microwave field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection found between the Berry phase and entanglement creations.

  5. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    International Nuclear Information System (INIS)

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  6. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  7. A new hybrid protection system for high-field superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A

  8. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  9. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  10. The ramp rate dependence of the sextupole field in superconducting dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1993-01-01

    Sextupole components are induced in the magnetic field of superconducting dipoles when the current is changed. The magnitude of this effect depends on the rate of change of field, the strand-to-strand resistance in the superconducting cable, and the twist pitch of the wire. Ramp rate measurements have been made on a number of SSC dipoles wound from conductors with different interstrand resistances. The technique employed uses an array of Hall probes sensitive to the sextupole field and can measure the difference for field increasing or decreasing as a function of axial position. Magnets with very low interstrand resistance exhibit a large axial oscillation in the sextupole field between up and down ramps which is rate dependent When the strand resistance is high the amplitude of this oscillation is almost independent of ramp rate

  11. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  12. A cooling concept for improved field winding performance in large superconducting ac generators

    International Nuclear Information System (INIS)

    Laskaris, T.E.

    1977-01-01

    An analytical study of a flow circuit for large superconducting generator rotors is presented. The flow circuit provides regulation of the level of liquid in the rotor externally by adjusting the helium supply pressure. It also protects the vapour cooled structural members of the rotor from overcooling during transient periods of operation. Furthermore, it is capable of reducing the winding temperature below 4.2 K thereby enhancing the superconductor's performance. For example, a large generator rotor with NbTi superconducting field winding experiences approximately a 50% increase in its critical current density compared to that at 4.2 K. (author)

  13. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  14. A high field and cryogenic test facility for neutron irradiated superconducting wire

    Science.gov (United States)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  15. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    Science.gov (United States)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  16. Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  17. Advanced Toroidal Facility (ATF)

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  18. Rapid characterization of superconducting wires and tapes in strong pulsed magnetic fields

    International Nuclear Information System (INIS)

    Bockstal, L. van; Keyser, A. de; Deschagt, J.; Hopkins, S.C.; Glowacki, B.A.

    2007-01-01

    A new measurement system for rapid characterization of superconducting wires and tapes is developed. The CryoPulse-BI is a system to provide a direct measurement of critical material parameters for superconducting materials when high long pulsed magnetic fields and strong currents are applied. In the experiments, synchronized magnetic fields up to 30 T and current pulses up to 5 kA are generated with adjustable timing. Varying the magnetic field strength, the current through the sample and the BI timing allows for a thorough characterization of the sample and the determination of critical currents. The rapid cycle time of the experiments yields a rapid and thorough determination of the critical parameters. The method has been tested on low T c as well as high T c materials with the field parallel or perpendicular to the current. The discussion covers the current state of the art including a comparison of our results to classical DC characterization measurements

  19. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    We consider the two-dimensional Ginzburg–Landau functional with constant applied magnetic field. For applied magnetic fields close to the second critical field HC2 and large Ginzburg–Landau parameter, we provide leading order estimates on the energy of minimizing configurations. We obtain a fine ...

  20. Upper critical field of complex superconducting networks in the continuum limit

    International Nuclear Information System (INIS)

    Santhanam, P.; Chi, C.C.

    1988-01-01

    We propose a simple method for calculating the superconducting upper critical field of complex periodic two-dimensional networks in the continuum limit. Two specific lattices with space groups P4gm and C2mm are used to demonstrate this approach. We obtain the result that the ratio of the critical field of these networks to that of a uniform film is close to but larger than 2

  1. Analytical and numerical study of New field emitter processing for superconducting cavities

    Science.gov (United States)

    Volkov, Vladimir; Petrov, Victor

    2018-02-01

    In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.

  2. Near-Field Microwave Magnetic Nanoscopy of Superconducting Radio Frequency Cavity Materials

    OpenAIRE

    Tai, Tamin; Ghamsari, Behnood G.; Bieler, Thomas R.; Tan, Teng; Xi, X. X.; Anlage, Steven M.

    2013-01-01

    A localized measurement of the RF critical field on superconducting radio frequency (SRF) cavity materials is a key step to identify specific defects that produce quenches of SRF cavities. Two new measurements are performed to demonstrate these capabilities with a novel near-field scanning probe microwave microscope. The first is a third harmonic nonlinear measurement on a high Residual- Resistance-Ratio bulk Nb sample showing strong localized nonlinear response for the first time, with surfa...

  3. Magnetic field measurements of the harmonic generation FEL superconducting undulator at BNL-NSLS

    International Nuclear Information System (INIS)

    Solomon, L.; Graves, W.S.; Lehrman, I.

    1994-01-01

    A three stage superconducting undulator (modulator, dispersive section, and radiator) is under construction at Brookhaven National Laboratory. Sections of the radiator, consisting of 25cm long steel yokes, each with 18mm period, 0.54 Tesla field, and 8.6mm gap are under test. The magnetic measurements and operational characteristics of the magnet are discussed. Measurement results and analysis are presented, with emphasis on the integrated field quality. The magnet winding and the effects of the various trims are discussed

  4. Toroidal Trivelpiece-Gould modes

    International Nuclear Information System (INIS)

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  5. Superconductive magnetic energy storage (SMES) external fields and safety considerations

    International Nuclear Information System (INIS)

    Polk, C.; Boom, R.W.; Eyssa, Y.M.

    1992-01-01

    This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 x 10 13 J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly

  6. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  7. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  8. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  9. Development of L-band niobium superconducting RF cavities with high accelerating field

    International Nuclear Information System (INIS)

    Saito, Kenji; Noguchi, Shuichi; Ono, Masaaki; Kako, Eiji; Shishido, Toshio; Matsuoka, Masanori; Suzuki, Takafusa; Higuchi, Tamawo.

    1994-01-01

    Superconducting RF cavity is a candidate for the TeV energy e + /e - linear collider of next generation if the accelerating field is improved to 25-30 MV/m and much cost down is achieved in cavity fabrication. Since 1990, KEK has continued R and D of L-band niobium superconducting cavities focusing on the high field issue. A serious problem like Q-degradation due to vacuum discharge came out on the way, however, it has been overcome and presently all of cavities which were annealed at 1400degC achieved the accelerating field of >25 MV/m with enough Qo value. Recent results on single cell cavities are described in this paper. (author)

  10. Superconducting transition and low-field magnetoresistance of a niobium single crystal at 4.2 deg. K

    International Nuclear Information System (INIS)

    Perriot, G.

    1967-01-01

    We report the study of the electrical resistance of a niobium single crystal, at 4.2 deg. K, from the beginning of the superconductive transition to 80 kilo oersteds. Critical fieldsH c2 and H c3 have been determined. Influences on superconductive transition of current density, field-current angle, crystal orientation and magnetoresistance have been studied. Variation laws of low-field transverse and longitudinal magneto-resistances have been determined. (author) [fr

  11. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A.; Grassellino, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2013-06-24

    Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.

  12. Direct measurement of the quantum state of the electromagnetic field in a superconducting transmission line

    International Nuclear Information System (INIS)

    Melo, F. de; Aolita, L.; Davidovich, L.; Toscano, F.

    2006-01-01

    We propose an experimental procedure to directly measure the state of an electromagnetic field inside a resonator, corresponding to a superconducting transmission line, coupled to a Cooper-pair box (CPB). The measurement protocol is based on the use of a dispersive interaction between the field and the CPB, and the coupling to an external classical field that is tuned to resonance with either the field or the CPB. We present a numerical simulation that demonstrates the feasibility of this protocol, which is within reach of present technology

  13. Reducing field emission in the superconducting rf cavities for the next generation of particle accelerators

    International Nuclear Information System (INIS)

    Shu, Q.S.; Hartung, W.; Leibovich, A.; Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.

    1991-01-01

    This paper reports on field emission, which is an obstacle to reaching the higher fields called for in future applications of superconducting radio frequency cavities to particle accelerators. The authors used heat treatment up to 1500 degrees C in an ultra-high vacuum furnace, along with processing of cavities and temperature mapping, to suppress field emission and analyze emitter properties. In 27 tests of 1-cell 1500 MHz fired accelerating cavities, on the average the accelerating field E acc increased to 24 MV/m (H pk = 1250 Oe) from 13 MV/m with chemical treatment alone; the highest E acc reached was 30.5 MV/m

  14. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    Science.gov (United States)

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  15. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    International Nuclear Information System (INIS)

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  16. Pulsed field losses and intentional quenches of superconducting coils

    International Nuclear Information System (INIS)

    Kim, S.H.

    1983-01-01

    Pulsed field losses of several 5-20 kJ coils have been measured under triangular field variations. The conductors, developed as potential subcables of 25-50 kA cables, consist of Cu wires and NbTi strands with or without CuNi barriers. Losses of soft-soldered subcables are compared with those of well-compacted cables. The coils were quenched intentionally by pulsing the coils above the critical current to observe loss variations due to possible conductor damage. The method of measurements, and effects of soldering and compactness of the conductors on the pulsed field losses will be presented

  17. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  18. The self-field effect in twisted superconducting composites

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Turck, B.; Krempasky, L.; Polak, M.

    1976-01-01

    Since twisting of composites does not cause a transposition with respect to the self-field of the transport current, they behave like a bulk superconductor with averaged critical current density, when the transport current is changed. Consequently, the electric field is given by the history of the transport current changes. Using a simplified model (Jsub(c) = const) the expressions for the electric fields and losses for the first and immediately following second increase of the transport current are derived. Experimental results are also presented which clearly show higher electric field during the first run than during the following, which agrees with theoretical predictions. Quite a good quantitative agreement between theory and experiment was obtained up to about 80 % of the critical transport current. The influence of the copper matrix is also discussed. (author)

  19. Estimating and Adjusting Field Quality in Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1996-02-01

    The experience with estimating and adjusting field quality in RHIC and SSC magnets is discussed. An alternative approach which makes a better estimate for systematic and random values of harmonics is presented.

  20. Modeling of the free space and focused magnetic field profiles of the ORNL superconducting motor

    International Nuclear Information System (INIS)

    Bailey, J.M.; Rader, M.; Sohns, C.W.; McKeever, J.; Schwenterly, S.W.

    1992-01-01

    The ORNL superconducting motor, is a device consisting of 4 DC superconducting magnets in a square cross section. These coils are arranged in a N-S-N-S configuration and at present have no iron flux return paths. Experimentally the device has been operated and has been shown to produce 102.3 kg-m of locked rotor torque at 100 Ampers winding current. The superconductors were operating at 40 Kelvin. The peak magnetic field at 2,100 amperes operating current was 2 Tesla on the cryostat face. Recently there has been an effort under way to improve the operating parameters of the device by improving the flux utilization of the device. This was to be accomplished by the use of flux focusing pole pieces. The effects of the pole pieces and the vacuum magnetic field have been modeled with the MSC EMAS code to see the possible benefit of adding pole pieces to the in situ experiment