WorldWideScience

Sample records for superconducting quadrupole coils

  1. Superconductive coil characterization for next dipoles and quadrupoles generation

    CERN Document Server

    Khalil, Malathe

    2016-01-01

    The LHC is the most sophisticated scientific machine ever built as a device that allows the scientists to explore the universe and its origin. Scientists from all over the world are working to upgrade the LHC to open the door for new physics. HL-LHC (high luminosity LHC) project is the core project at CERN which was approved in 2013 by CERN’s council. In order to increase the integrated luminosity up to 3000 fb-1 within this decade. To do so it is crucial to design cutting edge superconducting magnets that can elevate the magnetic field up to 20T, which is Nb3Sn. However this material is brittle when it functions as superconductor, which makes it hard to be used as a cold magnet. So in this report the fabrication of 10 stacks of Nb3Sn superconducting multifilament wires was investigated as well as primary test using experimental setup and creating material model for Nb3Sn with the finite element analysis [ANSYS] is carried out.

  2. Superconducting Quadrupoles for the ISR High Luminosity insertion Coil cross section

    CERN Multimedia

    1978-01-01

    This picture shows a cut out section of an ISR High Luminosity (low beta) Quadrupole. One can clearly see the distribution of conductors and spacers which produces the wanted quadrupolar field. The spacers are made of pure copper and the central pole of stainless steel.The superconducting wire may be seen in photo 8008591X. See also pictures 7702690X, 8008591X, 7702698X.

  3. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  4. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  5. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  6. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  7. Prototype Superconducting Quadrupole for the ISR low-beta insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.

  8. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  9. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  10. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  11. ISR Superconducting Quadrupole in its cryostat

    CERN Multimedia

    1978-01-01

    The picture shows a superconducting quadrupole for the ISR high luminosity (low beta) insertion in its cryostat during final tests before installation in the ISR.The person is W.Burgess. See also photo 7702690X.

  12. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  13. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  14. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  15. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  16. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  17. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  18. Superconducting Quadrupole for the ISR High Luminosity insertion:end view

    CERN Multimedia

    1977-01-01

    Connection end view of the prototype quadrupole before insertion of the inner vacuum chamber with inbedded 6-pole windings. The main components of the structure can be seen: (from inside outwards) the superconducting quadrupole coils surrounded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702690X, 7702307, 7702308, 7812604X.

  19. Coil End Optimization of the Nb$_3$Sn Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Bossert, R; Cheng, D; Ferracin, P; Krave, ST; Perez, J C; Schmalzle, J; Yu, M

    2015-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture quadrupole magnet that aims at providing a nominal gradient of 140 T/m. The resulting conductor peak field of more than 12 T requires the use of Nb3Sn superconducting coils. In this paper the coil design for the quadrupole short model (SQXF) is described, focusing in particular on the optimization of the end-parts. We first describe the magnetic optimization aiming at reducing the peak field enhancement in the ends and minimizing the integrated multipole content. Then we focus on the analysis and tests performed to determine the most suitable shapes of end turns and spacers, minimizing the mechanical stress on the cables. We conclude with a detailed description of the baseline end design for the first series of the short model coils.

  20. Prototype Superconducting Quadrupole for the ISR high-luminosity (low beta)insertion:end view.

    CERN Multimedia

    1977-01-01

    In this picture, taken before the insertion of the inner vacuum chamber with inbedded 6-pole superconducting windings, one can see the main components of the magnet structure: (from inside outwards) the superconducting quadrupole coils surronded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702307, 7702688X, 7702690X.

  1. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  2. ISR Superconducting Quadrupole under test in its cryostat

    CERN Multimedia

    1979-01-01

    One of the Superconducting Quadrupoles for the ISR high luminosity (low-beta) insertion is seen here during final test in building 230 before installation in the ISR. See also photos 7812609X and 7702690X.

  3. End view of ISR Superconducting Quadrupole in its cryostat

    CERN Multimedia

    1977-01-01

    This view shows the cold mass of the prototype ISR Superconducting Quadrupole suspended to the outer vacuum tank by means of titanium alloy rods.The heat shield wrapped with superinsulation can also be seen. See also photo 7702690X.

  4. Finite Element Model of Training in the superconducting quadrupole magnet SQ02

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, Shlomo; Ferracin, Paolo

    2007-11-01

    This paper describes the use of 3D finite element models to study training in superconducting magnets. The simulations are used to examine coil displacements when the electromagnetic forces are cycled, and compute the frictional energy released during conductor motion with the resulting temperature rise. A computed training curve is then presented and discussed. The results from the numerical computations are compared with test results of the Nb{sub 3}Sn racetrack quadrupole magnet SQ02.

  5. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  6. 120-mm superconducting quadrupole for interaction regions of hadron colliders

    CERN Document Server

    Zlobin, A V; Mokhov, N V; Novitski, I

    2012-01-01

    Magnetic and mechanical designs of a Nb3Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  7. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  8. Field Quality and Alignment of the Series Produced Superconducting Matching Quadrupoles for the LHC Insertions

    CERN Document Server

    Catalan-Lasheras, Nuria; Kirby, Glyn; Ostojic, Ranko; Perez, Juan C; Prin, Herve

    2005-01-01

    The production of the superconducting quadrupoles for the LHC insertions is advancing well and about half of the magnets have been produced. The coil size and field measurements performed on individual magnets both in warm and cold conditions are yielding significant results. In this paper we present the procedures and results of steering the series production at the magnet manufacturers and the assembly of cold masses at CERN. In particular, we present the correlation between coil sizes and geometrical field errors, the effect of permeability of magnet collars, and the analysis of warm-cold correlations and hysteresis of the main field multipoles. The results are compared with the target values for field multipoles and quadrupole alignment.

  9. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  10. The training in epoxy-impregnated superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Bobrov, E.S.; Iwasa, Y.; Takaghi, T.; Tsukamoto, O.

    1985-03-01

    The authors have investigated the training of epoxy-impregnated superconducting coils. It has been observed that the boundary conditions at the coil ends have a crucial effect on shear-stress-induced epoxy cracks in the winding and consequently on the coil training. The results were quantified using acoustic emission data.

  11. Elastic Modulus Measurements of the LHC Dipole Superconducting Coil at 300 K and at 77 K

    CERN Document Server

    Couturier, K; Todesco, Ezio; Tommasini, D; Scandale, Walter

    2002-01-01

    We present measurements of the stress-displacement relation for the superconducting coils used in the Large Hadron Collider main magnets (dipoles and quadrupoles). This mechanical property is relevant to determine the correct amount of azimuthal pre-stress to be imposed on the coil. The hysteresis pattern in the loading and unloading curves is discussed. The stress-displacement curves are used to compute the corresponding elastic moduli and deformations. Measurements are also carried out at liquid nitrogen temperature, using the same framework to interpret experimental data.

  12. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  13. Winding workshop for the ISR low beta Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    From right to left one sees the wire spool with its electro-magnetic brake to ensure a constant tension of the superconducting wire, a pulley with a wire length recording and the winding machine. In front on the table a finished coil. In the back the heavy clamping tool. See also 7510213X, 7510213X.

  14. Spontaneous quenches of a high temperature superconducting pancake coil

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    A double-pancake coil made of Bi-2223/Ag high temperature superconducting (HTS) tape was constructed with an embedded heater and graded conductors to study the stability and quench propagation in HTS coils. The experiments were performed with liquid nitrogen and gaseous helium cooling in temperatures ranging from 5 to 77 K. The coil was very stable, and no ``normal`` zone was sustained or propagated with local pulsed heating. However, spontaneous quenches of the cod were experienced. This was found to be the result of having the coil current higher than that of the lower I{sub c} sections of the coil for a long time. This quench process took minutes to develop--much longer than would be expected in a low temperature superconducting coil. The quench behaved more like a spreading and continuous heating of an increasingly larger partially resistive section of the coil than like a sequential ``normal`` front propagation.

  15. Design Study of Superconducting Coil of 230 MeV Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; YIN; Meng; ZHANG; Su-ping; LI; Ming; CUI; Tao; LIN; Jun; LV; Yin-long; GE; Tao; YIN; Zhi-guo; ZHANG; Tian-jue

    2015-01-01

    The superconducting coil system of CYCIAE-230superconducting proton cyclotron consists of two coil windings,cryostat,GM coolers,and the liquid helium condenser(Fig.1),along with multiple thermometers,pressure gauges,liquid level gauges,load cells,a vacuum pump,a

  16. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  17. Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.I.; Kashikhin, V.V.; Kashikhin, V.S.; Lopes, M.L.; Mokhov, N.V.; Zlobin, A.V.; /Fermilab; Seryi, Andrei; /SLAC

    2011-10-14

    Radiation heat deposition in the superconducting magnets of the Interaction Region (IR) of a linear collider can be a serious issue that limits the magnet operating margins and shortens the material lifetime. Radiation and thermal analyses of the IR quadrupoles in the incoming and extraction beam lines of the ILC are performed in order to determine the magnet limits. This paper presents an analysis of the radial, azimuthal and longitudinal distributions of heat deposition in the incoming and disrupted beam doublets. Operation margins of the magnets based on NbTi superconductor are calculated and compared. The radiation and thermal analysis of the ILC IR quadrupoles based on Rutherford type cables was performed. It was found that the peak radiation heat deposition takes place in the second extraction quadrupole QFEX2. The maximum power density in the coil is {approx}17mW/g. This is rather high, comparing to the proton machines (LHC). However, the fast radial decay of the heat deposition together with the high thermal conductivity of the Rutherford type cable limits the coil temperatures to a moderate level. It was determined that both 2-layer and 4-layer QFEX2 magnet designs have thermal margins of a factor of {approx}4 at the nominal gradient of 31.3 T/m. Because of the large margins, these magnets can easily accommodate possible changes in the IR optics and heat deposition levels.

  18. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules Geneve (Switzerland)

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cos{theta} and cos{sup 2}{theta} coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper

  19. Fabrication of the superconducting coils for Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Konrad E-mail: konrad.risse@ipp.mpg.de; Rummel, Th.; Wegener, L.; Holzthuem, R.; Jaksic, N.; Kerl, F.; Sapper, J

    2003-09-01

    The Max Planck Institute of Plasma Physics is building up the stellarator fusion experiment Wendelstein 7-X (W7-X) at the branch institute in Greifswald. W7-X continues the line of stellarator experiments at IPP. To allow for steady state operation W7-X has a superconducting coil system with 50 non-planar and 20 planar coils. The coil system is grouped in five equal modules, each consisting of two mirror symmetric half modules. The half modules are assembled from five different non-planar coils, two planar coils and a sector of the coil support structure. All cryogenic parts are enclosed in a cryostat to protect them from ambient temperature. The magnet system was ordered from the European industry. The production of superconductor, winding packs and encasings are under way. The main focus of this contribution aims on the fabrication state of the coil system.

  20. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  1. Prototype of Superconducting Quadrupole for ISR Low-Beta Insertion

    CERN Multimedia

    1977-01-01

    In colliders, smaller beam cross-section means higher luminosity. Beam-size being proportional to the square-root of the "beta function" value, a small beta means small beam size, hence high luminosity. The first p-p collision in the ISR occurred in January 1971 and in 1973 a study was launched on low-beta insertions, which focus beams to even smaller sizes at the beam crossing points. In 1976 the first prototype of a superconducting quadrupole was tested. Here we see Theodor Tortschanoff with a prototype of 1.25 m magnetic length. Manufacture of 8 quadrupoles (4 of L=1.15 m, 4 of L=0.65 m) began at Alsthom in 1978. They were installed at point 8 of the ISR, enhancing luminosity there until final low-beta operation in December 1983. For details see "Yellow Report" CERN 76-16.

  2. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  3. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  4. Engineering Design and Manufacturing Challenges for a Wide-Aperture, Superconducting Quadrupole Magnet

    CERN Document Server

    Kirby, G A; Bielert, E; Fessia, P; Karppinen, M; Lepoittevin, B; Lorin, C; Luzieux, S; Perez, J C; Russenschuck, S; Sahner, T; Smekens, D; Segreti, M; Durante, M

    2012-01-01

    The design and construction of a wide-aperture, superconducting quadrupole magnet for the LHC insertion region is part of a study towards a luminosity upgrade of the LHC at CERN. The engineering design of components and tooling, the procurement, and the construction work presented in this paper includes innovative features such as more porous cable insulation, a new collar structure allowing horizontal assembly with a hydraulic collaring press, tuning shims for the adjustment of field quality, a fishbone like structure for the ground-plane insulation, and an improved quench-heater design. Rapid prototyping of coil-end spacers and trial-coil winding led to improved shapes, thus avoiding the need to impregnate the ends with epoxy resin, which would block the circulation of helium. The magnet construction follows established procedures for the curing and assembly of the coils, in order to match the workflow established in CERN’s ”large magnet facility.” This requirement led to the design and procurement of...

  5. New Development of VPI Process for Large Superconducting Coils

    Institute of Scientific and Technical Information of China (English)

    潘皖江; 武松涛; 崔益民

    2003-01-01

    High vacuum is required for Vacuum Pressure Impregnation (VPI) process of largecoils used in cryogenic. The defects such as dry spots and over rich resins should be minimized inlarge superconducting coils used. Both sealing problems associated with the mold and over richresin problems are eliminated by using vacuum bag mold method with which we can simplify thedesign of vacuum mold.

  6. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  7. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  8. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  9. Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kovach, P.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore,, J.; Nobreaga, F.; Novitsky, I.; Peggs, S.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2008-08-17

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb{sub 3}Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  10. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  11. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  12. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2013-09-15

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  13. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  14. The winding and testing of a 10 cm superconductive quadrupole for CERN

    CERN Document Server

    Williams, J.E.C.; Cornish, D.N.

    1970-01-01

    The construction and testing of the first of a pair of quadrupole magnets, designed for use as superconductive beam handling elements at CERN, is described. Tests showed this magnet to be eminently suitable for nuclear physics applications.

  15. Quadrupole gradient coil design and optimization: a printed circuit board approach.

    Science.gov (United States)

    Chu, K; Rutt, B K

    1994-06-01

    Three different dual-axis quadrupole gradient coils for quantitative high resolution MR imaging of small animals, phantoms and specimens were designed and built using printed circuit board technology. Numerical optimization of the conductor positions was used to increase the volume of 0.4% gradient uniformity by up to a factor of four. In one coil, the volume of 5% gradient uniformity occupied 88% and 83% of the overall diameter and length of the coil, respectively. A systematic error of 0.5% in the wire placement was shown to cause a reduction in the volume of 0.4% gradient uniformity by a factor of two, though the region of 5% gradient uniformity was not significantly affected. Heat transfer calculations were used to determine maximum peak and root-mean-squared currents that could safely be applied to the coils.

  16. Fabrication of First 4-m Coils for the LARP MQXFA Quadrupole and Assembly in Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Holik, Eddie Frank; Ambrosio, Giorgio; Anerella, Michael; Bossert, Rodger; Cavanna, Eugenio; Cheng, Daniel; Dietderich, Daniel R.; Ferracin, Paolo; Ghosh, Arup K.; Izquierdo Bermudez, Susana; Krave, Steven; Nobrega, Alfred; Perez, Juan Carlos; Pong, Ian; Sabbi, GianLuca; Santini, Carlo; Schmalzle, Jesse; Wanderer, Peter; Wang, Xiaorong; Yu, Miao

    2017-01-23

    The US LHC Accelerator Research Program is constructing prototype interaction region quadrupoles as part of the US in-kind contribution to the Hi-Lumi LHC project. The low-beta MQXFA Q1/Q3 coils have a 4-m length and a 150 mm bore. The design is first validated on short, one meter models (MQXFS) developed as part of the longstanding Nb3Sn quadrupole R&D by LARP in collaboration with CERN. In parallel, facilities and tooling are being developed and refined at BNL, LBNL, and FNAL to enable long coil production, assembly, and cold testing. Long length scale-up is based on the experience from the LARP 90 mm aperture (TQ-LQ) and 120 mm aperture (HQ and Long HQ) programs. A 4-m long MQXF practice coil was fabricated, water jet cut and analyzed to verify procedures, parts, and tooling. In parallel, the first complete prototype coil (QXFP01a) was fabricated and assembled in a long magnetic mirror, MQXFPM1, to provide early feedback on coil design and fabrication following the successful experience of previous LARP mirror tests.

  17. Fabrication of First 4-m Coils for the LARP MQXFA Quadrupole and Assembly in Mirror Structure

    CERN Document Server

    Holik, E F; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D R; Ferracin, P; Ghosh, A K; Izquierdo Bermudez, S; Krave, S; Nobrega, A; Perez, J C; Pong, I; Sabbi, G L; Santini, C; Schmalzle, J; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The US LHC Accelerator Research Program is constructing prototype interaction region quadrupoles as part of the US in-kind contribution to the Hi-Lumi LHC project. The low-beta MQXFA Q1/Q3 coils have a 4-m length and a 150 mm bore. The design is first validated on short, one meter models (MQXFS) developed as part of the longstanding Nb3Sn quadrupole R&D; by LARP in collaboration with CERN. In parallel, facilities and tooling are being developed and refined at BNL, LBNL, and FNAL to enable long coil production, assembly, and cold testing. Long length scale-up is based on the experience from the LARP 90 mm aperture (TQ-LQ) and 120 mm aperture (HQ and Long HQ) programs. A 4-m long MQXF practice coil was fabricated, water jet cut and analyzed to verify procedures, parts, and tooling. In parallel, the first complete prototype coil (QXFP01a) was fabricated and assembled in a long magnetic mirror, MQXFPM1, to provide early feedback on coil design and fabrication following the successful experience of previous LA...

  18. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  19. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    Science.gov (United States)

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  20. Dipole model test with one superconducting coil; results analysed

    CERN Document Server

    Durante, M; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  1. Dipole model test with one superconducting coil: results analysed

    CERN Document Server

    Bajas, H; Benda, V; Berriaud, C; Bajko, M; Bottura, L; Caspi, S; Charrondiere, M; Clément, S; Datskov, V; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  2. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    Science.gov (United States)

    TonThat, Dinh M.; Clarke, John

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect 27Al NQR signals in ruby (Al2O3[Cr3+]) at 359 and 714 kHz.

  3. Superconducting coil development for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. (Max-Planck-Inst. fuer Plasmaphysik, EURATOM Association, Garching (Germany)); W 7-X Technical Group

    1993-01-01

    At the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, the Wendelstein 7-X stellarator (W 7-X) is in the stage of the beginning R and D phase. The experiment will be a large modular machine with nonplanar coils, following the Garching development line. It fits into the range of next step devices. The main technical parameters are: Major radius: R[sub 0]=5.5 m, magnetic induction: B[sub 0]=3 T, stored magnetic energy: W[sub m]=600 MJ, average plasma radius: r[sub 0]=0.53 m. The expected plasma parameters are: Central temperatures: T[sub i](0), T[sub e](0)=2-5 keV, central electron density: n[sub e](0)=0.1-2x10[sup 20] m[sup -3], energy confinement time: [tau][sub E]=0.1-0.5 s, average beta value: <[beta]>[<=]0.05. The design has to allow steady-state plasma operation. Consequently the coil system is superconducting. An internally cooled cable-in-conduit conductor with copper stabilized NbTi strands will be used at 4 K (LHe). The paper presents an overview of the design features of the machine and describes in particular the conductor design, the coil arrangement with electrical, hydraulic and mechanical parameters as well as the sequence of prototype steps which are foreseen for establishing a well-developed series production of the magnet. (orig.).

  4. Simulation of Thermal Processes in Superconducting Pancake Coils Cooled by GM Cryocooler

    Science.gov (United States)

    Lebioda, M.; Rymaszewski, J.; Korzeniewska, E.

    2014-04-01

    This article presents the thermal model of a small scale superconducting magnetic energy storage system with the closed cycle helium cryocooler. The authors propose the use of contact-cooled coils with maintaining the possibility of the system reconfiguring. The model assumes the use of the second generation superconducting tapes to make the windings in the form of flat discs (pancakes). The paper presents results for a field model of the single pancake coil and the winding system consisting of several coils.

  5. Study of Kapton insulated superconducting coils manufactured for the LHC inner triplet model magnets at Fermilab

    CERN Document Server

    Andreev, N; Bossert, R; Brandt, J; Chichili, D R; Kerby, J S; Nobrega, A; Novitski, I; Ozelis, J P; Yadav, S; Zlobin, A V

    2000-01-01

    Fermilab has constructed a number of 2 m model quadrupoles as part of an ongoing program to develop and optimize the design of quadrupoles for the LHC Interaction Region inner triplets. The quadrupole design is based upon a two layer shell type coil of multi-filament NbTi strands in Rutherford cable, insulated with Kapton film. As such, the coil size and mechanical properties are critical in achieving the desired prestress and field quality targets for the agent. Throughout the model magnet program, different design and manufacturing techniques have been studied to obtain coils with the required mechanical properties. This paper summarizes the structural material and coil mechanical properties, coil design optimization results and production experience accumulated in the model R&D program. (5 refs).

  6. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    Science.gov (United States)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-09-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length.

  7. Superconducting Quadrupole Prototype for the ISR high luminosity (low beta) insertion

    CERN Multimedia

    1977-01-01

    In colliders, smaller beam cross-section means higher luminosity. Beam-size being proportional to the square-root of the "beta function" value, a small beta means small beam size, hence high luminosity. In 1973 a study was launched on low-beta insertions using superconducting quadrupole magnets, which focus beams to very small sizes at the beam crossing points . In 1976 the first prototype of a superconducting quadrupole was tested. Here we see Theodor Tortschanoff with the prototype of 1.25 m magnetic length. Manufacture of 8 quadrupoles (4 of L=1.15 m, 4 of L=0.65 m) began at Alsthom in 1978. They were installed at intersection I8 of the ISR, enhancing luminosity there by a factor 7 until final low-beta operation in December 1983. For details see "Yellow Report" CERN 76-16. See also pictures 7702307, 7702308, 7702182,7510214X,7510217X.

  8. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  9. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    Science.gov (United States)

    Fagnard, J.-F.; Crate, D.; Jamoye, J.-F.; Laurent, Ph; Mattivi, B.; Cloots, R.; Ausloos, M.; Genon, A.; Vanderbemden, Ph

    2006-06-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 µV/cm criterion). Critical currents were found to exceed 100 A for T power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s.

  10. Rotating-coil calibration in a reference quadrupole, considering roll-angle misalignment and higher-order harmonics

    CERN Document Server

    Arpaia, Pasquale; Köster, Oliver; Russenschuck, Stephan; Severino, Giordana; 10.1016/j.measurement.2016.02.061

    2016-01-01

    A method is proposed for calibrating the radius of a rotating coil sensor by relaxing the metrological constraints on alignment and field errors of the reference quadrupole. A coil radius calibration considering a roll-angle misalignment of the measurement bench, the magnet, and the motor-drive unit is analyzed. Then, the error arising from higher-order harmonic field imperfections in the reference quadrupole is assessed. The method is validated by numerical field computation for both the higher-order harmonic errors and the roll-angle misalignment. Finally, an experimental proof-of-principle demonstration is car-ried out in a calibration magnet with sextupole harmonic.

  11. ISR Superconducting Quadrupole Prototype:preparing the first test

    CERN Multimedia

    1976-01-01

    The photo shows the first prototype quadrupole (still with an adjustable stainless steel shrinking cylinder) being lifted to be inserted in a vertical cryostat for testing. It attained the design field gradient without any quench.The persons are Pierre Rey and Michel Bouvier. See also 7702690X.

  12. Development of Superconducting Tuning Quadrupole Corrector (MQT) Prototypes for the LHC

    CERN Document Server

    Allitt, M; Hobl, A; Ijspeert, Albert; Karppinen, M; Krischel, D; Mazet, J; Salminen, J; Schillo, M; Senis, R; Walckiers, L

    2002-01-01

    The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the "counter-winding" system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing.

  13. Second Generation Coil Design of the Nb3Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Ballarino, A; Cavanna, E; Bossert, R; Cheng, D; Dietderich, D; Ferracin, P; Ghosh, A; Hagen,P; Holik, E; Perez, J C; Rochepault, E; Schmalzle, J; Todesco, E; Yu, M

    2016-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this paper we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.

  14. Quench absorption coils: a quench protection concept for high-field superconducting accelerator magnets

    Science.gov (United States)

    Mentink, M.; Salmi, T.

    2017-06-01

    A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called ‘quench absorption coils’ are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.

  15. Prototype ISR Superconducting Quadrupole for the low beta insertion.

    CERN Multimedia

    1976-01-01

    The four coils are provisionally kept together by aluminium clamps while epoxy-glass bands are wrapped around them to form a number of spacer rings.Stainless steel spacers were then inserted between these rings and the yoke quadrants. The persons are Michel Bouvier(left) and Pierre Pugin. See also7702690X.

  16. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  17. Fabrication of superconducting tunnel junctions with embedded coil for applying magnetic field

    Science.gov (United States)

    Yamaguchi, Kenji; Nakagawa, Hiroshi; Aoyagi, Masahiro; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru

    2016-11-01

    We have proposed and demonstrated a superconducting tunnel junction (STJ) with an embedded coil for applying a magnetic field. The STJ was fabricated on the coil, which was embedded in a Si substrate. The coil in the Si substrate consists of superconducting microstrip lines and applies a magnetic field to the STJ to suppress the dc Josephson current. The embedded coil was designed with a line and space of 3 μm and a thickness of 120 nm. To planarize the coil, we employed chemical mechanical polishing (CMP) in our fabrication process. In this STJ, the maximum current of the embedded coil was 28 mA, which corresponded to the maximum magnetic field of 11.76 mT.

  18. Superconducting Quadrupole for the ISR High-Luminosity insertion

    CERN Multimedia

    1978-01-01

    This picture shows the active part of the magnet: the electrical connections at the front end, the protection resistor placed over the aluminium alloy shrinking rings, the yoke quadrants and the inner vacuum chamber with inbedded 6-pole windings.The quadrupolar coils with their spacers (located between the inner vacuum chamber and the yoke) cannot be seen in this picture. See also photos 7702690X, 7702307, 7702688X, 7812211.

  19. Superconducting toroidal field coil current densities for the TFCX

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  20. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    Energy Technology Data Exchange (ETDEWEB)

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  1. Integrated design of superconducting accelerator magnets a case study of the main quadrupole

    CERN Document Server

    Russenschuck, Stephan; Lewin, M; Paul, C; Ramberger, S; Rodríguez-Mateos, F; Tortschanoff, Theodor; Verweij, A P; Wolf, R

    1998-01-01

    This paper describes the software tool which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. Applied methods include numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software tool is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, which was designed at C.E.A. Saclay (France) using a different approach, was chosen as an example for the integrated design process. The paper focuses on the design issues and is not a project report on the main quadrupoles under construction.

  2. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  3. Test of Optimized 120-mm LARP $Nb_{3}S_n$ Quadrupole Coil Using Magnetic Mirror Structure

    CERN Document Server

    Chlachidze, G; Andreev, N; Anerella, M; Barzi, E; Bossert, R; Caspi, S; Cheng, D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Kashikhin, V V; Lamm, M; Marchevsky, M; Nobrega, A; Novitski, I; Orris, D; Sabbi, G L; Schmalzle, J; Wanderer, P; Zlobin, A V

    2013-01-01

    The US LHC accelerator research program (LARP) is developing a new generation of large - aperture high - field quadrupoles based on Nb 3 Sn conductor for the High luminosity upgrade of Large Hadron Collider (HiLumi - LHC). Tests of the first series of 120 - mm aperture HQ coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerato r Laboratory (Fermilab) using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirror model with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this co il was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8 - mm strand, used in all previous HQ coils was replaced with a 0.778 - mm Nb 3 Sn strand of RRP 108/127 sub - element design. The coil was instrumented with voltage taps, h...

  4. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  5. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  6. A preliminary quadrupole asymmetry study of a β=0.12 superconducting single spoke cavity

    Science.gov (United States)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of β=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a β=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  7. Heavy-Fermion Superconductivity in the Quadrupole Ordered State of PrV2Al20

    Science.gov (United States)

    Tsujimoto, Masaki; Matsumoto, Yosuke; Tomita, Takahiro; Sakai, Akito; Nakatsuji, Satoru

    2014-12-01

    PrV2Al20 is a rare example of a heavy-fermion system based on strong hybridization between conduction electrons and nonmagnetic quadrupolar moments of the cubic Γ3 ground doublet. Here, we report that a high-quality single crystal of PrV2Al20 exhibits superconductivity at Tc=50 mK in the antiferroquadrupole-ordered state under ambient pressure. The heavy-fermion character of the superconductivity is evident from the specific heat jump of Δ C /T ˜0.3 J /mol K2 and the effective mass m*/m0˜140 estimated from the temperature dependence of the upper critical field. Furthermore, the high-quality single crystals exhibit double transitions at TQ=0.75 K and T*=0.65 K associated with quadrupole and octupole degrees of freedom of the Γ3 doublet. In the ordered state, the specific heat C /T shows a T3 dependence, indicating the gapless mode associated with the quadrupole order, the octupole order, or both. The strong sensitivity to impurity of the superconductivity suggests unconventional character due to significant quadrupolar fluctuations.

  8. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  9. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  10. Running characteristics of the superconducting magnetically levitated train in the case of the superconducting coil quenching; Chodendo jiki fujo ressha no chodendo coil quenching ji no soko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, H. [Kansai University, Osaka (Japan); Osaki, H.; Masada, E. [The University of Tokyo, Tokyo (Japan)

    1998-07-01

    A superconducting (SC) magnetically levitated (Maglev) transportation system has been developed in Japan and various experiments have been done in the new test line at Yamanashi prefecture. Although the superconducting electrodynamic suspension (EDS) system has the advantage of stable levitation without active control, various electromagnetic or mechanical disturbances can cause the change of gap length and the displacement or oscillation of the bogie. In this system, the severest disturbance is SC coil quenching. Therefore it is important to show the running characteristics of the Maglev train and to increase the stability in this case. We developed three dimensional numerical simulation program for the Maglev train. Using this program, running simulation of the train for Yamanashi new test track was undertaken in the case of SC coil quenching. Because of the damping characteristics of the EDS system, influence of the coil quenching is smaller at a higher speed. In the train model, electromagnetic spring strength of the EDS system is larger than mechanical spring of the secondary suspension system connecting a bogie and cabins. Therefore influence of the quenching is only seen in the cabins connected to the quenched bogie. Demagnetization of the SC coil quenching is considered to increase the stability of the train. Although this method is useful to decrease large guidance force, lateral displacement, yaw and roll angle of the bogie, vertical displacement and pitch angle become large. 10 refs., 17 figs., 2 tabs.

  11. Properties of cryocooler-cooled superconductive pulse coil (1); Chokureishiki chodendo parusu koiru no tokusei hyoka (1)

    Energy Technology Data Exchange (ETDEWEB)

    Hae, T.; Kajikawa, K.; Iwakuma, M.; Funaki, K. [Kyushu Univ., Fukuoka (Japan); Hayashi, H.; Tsutsumi, K. [Kyushu Electric Power Co., Inc., Fukuoka (Japan); Tomioka, A.; Konno, M.; Nose, S. [Fuji Electric Corp., Tokyo (Japan)

    1999-11-10

    We manufactured the pulse coil of refrigerating machine direct cooling system using oxide superconducting wire rod, and they succeeded in triangular wave continuous running of 1T and 1Hz. It aimed at future further scale-up using this pulse coil this time, and the relationship between heat quantity and coil temperature rise in the operation was evaluated. (NEDO)

  12. Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...

  13. A Full-Size High-Temperature Superconducting Coil Employed in a Wind Turbine Generator Setup

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A full-size stationary experimental setup, which is a pole pair segment of a 2 MW high-temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the setup, and further to the development ...

  14. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  15. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    Science.gov (United States)

    2015-08-11

    The coil resistance is 0.3 ohms on each coil. Both coils were connected to a HP 8753D network analyzer through coaxial cables with 50 ohm BNC...data is post processed at plotted using MATLAB . The graphs show the magnitude of the real and imaginary signals in time and frequency domains

  16. Design Aspects on Winding of an MgB2 Superconducting Generator Coil

    DEFF Research Database (Denmark)

    Magnusson, N.; Eliassen, J.C.; Abrahamsen, Asger Bech

    2015-01-01

    Generators based on superconducting rotor coils are considered for future large off-shore wind turbines for their low weight and compact design, and for their possibility to reduce costs. In the 10-20 K temperature range, MgB2 superconductors carry current densities 100 times higher than standard...... copper conductors at room temperature at one tenth of the wire cost per unit carried current. In the framework of the European project INNWIND.EU, an MgB2 superconducting generator pole will be designed, built and tested. Some of the design aspects of this work with emphasis on the winding process......% compared to the use of an additional, dedicated, electrical insulation like Kapton for wet-winding or glass-fibre for dry-winding followed by vacuum impregnation. We show the results of a trial winding of 500 m of MgB2 superconducting wire into a double pancake coil using the wet-winding technique...

  17. Modified Bean Model and FEM Method Combined for Persistent Current Calculation in Superconducting Coils

    CERN Document Server

    Völlinger, Christine; Russenschuck, Stephan

    2001-01-01

    Field variations in the LHC superconducting magnets, e. g. during the ramping of the magnets, induce magnetization currents in the superconducting material, the so-called persistent currents that do not decay but persist due to the lack of resistivity. This paper describes a semi-analytical hysteresis model for hard superconductors, which has been developed for the computation of the total field errors arising from persistent currents. Since the superconducting coil is surrounded by a ferromagnetic yoke structure, the persistent current model is combined with the finite element method (FEM), as the non-linear yoke can only be calculated numerically. The used finite element method is based on a reduced vector potential formulation that avoids the meshing of the coil while calculating the part of the field arising from the source currents by means of the Biot-Savart Law. The combination allows to determine persistent current induced field errors as function of the excitation and for arbitrarily shaped iron yoke...

  18. Current control method of thyristor converter for PF superconducting coil in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-hoon, E-mail: jaehoon@nfri.re.kr [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Ahn, Hyun-sik [POSCO ICT, 622, Sampyeong-dong, Bundang-gu, Seongnam-si, Kyeonggi-do 463-400 (Korea, Republic of); Lee, Dong-keun; Jin, Jong-kuk [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Jang, Gye-yong; Seong, Dae-kyung; Yun, Min-sung; Shin, Hyun-seok [POSCO ICT, 622, Sampyeong-dong, Bundang-gu, Seongnam-si, Kyeonggi-do 463-400 (Korea, Republic of); Kim, Yaung-soo [National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2012-11-15

    This paper presents the current control method of thyristor converter which is applied to PF power supply in KSTAR. The thyristor converter for PF superconducting coil is composed of two 6 pulse converters and each converter is connected in parallel using DC reactor to reduce voltage ripple, current rating of converter and harmonic components. For 4 quadrant operation, each 6 pulse converter has six arms of anti-paralleled thyristor device, back-to-back connection. To apply this converter on KSTAR PF coil, stable coil current control is needed. Additionally, PF coil needs smooth current control without dead-time when current polarity changes and it is not easy in back-to-back thyristor converter. For this reason, zero crossing current control using circulating current and test results are introduced in this paper and it was satisfactory.

  19. A Correlation Study between Geometry of Collared Coils and Normal Quadrupole Multipole in the Main LHC Dipoles

    CERN Document Server

    Bertinelli, F; Berthollon-Vitte, S; Glaude, D; Vanenkov, I

    2006-01-01

    The quality control implemented at all LHC dipole assemblers includes precise mechanical measurements of the geometry of collared coils. A cross-analysis performed between mechanical and magnetic measurements data shows a correlation between collared coils outer dimensions and the normal quadrupole multipole (b2) for one dipole assembler. The profile geometry of the single collars - as determined from 3D measurements at the collar suppliers and CERN - could not account alone for the significant left – right aperture asymmetry observed. This triggered a deeper investigation on different elements of the geometry of single collars. The results of this work show that the relative positioning of the collaring holes, allowing a small bending deformation of collars under the effect of coil pre-stress, is an important effect that generates a b2 multipole at the limit of specification. The study has deepened the understanding of the factors affecting collared coil geometry and field quality. The precision of 3D m...

  20. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  1. Space-deployed, thin-walled enclosure for a cryogenically-cooled high temperature superconducting coil

    Science.gov (United States)

    Porter, Allison K.

    The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.

  2. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.

    Science.gov (United States)

    Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.

  3. Optimization of Superconducting Focusing Quadrupoles for the HighCurrent Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, GianLuca; Gourlay, Steve; Gung, Chen-yu; Hafalia, Ray; Lietzke, Alan; Martovetski, Nicolai; Mattafirri, Sara; Meinke, Rainer; Minervini, Joseph; Schultz, Joel; Seidl, Peter

    2005-09-16

    The Heavy Ion Fusion (HIF) program is progressing through a series of physics and technology demonstrations leading to an inertial fusion power plant. The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is exploring the physics of intense beams with high line-charge density. Superconducting focusing quadrupoles have been developed for the HCX magnetic transport studies. A baseline design was selected following several pre-series models. Optimization of the baseline design led to the development of a first prototype that achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, without training, with measured field errors at the 0.1% level. Based on these results, the magnet geometry and fabrication procedures were adjusted to improve the field quality. These modifications were implemented in a second prototype. In this paper, the optimized design is presented and comparisons between the design harmonics and magnetic measurements performed on the new prototype are discussed.

  4. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  5. Heat load characteristics and new design using one-coil model superconducting magnets

    Science.gov (United States)

    Jizo, Yoshihiro; Akagi, Hidenari; Yamaguchi, Takashi; Terai, Motoaki; Shinobu, Masatoshi

    Superconducting magnets (SCM) for Maglev trains are vibrated by the electromagnetic force arising from the magnetic field of higher harmonics, which is due to the arrangement of the ground coils. The heat load within the liquid helium temperature region increases by the vibration of the magnets. This paper reports a heat load generation estimation mechanism due to the above-mentioned vibration, as well as effective measures of reducing heat load generation. In addition, we show how a one-coil type SCM can reduce the heat load generation in electromagnetic disturbance tests.

  6. Theoretical and experimental study of a new single-coil superconducting miniundulator

    CERN Document Server

    Kulesza, Joe; Roscup, Neil; Diao, Cao Zheng; Deyhim, Alex; Moser, Herbert O

    2014-01-01

    The first pre-prototype of a single-coil superconducting miniundulator has been built and studied. Its basic specifications include 10 main periods and two end compensation periods, a period length of 7 mm, and a gap of 2 mm. The design is based on a racetrack-like coil configuration that is subsequently compressed to form the gap region with the spatially alternating currents flowing perpendicularly to the electron beam above and below the midplane. Operation up to an excitation current slightly beyond 400 A before quenching resulted in a peak magnetic flux density on axis of about 1 T and an undulator parameter of K about 0.65.

  7. Aluminum and boron nuclear quadrupole resonance with a direct current superconducting quantum interference device

    Science.gov (United States)

    Connor, C.; Chang, J.; Pines, A.

    1990-12-01

    We report the application of our dc SQUID (superconducting quantum interference device) spectrometer [C. Connor, J. Chang, and A. Pines, Rev. Sci. Instrum. 61, 1059(1990)] to nuclear quadrupole resonance (NQR) studies of aluminum-27, and boron-11 in crystalline and glassy solids. Our results give e2qQ/h=2.38 MHz and η=0.0 for α-Al2O3 at 4.2 K. For the natural mineral petalite (LiAlSi4O10), we obtain e2qQ/h=4.56 MHz and η=0.47. The quadrupole resonance frequency is 1467 kHz in boron nitride, and in the vicinity of 1300 kHz for various borates in the B2O3ṡxH2O system. The distribution of boron environments in a B2O3 glass gives rise to a linewidth of about 80 kHz in the SQUID detected resonance.

  8. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed.

  9. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

    Science.gov (United States)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.

    2013-01-01

    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  10. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  11. Response of an on-chip coil-integrated superconducting tunnel junction to x-rays

    CERN Document Server

    Maehata, K; Taino, T

    2003-01-01

    An on-chip coil-integrated superconducting tunnel junction (OC sup 2 -STJ) was irradiated by X-rays emitted from an sup 5 sup 5 Fe source to the examine the performance of X-ray detection by applying a magnetic field produced by a superconducting microstrip coil integrated into the junction chip. Response characteristics were obtained for a diamond-shaped Nd-based tunnel junction with a sensitive area of 100 x 100 mu m sup 2 in the OC sup 2 -STJ chip. Two kinds of stable operation modes with different pulse heights were observed by changing the magnetic flux density in the barrier region of the junction. In the low-pulse-height mode, the pulse height distribution exhibits two full-energy peaks corresponding to signals created in the top and base electrodes. Stable operation of the OC sup 2 -STJ was demonstrated without using conventional external electromagnets. (author)

  12. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  13. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed. This study is within the framework of the EuCARD WP7-HFM project. In particular, the proposed curve can be used for the end design of the high field model magnet (Task 7.3).

  14. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.;

    2009-01-01

    Superconducting shields are commonly used to suppress external magnetic interference. We show, that an error of almost an order of magnitude can occur in the coil factor in realistic configurations of the solenoid and the shield. The reason is that the coil factor is determined by not only...

  15. Coil Creep and Skew-Quadrupole Field Components in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Annala, G.; Harding, D.J.; Syphers, M.J.; /Fermilab

    2011-07-11

    During the start-up of Run II of the Tevatron Collider program, several issues surfaced which were not present, or not seen as detrimental, during Run I. These included the repeated deterioration of the closed orbit requiring orbit smoothing every two weeks or so, the inability to correct the closed orbit to desired positions due to various correctors running at maximum limits, regions of systematically strong vertical dipole corrections, and the identification of very strong coupling between the two transverse degrees-of-freedom. It became apparent that many of the problems being experienced operationally were connected to a deterioration of the main dipole magnet alignment, and remedial actions were undertaken. However, the alignment alone was not enough to explain the corrector strengths required to handle transverse coupling. With one exception, strong coupling had generally not been an issue in the Tevatron during Run I. Based on experience with the Main Ring, the Tevatron was designed with a very strong skew quadrupole circuit to compensate any quadrupole alignment and skew quadrupole field errors that might present themselves. The circuit was composed of 48 correctors placed evenly throughout the arcs, 8 per sector, evenly placed in every other cell. Other smaller circuits were installed but not initially needed or commissioned. These smaller circuits were composed of individual skew quadrupole correctors on either side of the long straight sections. These circuits were tuned by first bringing the horizontal and vertical tunes near each other. The skew quadrupoles were then adjusted to minimize tune split, usually to less than 0.003. Initially, the main skew quad circuit (designated T:SQ) could accomplish this global decoupling with only 4% of its possible current, and the smaller circuits were not required at all. The start-up of Run Ib was complicated by what was later discovered to be a rolled triplet quadrupole magnet in one of the Interaction Regions

  16. Characteristics of persistent-current mode of HTS coil on superconducting electromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y., E-mail: cylee@krri.re.kr [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Kim, J.; Han, Y.J.; Kang, B. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Chung, Y.D. [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Yoon, Y.S. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Chu, S.Y.; Hwang, Y.J.; Jo, H.C.; Jang, J.Y.; Ko, T.K. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    The levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet. The presence of iron core provides a significant benefit in the PCM performance of SC coil. The increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM. This paper investigates the way in which the levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet (SC-EM) operated in persistence-current mode (PCM). Using inductance analyzed from the magnetic circuit of an EMS model, the current decay rate caused by the variation in the levitation gap was simulated. In order to experimentally verify the simulation results, we fabricated a small-scale EMS model with SC coil operated in PCM and measured the current decay rates at different levitation gaps. The result showed that the presence of iron core provides a significant benefit in the PCM performance of SC coil, but the benefit decreased as the levitation gap increases. This study revealed that the increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM.

  17. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  18. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  19. Discrete Differential Geometry Applied to the Coil-End Design of Superconducting Magnets

    CERN Document Server

    Auchmann, B; Schwerg, N

    2007-01-01

    Coil-end design for superconducting accelerator magnets, based on the continuous strip theory of differential geometry, has been introduced by Cook in 1991. A similar method has later been coupled to numerical field calculation and used in an integrated design process for LHC magnets within the CERN field computation program ROXIE. In this paper we present a discrete analog on to the continuous theory of strips. Its inherent simplicity enhances the computational performance, while reproducing the accuracy of the continuous model. The method has been applied to the design

  20. A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system

    Energy Technology Data Exchange (ETDEWEB)

    Yen, F; Li, J; Zheng, S J; Liu, L; Ma, G T; Wang, J S; Wang, S Y; Liu Wei, E-mail: fei.h.yen@gmail.co [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2010-10-15

    Thrust measurements were performed on a coil made of a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of I{sub DC} = 30 A for the superconducting coil and alternating current of I{sub AC} = 9 A for the stator coils, a thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back-plate, thrust was increased by 70%.

  1. A Novel Idea for Coil Collar Structures in Accelerator Superconducting Magnets

    CERN Document Server

    Fessia, P

    2002-01-01

    The dipoles for several different machines (LHC, SSC, HERA) were designed using non-magnetic metallic collars to contain the superconducting coils. The coils are of two types, main and floating. This paper describes a structure with combined steel and plastic collars. Since the floating collars do not give an important contribution to the global rigidity of the dipole we propose to suppress them. The plastic collars are just fillers to limit the helium contained in the cold mass. Some data about thermoplastic materials to be possibly used for the collars are given and some estimations of mass and cost of this configuration are made. Finally the results of the tests of a 1-m-long twin aperture dipole with mixed steel-plastic collars are shortly described. The replacement of expensive alloys by high performance plastic in non-structural components can be a cost-effective solution in view of future projects where superconducting magnets are involved and contained costs are a key issue.

  2. Superconducting flux pump for high-temperature superconductor insert coils of NMR magnets

    Science.gov (United States)

    Jeong, S.; Lee, H.; Iwasa, Y.

    2002-05-01

    This paper describes a prototype flux pump recently operated at the MIT Francis Bitter Magnet Laboratory. The results of the prototype flux pump will be used in the development of a full-scale flux pump that will be coupled to a high-temperature superconductor (HTS) insert coil of a high-field NMR magnet. Such an HTS insert is unlikely to operate in persistent mode because of the conductor's low index (n). The flux pump can compensate for field decay in the HTS insert coil and make the insert operate effectively in persistent mode. The flux pump, comprised essentially of a transformer and two switches, all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A prototype flux pump has been designed, fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting prototype flux pump is made of Nb3Sn tape. The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid; the effluent helium vapor maintains the thermal stability of the flux pump. [This paper is also published in Advances in Cryogenic Engineering Volume 47A, AIP Conference Proceedings Volume 613, pp. 441-448.

  3. A novel approach to quench detection for high temperature superconducting coils

    Science.gov (United States)

    Song, W. J.; Fang, X. Y.; Fang, J.; Wei, B.; Hou, J. Z.; Liu, L. F.; Lu, K. K.; Li, Shuo

    2015-11-01

    A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  4. Low-frequency nuclear magnetic resonance and nuclear quadrupole resonance spectrometer based on a dc superconducting quantum interference device

    Science.gov (United States)

    Fan, N. Q.; Clarke, John

    1991-06-01

    A sensitive spectrometer, based on a dc superconducting quantum interference device, for the direct detection of low-frequency pulsed nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR), is described. The frequency response extends from about 10 to 200 kHz, and the recovery time after the magnetic pulse is removed is typically 50 μs. As examples, NMR spectra are shown from Pt and Cu metal powders in a magnetic field of 6 mT, and NQR spectra are shown from 2D in a tunneling methyl group and 14N in NH4ClO4.

  5. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  6. Simulation of superconducting tapes and coils with convex quadratic programming method

    Science.gov (United States)

    Zhang, Yan; Song, Yuntao; Wang, Lei; Liu, Xufeng

    2015-08-01

    Second-generation (2G) high-temperature superconducting coated conductors are playing an increasingly important role in power applications due to their large current density under high magnetic fields. In this paper, we conclude and explore the ability and possible potential of J formulation from the mathematical modeling point of view. An equivalent matrix form of J formulation has been presented and a relation between electromagnetic quantities and Karush-Kuhn-Tucker (KKT) conditions in optimization theory has been discovered. The use of the latest formulae to calculate inductance in a coil system and the primal-dual interior-point method algorithm is a trial to make the process of modeling stylized and build a bridge to commercial optimization solvers. Two different dependences of the critical current density on the magnetic field have been used in order to make a comparison with those published papers.

  7. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P., E-mail: patrick.strasser@kek.jp [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ikedo, Y.; Miyake, Y.; Shimomura, K.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T. [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, T. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Makida, Y.; Yoshida, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sasaki, K. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Okamura, T. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ{sup +} and cloud μ{sup −} are extracted simultaneously. To accommodate future experiments that would only require either μ{sup +} or μ{sup −} beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported.

  8. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Science.gov (United States)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  9. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, N. [Tsukamoto Laboratory, Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)]. E-mail: n-sekine@tsukalab.dnj.ynu.ac.jp; Tada, S. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Higuchi, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Furumura, Y. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Takao, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Yamanaka, A. [Research Center, Toyobo, Co., Ltd, 2-1-1, Katata, Otsu, Shiga 520-0292 (Japan)

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema[reg] fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon[reg] fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  10. Characterization of superconducting coil for fault current limitation; Caracterizacao de bobina supercondutora para limitacao de corrente de curto-circuito

    Energy Technology Data Exchange (ETDEWEB)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Gomes Junior, George; Amorim, Helio Salim [Coordenacao dos Programas de Pos-Graduacao em Engeharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  11. Magnet Design of the 150 mm Aperture Low-β Quadrupoles for the High Luminosity LHC

    CERN Document Server

    Ferracin, P; Anerella, M; Borgnolutti, F; Bossert, R; Cheng, D; Dietderich, D R; Felice, H; Ghosh , A; Godeke, A; Izquierdo Bermudez, S; Fessia, P; Krave, S; Juchno, M; Perez, J C; Oberli, L; Sabbi, G; Todesco, E; Yu, M

    2014-01-01

    The High Luminosity LHC (HL-LHC) project is aimed at studying and implementing the necessary changes in the LHC to increase its luminosity by a factor five. Among the magnets that will be upgraded are the 16 superconducting low-β quadrupoles placed around the two high luminosity interaction regions (ATLAS and CMS experiments). In the current baseline scenario, these quadrupole magnets will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. The resulting conductor peak field of more than 12 T will require the use of Nb3Sn superconducting coils. We present in this paper the HL-LHC low-β quadrupole design, based on the experience gathered by the US LARP program, and, in particular, we describe the support structure components to pre-load the coils, withstand the electro-magnetic forces, provide alignment and LHe containment, and integrate the cold mass in the LHC IRs.

  12. Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Modena, M; Payn, A; Rossi, L; Sanfilippo, S; Schellong, B; Schirm, KM; Schmidt, P; Simon, F; Todesco, E; Wildner, E

    2006-01-01

    The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the...

  13. Superconducting Quadrupole for the ISR high luminosity insertion assembly in its cryostat

    CERN Multimedia

    1979-01-01

    The picture shows the insertion of the quadrupole magnet active part with its thermal shield into the cryostat. Above the cylindrical part of the cryostat one sees the funnel containing the current leads and the helium feed and exhaust lines. Standing onthe left side is Pierre Pugin. See also 7704022, 7906592X, 7812211,7904252,7702690X.

  14. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  15. A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics

    Science.gov (United States)

    Fu, Lin; Matsuda, Koichi; Lecrevisse, Thibault; Iwasa, Yukikazu; Coombs, Tim

    2016-04-01

    This letter presents a flux pumping method and the results gained when it was used to magnetize a range of different YBCO coils. The pumping device consists of an iron magnetic circuit with eight copper coils which apply a traveling magnetic field to the superconductor. The copper poles are arranged vertically with an air gap length of 1 mm and the iron cores are made of laminated electric steel plates to minimize eddy-current losses. We have used this arrangement to investigate the best possible pumping result when parameters such as frequency, amplitude and waveform are varied. We have successfully pumped current into the superconducting coil up to a value of 90% of I c and achieved a resultant magnetic field of 1.5 T.

  16. Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

    CERN Document Server

    2016-01-01

    Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

  17. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Non Q. (San Diego, CA); Clarke, John (Berkeley, CA)

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  18. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  19. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training - theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, E.S.; Williams, J.E.C.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.; Massachusetts Inst. of Tech., Cambridge (USA). Plasma Fusion Center)

    1985-06-01

    The paper examines various modes of matrix failure in epoxy-impregnated superconducting coils. Properties of superconducting composite; possible composite failure modes; constituent stresses in a composite winding; and premature-quench experiment; are all discussed.

  20. Field quality of 1.5 m long conduction cooled superconducting undulator coils with 20 mm period length

    Science.gov (United States)

    Casalbuoni, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Boffo, C.; Gerhard, Th A.; Turenne, M.; Walter, W.

    2017-07-01

    The Institute for Beam Physics and Technology (IBPT) at the Karlsruhe Institute of Technology (KIT) and the industrial partner Babcock Noell GmbH (BNG) are collaborating since 2007 on the development of superconducting undulators both for ANKA and low emittance light sources. The first full length device with 15 mm period length has been successfully tested in the ANKA storage ring for one year. The next superconducting undulator has 20 mm period length (SCU20) and is also planned to be installed in the accelerator test facility and synchrotron light source ANKA. The SCU20 1.5 m long coils have been characterized in a conduction cooled horizontal test facility developed at KIT IBPT. Here we present the local magnetic field and field integral measurements, as well as their analysis including the expected photon spectrum.

  1. Tests of a 70 mm aperture quadrupole for the LHC low-$\\beta$ insertions

    CERN Document Server

    Lamm, M J; Ostojic, R; Rival, F; Rodríguez-Mateos, F; Siemko, A; Taylor, T M; Walckiers, L; Milward, S R; Treadgold, J R

    1999-01-01

    Three 70 mm aperture 1-meter superconducting quadrupole magnets for the LHC low- beta insertions have been designed and built in collaboration between CERN and Oxford Instruments. These magnets feature a four layer coil wound fromtwo 8.2 mm wide graded NbTi cables. In this paper, the authors present the results from the tests at 4.4 K and 1.9 K of the third quadrupole (Q3), with an emphasis on studies concerning quench protection. After a summary of Q3 training in three thermal cycles, quench velocities, peak temperatures in the two superconducting cables and the performance of the layer strip heaters are reported. (6 refs).

  2. The effect of the wire design parameters on the stability of MgB{sub 2} superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, G; Salama, K [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204-4006 (United States); Alessandrini, M; Laskaris, E T [General Electric Company, Global Research Center, Niskayuna, NY 12309 (United States)], E-mail: gmajkic@uh.edu

    2009-03-15

    The thermal stability of superconducting wires is one of the important issues for wire applications. We present a numerical study on the effect of the wire design parameters on the quench behavior of superconducting MgB{sub 2} wire employed in coils. The model considers a stack of MgB{sub 2} wires of rectangular cross section separated by insulation layers and subjected to a thermal disturbance. The problem is solved on a two-dimensional domain and employs the current sharing concept in the transition between superconducting and normal states. The effects of three design parameters in wire manufacturing are investigated. Quench behavior is compared for wires having different filling factor of superconducting filaments, different volume of copper stabilizer, and different residual resistivity ratio (RRR) values for copper. The results indicate that the quench propagation velocity (QPV) at 1.5 T is weakly affected by changes in the volume and electrical properties of copper, whereas the minimum quench energy (MQE) is strongly dependent on the RRR value of copper and can increase by a factor of nearly 2 with the RRR varying from 30 to 150. Both the MQE and QPV change remarkably by varying the MgB{sub 2} filling factor. The MQE drops by a factor of 6 and the QPV increases by a factor of 2 with the filling factor varying from 10.5% to 25%.

  3. Vortex dynamics in a thin superconducting film with a non-uniform magnetic field applied at its center with a small coil

    Science.gov (United States)

    Lemberger, Thomas R.; Loh, Yen Lee

    2016-10-01

    This paper models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices are detected as an increase in mutual inductance between the drive coil and a coaxial "pickup" coil on the opposite side of the film. The model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.

  4. Compact Superconducting Final Focus Magnet Options for the ILC

    CERN Document Server

    Parker, Brett; Escallier, John; Harrison, Michael; He, Ping; Jain, Animesh K; Markiewicz, Thomas W; Marone, Andrew; Maruyama, Takashi; Nosochkov, Yuri; Seryi, Andrei; Wu, Kuo-Chen

    2005-01-01

    We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing be...

  5. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine

    Science.gov (United States)

    Sun, Jiuce; Sanz, Santiago; Neumann, Holger

    2015-12-01

    Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.

  6. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  7. Performance of titanium oxide-polymer insulation in superconducting coils made of Bi-2212/Ag-alloy round wire

    Science.gov (United States)

    Chen, Peng; Trociewitz, Ulf P.; Dalban-Canassy, Matthieu; Jiang, Jianyi; Hellstrom, Eric E.; Larbalestier, David C.

    2013-07-01

    Conductor insulation is one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212/Ag) superconducting round wire (RW) successful for high field magnet applications, as dielectric standoff and high winding current densities (Jw) directly depend on it. In this study, a TiO2-polymer insulation coating developed by nGimat LLC was applied to test samples and a high field test coil. The insulation was investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurement, and transport critical current (Ic) property measurement. About 29% of the insulation by weight is polymer. When the Bi-2212/Ag wire is fully heat treated, this decomposes with slow heating to 400 ° C in pure O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V, which allowed the test coil to survive quenching in 31.2 T background field, while providing a 2.6 T field increment. For Bi-2212/Ag RW with a typical diameter of 1.0-1.5 mm, this ˜15 μm thick insulation allows a very high coil packing factor of ˜0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48.

  8. Further progresses in the development of large MgB2 Superconducting Coils for the Ignitor Experiment

    Science.gov (United States)

    Tumino, A.; Grasso, G.; Coppi, B.

    2013-10-01

    Intermediate temperature superconducting cables have been adopted for the fabrication of the largest poloidal field coils of the Ignitor experiment. This is an important step toward achieving better duty cycles in Ignitor-like machines with innovative magnet technologies compared to traditional superconductors. The commercially available MgB2 strands manufactured by Columbus Superconductors can achieve the target specifications for the considered coils, about 5 meters of outer diameter and maximum field on the conductor below 5 T. These cables are also compatible with the Ignitor cryogenic system, which is designed to cool the machine at about 30 K, although MgB2 may use colder gas at 10 K. The preliminary cable design includes about 300 MgB2 multifilamentary strands of 1 mm in diameter and a copper tube for the He-gas flow in the center. Recently we have succeeded in the development of MgB2 strands with a further improvement in design and electrical properties for cable application. Reaching of a higher critical current density and better current sharing properties between the different strands is allowed by the newest design. The implementation of this progress in wire performance and its impact on the coil design will be discussed. US DOE partly sponsored.

  9. A new design method for asymmetrical head gradient coils used for superconducting MRI scanner

    Institute of Scientific and Technical Information of China (English)

    TANG Xin; ZU Donglin; BAO Shanglian

    2004-01-01

    A novel approach of asymmetrical gradient coil design for head imaging in MRI (magnetic resonance imaging) is presented in this paper. The design is based on a modified target field method in which the stream function is introduced to replace Blaine's scheme for the length control. The transverse head coil calculated by this method has a high performance. The coil efficiency is 0.41 mT/m/A and the inductance is 512 μH. The coil has an inner diameter of 32 cm and a length of 45.8 cm. The size of the ROU (region of uniformity) is 20 cm along the transverse direction and 17 cm along the axial direction and it is close to one end of the coil. The ROU of the coil matches the ROI (region of interest) of human head very well. Compared with previous designs, our design has relatively high performance and the overlap between the ROU and the ROI is larger (the overlap percent is 95 % ).

  10. Study of back quench in the superconducting coils of the barrel toroid of ATLAS due to losses during a "slow" discharge of the magnet

    CERN Document Server

    Sorbi, M

    2001-01-01

    An analysis of the losses in the Al matrix of the conductor and in the casings where the superconducting coils are located, due to a "slow discharge" (heaters of the coils off) of the Barrel Toroid of ATLAS has been carried out. The values of the losses have been calculated and cross checked by means of different analytical and FE approaches, and simple relations have been carried out in order to correlate them with the main electrical parameters of the magnet. With a thermal analysis, the increase of temperature in the superconducting coils due to these extra losses has been calculated. The temperature margin (i.e. difference between current sharing temperature and operating temperature) has been calculated and compared with the temperature margin during the normal run of the magnet. (6 refs).

  11. A Full-size High Temperature Superconducting Coil Employed in a Wind Turbine Generator Set-up

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    is tested in LN2 first, and then tested in the set-up so that the magnetic environment in a real generator is reflected. The experimental results are reported, followed by a finite element simulation and a discussion on the deviation of the results. The tested and estimated Ic in LN2 are 148 A and 143 A......A full-size stationary experimental set-up, which is a pole pair segment of a 2 MW high temperature superconducting (HTS) wind turbine generator, has been built and tested under the HTS-GEN project in Denmark. The performance of the HTS coil is crucial to the set-up, and further to the development...

  12. Measurement of AC losses in a racetrack superconducting coil made from YBCO coated conductor

    DEFF Research Database (Denmark)

    Seiler, Eugen; Abrahamsen, Asger Bech; Kovac, Jan

    2012-01-01

    to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow I2 a dependence at low current amplitudes and I3 a at high amplitudes. After cutting the inner steel frame...

  13. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 1. General introduction

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.; Massachusetts Inst. of Tech., Cambridge (USA). Plasma Fusion Center)

    1985-06-01

    The paper gives a general introduction to the three papers which follow. A brief discussion of the origins and mechanisms of mechanical disturbances within the windings of high performance superconducting magnets is followed by a short summary of each of the three papers.

  14. Study of Nb{sub 3}Sn cables for superconducting quadrupoles; Etude de cables Nb{sub 3}Sn pour quadripoles supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, R

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  15. The tuning quadrupole. The first spanish prototype of superconducting magnet to be delivered to CERN. El tuning quadrupole. Primer prototipo espaol de iman superconductor suministrado al CERN

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tabares, L.; Cubert, J.M.; Aguirre, P. (CEDEX. Ministerio de Obras Publicas, Transporte y Medio Ambiente (Spain))

    1993-01-01

    The present paper describes the design and manufacturing of the first prototype of superconducting magnet for the future collider LHC to be installed at CERN (Geneva), that was made by Spanish industry with the collaboration of the CEDEX. The main aspects of the magnetic and mechanical calculations are described, as well some items related to the fabrication of the magnet, such as materials, toolings, measurements, etc. Finally all the tests made to the magnet at different stages are mentioned, concluding with the final success of the development. (Author) 4 refs.

  16. Thermal studies of a high gradient quadrupole magnet cooled with pressurized, stagnant superfluid

    CERN Document Server

    Chiesa, L; Kerby, J S; Lamm, M J; Novitski, I; Orris, D; Ozelis, J P; Peterson, Thomas J; Tartaglia, M; Zlobin, A V

    2001-01-01

    A 2-m long superconducting model of an LHC Interaction Region quadrupole magnet was wound with stabrite coated cable. The resulting low interstrand resistance and high AC losses presented the opportunity to measure magnet quench performance in superfluid as a function of helium temperature and heat deposition in the coil. Our motivation was to duplicate the high radiation heat loads predicted for the inner triplet quadrupoles at LHC and study the coil cooling conditions in the magnet. At the Magnet Test Facility in Fermilab's Technical Division, the magnet quench performance was tested as a function of bulk helium temperature and current ramp rate near the planned high luminosity interaction region field gradient of 205 T/m. AC loss measurements provided a correlation between current ramp rate and heat deposition in the coil. Analysis indicates that the results are consistent with there being little participation of superfluid helium in the small channels inside the inner layer in the heat removal from the co...

  17. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  18. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  19. Development of a $Nb_{3}$Sn quadrupole magnet model

    CERN Document Server

    Devred, Arnaud; Gourdin, C; Juster, F P; Peyrot, M; Rey, J M; Rifflet, J M; Streiff, J M; Védrine, P

    2001-01-01

    One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we pre...

  20. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  1. Magnetic and superconducting properties of a heavy-fermion CeCoIn5 epitaxial film probed by nuclear quadrupole resonance

    Science.gov (United States)

    Yamanaka, Takayoshi; Shimozawa, Masaaki; Shishido, Hiroaki; Kitagawa, Shunsaku; Ikeda, Hiroaki; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji; Ishida, Kenji

    2017-08-01

    Since the progress in the fabrication techniques of thin films of exotic materials such as strongly correlated heavy-fermion compounds, microscopic studies of the magnetic and electronic properties inside the films have been needed. Herein, we report the observation of 115In nuclear quadrupole resonance (NQR) in an epitaxial film of the heavy-fermion superconductor CeCoIn5, for which the microscopic field gradient within the unit cell as well as magnetic and superconducting properties at zero field are evaluated. We find that the nuclear spin-lattice relaxation rate in the film is in excellent agreement with that of bulk crystals, whereas the NQR spectra show noticeable shifts and significant broadening indicating a change in the electric-field distribution inside the film. The analysis implies a displacement of In layers in the film, which, however, does not affect the magnetic fluctuations and superconducting pairing. This implies that inhomogeneity of the electronic field gradient in the film sample causes no pair-breaking effect.

  2. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  3. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  4. Preliminary proposal of a Nb{sub 3}Sn quadrupole model for the low {beta} insertions of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G. [Milan Univ. (Italy). Dip. di Fisica]|[INFN, Sezione di Milano (Italy). Laboratorio Acceleratori e Superconduttivita` Applicata

    1995-09-01

    In recent years Nb{sub 3}Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb{sub 3}Sn technology is progressing fast, increasing both technical reliability and availability. The Nb{sub 3}Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb{sub 3}Sn cable for a second generation IR inner triplet low {beta} quadrupoles, for the Large Hadron Collider at CERN. The low {beta} quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: (1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; (2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC.

  5. Shell-based support structures for Nb$_{3}$Sn accelerator quadrupole magnets

    CERN Document Server

    Ferracin, P

    2009-01-01

    Shell-based support structures are being fabricated and tested as part of the development of large-aperture Nb3Sn superconducting quadrupoles for future upgrades of the LHC Interaction Regions. These structures utilize water pressurized bladders for room-temperature pre-load control, and rely on a pre-tensioned aluminum shell to deliver a substantial part of the coil pre-stress during cooldown. The coil final pre-load is therefore monotonically approached from below, without overstressing the strainsensitive conductor. This method has been adopted by the US LARP collaboration to test subscale racetrack coils (SQ series), 1 m long cos-theta coils (TQS series), and 4 m long magnets (LRS and LQS series). We present recent progress in the development of shell-based support structures, with a description of the principles of operations and the future plans.

  6. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  7. Starfire poloidal coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  8. The LHC's future, part 1: The High-Luminosity quadrupole magnet

    CERN Multimedia

    2017-01-01

    Increasing the number of collisions by a factor of 10 is a future goal for the Large Hadron Collider. To do this, the High-Luminosity Large Hadron Collider (HL-LHC) project is working on cranking up LHC performance to increase discovery potential after 2025. Among the components to be upgraded are the quadrupole magnets in interaction points IP1 and IP5, which will use a new superconducting technology based on the superconductor Niobium-tin (Nb3Sn). This superconductor will help reach magnetic fields of about 12 T, but it requires a complex fabrication process that includes heat treatment of the coils to about 650 degrees Celsius and vacuum impregnation with epoxy. In CERN's superconducting model magnets laboratory the Magnet, Superconductors and Cryostats group is currently fabricating short models of the final Nb3Sn HL-LHC quadrupole magnet to verify the magnet design and define fabrication and assembly procedures.

  9. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  10. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  11. Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    Science.gov (United States)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho

    2016-04-01

    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be magnetic resonance imaging application.

  12. Modelling and transmission-line calculations of the final superconducting dipole and quadrupole chains of CERN's LHC collider methods and results

    CERN Document Server

    Dahlerup-Petersen, K

    2001-01-01

    Summary form only given, as follows. A long chain of superconducting magnets represents a complex load impedance for the powering and turns into a complex generator during the energy extraction. Detailed information about the circuit is needed for the calculation of a number of parameters and features, which are of vital importance for the choice of powering and extraction equipment and for the prediction of the circuit performance under normal and fault conditions. Constitution of the complex magnet chain impedance is based on a synthesized, electrical model of the basic magnetic elements. This is derived from amplitude and phase measurements of coil and ground impedances from d.c. to 50 kHz and the identification of poles and zeros of the impedance and transfer functions. An electrically compatible RLC model of each magnet type was then synthesized by means of a combination of conventional algorithms. Such models have been elaborated for the final, 15-m long LHC dipole (both apertures in series) as well as ...

  13. Mathematical model to determine the dimensions of superconducting cylindrical coils with a given central field - the case study for MgB2 conductors with isotropic Ic(B) characteristic

    Science.gov (United States)

    Pitel, Jozef; Melišek, Tibor; Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea

    2016-08-01

    In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic Ic(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The Ic(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the Ic(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its Ic(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB2/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the Ic(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum field in the winding. An influence of the safety coefficient in operating current on coil dimensions and other above mentioned parameters is studied as well. Finally, we compare the coil dimensions, overall conductor length as well as coil critical current and maximum field in the winding if the value of required central field changes between 1 and 3 T.

  14. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  15. Invited Article: Development of high-field superconducting Ioffe magnetic traps

    Science.gov (United States)

    Yang, L.; Brome, C. R.; Butterworth, J. S.; Dzhosyuk, S. N.; Mattoni, C. E. H.; McKinsey, D. N.; Michniak, R. A.; Doyle, J. M.; Golub, R.; Korobkina, E.; O'Shaughnessy, C. M.; Palmquist, G. R.; Seo, P.-N.; Huffman, P. R.; Coakley, K. J.; Mumm, H. P.; Thompson, A. K.; Yang, G. L.; Lamoreaux, S. K.

    2008-03-01

    We describe the design, construction, and performance of three generations of superconducting Ioffe magnetic traps. The first two are low current traps, built from four racetrack shaped quadrupole coils and two solenoid assemblies. Coils are wet wound with multifilament NbTi superconducting wires embedded in epoxy matrices. The magnet bore diameters are 51 and 105mm with identical trap depths of 1.0T at their operating currents and at 4.2K. A third trap uses a high current accelerator-type quadrupole magnet and two low current solenoids. This trap has a bore diameter of 140mm and tested trap depth of 2.8T. Both low current traps show signs of excessive training. The high current hybrid trap, on the other hand, exhibits good training behavior and is amenable to quench protection.

  16. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  17. Mathematical model to determine the dimensions of superconducting cylindrical coils with a given central field – the case study for MgB{sub 2} conductors with isotropic I{sub c}(B) characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Pitel, Jozef, E-mail: jozef.pitel@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Melišek, Tibor [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava (Slovakia); Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea [Columbus Superconductors, Via delle Terre Rosse 30, I-16133 Genova (Italy)

    2016-08-15

    Highlights: • Influence of the winding geometry on central field of cylindrical coils is studied. • Procedure to determine dimensions of coils with a given central field is developed. • The model is applied to MgB{sub 2}/Ni/Cu conductors with isotropic I{sub c}(B) characteristic. • Influence of the thickness of stabilizing copper on coil parameters is analyzed. • Optimization with respect to coil operating current and wire length is discussed. - Abstract: In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic I{sub c}(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The I{sub c}(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the I{sub c}(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its I{sub c}(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB{sub 2}/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the I{sub c}(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum

  18. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.

  19. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.

    2009-01-01

    the geometry of the solenoid, but also the nearby magnetic environment. This has important consequences for many cryogenic experiments involving magnetic fields such as the determination of the parameters of Josephson junctions, as well as other superconducting devices. It is proposed to solve the problem...

  20. Design Challenges for a Wide-Aperture Insertion Quadrupole Magnet

    CERN Document Server

    Russenschuck, S; Perez, J C; Ramos, D; Fessia, P; Karppinen, M; Kirby, G; Sahner, T; Schwerg, N

    2011-01-01

    The design and development of a superconducting (Nb-Ti) quadrupole with 120 mm aperture, for an upgrade of the LHC insertion region, faces challenges arising from the LHC beam optics requirements and the heat-deposition. The first triggered extensive studies of coil alternatives with four and six coil-blocks in view of field quality and operation margins. The latter requires more porous insulation schemes for both the cables and the ground-plane. This in turn necessitates extensive heatpropagation and quench-velocity studies, as well as more efficient quench heaters. The engineering design of the magnet includes innovative features such as self-locking collars, which will enable the collaring to be performed with the coils on a horizontal assembly bench, a spring-loaded and collapsible assembly mandrel, tuning-shims for field quality, porous collaring-shoes, and coil end-spacer design based on differential geometry methods. The project also initiated code extensions in the quench-simulation and CAD/CAM module...

  1. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; et al.

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  2. Superconducting magnets for the LHC main lattice

    CERN Document Server

    Rossi, L

    2004-01-01

    The main lattice of the Large Hadron Collider (LHC) will employ about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets will fill more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication will be addressed: uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements will be discussed. Finally a realistic schedule based on actual achievements is presented.

  3. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    CERN Document Server

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb3Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb3Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb3Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  4. Development and manufacturing of a Nb$_{3}$Sn quadrupole magnet Model at CEA/Saclay for TESLA Interaction Region

    CERN Document Server

    Durante, Maria; Fratini, M; Leboeuf, D; Segreti, M; Védrine, Pierre; 10.1109/TASC.2004.829129

    2004-01-01

    One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the interaction regions of large particle accelerators. In some projects, as in the future linear collider TESLA, the quadrupole magnets are inside the detector solenoid and must operate in its background field. This situation gives singular Lorentz force distribution in the ends of the magnet. To learn about Nb/sub 3/Sn technology, evaluate fabrication techniques and test the interaction with a solenoidal field, DAPNIA /SACM at CEA/Saclay has started the manufacturing of a 1-m-long, 56- mm-single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It will produce a nominal field gradient of 211 T/m at 11,870 A. The coils are wound from Rutherford-type cables insulated with glass fiber tape, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated,...

  5. Development of a large aperture Nb$_{3}$ Sn racetrack quadrupole magnet

    CERN Document Server

    Ferracin, Paolo; Caspi, Shlomo; Dietderich, D R; Gourlay, Stephen A; Hafalia, Aurelio R; Hannaford, C R; Lietzke, A F; Mattafirri, Sara; McInturff, A D; Nyman, M A; Sabbi, Gianluca

    2005-01-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb/sub 3/Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb/sub 3/Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  6. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  7. A Compact High Gradient Pulsed Magnetic Quadrupole

    CERN Document Server

    Shuman, Derek; Kireeff Covo, Michel; Ritchie, Gary; Seidl, Peter

    2005-01-01

    A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Features include a five turn eddy current compensated solid conductor coil design which theoretically eliminates the first four higher order multipole field components, a single layer "non-spiral bedstead" coil design which both minimizes utilization of radial space and maximizes utilization of axial space, and allows incorporation of steering and correction coils within existing radial space. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends, simplifying fabrication and assembly.

  8. AC stabilities in superconducting magnetic shielding body with shorted low AC loss Nb{sub 3}Sn coil; Nb{sub 3}Sn kansen jiki shaheitai no koryu anteisei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, N.; Nii, A.; Ito, Y.; Onishi, T. [Hokkaido Univ., Hokkaido (Japan); Shibuya, M. [Engineering Research Association for Superconductive Genertion Equipment and Materials, Osaka (Japan)

    1999-06-07

    In this study, the superconducting magnetic shielding body conductively cooled by the small refrigerating machine at the intermediate temperature (10K-14K) was examined with the aim of a magnetic shielding type superconducting current limiter as closed as maintenance-free. Nb{sub 3}Sn coil closed the two ends was an object as a magnetic shielding body. In case of such a cooling system, the research of the stability was indispensable because of possible normal conduction transition in addition of disturbance into tapes. Then, the method to use the thyristor bypass circuit was examined in order to establish the stabilization method. As for the simulation, the normal conduction transition of the low AC loss Nb{sub 3}Sn coil which AC transferred in the constant-voltage power source, and the recovery characteristics of superconductivity were analyzed in the liquid helium. As a result of evaluating the stability in the constant-voltage power source, it was shown that the current attenuated by the resistance, and the exothermic reaction was controlled even if the disturbance happened and quenched. From these results, it was clarified that the stabilization method to establish the thyristor bypass circuit was effective for improvement on the stability of the superconductor. (NEDO)

  9. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  10. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  11. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  12. Equilibrium of a system of superconducting rings in a uniform gravitational field

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Gordeev, I. S.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2013-05-01

    To construct a plasma trap with levitating magnetic coils in the thin ring approximation, we derive the expression for the potential energy of a system of several superconducting rings (one of which is fixed) capturing the preset flows in the uniform gravitational field as a function of the coordinates of the free ring (or rings). Calculations performed in the Mathcad system show that the potential energy of such a system has a local minimum for certain values of parameters. Stable levitation of a superconducting ring in the position corresponding to calculations is realized in the field of another superconducting ring, and this leads to the conclusion that a magnetic Galatea trap can be prepared on the basis of a levitating quadrupole.

  13. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir [Fermilab; Andreev, Nikolai [Fermilab; DiMarco, Joseph [Fermilab; Makarov, Alexander [Fermilab; Tartaglia, Michael [Fermilab; Velev, George [Fermilab

    2016-12-30

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currents where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.

  14. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training theoretical analysis

    Science.gov (United States)

    Bobrov, E. S.; Williams, J. E. C.; Iwasa, Y.

    An epoxy-impregnated superconducting winding may be considered structurally as a unidirectional composite consisting of superconducting wires embedded in a matrix of epoxy resin. The epoxy, because of its low strength and brittleness at low temperatures, is susceptible to brittle fracture which occurs under stresses induced initially during the cooldown (by differential thermal contractions of epoxy and metal) and subsequently during the magnet charge-up (by the Lorentz forces). Various modes of matrix failure are discussed and analysed. For the composite winding represented by four principal characteristics - geometry; constituent material properties; winding boundary conditions; and microcracks which become stress concentration sites for the initiation of further cracking. It is demonstrated that the transverse shear stresses induced by Lorentz forces in windings with cylindrical symmetry are principally responsible for premature magnet quenches. It is further demonstrated that to minimize shear stresses and thus prevent epoxy fracture in the winding, the whole winding body must not be restrained by the coil form and must be free to take its natural shape as the magnet is energized. This unrestrained winding support design is called the floating coil concept. The conclusions of the analysis agree both qualitatively and quantitatively with experimental results reported in the next two parts of this work.

  15. Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

    CERN Document Server

    Kumar, Sunil; Verma, Gunjan; Vishwakarma, Chetan; Noaman, Md; Rapol, Umakant

    2014-01-01

    We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \\%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve the Bose-Einstein condensation having more than $10^{5}$ atoms.

  16. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  17. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  18. Optimization of Triplet Quadrupoles Field Quality for the LHC High Luminosity Lattice at Collision Energy

    CERN Document Server

    Nosochkov, Y; Wang, MH; Fartoukh, S; Giovannozzi, M; de Maria, R; McIntosh, E

    2013-01-01

    Beta functions at two interaction points (IP) in the high luminosity LHC upgrade lattice (HL-LHC) at collision energy will be significantly reduced compared to the nominal LHC lattice. This will result in much higher beta functions in the inner triplet (IT) quadrupoles adjacent to these IPs. The consequences are a larger beam size in these quadrupoles, higher IT chromaticity, and stronger effects of the IT field errors on dynamic aperture (DA). The IT chromaticity will be compensated using the Achromatic Telescopic Squeezing scheme [1]. The increased IT beam size will be accommodated by installing large aperture Nb3Sn superconducting quadrupoles with 150 mm coil diameter. The stronger effects of the IT field errors can be remedied by optimizing the IT field error specifications. The latter must satisfy two conditions: provide an acceptable DA and be compatible with realistically achievable field quality. Optimization of the IT field errors was performed for the LHC upgrade layout version SLHCV3.01 with IT gra...

  19. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  20. Finite Element Analyses and Instrumentation Layout for Single Coil Testing of TF Coils in HT-7U

    Institute of Scientific and Technical Information of China (English)

    陈文革; 翁佩德

    2003-01-01

    The HT-7U tokamak is a magnetically-confined full superconducting fusion device,consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF)coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wiresmade in Russian [1]. A single D-shaped toroidal field magnet coil will be tested for large andexpensive magnets systems before assembling them in the toroidal configuration. This paperdescribes the layout of the instrumentation for a superconducting test facility based on the resultsof a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7Utokamak device. At the same time, the design of coil support structure in the test facility isparticularly discussed in some detail.

  1. Mechanical Qualification of the Support Structure for MQXF, the Nb3Sn Low-Beta; Quadrupole for the High Luminosity LHC

    CERN Document Server

    Juchno, M; Anerella, M; Bajas, H; Bajko, M; Bourcey, N; Cheng, D W; Felice, H; Ferracin, P; Grosclaude, P; Guinchard, M; Perez, J C; Prin, H; Schmalzle

    2016-01-01

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. This paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performe...

  2. CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

    CERN Multimedia

    1969-01-01

    CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

  3. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  4. Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W.; Kim, D. G.; Jo, H. C. [Institute for Basic Science, Daejeon (Korea, Republic of); Choi, Y. S. [Korea Basic Science Institute, Daejeon (Korea, Republic of); Kim, S. H. [Changwon National University, Changwon (Korea, Republic of); Sim, K. D.; Sohn, M. H. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2015-03-15

    An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

  5. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    Science.gov (United States)

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  6. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement); Cartographie magnetique des quadripoles des spectrometre a haute resolution du Thomas Jefferson National Accelerator Laboratory, Hall A. (Le projet Q.M.M.: Quadrupole Magnetic Measurement)

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, Gilles [Ecole Doctorale des Science Fondamentales, Universite Blaise Pascal, U.F.R. de Recherche Scientifique et Technique, F-63177 Aubiere Cedex (France)

    1997-12-19

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c{sup -1} with a {sigma}p/p = 10{sup -4} resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10{sup -4} relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author) 48 refs., 93 figs., 41 tabs.

  7. A Novel Device for the Measurement of the Mechanical and Magnetic Axes of Superconducting Magnet Assemblies for Accelerators

    CERN Document Server

    Aznar, S; Fischer, F; Galbraith, Peter; García-Pérez, J; Goy, S; Mermillod, N; Peiro, G; Patti, G; Rathjen, C

    2002-01-01

    In the context of the LHC superconducting magnet production, especially for dipoles and quadrupoles due to their complexity, it is foreseen to perform acceptance tests, at an early production stage, to detect possible significant deviations from the design values. The knowledge of the magnetic field geometry is very important, especially for the main magnets. In order to get this information a new device has been conceived that measures the magnets at room temperature during different stages of construction. This device incorporates a sensitive measuring probe and an efficient data acquisition system because the coils are only powered at about 10-5 of the nominal D.C. current. It is dedicated to Quadrupole and Dipole (by using Quadrupole-Configured Dipole (QCD) transformation) magnets, but is also easily adaptable to higher order magnets (n = 3, 4 and 5) by specific orientation of the search coils. It is equipped with magnetic sensors (4 fixed tangential coils and AC excitation current for the magnet) and p...

  8. Optimization of the detection coil of high-Tc superconducting quantum interference device-based nuclear magnetic resonance for discriminating a minimum amount of liver tumor of rats in microtesla fields

    Science.gov (United States)

    Chen, Hsin-Hsien; Huang, Kai-Wen; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien

    2013-08-01

    This study presents an optimization of the detection coil of high-Tc superconducting quantum interference device (SQUID)-based nuclear magnetic resonance (NMR) in microtesla fields for discriminating a minimum amount of liver tumor in rats by characterizing the longitudinal relaxation rate, T1-1, of tested samples. The detection coil, which was coupled to the SQUID through a flux transformer, was optimized by varying the copper wires' winding turns and diameters. When comparing the measured NMR signals, we found that the simulated NMR signal agrees with simulated signals. When discriminating liver tumors in rats, the averaged longitudinal relaxation rate was observed to be T1-1 = 3.3 s-1 for cancerous liver tissue and T1-1 = 6.6 s-1 for normal liver tissue. The results suggest that it can be used to successfully discriminate cancerous liver tissue from normal liver tissues in rats. The minimum amount of samples that can be detected is 0.2 g for liver tumor and 0.4 g for normal liver tissue in 100 μT fields. The specimen was not damaged; it can be used for other pathological analyses. The proposed method provides more possibilities for examining undersized specimens.

  9. Coil End Parts Development Using BEND and Design for MQXF by LARP

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao [Fermilab; Ambrosio, G. [Fermilab; Bermudez, S. Izquierdo [CERN; Bossert, R. [Fermilab; Ferracin, P. [CERN; Krave, S. [Fermilab

    2016-09-06

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  10. Coil End Parts Development Using BEND and Design for MQXF by LARP

    CERN Document Server

    Yu, Miao; Izquierdo Bermudez, S; Bossert, R; Ferracin, P; Krave, S

    2016-01-01

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  11. Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications

    DEFF Research Database (Denmark)

    Zermeno, Victor M. R.; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2013-01-01

    A homogenization method to model a stack of second generation High Temperature Superconducting tapes under AC applied transport current or magnetic field has been obtained. The idea is to find an anisotropic bulk equivalent for the stack such that the geometrical layout of the internal alternatin...

  12. Insulating process for HT-7U central solenoid model coils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the superconducting experiment condition.

  13. Fermilab Tevatron quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Lundy, R.A.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    Details on the design, construction, and performance tests of Energy Saver/Doubler quadrupoles are presented along with recent data from the test of a special high gradient low beta prototype quadrupole.

  14. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  15. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  16. Resistive demountable toroidal-field coils for tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  17. Final design and construction of the Wendelstein7-X coils

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, L. E-mail: lutz.wegener@ipp.mpg.de; Feist, J.-H.; Sapper, J.; Kerl, F.; Werner, F

    2001-11-01

    The Stellarator of the Wendelstein 7-X (W7-X) experiment contains a system of 50 non-planar and 20 planar superconducting coils. The coils were designed by the IPP. The coil manufacturing and inspection is shared between several European enterprises and consortiums. The coils consist of the winding pack embedded in a stainless steel casing and of the related instrumentation. Design details, tolerances and guarantee values and differences between the coils types are described in the contribution. The features of the superconductor are described separately. Finally, the contribution indicates measures adopted by the W7-X project to ensure the quality of the coil design and manufacturing.

  18. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    Science.gov (United States)

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  19. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  20. Design of the Radio Frequency Coil in a Nuclear Quadrupole Resonance (NQR) Explosive Detection System%NQR炸药探测系统中射频线圈的设计研究

    Institute of Scientific and Technical Information of China (English)

    郝凤龙; 徐更光; 黄学义

    2013-01-01

    基于核四极矩共振(Nuclear Quadrupole Resonance,NQR)炸药探测原理,对探测系统中拾取信号的关键部件射频线圈进行了优化设计,并确定了小型螺线管型线圈的直径、长度和匝数.试验测试表明,此线圈射频场均匀性好、信噪比大、灵敏度高,可以快速准确探测到NQR信号,验证了线圈设计理论的有效性和制作方法的可行性.该设计方法对提高隐藏炸药探测的准确率以及不同试验条件下射频线圈的设计具有重要意义.

  1. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  2. Fabrication of the planar coils for WENDELSTEIN 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, H. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)]. E-mail: holger.viebke@ipp.mpg.de; Rummel, Th. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Risse, K. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schroeder, R. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Winter, R. [Tesla Engineering Ltd., Water Lane, Storrington, Sussex RH20 3EA (United Kingdom)

    2005-11-15

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator, which uses 50 non-planar coils for the main field and 20 planar coils to modify the magnetic configuration. The planar coils are cut into two differently shaped types and designed for 3 T on the plasma axis. A planar coil has an outer diameter of around 4 m. The main elements of planar coils are the winding package, the coil case, the interlayer joints to connect the double layers, and the case cooling with instrumentation. The connection to the coil support structure is performed through forged blocks welded to the casing and bolts. The manufacturing is being performed with a high accuracy to maintain the required symmetry of the magnetic configuration of W7-X. Prior to dispatch the coils pass a works acceptance test at Tesla. After production, all coils are subjected to a functional test at cryogenic temperatures at the Low Temperature Laboratory of CEA at Saclay.

  3. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermilab; Chlachidze, G. [Fermilab; Wanderer, P. [Brookhaven; Ferracin, P. [CERN; Sabbi, G. [LBNL, Berkeley

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  4. Development of Superconducting Combined Function Magnets for the Proton Transport Line for the J-PARC Neutrino Experiments

    CERN Document Server

    Nakamoto, Tatsushi; Anerella, Michael; Escallier, John; Fujii, T; Fukui, Yuji; Ganetis, George; Gupta, Ramesh C; Harrison, Michael; Hashiguchi, E; Higashi, Norio; Ichikawa, Atsuko; Iwamoto, Yosuke; Jain, Animesh K; Kanahara, T; Kimura, Nobuhiro; Kobayashi, Takashi; Makida, Yasuhiro; Muratore, Joseph F; Obana, Tetsuhiro; Ogitsu, T; Ohhata, Hirokatsu; Okamura, T; Orikasa, T; Parker, Brett; Sasaki, Ken Ichi; Takasaki, Minoru; Tanaka, Ken Ichi; Terashima, Akio; Tomaru, Takayuki; Wanderer, Peter; Yamamoto, Akira

    2005-01-01

    A second generation of long-baseline neutrino oscillation experiments has been proposed as one of the main projects at J-PARC jointly built by JAERI and KEK. Superconducting combined function magnets, SCFMs, will be utilized for the 50 GeV, 750 kW proton beam line for the neutrino experiment and an R&D program is in underway at KEK. The magnet is designed to provide a combined function of a dipole field of 2.6 T with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm. A series of 28 magnets in the beam line will be operated DC in supercritical helium cooling below 5 K. A design feature of the SCFM is the left-right asymmetry of the coil cross section: current distributions for superimposed dipole- and quadrupole- fields are combined in a single layer coil. Another design feature is the adoption of glass-fiber reinforced phenolic plastic spacers to replace the conventional metallic collars. To evaluate this unique design, fabrication of full-scale prototype magnets is in progress at KEK and the fi...

  5. Development of superconducting quadrupole magnets for beam-interaction region at CERN-LHC (11). Field quality of the third 1m model magnets with new design; CERN-LHC bimu sonyuyo shikyoku chodendo magunetto no kaihatsu (11). Shin dezain 1m moderu magunetto ni okeru jiba tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, N.; Ajima, Y.; Ogitsu, T.; Roger, R.; Tsuchiya, K.; Yamamoto, A.; Shintomi, T. [High Energy Accelerator Research Organization, Tsukuba (Japan)

    2000-05-29

    In the high-energy accelerator research aircraft construction, it develops beam last convergence superconductivity quadrupoles electromagnet used by the CERN-LHC accelerator in CERN and cooperation. It requires the thing that the magnetic field gradient in the operation of this electromagnet is very high with 215T/m and that the accuracy is also high on the uniformity of the magnetic field. It had manufactured 2 magnets until now, and it carried out the magnetic field measurement. From this result, it was confirmed that there was the necessity of the improvement in the 20 pole components, and it designed the new magnet cross-sectional shape, and it manufactured the No.3 machine. In this report, magnetic field measurement result of this No.3 machine is reported. (NEDO)

  6. LARP Long Nb3Sn Quadrupole Design.

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio,G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-08-27

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  7. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  8. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  9. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  10. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  11. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  12. Optimization of a conduction-cooled LTS pulse coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, A. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan)]. E-mail: kawagoe@eee.kagoshima-u.ac.jp; Yamamuro, H. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Sumiyoshi, F. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Mito, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chikaraishi, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hemmi, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Baba, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokota, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Morita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ogawa, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Abe, R. [Shibuya Kogyo Co., Ltd., Kanazawa, Ishikawa 920-0054 (Japan); Okumura, K. [Technova Inc., Chiyoda-ku, Tokyo 100-0011 (Japan); Iwakuma, M. [Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    The output limit of the available power of a prototype conduction-cooled low temperature superconducting (LTS) pulse coil is clarified for the optimization of the coil. The winding conductor of this coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. Dyneema[reg] fiber reinforced plastics (DFRP) and Litz wires are used as the spacers of this coil. A prototype coil with a stored energy of 100 kJ was successfully fabricated and tested, and the coil performed excellently. In this paper, the stability margin of this coil is clarified by thermal analysis, using a two-dimensional finite element method, taking into account the effects of both types of spacers, DFRP and Litz wires. Additionally, the maximum output power of the coil is estimated at about three times the rated output.

  13. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  14. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-10-18

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba2Cu3O7-x (REBCO, RE: rare earth) conductors have an advantage over Bi2Sr2Ca2Cu3O10-x (Bi-2223) and Bi2Sr2CaCu2O8-x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current.

  15. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  16. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  17. Safety aspects of superconducting magnets for Super-FRS

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The Super Fragment Separator (Super FRS) is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. A superferric design with superconducting coils and standard iron yoke shaping the magnetic field was chosen for the magnets. The cooling will be by a liquid Helium bath. For the main dipoles only the coil is at cold for the multiplets (asemblies of quadrupoles and hgher order correctors) also the iron yoke will be in the bath. From a safety point of view the large He-volumes of more than 1000 l of the multiplets, the high design pressure of 20 bar, as well as the high inductances of the magnets up to 30 H are challenges to be considered in the design and definition of the testing procedures.

  18. Experiment of low resistance joints for the ITER correction coil.

    Science.gov (United States)

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  19. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  20. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  1. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Ghoshal, Probir K. [JLAB; Bruhwel, Krister B. [JLAB; Kashy, David H. [JLAB; Machie, Danny [JLAB; Bachimanchi, Ramakrishna [JLAB; Taylor, William; Fischer, John W. [JLAB; Legg, Robert A. [JLAB; Powers, Jacob R. [JLAB

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  2. Advanced measurement systems based on digital processing techniques for superconducting LHC magnets

    CERN Document Server

    Masi, Alessandro; Cennamo, Felice

    The Large Hadron Collider (LHC), a particle accelerator aimed at exploring deeper into matter than ever before, is currently being constructed at CERN. Beam optics of the LHC, requires stringent control of the field quality of about 8400 superconducting magnets, including 1232 main dipoles and 360 main quadrupoles to assure the correct machine operation. The measurement challenges are various: accuracy on the field strength measurement up to 50 ppm, harmonics in the ppm range, measurement equipment robustness, low measurement times to characterize fast field phenomena. New magnetic measurement systems, principally based on analog solutions, have been developed at CERN to achieve these goals. This work proposes the introduction of digital technologies to improve measurement performance of three systems, aimed at different measurement target and characterized by different accuracy levels. The high accuracy measurement systems, based on rotating coils, exhibit high performance in static magnetic field. With vary...

  3. Extension of the Measurement Capabilities of the Quadrupole Resonator

    CERN Document Server

    Junginger, Tobias; Welsch, Carsten

    2012-01-01

    The Quadrupole Resonator, designed to measure the surface resistance of superconducting samples at 400 MHz has been refurbished. The accuracy of its RF-DC compensation measurement technique is tested by an independent method. It is shown that the device enables also measurements at 800 and 1200 MHz and is capable to probe the critical RF magnetic field. The electric and magnetic field configuration of the Quadrupole Resonator are dependent on the excited mode. It is shown how this can be used to distinguish between electric and magnetic losses.

  4. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  5. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.

    1985-03-01

    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  6. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Science.gov (United States)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  7. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging

    Science.gov (United States)

    Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.

    2017-02-01

    A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.

  8. High Gradient $Nb_3Sn$ Quadrupole Demonstrator MKQXF Engineering Design

    CERN Document Server

    Kokkinos, C; Karppinen, Mikko; CERN. Geneva. ATS Department

    2016-01-01

    A new mechanical design concept for the $Nb_3Sn$ quadrupoles has been developed with a goal of an accelerator quality magnet that can be industrially produced in large series. This concept can easily be extended to any length and applied on both 1-in-1 and 2-in-1 configurations. It is based on the pole-loading concept and collared coils using dipole-type collars. Detailed design optimisation of a demonstrator magnet based on present base-line HL-LHC IR quadrupole QXF coil geometry has been carried out including the end regions. This report describes the design concept and the fully parametric multi-physics finite element (FE) models that were used to determine the optimal assembly parameters including the effects of the manufacturing tolerances.

  9. Developments of RF Coil for P in vivo NMR Spectroscopy .

    Directory of Open Access Journals (Sweden)

    S. Khushu

    1993-07-01

    Full Text Available RF receiver coils are very important parts of an NMR System. The design of these coils is very critical and has a dramatic effect on the SNR of the NMR signal and are generally developed in TRA/REC mode. This paper reports the developments of a 3.5 cm TRA/REC 26 MHz RF coil for P spectroscopy of small organs like thyroid. The coil is small in size, fits well in the neck for thyroid spectroscopy and is successfully working with the 1.5 tesla whole body Superconducting NMR System available at INMAS.

  10. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  11. Fabrication and Analysis of 150 mm Aperture Nb3Sn LARP MQXF Coils

    CERN Document Server

    Holik, E F; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D R; Ferracin, P; Ghosh, A K; Izquierdo Bermudez, S; Krave, S; Nobrega, A; Perez, J C; Pong, I; Rochepault; Sabbi, G L; Schmalzle, J; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) and CERN are combining efforts for the HiLumi-LHC upgrade to design and fabricate 150 mm aperture, interaction region quadrupoles with a nominal gradient of 130 T/m using Nb3Sn. To successfully produce the necessary long MQXF triplets, the HiLumi-LHC collaboration is systematically reducing risk and design modification by heavily relying upon the experience gained from the successful 120 mm aperture LARP HQ program. First generation MQXF short (MQXFS) coils were predominately a scaling up of the HQ quadrupole design allowing comparable cable expansion during Nb3Sn formation heat treatment and increased insulation fraction for electrical robustness. A total of 13 first generation MQXFS coils were fabricated between LARP and CERN. Systematic differences in coil size, coil alignment symmetry, and coil length contraction during heat treatment are observed and likely due to slight variances in tooling and insulation/cable systems. Analysis of coil cross sections indic...

  12. Wooden models of an AA quadrupole between bending magnets

    CERN Multimedia

    1978-01-01

    At two points in the AA lattice, a quadrupole (QDN, defocusing, narrow) was tightly wedged between two bending magnets (BST, short, wide). This picture of wooden models lets one imagine the strong interaction between their magnetic fields. There was no way one could calculate with the necessary accuracy the magnetic effects and their consequences for the machine optics. The necessary corrections were made after measurements with a circulating beam, in a tedious iterative procedure, with corrrection coils and shims.

  13. Test Results of HTS Coil and Magnet R&D for RIA

    CERN Document Server

    Gupta, Ramesh C; Harrison, Michael; Sampson, William; Schmalzle, Jesse D; Zeller, Al

    2005-01-01

    Brookhaven National Laboratory is developing quadrupole magnets for the proposed Rare Isotope Accelerator (RIA) based on commercially available High Temperature Superconductors (HTS). These quadrupoles will be used in the Fragment Separator region and are one of the more challenging elements in the RIA proposal. They will be subjected to several orders of magnitude more energy and radiation deposition than typical beam line and accelerator magnets receive during their entire lifetime. The proposed quadrupoles will operate in the 20-40 K temperature range for efficient heat removal. HTS coils that have been tested so far indicate that the coils meet the magnetic field requirements of the design. We will report the test results of about 10 HTS coils and of a magnetic mirror configuration that simulates the magnetic field and Lorentz force in the proposed quadrupole. In addition, the preliminary design of an HTS dipole magnet for the Fragment Separator region will also be presented.

  14. Performance of Nb3Sn quadrupole magnets under localized thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  15. Performance of Nb3Sn quadrupole magnets under localized thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  16. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  17. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  18. Superconducting generators and motors and methods for employing same

    Energy Technology Data Exchange (ETDEWEB)

    Tomsic, Michael J.; Long, Larry

    2017-08-29

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.

  19. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  20. A summary of the quench behavior of B&W 1 m collider quadrupole model magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D. [Babcock & Wilcox, Lynchburg, VA (United States)] [and others

    1994-12-31

    In order to evaluate the quench performance of a B&W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B&W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets.

  1. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  2. Quench Protection of DI-BSCCO Coil

    Science.gov (United States)

    Yamaguchi, T.; Ueno, E.; Kato, T.; Hayashi, K.

    Quench protection is one of the most important requirements for the practical application of high-temperature-superconducting (HTS) coils. Quench protection requires that early detection of a developing quench event is followed by rapid reduction of the operating current. However, such quench detection is very difficult because HTS wire produces heat only locally due to the very slow propagation velocity of a normal zone. Excellent high voltage insulation performance is required if the current is to be reduced rapidly in a large-scale superconducting application with very large inductance. Thus it is important to investigate the behavior of coils with various decay time constants, and to detect voltages on very short time scales. This goal remains to be achieved. In the present study we built test coil and a full-scale pole coil for a 20 MW motor for use in experiments on quench protection, and parameterized the relation between the decay time constant and the detecting voltage, using a conventional balance circuit to detect the quench, which was generated by gradually raising the temperature of the coils. The results verify that a balance circuit can be used for quench detection. For example, when the current decay time constant is 4 seconds, the test coil can be protected even with a detecting voltage of 0.15 volts, despite a significant heat production rate of 126 W. We also confirmed that the full-scale pole coil, with a decay time constant of 20 seconds, can be protected with a detecting voltage of 0.06 V.

  3. B&W Vertical Test Facility for SSC collider quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.D.; Billingsly, A.L.; Boyes, D.W.; Cantor, B.I.; Hlasnicek, P.; Kelley, J.P.; Leamon, C.K.; Maloney, J.E.; Pare, G.; Rey, C.M. [Babcock & Wilcox, Lynchburg, VA (United States)] [and others

    1994-12-31

    Developmental or {open_quotes}model{close_quotes} SSC quadrupole cold masses and collared coils are successfully being tested at the Vertical Test Facility (VTF) in Lynchburg, Virginia. Within this facility, a vertical dewar maintains a pool boiling liquid helium environment of 3.85 K to 4.5 K in order to observe the quenching and magnetic field characteristics of these coils. A description of the facility performance and its contents, including the dewar and ancillary equipment, is described hereafter.

  4. Quadrupole collectivity with isospin

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J.N.; Leviatan, A. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel))

    1994-10-03

    We study intrinsic aspects of quadrupole collectivity with conserved isospin in the framework of the interacting boson model (IBM-3) of nuclei. A geometric visualization is achieved by means of a novel type of intrinsic states which are deformed in angular momentum yet have well defined isospin. The energy surface of the general IBM-3 Hamiltonian is derived and normal modes are identified for prolate deformations.

  5. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  6. Superconducting fault-current limiter and inductor design

    Science.gov (United States)

    Rogers, J. D.; Boenig, H. J.; Chowdhuri, P.; Schermer, R. I.; Wollan, J. J.; Weldon, D. M.

    1982-11-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components, superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator, included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  7. Superconducting fault-current limiter and inductor design

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Chowdhuri, P.; Schermer, R.I.; Wollan, J.J.; Weldon, D.M.

    1982-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components - superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator - included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  8. AA quadrupole magnet

    CERN Multimedia

    1980-01-01

    Focusing magnet used for the AA (antiproton accumulator).Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 - three hundred thousand million - antiprotons. About focusing magnets (quadrupoles): Quadrupole magnets are needed to focus the particle beams and squeeze them so that more particles collide when the beams cross. Particle beams are stored for about 10 hours in the LHC. During this time, the particles make four hundred million revolutions around the machine, travelling a distance equivalent to the diameter of the solar system.

  9. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  10. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  11. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  12. Busbar studies for the LHC interaction region quadrupoles

    CERN Document Server

    Bauer, P; Fehér, S; Kerby, J S; Lamm, M J; Orris, D; Sylvester, C D; Tompkins, J C; Zlobin, A V

    2001-01-01

    Fermilab (FNAL) and the Japanese high energy physics lab (KEK) are developing the superconducting quadrupole magnets for the interaction regions (IR) of the Large Hadron Collider (LHC). These magnets have a nominal field gradient of 215 T/m in a 70 mm bore and operate in superfluid helium at 1.9 K. The IR magnets are electrically interconnected with superconducting busbars, which need to be protected in the event of a quench. Experiments to determine the most suitable busbar design for the LHC IR magnets and the analysis of the data are presented. The main purpose of the study was to find a design that allows the inclusion of the superconducting busbars in the magnet quench protection scheme, thus avoiding additional quench protection circuitry. A proposed busbar design that was tested in these experiments consists of a superconducting cable, which is normally used for the inner layer of the Fermilab IR quadrupoles, soldered to similar Rutherford type cables as a stabilizer. A series of prototypes with varyin...

  13. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  14. Optimal configuration of receiving coils of SQUID-magnetometer

    CERN Document Server

    Ishikaev, S M

    2002-01-01

    Paper describes a SQUID-magnetometer receiving system based on the second order symmetric gradiometer. Four series connected coils of a superconducting transformer consisting of one niobium-titanium wire turn are cemented onto dewar outside. Due to signal compensation in all coils the given receiving system is unsusceptible to signal from specimen holder and it improves measurement accuracy. Using the described magnetometer one managed to observe abrupt changes of magnetization curves of a 100 x 100 cell square superconducting grid with the Josephson tunnel transitions

  15. Support system for the W7-X coil assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, N.; Simon-Weidner, J.; Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-07-01

    The WENDELSTEIN 7-X (W7-X) stellarator experiment is now in the state of its final design. The basic confinement system consists of 50 nonplanar and 20 planar superconducting coils. Meanwhile the geometrical data of the coils have been fixed. The changes with respect to the first design influenced the support concept taking into account needs on enlarged space for the different ports and nozzles. (author)

  16. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  17. Torus CLAS12-Superconducting Magnet Quench Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  18. A superconducting large-angle magnetic suspension. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  19. Structural analysis of superconducting dipole prototype for HIAF

    CERN Document Server

    Zhang, Xiaoying; Ni, Dongsheng; Chen, Yuquan; Wu, Wei; Ma, Lizhen

    2015-01-01

    The High Intensity Heavy-Ion Accelerator Facility is a new project in the Institute of Modern Physics. The dipole magnets of all rings are conceived as fast cycled superconducting magnet with high magnetic field and large gap, the warm iron and superconducting coil structure (superferric) is adopted. The reasonable structure design of coil and cryostat is very important for reliable operation. Based on the finite element software ANSYS, the mechanical analysis of electromagnetic stress, the thermal stress in the cooling down and the stress in the pumping are showed in detail. According to the analysis result, the supporter structure is the key problem of coil system. With reasonable support's structure design, the stress and the deformation of coil structure can be reduced effectively, which ensure the stable operation of superconducting coil system.

  20. Test results of a 5 kW fully superconducting homopolar motor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K. [Woosuk University, Wanju (Korea, Republic of); Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K. [Korea Polytechnic University,Siheong (Korea, Republic of); Hahm, S. Y. [Electrical Engineering and Science Research Institute,Seoul (Korea, Republic of)

    2013-05-15

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  1. Design of a superconducting magnet for CADS

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Liang; MA Li-Zhen; WU Vei; ZHENG Shi-Jun; DU Jun-Jie; HAN Shao-Fei; GUAN Ming-Zhi; HE Yuan

    2012-01-01

    This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS).The magnetic field is provided hy one main,two bucking and four racetrack coils.The main coil produces a central field of up to 7 T and the effective length is more than 140 mm,the two bucking coils can shield most of the fringe field,and the four racetrack superconducting coils produce the steering magnetic field.Its leakage field in the cavity zone is about 5 × 10-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively.The quench calculations and protection system are also discussed.

  2. Test Results of the LARP Nb$_3$Sn Quadrupole HQ03a

    CERN Document Server

    DiMarco, J; Anerella, M; Bajas, H; Chlachidze, G; Borgnolutti, F; Bossert, R; Cheng, D W; Dietderich, D; Felice, H; Pan, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Marchevsky, M; Orris, D; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Wanderer, P; Wang, X R; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) has been developing $Nb_3Sn$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D; phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. This paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.

  3. Design and manufacturing of a Wendelstein 7-X demonstration coil

    Energy Technology Data Exchange (ETDEWEB)

    Kronhardt, H. [Preussag Noell GmbH, Wuerzburg (Germany); Dormicchi, O. [Ansalto Energia, Genoa (Italy); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-07-01

    The large Stellarator experiment Wendelstein 7-X is currently being constructed at the Max-Planck-Institute for Plasma physics (IPP). The magnet system consists of 50 non-planar and 20 planar superconducting coils. A full-size non-planar DEMO coil was built under industrial conditions, to be tested in the background field of the EU-LCT coil at the Forschungszentrum Karlsruhe (FZK). This paper reports the final manufacturing results and data from the warm acceptance test, as well as cryogenic data from strandmeasurements. (author)

  4. Design of self-correction coils in a superferric dipole magnet

    Indian Academy of Sciences (India)

    K Ruwali; K Hosoyama

    2012-05-01

    Design of self-correction coils in a superferric dipole magnet is carried out. By adopting the self-correction coil (SCC) scheme, we can do online correction of unwanted fields inside the magnet aperture during the whole operating cycle irrespective of their origin. The self-correction coils are short-circuited superconducting coils of required symmetry placed in the useful aperture of the AC dipole magnet. Design and operation mechanism of self-correction coils in a superferric dipole magnet are discussed in this paper.

  5. Letter report for the Superconducting Magnet Development Program, April 1, 1977--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W. A.; Lubell, M. S. [eds.

    1977-11-01

    The results and accomplishments of the Superconducting Magnet Development Program (SCMDP) for the second quarter of the calendar year 1977 are summarized. The presentations are arranged according to projects rather than the group organization by discipline of the Magnetics and Superconductivity Section. The design, procurement, and fabrication of the Large Coil Segment are well under way. Significant progress is reported on the conductor stability and loss experiments for both toroidal field coils and poloidal field coils.

  6. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  7. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  8. Fabrication of HTS dc Bias Coil for 35 kV/90 MVA SFCL

    Institute of Scientific and Technical Information of China (English)

    Jing-Yin Zhang; Wei-Zhi Gong; Zheng-Jian Cao; Hui Hong; Bo Tian; Yang Wang; Jian-Zhong Wang; Xiao-Ye Niu; Ying Xin

    2008-01-01

    For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, supercon- ducting wires are used to wind the dc bias coil. Since the performance of the wires changes greatly under magnetic fields, the calculation of the field spatial distraction is essential to the optimization of the superconducting magnet. A superconducting coil with 141000 ampere-turns magnetizing capacity made of 17600 meters of BSCCO 2223 HTS tapes was fabricated. This coil was built for a 35 kV/90 MVA saturated iron-core fault current limiter. Computer simulations on magnetic field distribution were carried out to optimize the structural design, and experiments were done to verify the performance of the coil. The configuration and the key parameters of the coil will be reported in this paper.

  9. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  10. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  11. Feasibility Study on Introducing a Superconducting Wiggler to Saga Light Source

    CERN Document Server

    Koda, Shigeru; Ohgaki, Hideaki; Okajima, Toshihiro; Setoyama, Hiroyuki; Takabayashi, Yuichi; Tomimasu, Takio; Torikoshi, Masami; Yoshida, Katuhide

    2005-01-01

    Saga light source (SAGA-LS) is the synchrotron radiation facility, which consists of 250 MeV electron linac and 1.4 GeV storage ring. We have a plan to introduce an existing superconducting wiggler, which has been developed for other project by National Institute of Radiological Sciences. The superconducting wiggler consists of a main pole of 7T and two side poles of 4T. Each pole is composed of a racetrack-shaped coil and an iron core. We have examined the effects of the wiggler on the beam optics when it is introduced into SAGA-LS. The distribution of multipole components in the planes perpendicular to the electron orbit, which is deformed by the wiggler fields, have been calculated using magnetic field calculation code RADIA. Then the lattice function and the dynamic aperture of the ring have been calculated by the lattice calculation code SAD. The results show that the tune shift due to the quadrupole component of the wiggler field is as large as to make horizontal beam orbit unstable. The dynamic apertur...

  12. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  13. Construction and Performance of Small-Sized Coated Conductor Pancake Coils for Surgical Applications

    Science.gov (United States)

    Ge, Y.; Lewin, R.; Cahill, R.; Mortensen, N.; Jones, H.

    With a view to applying small-sized superconducting coils for magnetic manipulation in surgery, three pancake coils have been built with commercially available (RE)BCO coated conductor using different impregnation methods and tested in liquid nitrogen and liquid helium. This paper presents the design and construction procedures of these pancake coils and subsequent test results including transport current characteristics in background fields are discussed.

  14. Development and testing of a 50-kA, pulsed superconducting cable

    Science.gov (United States)

    Wollan, J. J.; Hamilton, W. C.; Declerc, J.; Zeitlin, B. A.

    1982-11-01

    Prototype cables for 7.5-T, pulsed field application in Tokamak poloidal coils were designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  15. Development and testing of a 50-kA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Hamilton, W.C.; DeClerc, J.; Zeitlin, B.A.

    1982-01-01

    Prototype cables for 7.5-T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  16. Performance of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C; Kangas, Kenneth; Spencer, Cherrill M; Volk, James T

    2005-01-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  17. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  18. LARP Long Nb3Sn Racetrack Coil Program

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, P.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bossert, R.; Cheng, D.; Cozzolino, J.; Escallier, J.; Ferracin, P.; Ganetis, G.; Ghosh, A. K.; Gupta, R. C.; Hafalia, A. R.; Hannaford, C. R.; Joshi, P.; Kovach, P.; Lietzke, A. F.; Louie, W.; Marone, A.; McInturff, A. D.; Muratore, J.; Nobrega, F.; Schmalzle, J.; Thomas, R.; Turrioni, D.

    2007-06-01

    Development of high-performance Nb{sub 3}Sn quadrupoles is one of the major goals of the LHC Accelerator Research Program (LARP). As part of this program, long racetrack magnets are being made in order to check that the change in coil length that takes place during reaction is correctly accounted for in the quadrupole design and to check for length effects in implementing the 'shell' method of coil support. To check the racetrack magnet manufacturing plan, a short racetrack magnet is being made. This magnet will be the first to use restack-rod process Nb{sub 3}Sn, making it a 'long sample' test vehicle for this new material. The paper reports the reaction and characterization of the Nb{sub 3}Sn, and construction features and test results from the short racetrack magnet. The paper also reports on the status of the construction of the first long racetrack magnet.

  19. A modified Rogowski coil for measurements of hybrid permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.

    1996-08-01

    For large permanent magnets, as proposed for the Fermilab Recycler Ring, it may be important to quickly verify that the magnet`s strength is correct. This may be important, for example, if a magnet is suspected of having changed due to some sort of accident. The field strength of a pure dipole can be readily measured with a Hall probe, but for indexed dipoles and for quadrupoles a Hall probe will not give very accurate results without precise positioning. We have investigated a different approach, the use of a modified Rogowski coil to measure the magnetic potential of each pole. As long as magnet geometry is fixed and known, measurement of the magnetic potential at each pole gives a good measurement of field strength even for magnets with large quadrupole components. The construction and use of such a coil and the precision of measurements made with it will be discussed. 4 refs., 5 figs.

  20. Beta Function Measurement in the Tevatron Using Quadrupole Gradient Modulation

    CERN Document Server

    Jansson, Andreas; Volk, James T

    2005-01-01

    Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchtotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magents and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with expectations, confirming that the beta function is not the major error source of discrepancy in the emittance measurement.

  1. Progress on the Coupling Coil for the MICE Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Li, D.; Virostek, S.P.; Lau, W.; Witte, H.; Yang,S.Q.; Drumm, P.; Ivanyushenkov, Y.

    2005-05-08

    This report describes the progress on the coupling magnet for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module (RFCC module) consists of a 1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report describes the process by which one would cool the coupling coil using a single small 4 K cooler. In addition, the coupling magnet power system and quench protection system are also described.

  2. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  3. Status of the LHC inner triplet quadrupole program at Fermilab

    CERN Document Server

    Andreev, N; Bauer, P; Bossert, R; Brandt, J; Carson, J; Caspi, S; Chichili, D R; Chiesa, L; Darve, C; Di Marco, J; Fehér, S; Ghosh, A; Glass, H; Huang, Y; Kerby, J S; Lamm, M J; Markarov, A A; McInturff, A D; Nicol, T H; Nobrega, A; Novitski, I; Ogitsu, T; Orris, D; Ozelis, J P; Page, T; Peterson, T; Rabehl, Roger Jon; Robotham, W; Sabbi, G L; Scanlan, R M; Schlabach, P; Sylvester, C D; Strait, J B; Tartaglia, M; Tompkins, J C; Velev, G V; Yadav, S; Zlobin, A V

    2001-01-01

    Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. A 2 m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2 m program, and the design and status of the first full-length prototype magnet. (11 refs).

  4. Construction and Test of 3.5 m Nb3Sn Racetrack Coils for LARP.

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer,P.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Cheng, D.W.; Cozzolino, J.; Dietderich, D.R.; Escallier, J.; Feher, S.; Ferracin, P.; Ganetis, G.; Ghosh, A.K.; Gupta, R.C.; Hafalia, A.R.; Hannaford, C.R.; Joshi, P.; Kovach, P.; Lietzke, A.F.; Lizarazo, J.; Louie, W.; Marone, A.; McInturff, A.D.; Muratore, J.; Nobrega, R.; Sabbi, G.; Schmalzle, J.; Thomas, R.; Turrioni, D.

    2007-08-27

    Development of high-performance Nb{sub 3}Sn quadrupoles is one of the major goals of the LHC Accelerator Research Program (LARP). As part of this program, long racetrack magnets were made in order to check the fabrication steps for long Nb{sub 3}Sn coils, that the changes in coil length that take place during reaction and cooldown are correctly accounted for in the quadrupole design, and the use of a long aluminum shell for the support structure. This paper reports the construction of the first long Nb{sub 3}Sn magnet with racetrack coils 3.6 m long. The magnet reached a nominal 'plateau' at 9596 A after five quenches. This is about 90% of the estimated conductor limit. The peak field in the coils at this current was 11 T.

  5. Construction and Test of 3.6 m Nb3Sn Racetrack Coils for LARP

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, P.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Cheng, D. W.; Cozzolino, J.; Dietderich, D.R.; Escallier, J.; Feher, S.; Ferracin, P.; Ganetis, G.; Ghosh, A. K.; Gupta, R. C.; Hafalia,, A. R.; Hannaford, C. R.; Joshi, P.; Kovach, P.; Lietzke, A. F.; Lizarazo, J.; Louie, W.; Marone, A.; McInturff, A.D.; Muratore, J.; Nobrega, F.; Sabbi, G.; Schmalzle, J.; Thomas, R.; Turrioni, D.

    2008-06-01

    Development of high-performance Nb{sub 3}Sn quadrupoles is one of the major goals of the LHC Accelerator Research Program (LARP). As part of this program, long racetrack magnets were made in order to check the fabrication steps for long Nb{sub 3}Sn coils, that the changes in coil length that take place during reaction and cooldown are correctly accounted for in the quadrupole design, and the use of a long aluminum shell for the support structure. This paper reports the construction of the first long Nb{sub 3}Sn magnet with racetrack coils 3.6 m long. The magnet reached a nominal 'plateau' at 9596 A after five quenches. This is about 90% of the estimated conductor limit. The peak field in the coils at this current was 11 T.

  6. Design and Manufacture of the Conduction Cooled Torus Coils for The Jefferson Laboratory 12-GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, M. [Jefferson Lab; Elementi, L. [Fermilab; Elouadhiri, L. [Jefferson Lab; Gabrielli, G. [Fermilab; Gardner, T. J. [Fermilab; Ghoshal, P. K. [Jefferson Lab; Kashy, D. [Jefferson Lab; Kiemschies, O. [Fermilab; Krave, S. [Fermilab; Makarov, A. [Fermilab; Robotham, B. [Fermilab; Szal, J. [Fermilab; Velev, G. [Fermilab

    2015-01-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  7. Design and Manufacture of the Conduction Cooled Torus Coils for the Jefferson Lab 12GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, M; Elouadhiri, L; Ghoshal, P K; Kashy, D; Elementi, L; Gabrielli, G; Gardner, T J; Kiemschies, O; Krave, S; Makarov, A; Robotham, B; Szal, J; Velev, G

    2015-06-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  8. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  9. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  10. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  11. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    Science.gov (United States)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  12. Feeding helium to superconducting magnets

    CERN Multimedia

    1979-01-01

    The photo shows two of the 3 superconducting magnets (two MBS dipoles (CESAR) of 150 mm bore and 4.5 T, and one quadrupole (CASTOR) of 90 mm bore and 54 T/m) which were installed in the hall EHN1 (Annual Report 1978 p. 134) and ran until 1985. They formed a section of the beam H6 travelling from target T4 (down the bottom of the photo) towards the NA30 setup followed by the NA11 setup. The two big transversal pipelines are the quench lines of the two magnets (on the right, one quadrupole and one dipole, the other dipole lays down the photo and is not visible). The Jura side of the hall is on the right.

  13. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors...

  14. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  15. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  16. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  17. Low Frequency Nuclear Quadrupole Resonance with SQUID Amplifiers

    Science.gov (United States)

    Clarke, John

    1994-02-01

    The dc SQUID (Superconducting QUantum Interference Device) can be configured as an ampli­fier of spin-echos with a noise temperature of approximately 10 mK (f/1 M Hz) at an operating temperature of 1.5 K. A Fourier transform spectrometer based on a SQUID with a superconducting input circuit and operated in a flux-locked loop is used to obtain nuclear quadrupole resonance (NQR) spectra in a broadband m ode over the bandwith 0 -1 M Hz. Spin-echo spectra of 14N in NH4ClO4 reveal sharp NQR resonances, obtained simultaneously, at 17.4, 38.8 and 56.2 kHz. At 1.5 K, the measured longitudinal and transverse relaxation times T1 and T2 for the 38.8 kHz transition are 63 ± 3 ms and 22±2 ms, respectively.

  18. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  19. Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic

    Indian Academy of Sciences (India)

    S P Ram; S K Tiwari; S R Mishra; H S Rawat

    2014-02-01

    We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap. These results guide us to choose the value of current to be switched in the quadrupole coils used for magnetic trapping for a given temperature of the cloud after molasses. This study is also useful to set the initial phase-space density of the cloud before evaporative cooling.

  20. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  1. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  2. Superconducting shielded core reactor with reduced AC losses

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  3. Operation of cryostat vacuum vessel of HT-7 superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)]. E-mail: yangyu@ipp.ac.cn; Su, M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2006-11-15

    The superconducting tokamak HT-7 has been in operation for over 10 years. The safe and reliable operation of its cryostat vacuum vessel, which contains the superconducting coils is essential for each experimental run since the superconducting toroidal field coils are contained inside the vessel. In this paper, the operation is reviewed with the emphasis on the analysis on anomalous pressure rises and the corresponding solutions. It is shown that under close monitoring and timely handling, the cryostat vacuum vessel could still satisfy the requirements of the experimental operation despite of the material aging. This provides guideline for vacuum operating of HT-7. The experiences should be valuable for other superconducting projects as well, including a whole superconducting tokamak under construction, EAST.

  4. Integrated design of superconducting accelerator magnets

    CERN Document Server

    Russenschuck, Stephan; Ramberger, S; Rodríguez-Mateos, F; Wolf, R

    1999-01-01

    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs).

  5. Quench and recovery characteristics of a racetrack double pancake coil wound with YBCO-coated conductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H M; Kwon, Y K; Lee, J D [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Song, J B; Lee, H G [Department of Materials Science and Engineering, Korea University, Seoul (Korea, Republic of)], E-mail: haigunlee@korea.ac.kr

    2009-02-15

    The reliability of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines. However, it is necessary to investigate the stability and normal zone propagation characteristics of racetrack coils for large-scale applications such as ship propulsion motors and power generators. In this study, the quench/recovery characteristics of a racetrack-type, double pancake (DP) coil, which could be applied to HTS rotating machines, were investigated using the voltage and temperature profiles in a cryogenic conduction cooling system. The minimum quench heating flux and quench propagation velocity of the racetrack DP coil are also discussed.

  6. Quench and recovery characteristics of a racetrack double pancake coil wound with YBCO-coated conductor

    Science.gov (United States)

    Kim, H. M.; Kwon, Y. K.; Lee, J. D.; Song, J. B.; Lee, H. G.

    2009-02-01

    The reliability of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines. However, it is necessary to investigate the stability and normal zone propagation characteristics of racetrack coils for large-scale applications such as ship propulsion motors and power generators. In this study, the quench/recovery characteristics of a racetrack-type, double pancake (DP) coil, which could be applied to HTS rotating machines, were investigated using the voltage and temperature profiles in a cryogenic conduction cooling system. The minimum quench heating flux and quench propagation velocity of the racetrack DP coil are also discussed.

  7. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  8. Quadrupole Induced Resonant Particle Transport

    Science.gov (United States)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  9. Prototype ISR Superconducting Quadrupole:preparation for a test.

    CERN Multimedia

    1978-01-01

    Worth noticing in this picture are the two conical stainless steel supports protruding from the front end of the magnet:to each of them was attached a titanium suspension rod having the other end fixed to the cryostat outer room temperature vacuum vessel. The person is P.Viret connecting signal wires for diagnostics. See also 7702690X.

  10. Winding machine and tools for the ISR Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    The picture shows the rotating and rocking winding machine with its "light" clamping system to keep the conductor turns in place during winding.At the back left one sees the conductor spool with its electromagnetic brake and the "heavy" clamping system used during curing. See also 7510217X, 7702690X.

  11. Focusing Strength Measurements of the Main Quadrupoles for the LHC

    CERN Document Server

    Smirnov, N; Calvi, M; Deferne, G; Di Marco, J; Sammut, N; Sanfilippo, S

    2006-01-01

    More than 1100 quadrupole magnets of different types are needed for the Large Hadron Collider (LHC) which is in the construction stage at CERN. The most challenging parameter to measure on these quadrupoles is the integrated gradient (Gdl). An absolute accuracy of 0.1% is needed to control the beta beating. In this paper we briefly describe the whole set of equipment used for Gdl measurements: Automated Scanner system, Single Stretched Wire system and Twin Coils system, concentrating mostly on their absolute accuracies. Most of the possible inherent effects that can introduce systematic errors are discussed along with their preventive methods. In the frame of this qualification some of the magnets were tested with two systems. The results of the intersystem cross-calibrations are presented. In addition, the qualification of the measurement system used at the magnet manufacturer's is based on results of more than 40 quadrupole assemblies tested in cold conditions at CERN and in warm conditions at the vendor si...

  12. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  13. Development and coil fabrication for the LARP 3.7-m long Nb3Sn quadruple

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2009-02-01

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  14. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  15. ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

    2010-05-23

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  16. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  17. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    Science.gov (United States)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  18. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  19. Proposal of rectifier type superconducting fault current limiter with non-inductive reactor (SFCL)

    Science.gov (United States)

    Mohammad Salim, Khosru; Muta, Itsuya; Hoshino, Tsutomu; Nakamura, Taketsune; Yamada, Masato

    2004-03-01

    A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.

  20. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  1. Nuclear Quadrupole Moments and Nuclear Shell Structure

    Science.gov (United States)

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  2. Accretion disks around a mass with quadrupole

    CERN Document Server

    Abishev, Medeu; Quevedo, Hernando; Toktarbay, Saken

    2015-01-01

    We consider the stability properties of test particles moving along circular orbits around a mass with quadrupole. We show that the quadrupole modifies drastically the properties of an accretion disk made of such test particles.

  3. Accretion disks around a mass with quadrupole

    Science.gov (United States)

    Abishev, M.; Boshkayev, K.; Quevedo, H.; Toktarbay, S.

    We consider the stability properties of circular orbits of test particles moving around a mass with quadrupole. We show that the quadrupole modifies drastically the properties of an accretion disk made of such test particles.

  4. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  5. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  6. Linear Rogowski coil

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  7. Mechanical Performance of Short Models for MQXF, the Nb3Sn Low-β Quadrupole for the Hi-Lumi LHC

    CERN Document Server

    Vallone, Giorgio; Anderssen, Eric; Bourcey, Nicolas; Cheng, Daniel W; Felice, Helene; Ferracin, Paolo; Fichera, Claudio; Grosclaude, Philippe; Guinchard, Michael; Juchno, Mariusz; Pan, Heng; Perez, Juan Carlos; Prestemon, Soren

    2016-01-01

    In the framework of the Hi-Lumi LHC Project, CERN and U.S. LARP are jointly developing MQXF, a 150-mm aperture high-field Nb3Sn quadrupole for the upgrade of the inner triplet of the low-beta interaction regions. The magnet is supported by a shell-based structure, providing the preload by means of bladder-key technology and differential thermal contraction of the various components. Two short models have been produced using the same cross section currently considered for the final magnet. The structures were preliminarily tested replacing the superconducting coils with blocks of aluminum. This procedure allows for model validation and calibration, and also to set performance goals for the real magnet. Strain gauges were used to monitor the behavior of the structure during assembly, cool down and also excitation in the case of the magnets. The various structures differ for the shell partitioning strategies adopted and for the presence of thick or thin laminations. This paper presents the results obtained and d...

  8. Magnetic Measurements of Permanent and Fast-Pulsed Quadrupoles for the CERN LINAC4 Project

    CERN Document Server

    Golluccio, G; Buzio, M; Dunkel, O; Giloteaux, D; Lombardi, A; Mateo, F; Ramberger, S

    2010-01-01

    Linac4 is currently under construction at CERN to improve intensity and reliability for the whole accelerator chain. This machine will include about 120 permanent quadrupoles housed in the Drift Tube tanks, as well as about 80 electromagnetic quadrupoles. This paper describes the magnetic measurements carried out at CERN on the first batch of quadrupoles, including several prototypes from different manufacturers, as well as those done on several spare Linac 2 magnets reused in Linac4's 3 MeV test stand. We first describe a prototype test bench based on technology developed for the LHC and able to carry out high-precision harmonic measurements in both continuously-rotating and stepping-coil mode. Next we present the first results obtained in terms of field strength, harmonics quality and effects of fast eddy current transients. Finally, we discuss the expected impact of these findings on the operation of the machine.

  9. Design and measurements of a thin quadrupole magnet for the AGS synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, N., E-mail: tsoupas@bnl.go [Brookhaven National Laboratory BNL, Upton, NY 11973 (United States); Alforque, R.; Jain, A.; MacKay, W.; Marneris, I. [Brookhaven National Laboratory BNL, Upton, NY 11973 (United States)

    2011-03-21

    Four quadrupoles were installed in four straight sections of the AGS synchrotron to compensate for the effect on the beam optics of two helical magnets also installed in the AGS. The overall length of each quadrupole is less than 30 cm, so it fits in the 62 cm long straight section of the AGS ring. At injection energies, the strength of each quadrupole is set at a high value, and is ramped down to zero during the acceleration cycle, as the effect of the helical magnets on the circulating beam, diminishes by the square of the beam's rigidity. To minimize the eddy currents generated in the iron core of the quadrupole, by the transient magnetic field during the ramp down time, the quadrupoles were laminated. In this paper we describe the process of designing the quadrupole, with three of the most important aspects of the design discussed below. The first was to select the maximum thickness of the iron lamination that does not affect significantly the field quality of the quadrupole during the ramp down time interval, and also reduces to an acceptable level the ohmic losses generated in the iron laminations. The second was to minimize the higher order, 12pole allowed magnetic multipole of the quadrupole. The third was to calculate the ohmic losses in the iron laminations, as a function of both the lamination thickness and the magnetic field strength. The calculated ohmic losses in the iron laminations as a function of time and lamination thickness are consistent with the time evolution of the eddy currents inside the laminations. Simple experimental measurement of the current and voltage across the coil of the magnet as a function of time, qualitatively agrees with the theoretically calculated ohmic losses in the iron laminations.

  10. LCLS Undulator Quadrupole Fiducialization Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  11. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  12. Effect of plasma disruption on superconducting magnet in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junjun, E-mail: lijunjun73@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei (China); Wang, Qiuliang [Institute of Electrical Engineering, Chinese Academy of Sciences, 100190 Beijing (China); Li, Jiangang; Wu, Yu; Qian, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei (China)

    2013-10-15

    For the safe operation of Experimental Advanced Superconducting Tokamak (EAST) with higher plasma performance discharge in future, it is important to study the effect of plasma disruption on central solenoid (CS) coils. The outlet temperature rise of CS1-6 coils measured in experiment is analyzed. It is found that the outlet temperature rise of CS1-6 coils caused by plasma disruption cannot be observed in experimental data, because the effect of plasma disruption on outlet of CS coils is a small value, and the discretization error of experimental data is bigger than this value. In addition, the maximum temperature of CS coils during the plasma discharge is simulated by SAITOKPF code, and it appears that the maximum temperature of CS coils increases a little in the plasma disruption, but the temperature rise is a small quantity.

  13. Superconducting inductive displacement detection of a microcantilever

    Energy Technology Data Exchange (ETDEWEB)

    Vinante, A., E-mail: anvinante@fbk.eu [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy)

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  14. Design of an MgB2 race track coil for a wind generator pole demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech;

    2014-01-01

    An MgB2 race track coil intended for demonstrating a down scaled pole of a 10 MW direct drive wind turbine generator has been designed. The coil consists of 10 double pancake coils stacked into a race track coil with a cross section of 84 mm × 80 mm. The length of the straight section is 0.5 m...... and the diameter of the end sections is 0.3 m. Expanded to a straight section of 3.1 m it will produce about 1.5 T magnetic flux density in the air gap of the 10 MW 32 pole generator and about 3.0 T at the edge of the superconducting coil with an operation current density of the coil of 70 A/mm2....

  15. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  16. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K)

    Science.gov (United States)

    Qu, Timing; Michael, Philip C.; Voccio, John; Bascuñán, Juan; Hahn, Seungyong; Iwasa, Yukikazu

    2016-08-01

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ˜10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  17. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  18. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.

    1950-06-01

    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  19. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications - for example in particle therapie or short-pulse radiographic diagnostics - requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. The scaling shows that above a few MeV a solenoid needs to be pulsed or super-conducting, whereas the quadrupoles can remai...

  20. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  1. Coiled coils and SAH domains in cytoskeletal molecular motors.

    Science.gov (United States)

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  2. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  3. Quench evolution and hot spot temperature in the ATLAS B0 model coil

    CERN Document Server

    Dudarev, A; Boxman, H; Broggi, F; Dolgetta, N; Juster, F P; Tetteroo, M; ten Kate, H H J

    2004-01-01

    The 9-m long superconducting model coil B0 was built to verify design parameters and exercise the construction of the Barrel Toroid magnet of ATLAS Detector. The model coil has been successfully tested at CERN. An intensive test program to study quench propagation through the coil windings as well as the temperature distribution has been carried out. The coil is well equipped with pickup coils, voltage taps, superconducting quench detectors and temperature sensors. The current is applied up to 24 kA and about forty quenches have been induced by firing internal heaters. Characteristic numbers at full current of 24 kA are a normal zone propagation of 15 m/s in the conductor leading to a turn-to-turn propagation of 0.1 m/s, the entire coil in normal state within 5.5 s and a safe peak temperature in the windings of 85 K. The paper summarizes the quench performance of the B0 coil. Based on this experience the full-size coils are now under construction and first test results are awaited by early 2004. 7 Refs.

  4. Superconductivity in the Tungsten Bronzes

    Science.gov (United States)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  5. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  6. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, N.; Yamamoto, A. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Andreev, N.; Kashikhin, V. S.; Tartaglia, M. A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Kerby, J. [Argonne National Laboratory, Argonne, 9700 S. Cass Avenue, IL 60439 (United States); Takahashi, M.; Tosaka, T. [Toshiba Corporation Power Systems Company, 2-4 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 (Japan)

    2014-01-29

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  7. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    Science.gov (United States)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  8. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  9. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  10. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  11. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  12. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  13. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  14. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  15. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  16. Simulation of YBCO Tape and Coils in HTS Maglev System

    Directory of Open Access Journals (Sweden)

    Song Mengxiao

    2017-01-01

    Full Text Available In the process of running high temperature superconducting maglev train, the AC(Alternating Current loss of superconducting coil is directly related to its safe operation and operating cost. In this paper, the simulation model was built based on the finite element software COMSOL Multiphysics, and mainly simulated and calculated the AC losses of YBCO(Yttrium Barium Copper Oxide tape and coils. In this model, as the solving object, the singular and infinite long YBCO tape and coils model was solved with H-formulation and the nonlinear characteristic (E-J constitutive law and anisotrophy (B-J characteristic were taken into consideration as the theoretical foundation. Then on the basis of the model under maglev suspension system, AC losses under different amplitude and frequence AC currents were calculated. The results shows that under different frequencies and dynamic components, the local maximum AC loss of YBCO tape and coils occurs when the steady-state DC(Direct Current current is 30A. Then comparing with old maglev suspension system, the new system can greatly reduce the energy consumption and the material cost.

  17. Thermodynamic Properties of Fast Ramped Superconducting Accelerator Magnets for the Fair Project

    Science.gov (United States)

    Fischer, E.; Mierau, A.; Schnizer, P.; Bleile, A.; Gärtner, W.; Guymenuk, O.; Khodzhibagiyan, H.; Schroeder, C.; Sikler, G.; Stafiniak, A.

    2010-04-01

    The 100 Tm synchrotron SIS 100 is the core component of the international Facility of Antiproton and Ion Research (FAIR) to be built at GSI Darmstadt. The 108 bending magnets are 3 m long 2 T superferric dipoles providing a nominal ramp rate of 4 T/s within a usable aperture of 115 mmṡ60 mm. An intensive R&D period was conducted to minimise the AC losses to lower operation costs and to guarantee a safe thermal stability for long term continuous cycling with a maximum repetition frequency of 1 Hz. The latter requirement is strictly limited by the overall heat flow originated by eddy currents and hysteresis losses in iron yoke and coil as well as by its hydraulic resistance respective to the forced two phase helium cooling flow within the hollow superconducting cable. Recently three full size dipoles—and one quadrupole magnets were built and intensive tests have been started in the end of 2008 at the GSI cryogenic test facility. We present the measured thermodynamic parameters of the first tested dipole: AC losses depending on Bmax and dB/dt for various characteristic ramping modes and conclude for necessary optimisations toward the final design of the series magnets.

  18. Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hong Woo; Lee, Ji Ho; Lee, Woo Seung; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2015-06-15

    Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous Ic distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous Ic distribution along the length. If the Ic distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, Ic distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, Ic distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

  19. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  20. Test Results of the first 3.7 m Long Nb3Sn Quadrupole by LARP and Future Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bingham, B.; Bocian, D.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Escallier, J.; Felice, H.; Ferracin, P.; Ghosh, A.; Godeke, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V. V.; Kim, M. J.; Kovach,, P.; Lamm, M.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Orris, D.; Prebys, E.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Velev, G.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2010-08-01

    In December 2009 during its first cold test, LQS01, the first long Nb{sub 3}Sn Quadrupole made by LARP (LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL and SLAC), reached its target field gradient of 200 T/m. This target was set in 2005 by the US Department fo Energy, CERN and LARP, as a significant milestone toward the development of Nb{sub 3}Sn quadrupoles for possible use in LHC luminosity upgrades. LQS01 is a 90 mm aperture, 3.7 m long quadrupole using Nb{sub 3}Sn coils. The coil layout is equal to the layout used in the LARP Technological Quadrupoles (TQC and TQS models). Pre-stress and support are provided by a segmented aluminum shell pre-loaded using bladders and keys, similarly to the TQS models. After the first test the magnet was disassembled, reassembled with an optimized pre-stress, and reached 222 T/m at 4.5 K. In this paper we present the results of both tests and the next steps of the Long Quadrupole R&D.

  1. Test Results of the First 3.7 m Long Nb3Sn Quadrupole by LARP and Future Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Schmalzle, J.; Andreev, N.; Anerella, M.; Barzi, E.; Bingham, B.; Bocian, D.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Escallier, J.; Felice, H.; Ferracin, P.; Ghosh, A.; Godeke, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kim, M.J.; Kovach, P.; Lam, M.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitshy, I.; Orris, D.; Prebys, E.; Prestemon, S.; Sabbi, G.L.; Schmalzle, J.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Velev, G.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2011-08-03

    In December 2009 during its first cold test, LQS01, the first Long Nb{sub 3}Sn Quadrupole made by LARP (LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL and SLAC), reached its target field gradient of 200 T/m. This target was set in 2005 by the US Department of Energy, CERN and LARP, as a significant milestone toward the development of Nb{sub 3}Sn quadrupoles for possible use in LHC luminosity upgrades. LQS01 is a 90 mm aperture, 3.7 m long quadrupole using Nb{sub 3}Sn coils. The coil layout is equal to the layout used in the LARP Technological Quadrupoles (TQC and TQS models). Pre-stress and support are provided by a segmented aluminum shell pre-loaded using bladders and keys, similarly to the TQS models. After the first test the magnet was disassembled, reassembled with an optimized pre-stress, and reached 222 T/m at 4.5 K. In this paper we present the results of both tests and the next steps of the Long Quadrupole R and D.

  2. Planar, monolithically integrated coil

    NARCIS (Netherlands)

    Roozeboom, F.; Reefman, D.; Klootwijk, J.H.; Tiemeijer, L.F.; Ruigrok, J.

    2013-01-01

    The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for

  3. An orientable search coil

    Science.gov (United States)

    Holt, P. J.; Poblocki, M.

    2017-01-01

    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.

  4. Alternative Mechanical Structure for LARP Nb3Sn Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anerella, M.; Cozzolino, J.; Ambrosio, G.; Caspi, S.; Felice, H.; Kovach, P.; Lamm, M.; Sabbi, G.; Schmalzle, J.; Wanderer, P.

    2010-08-01

    An alternative structure for the 120 mm Nb{sub 3}Sn quadrupole magnet presently under development for use in the upgrade for LHC at CERN is presented. The goals of this structure are to build on the existing technology developed in LARP with the LQ and HQ series magnets and to further optimize the features required for operation in the accelerator. These features include mechanical alignment needed for field quality and provisions for cold mass cooling with 1.9 K helium in a helium pressure vessel. The structure will also optimize coil azimuthal and axial pre-load for high gradient operation, and will incorporate features intended to improve manufacturability, thereby improving reliability and reducing cost.

  5. Analysis of the cooldown of the ITER central solenoid model coil and insert coil

    Science.gov (United States)

    Bonifetto, R.; Brighenti, A.; Isono, T.; Martovetsky, N.; Kawano, K.; Savoldi, L.; Zanino, R.

    2017-01-01

    A series of superconducting insert coils (ICs) made of different materials has been tested since 2000 at JAEA Naka in the bore of the central solenoid model coil at fields up to 13 T and currents up to several tens of kA, fully representative of the ITER operating conditions. Here we focus on the 2015 test of the presently last IC of the series, the central solenoid (CS) insert coil, which was aimed at confirming the performance and properties of the Nb3Sn conductor, manufactured in Japan and used to wind the ITER CS modules in the US. As typical for these large scale applications, the cooldown (CD) from ambient to supercritical He temperature may take a long time, of the order of several weeks, so that it should be useful, also in the perspective of future IC tests, to optimize it. To that purpose, a comprehensive CD model implemented in the 4C code is developed and presented in this paper. The model is validated against the experimental data of an actual CD scenario, showing a very good agreement between simulation and measurements, from 300 to 4.5 K. The maximum temperature difference across the coil, which can only be roughly estimated from the measurements, is then extracted from the results of the simulation and shown to be much larger than the maximum value of 50 K, prescribed on the basis of the allowable thermal stress on the materials. An optimized CD scenario is finally designed using the model for the initial phase of the CD between 300 and 80 K, which allows reducing the needed time by ∼20%, while still satisfying the major constraints. Recommendations are also given for a better location/choice of the thermometers to be used for the monitoring of the maximum temperature difference across the coil.

  6. Fast switching NMR system for measurements of ground-state quadrupole moments of short-lived nuclei

    CERN Document Server

    Minamisono, K; Crawford, H L; Mantica, P F; Matsuta, K; Minamisono, T; Pinter, J S; Stoker, J B

    2008-01-01

    A beta-ray detecting nuclear quadrupole resonance system has been developed at NSCL/MSU to measure ground-state electric quadrupole moments of short-lived nuclei produced as fast rare isotope beams. This system enables quick and sequential application of multiple transition frequencies over a wide range. Fast switching between variable capacitors in resonance circuits ensures sufficient power delivery to the coil in the beta-ray detecting nuclear magnetic resonance technique. The fast switching technique enhances detection efficiency of resonance signals and is especially useful when the polarization and/or production rate of the nucleus of interest are small and when the nuclear spin is large.

  7. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  8. High-pass bird-cage coil for nuclear-magnetic resonance

    Science.gov (United States)

    Watkins, Joel C.; Fukushima, Eiichi

    1988-06-01

    Cylindrical bird-cage coils generate uniform magnetic fields transverse to the cylinder axis for use in the large sample nuclear-magnetic resonance (NMR) experiments. We describe the design and construction of an eight-rung high-pass bird-cage coil to operate at 80 MHz in a cylindrical bore of a superconducting magnet. The coil is 12.7 cm in diameter by 30.5 cm long and has a 7-cm-diam region in the center where the field intensity is within 10% of the average.

  9. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  10. Performance of a Nb(3)Sn Quadrupole Under High Stress

    CERN Document Server

    Felice, H; Ferracin, P; De Rijk, G; Bajko, M; Caspi, S; Bingham, B; Giloux, C; Bordini, B; Milanese, A; Bottura, L; Sabbi, G L; Hafalia, R; Godeke, A; Dietderich, D

    2011-01-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb(3)Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb(3)Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb(3)Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on...

  11. LHC interaction region quadrupole cryostat design and fabrication

    CERN Document Server

    Nicol, T H; Huang, Y; Page, Thomas M

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multilayer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their...

  12. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    Energy Technology Data Exchange (ETDEWEB)

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  13. Low-frequency nuclear quadrupole resonance with a dc SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  14. Low-frequency nuclear quadrupole resonance with a dc SQUID

    Science.gov (United States)

    Chang, J. W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region are traditionally difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a RF field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter.

  15. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  16. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  17. Estimating effects from trapped magnetic fluxes in superconducting magnetic levitation measurement

    Institute of Scientific and Technical Information of China (English)

    Masakazu Nakanishi

    2008-01-01

    Superconducting magnetic levitation measurement is one of the most promising approaches to define mass standard based on the fundamental physical constants. However, the present system has unknown factors causing error larger than 50 ppm. We examined the effects of magnetic fluxes trapped in the superconducting coil and the superconducting floating body. When fluxes were trapped in either coil or floating body, their effects were able to be cancelled by reversing polarities of current and magnetic field, as had been believed. However, fluxes trapped in both coil and body induced an attractive force between them and caused error. In order to reduce the fluxes, the coil and the floating body should be cooled in low magnetic field in magnetic and electromagnetic shields.

  18. Performance of Upgraded Cooling System for Lhd Helical Coils

    Science.gov (United States)

    Hamaguchi, S.; Imagawa, S.; Obana, T.; Yanagi, N.; Moriuchi, S.; Sekiguchi, H.; Oba, K.; Mito, T.; Motojima, O.; Okamura, T.; Semba, T.; Yoshinaga, S.; Wakisaka, H.

    2008-03-01

    Helical coils of the Large Helical Device (LHD) are large scale superconducting magnets for heliotron plasma experiments. The helical coils had been cooled by saturated helium at 4.4 K, 120 kPa until 2005. An upgrade of the cooling system was carried out in 2006 in order to improve the cryogenic stability of the helical coils and then it has been possible to supply the coils with subcooled helium at 3.2 K, 120 kPa. A designed mass flow of the supplied subcooled helium is 50 g/s. The subcooled helium is generated at a heat exchanger in a saturated helium bath. A series of two centrifugal cold compressors with gas foil bearing is utilized to lower the helium pressure in the bath. The supplied helium temperature is regulated by rotational speed of the cold compressors and power of a heater in the bath. The mass flow of the supplied helium is also controlled manually by a supply valve and its surplus is evaporated by ten heaters at the outlet above the coils. In the present study, the performance of the cooling system has been investigated and a stable operating method has also developed. As the result, it was confirmed that the performance of the upgraded cooling system satisfies the requirements.

  19. Background field coils for the High Field Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  20. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  1. Development of the Current Bypassing Methods into the Transverse Direction in Non-insulation HTS Coils

    Science.gov (United States)

    Tanaka, K.; Kim, S. B.; Ikoma, H.; Kanemoto, D.

    In the case of motors and generators, the benefits of using high temperature superconducting (HTS) coils can be represented by the reduction of 50% in both losses and sizes compared to conventional machines. However, it is hard to establish quench detection and protection devices for the HTS coils applied to the rotors of motors and generators. So, the stability of the coils is lower than for the quiescent coils applied to NMR, MRI and so on. Therefore, it is important to improve the self-protection ability of HTS coils. We have studied the methods to improve the self-protection ability of HTS coils by removing the layer-to-layer insulation and inserting metal tape instead of the electrical insulation. The operating current in the non-insulated HTS coil was bypassed into the transverse direction by the generated normal region because of their electrical contact among the winding. In this study, we examined the method to control the current bypassing on layer-to-layer for controlling the inductance of the non-insulated HTS coil. The current bypassing properties on non-insulated HTS coil wound with 2G wires will be discussed.

  2. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  3. Operational experience with forced cooled superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.P., E-mail: denis.ivanov30@mail.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kolbasov, B.N., E-mail: kolbasov@nfi.kiae.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Anashkin, I.O.; Khvostenko, P.P. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Pan, W.J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Pradhan, S.; Sharma, A.N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Song, Y.T.; Weng, P.D. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2013-10-15

    Highlights: ► Seventeen breakdowns happened in the fusion facilities with forced cooled superconducting magnets (FCSMs). ► The breakdowns always began on the electric, cryogenic and diagnostic communications (ECDCs) and never on the coils. ► In all the FCSMs the ECDCs were always insulated worse than the coils. ► For reliable operation of ITER organization team should essentially improve the ECDC insulation. ► Use of stainless steel grounded casings filled up with solid insulation over all the ECDCs is the best way to get reliable insulation. -- Abstract: Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.

  4. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    OpenAIRE

    Yi, H. R.; Zhang, Y; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N

    2000-01-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz(1/2) in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz(1/2) at 10 Hz) was present. Compute...

  5. A Nb-Ti 90 mm Double-Aperture Quadrupole for the High Luminosity LHC Upgrade

    CERN Document Server

    Segreti, M; Todesco, E

    2015-01-01

    The luminosity upgrade of the LHC requires replacing the magnets around the ATLAS and CMS experiments with larger aperture dipoles, quadrupoles and correctors. The goal is to have a magnetic lattice that can allow to halve the beam size in the collision points with respect to present baseline. Within the framework of HiLumi LHC, CEA-Saclay studied the replacement of the 70-mm double aperture quadrupole Q4, with a 90-mm magnet based on Nb-Ti technology. The main challenges are due to the distance between the beams of 194 mm, giving a non-negligible magnetic coupling between the two apertures. The coil chosen to be the baseline is a single layer with 15-mm-width cable of the LHC MQ quadrupole. The mechanical structure is based on stainless steel collars to withstand the Lorentz forces. The iron yoke has a magnetic function, and guarantees the alignment of the two apertures. Electromagnetic and mechanical aspects and effects of unbalanced regimes on the field quality have been analyzed. A 3-D design of the coil ...

  6. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  8. Feasibility study of 5MW superconducting wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech; Seiler, E.

    2011-01-01

    The feasibility of installing a direct drive superconducting generator in the 5MW reference offshore wind turbine of the National Renewable Energy Laboratory (NREL) has been examined. The engineering current densities Je obtained in a series of race track coils have been combined with magnetization...

  9. A Simplified Model to Calculate AC Losses in Large 2G HTS Coils

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech;

    2015-01-01

    AC losses are of great significance to quantify the performance of high temperature superconducting (HTS) devices. This paper presents a simplified model to calculate AC losses in large 2G HTS coils, which serves as a baseline to study HTS large scale applications such as electric machines. The m...

  10. On the application of High-Tc superconductors in power coils and transformers

    NARCIS (Netherlands)

    Chevtchenko, Oleg Alexandrovitch

    2002-01-01

    In this study, the electro-magnetic properties of high-Tc tapes and coils are investigated. The focus is on Bi-2223/Ag tapes with non-twisted superconducting filaments as these are the only high-Tc superconductors at present available in sufficient length for practical applications. The study is con

  11. Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet

    Science.gov (United States)

    Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi

    A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.

  12. 13 kA Superconducting Busbars Manufacturing Process

    CERN Document Server

    Principe, R; Fornasiere, E

    2012-01-01

    In the LHC, the superconducting Main Bending magnets and Quadrupole magnets are series-connected electrically in different excitation circuits by means of superconducting busbars, carrying a maximum current of 13 kA. These superconducting busbars consist of a superconducting Rutherford cable thermally and electrically coupled to a copper section all along the length. The function of the copper section is essentially to provide an alternative path for the magnet current in case of resistive transition. The production of these components was originally outsourced. The decision to import the technology at CERN led to a global re-engineering of the standard process. Although based on the procedures adopted during the LHC construction, a few modifications and improvements have been implemented, profiting of the experience gained in the last few years. This document details the manufacturing process of the 13 kA busbars as it is actually performed at CERN, emphasizing the new solutions adopted during the first mon...

  13. Detecting body cavity bombs with nuclear quadrupole resonance

    Science.gov (United States)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  14. Electromagnetic, stress and thermal analysis of the Superconducting Magnet

    CERN Document Server

    Ren, Yong

    2015-01-01

    Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...

  15. Optimal Design for Open MR/Superconducting Magnet with Active Shielding

    Institute of Scientific and Technical Information of China (English)

    Chun-zhong WANG; Qiu-liang WANG; Lan-kai LI; Ming RONG; You-yuan ZHOU

    2010-01-01

    The optimal design method for an open Magnetic Resonance Imaging(MRI)superconducting magnet with an active shielding configuration is proposed Firstly,three pairs of current rings are employed as seed coils.By optimizing the homogeneity of Diameter Sphere Volume(DSV),the positions and currents of the seed coils will be obtained.Secondly,according to the positions and currents of the seed coils,the current density of superconducting wires is determined,and then the original sections for the coils can be achieved.An optimization for the homogeneity based on the constrained nonlinear optimization method is employed to determine the coils with homogeneity.Thirdly,the magnetic field generated by previous coils is set as the background field,then add two coils with reverse current,and optimize the stray field line of 5 Gauss in a certain scope.Finally,a further optimization for the homogeneity is used to get final coils.This method can also be used in the design of other axisymmettic superconducting MRI magnets.

  16. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    Science.gov (United States)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  17. Performance of HQ02, an optimized version of the 120 mm $Nb_3Sn$ LARP quadrupole

    CERN Document Server

    Chlachidze, G; Anerella, M; Borgnolutti, F; Bossert, R; Caspi, S; Cheng, D W; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia A R; Marchevsky, M; Orris, D; Roy, P K; Sabbi, G L; Salmi, T; Schmalzle, J; Sylvester, C; Tartaglia, M; Tompkins, J; Wanderer, P; Wang, X R; Zlobin, A V

    2014-01-01

    In preparation for the high luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) is developing a new generation of large aperture high-field quadrupoles based on Nb3Sn technology. One meter long and 120 mm diameter HQ quadrupoles are currently produced as a step toward the eventual aperture of 150 mm. Tests of the first series of HQ coils revealed the necessity for further optimization of the coil design and fabrication process. A new model (HQ02) has been fabricated with several design modifications, including a reduction of the cable size and an improved insulation scheme. Coils in this magnet are made of a cored cable using 0.778 mm diameter Nb3Sn strands of RRP 108/127 sub-element design. The HQ02 magnet has been fabricated at LBNL and BNL, and then tested at Fermilab. This paper summarizes the performance of HQ02 at 4.5 K and 1.9 K temperatures.

  18. The development of magnetic field measurement system for drift-tube linac quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianxin, E-mail: zhoujx@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences CAS, Dongguan 523803 (China); Dongguan Neutron Science Center, Dongguan 523808 (China); Kang, Wen [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences CAS, Dongguan 523803 (China); Dongguan Neutron Science Center, Dongguan 523808 (China); Yin, Baogui; Peng, Quanling [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences CAS, Dongguan 523803 (China); Dongguan Neutron Science Center, Dongguan 523808 (China)

    2015-06-21

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H{sup −} ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  19. The development of magnetic field measurement system for drift-tube linac quadrupole

    Science.gov (United States)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  20. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  1. Design of the dummy coil for magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr; Choi, Jae-Hoon; Jin, Jong-Kook; Lee, Dong-Keun; Kong, Jong-Dea; Joung, Nam-Young; Kim, Sang-Tae; Kim, Young-Jin; Kim, Yang-Soo; Kwon, Myeun

    2013-11-15

    Highlights: • It is necessary to confirm safety of the MPS on a dummy coil before the operating it. • We selected and designed the water cooling type dummy coil to test on the MPS's rating (12.5 kA) test. • For the design of the dummy coil, we considered requirements about electrical, structural and water cooling. • We will test as the rating power after MPS upgrade and that test will do before every KSTAR campaign. -- Abstract: It is necessary to test it on a dummy coil, before using a magnet power supply (MPS) to energize a Poloidal Field (PF) coil in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The dummy coil should accept the same large current from the MPS as the PF coil and be within the capability of the utilities located at the KSTAR site. Therefore a coil design based on the characteristics of the MPS and other restrictive conditions needed to be made. There are three requirements to be met in the design: an electrical requirement, a structural requirement, and a water cooling requirement. The electrical requirement was that the coil should have an inductance of 40 mH. For the structural requirement, the material should be non magnetic. The coil support structure and water cooling manifold were made of SUS 304. The water cooling requirement was that there should be sufficient flow rate so that the temperature rise ΔT should not exceed 12 °C for operation at 12.5 kA for 5 min. Square cross-section hollow conductor with dimensions of 38.1 mm × 38.1 mm was used with a 25.4 mm center hole for cooling water. However, as a result of tests, it was found that the electrical and structural requirements were satisfied but that the water cooling was over designed. It is imperative that the verification will be redone for a test with 12.5 kA for 5 min.

  2. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  3. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    Science.gov (United States)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  4. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  5. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  6. Construction of a superconducting RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L. [Argonne National Lab., IL (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-07-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed.

  7. RF and Surface Properties of Superconducting Samples

    CERN Document Server

    Junginger, T; Weingarten, W; Welsch, C

    2011-01-01

    At CERN a compact Quadrupole Resonator has been developed for the RF characterization of superconducting samples at different frequencies. In this paper, results from measurements on bulk niobium and niobium filmon copper substrate samples are presented. We show how different contributions to the surface resistance depend on temperature, applied RF magnetic field and frequency. Furthermore, measurements of the maximum RF magnetic field as a function of temperature and frequency in pulsed and CW operation are presented. The study is accompanied by measurements of the surface properties of the samples by various techniques.

  8. Algebraic reconstruction combined with the signal space separation method for the inverse magnetoencephalography problem with a dipole-quadrupole source

    Science.gov (United States)

    Nara, T.; Koiwa, K.; Takagi, S.; Oyama, D.; Uehara, G.

    2014-05-01

    This paper presents an algebraic reconstruction method for dipole-quadrupole sources using magnetoencephalography data. Compared to the conventional methods with the equivalent current dipoles source model, our method can more accurately reconstruct two close, oppositely directed sources. Numerical simulations show that two sources on both sides of the longitudinal fissure of cerebrum are stably estimated. The method is verified using a quadrupolar source phantom, which is composed of two isosceles-triangle-coils with parallel bases.

  9. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance (NQR) techniques. REF [1] and [6] explain the differences between NMR and NQR. What NMR and NQR...inductances due to physical dimensions. A wider bandwidth will insure all surface coils are individually tuned and matched within the bandwidth

  10. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  11. Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...

  12. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  13. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  14. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    DEFF Research Database (Denmark)

    Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils...... Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings...... on the performance of the motor are discussed....

  15. TESTING AND EVALUATION OF SUPERCONDUCTING CABLES FOR THE LHC.

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,R.; GHOSH,A.; MCCHESNEY,D.; JAIN,A.

    1999-03-29

    As one of the activities of the US-LHC Accelerator Project, BNL is testing short samples of superconducting cables that will be used in the main LHC dipoles and quadrupoles. The purpose of these tests is to verify that the reels of superconducting cables as supplied by the vendors meet the required critical current specifications. The short-sample testing facility and the computer-assisted testing techniques for acquiring the data will be described. We also describe the data analysis, data storage, and data transmission methods.

  16. Local magnetic order vs superconductivity in a layered cuprate

    Science.gov (United States)

    Ichikawa; Uchida; Tranquada; Niemoller; Gehring; Lee; Schneider

    2000-08-21

    We report on the phase diagram for charge-stripe order in La1.6-xNd0. 4SrxCuO4, determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x approximately 1 / 8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.

  17. The radio-frequency quadrupole

    CERN Document Server

    Vretenar, Maurizio

    2013-01-01

    Radio-frequency quadrupole (RFQ) linear accelerators appeared on the accelerator scene in the late 1970s and have since revolutionized the domain of low-energy proton and ion acceleration. The RFQ makes the reliable production of unprecedented ion beam intensities possible within a compact radio-frequency (RF) resonator which concentrates the three main functions of the low-energy linac section: focusing, bunching and accelerating. Its sophisticated electrode structure and strict beam dynamics and RF requirements, however, impose severe constraints on the mechanical and RF layout, making the construction of RFQs particularly challenging. This lecture will introduce the main beam optics, RF and mechanical features of a RFQ emphasizing how these three aspects are interrelated and how they contribute to the final performance of the RFQ.

  18. Introduction to COIL

    OpenAIRE

    Kane, David

    2008-01-01

    By reciprocal arrangement between WIT and the National College of Ireland, you are now able to access their collection directly - more than 100,000 items. This form of direct consortial borrowing has never been tried before in Ireland. Before you borrow your first book, you will have to set up a COIL account, which is straightforward. The items which you reserve online will be posted to us, for you to collect, at the front desk in the Luke Wadding library, afterwards. The Initiat...

  19. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Science.gov (United States)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  20. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High-Luminosity LHC upgrade

    CERN Document Server

    Chlachidze, G; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G L; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  1. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  2. Race-track coils for a 3 MW HTS ship motor

    Science.gov (United States)

    Ueno, E.; Kato, T.; Hayashi, K.

    2014-09-01

    Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  3. Competition between Quadrupole and Magnetic Kondo Effects in Non-Kramers Doublet Systems

    Science.gov (United States)

    Kusunose, Hiroaki; Onimaru, Takahiro

    2015-03-01

    We discuss possible competition between magnetic and quadrupole Kondo effects in non-Kramers doublet systems in cubic symmetry. The quadrupole Kondo effect leads to non-Fermi-liquid (NFL) ground state, while the magnetic one favors ordinary Fermi-liquid (FL) ground state. In terms of the j-j coupling scheme, we argue that the orbital fluctuation must develop in the vicinity of the NFL-FL boundary. A change of temperature dependence of the f-electron entropy in both the FL and NFL regimes is demonstrated by the Wilson's numerical renormalization-group (NRG) method on the basis of the extended two-channel Kondo exchange model. We present implications to PrT2X20 (T=Ti, V, Ir; X=Al, Zn) systems which exhibit both quadrupole ordering and peculiar superconductivity. We discuss how the magnetic field lifts the non-Kramers degeneracy. Our model also represents the alternative FL state accompanied by a free magnetic spin, as a consequence of stronger competition between the magnetic and the quadrupole Kondo effects.

  4. submitter 16 T $Nb_{3}Sn$ Racetrack Model Coil Test Result

    CERN Document Server

    Perez, J C; Bajko, M; Bottura, L; Bordini, B; Chiuchiolo, A; De Rijk, G; Ferracin, P; Feuvrier, J; Grosclaude, P; Juchno, M; Rochepault, E; Rysti, J; Sarasola, X

    2016-01-01

    In the framework of the European project EuCARD, the High Field Magnet project, led by a CERN-CEA collaboration, implied the development of a large aperture $Nb_{3}Sn$ dipole magnet called FRESCA2. The magnet uses four double-pancake block-type coils, each about 1.5 m long. In order to characterize strand and cable properties, as well as to qualify the coil fabrication process, CERN started in 2012 the design and fabrication of the Racetrack Model Coil (RMC) magnet, a short model magnet using the same cable as FRESCA2 magnet with only two flat double-pancake coils about 0.8 m long. In 2013, two superconducting coils have been fabricated, making use of two different types of superconductor. In 2014 and 2015, the coils were tested both in a single and in a double-coil configuration in a support structure based on an external aluminum shell pre-loaded with water-pressurized bladders. In this paper, we describe the design of the RMC magnet and its coils, provide the main parameters of the superconductor, and repo...

  5. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    Science.gov (United States)

    Breschi, M.; Cavallucci, L.; Ribani, P. L.; Gavrilin, A. V.; Weijers, H. W.

    2016-05-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil.

  6. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  7. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    Science.gov (United States)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  8. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  9. Development of a superconducting claw-pole linear test-rig

    Science.gov (United States)

    Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus

    2016-04-01

    Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.

  10. Electromagnetic characteristics of a superconducting magnet for the 28 GHz ECR ion source according to the series resistance of the protection circuit

    Science.gov (United States)

    Lee, Hongseok; Mo, Young Kyu; Kang, Jong O.; Bang, Seungmin; Kim, Junil; Lee, Onyou; Kang, Hyoungku; Hong, Jonggi; Choi, Sukjin; Hong, In Seok; Nam, Seokho; Ahn, Min Chul

    2015-10-01

    A linear accelerator, called RAON, is being developed as a part of the Rare Isotope Science Project (RISP) at the Institute for Basic Science (IBS). The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly-charged ion beams to the linear accelerator. The 28-GHz ECR ion source can extract heavy-ion beams from protons to uranium. The superconducting magnet system for the 28-GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low-Tc superconducting wires of NbTi. An electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in the case of not only the normal state but also the quench state. In the case of quench on hexapole coils, an unbalanced flowing current among the hexapole coils is generated and causes an unbalanced electromagnetic force. Coil motions and coil strains in the quench state are larger than those in the normal state due to the unbalanced electromagnetic force among hexapole coils. Therefore, an analysis of the electromagnetic characteristics of the superconducting magnet for the 28-GHz ECR ion source on series resistance of the protection circuit in the case of quench should be conducted. In this paper, an analysis of electromagnetic characteristics of Superconducting hexapole coils for the 28-GHz ECR ion source according to the series resistance of the protection circuit in the case of quench performed by using finite-elements-method (FEM) simulations is reported.

  11. Equilibrium modeling of the TFCX poloidal field coil system

    Energy Technology Data Exchange (ETDEWEB)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed.

  12. submitter Electromagnetic Study of a Round Coil Superferric Magnet

    CERN Document Server

    Volpini, Giovanni; Statera, Marco

    2016-01-01

    A novel type of superferric magnets suitable to arbitrary multipole orders was proposed by I. F. Malyshev and later by V. Kashikhin. This new topology, which we refer to as round coil superferric magnets (RCSM), allows a great simplification of the superconducting part, which in the simplest case may be composed by a single round coil, which has intrinsically a rather large bending radius allowing the use of strain-sensitive superconductors. INFN is designing and building a prototype of a multipolar corrector magnet based on this geometry and using MgB2 tapes. In this paper, we investigate a number of issues pertaining to the electromagnetic characteristics of RCSM. The RCSM magnetic has inherently even harmonics, in addition to usual odd ones and a solenoidal component. Either (but not both) disappears when integrated using a one-coil or a two-coil specular design. We investigate the effect of saturation on the multipolar components and on the load line, since in RCSM, saturation plays a role that differs bo...

  13. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  14. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  15. Mechanical Design of an Alternate Structure for LARP Nb3Sn Quadrupole Magnets for LHC

    CERN Document Server

    Anerella, M; Kovach, P; Schmalzle, J; Wanderer, P; Ambrosio, G; Lamm, M J; Caspi, S; Felice, H; Ferracin, P; Sabbi, G L

    2011-01-01

    An alternative structure for the 120 mm Nb3Sn quadrupole magnet is presently under development for use in the upgrade for LHC at CERN. The design aims to build existing technology developed in LARP with the LQ and HQ magnets and to further optimize the features required for operation in the accelerator. The structure includes features for maintaining mechanical alignment of the coils to achieve the required field quality. It also includes a helium containment vessel and provisions for cooling with 1.9 K helium. The development effort includes the assembly of a six inch model to verify required coil load is achieved. Status of the R&D effort and an update on the magnet design, including its incorporation into the design of a complete one meter cold mass is presented.

  16. Magnetic Analysis of the Nb$_3$Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Chlachidze, G; Ferracin, P; Holik, E; Di Marco, J; Todesco, E; Sabbi, G L; Vallone, G; Wang, X

    2017-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture $Nb_3Sn$ quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis and the contribution of the coil ends are also discussed. Moreover, we present the influence of the conductor magnetization and the dynamic effects.

  17. ITER CS Model Coil and CS Insert Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Michael, P; Minervina, J; Radovinsky, A; Takayasu, M; Thome, R; Ando, T; Isono, T; Kato, T; Nakajima, H; Nishijima, G; Nunoya, Y; Sugimoto, M; Takahashi, Y; Tsuji, H; Bessette, D; Okuno, K; Ricci, M

    2000-09-07

    The Inner and Outer modules of the Central Solenoid Model Coil (CSMC) were built by US and Japanese home teams in collaboration with European and Russian teams to demonstrate the feasibility of a superconducting Central Solenoid for ITER and other large tokamak reactors. The CSMC mass is about 120 t, OD is about 3.6 m and the stored energy is 640 MJ at 46 kA and peak field of 13 T. Testing of the CSMC and the CS Insert took place at Japan Atomic Energy Research Institute (JAERI) from mid March until mid August 2000. This paper presents the main results of the tests performed.

  18. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  19. Finite element stress analysis of the CMS magnet coil

    CERN Document Server

    Desirelli, Alberto; Farinon, S; Levesy, B; Ps, C; Rey, J M; Sgobba, Stefano

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.38 m and the aperture is 6.36 m. This is achieved with a 4 layer-5 module superconducting Al-stabilized coil energised at a nominal current of 20 kA. The finite element analysis (FEA) carried out is axisymmetric elasto-plastic. FEA has also been carried out on the suspension system and on the conductor. (8 refs).

  20. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  1. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, ten H.H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport curre

  2. Development and Manufacture of the Coil End Spacers of the LHC Pre-series Dipoles

    CERN Document Server

    Farina, E; Perini, D; Schiappapietra, A; Seneé, L

    2002-01-01

    The coil end spacers play an important role in the performance of superconducting coils, as their shape and location determine the mechanical stability of the conductors in the coil ends (and hence the overall coil training performance) and the local field quality. The dipole end spacers are often of a size and a geometry difficult to be industrially series manufactured and measured. Efficiency of the production and related costs are a key issue to achieve the required production rate of the LHC main dipoles at an affordable price. For the latter reasons, a design approach integrating state-of-the-art CAD/CAM optimization techniques allowing to considerably decrease design and machining time was implemented. This paper gives examples and describes the design criteria, the computation methods, the machining and measuring procedures adopted to carry out the pre-series production.

  3. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  4. Training characteristics of 1-m model magnets for the LHC low-beta quadrupoles

    CERN Document Server

    Nakamoto, T; Tsuchiya, K; Ajima, Y; Burkhardt, E E; Haruyama, T; Higashi, N; Iida, M; Kimura, N; Ogitsu, T; Ohhata, I; Ohuchi, N; Shintomi, T; Tanaka, K; Terashima, A

    2000-01-01

    Two models of the high gradient 70 mm aperture superconducting low- beta quadrupole magnets were developed at KEK as part of the collaboration between CERN and KEK for the Large Hadron Collider (LHC). The training tests of both model magnets have been carried out at 1.9 K and both models successfully reached the design field gradient of 240 T/m, and the training memory partially remained after thermal cycles. General characteristics of the training curve for the models seemed to be similar. In this paper, training results of the model magnets is described and discussed. (12 refs).

  5. The quadrupole resonator Construction, RF System Field Calculations and First Applications

    CERN Document Server

    Chiaveri, Enrico; Mahner, E; Tessier, J M

    1998-01-01

    The quadrupole resonator allows measurement of the RF properties of superconducting (sc) films deposited on disk-shaped metallic substrates. We describe the construction of the apparatus, the brazing and electron-beam welding procedures, the arrangements for compensating mechanical tolerances of samples and for assuring reproducible sample illumination. We explain the special features of the RF sy stem and give the results of field calculations with a 3D cavity code. Finally we present first measurements of Nb on Cu film samples and compare them with calibrations done with a bulk Nb sample.

  6. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer.

  7. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  8. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Design and First Measurements of an Alternative Calorimetry Chamber for the HZB Quadrupole Resonator

    CERN Document Server

    Keckert, Sebastian; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    The systematic research on superconducting thin films requires dedicated testing equipment. The Quadrupole Resonator (QPR) is a specialized tool to characterize the superconducting RF properties of circular planar samples. A calorimetric measurement of the RF surface losses allows the surface resistance to be measured with sub nano-ohm resolution. This measurement can be performed over a wide temperature and magnetic field range, at frequencies of 433, 866 and 1300 MHz. The system at Helmholtz-Zentrum Berlin (HZB) is based on a resonator built at CERN and has been optimized to lower peak electric fields and an improved resolution. In this paper the design of an alternative calorimetry chamber is presented, providing flat samples for coating which are easy changeable. All parts are connected by screwing connections and no electron beam welding is required. Furthermore this design enables exchangeability of samples between the resonators at HZB and CERN. First measurements with the new design show ambiguous r...

  10. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders;

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...... tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  11. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  12. Coiled-coil conformation of a pentamidine-DNA complex.

    Science.gov (United States)

    Moreno, Tadeo; Pous, Joan; Subirana, Juan A; Campos, J Lourdes

    2010-03-01

    The coiled-coil structure formed by the complex of the DNA duplex d(ATATATATAT)(2) with pentamidine is presented. The duplex was found to have a mixed structure containing Watson-Crick and Hoogsteen base pairs. The drug stabilizes the coiled coil through the formation of cross-links between neighbouring duplexes. The central part of the drug is found in the minor groove as expected, whereas the charged terminal amidine groups protrude and interact with phosphates from neighbouring molecules. The formation of cross-links may be related to the biological effects of pentamidine, which is used as an antiprotozoal agent in trypanosomiasis, leishmaniasis and pneumonias associated with AIDS. The DNA sequence that was used is highly abundant in most eukaryotic genomes. However, very few data are available on DNA sequences which only contain A.T base pairs.

  13. Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Riße, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Rummel, Th.; Freundt, S.; Dudek, A.; Renard, S.; Bykov, V.; Köppen, M. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Langish, S.; Neilson, G.H.; Brown, Th.; Chrzanowski, J.; Mardenfeld, M.; Malinowski, F.; Khodak, A.; Zhao, X. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Eksaa, G. [Everson Tesla Inc., Nazareth, PA (United States)

    2013-10-15

    Highlights: ► The trim coil system will fine tune the main magnetic field during plasma operation by reducing the magnetic field errors. ► The coil design and operational parameters are fixed, the manufacturing is running. ► The coils are equipped with temperature sensors and a voltage tap system to monitor the coil temperature. ► The max. operational deflection is in the order of 4.5 mm; the max. shearing stress across bond planes is of order 16 MPa. ► Special clamps equipped with elastomeric pads allow fixing the coils on the outer cryostat wall. -- Abstract: The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP.

  14. Manufacturing and test of 2G-HTS coils for rotating machines: Challenges, conductor requirements, realization

    Energy Technology Data Exchange (ETDEWEB)

    Oomen, Marijn, E-mail: marijn.oomen@siemens.com [Siemens AG, Corporate Technology, CT T DE HW4, PO Box 3220, 91050 Erlangen (Germany); Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea [Siemens AG, Corporate Technology, CT T DE HW4, PO Box 3220, 91050 Erlangen (Germany)

    2012-11-20

    We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.

  15. Manufacturing and test of 2G-HTS coils for rotating machines: Challenges, conductor requirements, realization

    Science.gov (United States)

    Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea

    2012-11-01

    We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.

  16. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  17. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    Science.gov (United States)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  18. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  19. SUPERCONDUCTING HELICAL SNAKE MAGNET FOR THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    WILLEN, E.; ANERELLA, M.; ESCALLIER, G.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; LUCCIO, A.; MACKAY, W.; MARONE, A.; MURATORE, J.; PLATE, S.; ET AL.

    2005-05-16

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This ''partial Snake'' magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

  20. Investigation of the surface resistance of superconducting materials

    CERN Document Server

    Junginger, T

    2012-01-01

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance RS which depends on a number of external parameters, including frequency, temperature, magnetic and electric eld. Presently, there is no widely accepted model describing the increase of Rs with applied eld. In the frame of this project the 400MHz Quadrupole Resonator has been extended to 800 and 1200MHz to study surface resistance and intrinsic critical RF magnetic eld of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Dierent samples were studied and it was shown that RS is mainly caused by the RF electric eld in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majority of the di...

  1. Investigations of the surface resistance of superconducting materials

    CERN Document Server

    Junginger, Tobias; Welsch, Carsten

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance RS which depends on a number of external parameters, including frequency, temperature, magnetic and electric field. Presently, there is no widely accepted model describing the increase of Rs with applied field. In the frame of this project the 400 MHz Quadrupole Resonator has been extended to 800 and 1200 MHz to study surface resistance and intrinsic critical RF magnetic field of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Different samples were studied and it was shown that Rs is mainly caused by the RF electric field in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majori...

  2. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  3. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  4. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  5. Po Superconducting Magnet:detail of the windings

    CERN Multimedia

    1982-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam Po. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8307552X.

  6. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  7. Can Magnetic Coil Ease Tinnitus?

    Science.gov (United States)

    ... Research Updates Technology Horizons Can magnetic coil ease tinnitus? VA trial aims to find out February 3, ... pain. See, for example, this 2009 review study . Tinnitus and Veterans Tinnitus has been one of the ...

  8. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  9. Adjustable Induction-Heating Coil

    Science.gov (United States)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  10. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  11. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  12. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  13. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [Jefferson Lab, Newport News, VA; Hogan, John P. [Jefferson Lab, Newport News, VA; Fair, Ruben J. [Jefferson Lab, Newport News, VA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA; Luongo, Cesar [Jefferson Lab, Newport News, VA; Elouadrhiri, Latifa [Jefferson Lab, Newport News, VA

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  14. CLIC Main Beam Quadrupole Eigen Mode computation

    CERN Document Server

    Deleglise, Guillaume

    2010-01-01

    In this report, we summarise the work done on the CLIC Main Beam Quadrupole. There are about 4000 MB quadrupoles of 4 types with lengths ranging from 420mm to 1900mm. In order to obtain the desired CLIC luminosity, the MB quadrupoles have to be stable to 1nm above 1Hz. The region of interest for the study is between 0.5Hz and about 100Hz. In order to achieve the specifications, the magnet should not have any resonance peaks in this region of Interest. In addition, the magnet on its support shouldn’t have any resonance peak in the same frequency range. The first step is to determine if the designed magnet has its first resonance peak above 100Hz. We are studying the longest quadrupole more susceptible to internal resonances. In a second step, the magnet on ideal supporting points has been evaluated. The current magnet design can be seen on following figure. One can see that it is composed of 4 quadrants assembled so as to have a quadrupole magnetic field. As a last step, the mechanical model has been used to...

  15. Focusing properties of discrete RF quadrupoles

    Science.gov (United States)

    Li, Zhi-Hui; Wang, Zhi-Jun

    2017-08-01

    The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)

  16. The Effect of the Feedback Controller on Superconducting Tokamak AC Losses + AC-CRPP user manual

    Energy Technology Data Exchange (ETDEWEB)

    Schaerz, B.; Bruzzone, P.; Favez, J.Y.; Lister, J.B.; Zapretilina, E

    2001-11-01

    Superconducting coils in a Tokamak are subject to AC losses when the field transverse to the coil current varies. A simple model to evaluate the AC losses has been derived and benchmarked against a complete model used in the ITER design procedure. The influence of the feedback control strategy on the AC losses is examined using this model. An improved controller is proposed, based on this study. (author)

  17. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  18. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  19. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  20. Estimation of critical current distribution in Bi2Sr2CaCu2O x cables and coils using a self-consistent model

    Science.gov (United States)

    Liu, Donghui; Xia, Jing; Yong, Huadong; Zhou, Youhe

    2016-06-01

    Superconducting magnets can generate high magnetic fields. Multi-filamentary Ag-alloy sheathed Bi2Sr2CaCu2O x (Bi-2212) round wire can have a high critical current density in a very high magnetic field. Thus, Bi-2212 has great potential for the development of high-field magnets. For safe and reliable operation of superconducting magnets, it is necessary to estimate the critical current during the design of cables and coils. In this paper, we extend the self-consistent model proposed by Zermeño et al to study the critical current of Bi-2212 cables and coils. First, based on the distribution of Bi-2212 filaments and the experimental test of the critical current of a single strand, the critical currents in cables and coils are calculated. The self-field effect on the critical current is also analyzed. Then, we use an equivalent model to to estimate critical current of large superconducting coils. The equivalent model can effectively estimate the critical current in coils. Using the equivalent model, the results of coils in self-field and high field are compared and discussed. The method and results could be useful for the design of high-field coils.