WorldWideScience

Sample records for superconducting impurity phase

  1. Transport in the superconducting phase of UPt 3 at low-temperature: magnetic field and impurity effects

    Science.gov (United States)

    Brison, Jean-Pascal; Suderow, Hermann; Rodière, Pierre; Huxley, Andrew; Kambe, Shinsaku; Rullier-Albenque, Florence; Flouquet, Jacques

    2000-06-01

    We will review the experimental results which have led to and supported the “hybrid gap picture” in the heavy-fermion superconductor UPt 3: power-law temperature dependence of the thermal conductivity along the c-axis and in the basal plane, scaling laws under magnetic field. Experiments on samples with sizeable amounts of point defects (created by high-energy electron irradiation) seem to challenge these results. We conclude on the actual scenarios for the phase diagram of UPt 3 in conjunction with the results from the NMR Knight-shift measurements.

  2. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  3. Topological superconducting phase and Majorana bound states in Shiba chains

    Science.gov (United States)

    Pientka, Falko; Peng, Yang; Glazman, Leonid; von Oppen, Felix

    2015-12-01

    Chains of magnetic adatoms on a conventional superconducting substrate constitute a promising venue for realizing topological superconductivity and Majorana end states. Here, we give a brief overview over recent attempts to describe these systems theoretically, emphasizing how the topological phase emerges from the physics of individual magnetic impurities and their associated Shiba states.

  4. Effect of the Indium Addition on the Superconducting Property and the Impurity Phase in Polycrystalline SmFeAsO1-xFx

    Science.gov (United States)

    Fujioka, Masaya; Ozaki, Toshinori; Okazaki, Hiroyuki; Denholme, Saleem James; Deguchi, Keita; Demura, Satoshi; Hara, Hiroshi; Watanabe, Tohru; Takeya, Hiroyuki; Yamaguchi, Takahide; Kumakura, Hiroaki; Takano, Yoshihiko

    2013-02-01

    We report the increase in the magnetic critical current density (Jc) of indium added polycrystalline SmFeAsO1-xFx. The value of magnetic Jc is around 2.5 × 104 A/cm2 at 4.2 K under a self-magnetic field. Polycrystalline SmFeAsO1-xFx is mainly composed of superconducting grains and a little amorphous FeAs compounds. These components randomly coexist and amorphous areas are located between superconducting grains. Therefore, superconducting current is prevented from flowing by the amorphous areas. In this study, it is found that indium addition to polycrystalline SmFeAsO1-xFx removes these amorphous areas and induces the clustering of the superconducting grains. This means that the total contact surface area of grains increases. We suggest that the increase in the magnetic Jc is a direct effect of the indium addition.

  5. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  6. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  7. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  8. Commercial Process of Bi-based 2212 Single Phase Superconducting Precursor Powder

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Laying emphasis on the preparation of Bi-based 2212 single phase superconducting powder, some technological parameters, which effect the single phase degree and uniformity of powder, such as prebaking, sintering and heat treatment were investigated and discussed. Ensuring the powder Tc at 83~85 K, the crucial impurity carbon was reduced to 0.03% and less. Adopting uncommon technique made the powder size to micrometer level, meanwhile the superconducting performance of the powder was unchanged. The fine superconducting powder was characterized. This process of Bi-based 2212 superconducting powder was successful.

  9. Probing the local effects of magnetic impurities on superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A.; Jones, B.A.; Lutz, C.P. [Almaden Research Center, San Jose, CA (United States)] [and others

    1997-03-21

    The local effects of isolated magnetic adatoms on the electronic properties of the surface of a superconductor were studied with a low-temperature scanning tunneling microscope. Tunneling spectra obtained near magnetic adsorbates reveal the presence of excitations within the superconductor`s energy gap that can be detected over a few atomic diameters around the impurity at the surface. These excitations are locally asymmetric with respect to tunneling of electrons and holes. A model calculation based on the Bogoliubov-de Gennes equations can be used to understand the details of the local tunneling spectra. 18 refs., 6 figs.

  10. Isotope effect in the superfluid density of high-temperature superconducting cuprates: stripes, pseudogap, and impurities.

    Science.gov (United States)

    Tallon, J L; Islam, R S; Storey, J; Williams, G V M; Cooper, J R

    2005-06-17

    Underdoped cuprates exhibit a normal-state pseudogap, and their spins and doped carriers tend to spatially separate into 1D or 2D stripes. Some view these as central to superconductivity and others as peripheral and merely competing. Using La(2-x)Sr(x)Cu(1-y)Zn(y)O4 we show that an oxygen isotope effect in Tc and in the superfluid density can be used to distinguish between the roles of stripes and pseudogap and also to detect the presence of impurity scattering. We conclude that stripes and pseudogap are distinct, and both compete and coexist with superconductivity.

  11. Magnetic impurity induced states in superconducting Bi2Sr2CaCuO8+δ

    Science.gov (United States)

    Choubey, Peayush; Kreisel, Andreas; Berlijn, Tom; Andersen, Brian; Hirschfeld, Peter

    2015-03-01

    We revisit the Ni impurity problem in superconducting Bi2Sr2CaCu2O8+δ (BSCCO-2212) using the Bogoliubov- de Gennes (BdG)-Wannier approach. We solve the self-consistent BdG equations on a square lattice and use first principle-based Wannier function to compute the local density of states (LDOS) with sub-atomic resolution in the vicinity of a magnetic impurity. We find two spin-resolved virtual bound states localized around the impurity position. The spatial LDOS patterns at the resonance energies are found to be in excellent agreement with STM experiment, and can be understood by accounting for the tails of Cu Wannier function.

  12. Superconducting Gap Symmetry of LaFeP(O,F Observed by Impurity Doping Effect

    Directory of Open Access Journals (Sweden)

    Shigeki Miyasaka

    2016-08-01

    Full Text Available We have investigated Mn, Co and Ni substitution effects on polycrystalline samples of LaFePO0.95F0.05 by resistivity and magnetoresistance measurements. In LaFe1-xMxPO0.95F0.05 (M = Mn, Co and Ni, the superconducting transition temperature (Tc monotonously decreases with increasing the impurity doping level of x. There is a clear difference of Tc suppression rates among Mn, Co and Ni doping cases, and the decreasing rate of Tc by Mn doping as a magnetic impurity is larger than those by the nonmagnetic doping impurities (Co/Ni. This result indicates that in LaFePO0.95F0.05, Tc is rapidly suppressed by the pair-breaking effect of magnetic impurities, and the pairing symmetry is a full-gapped s-wave. In the nonmagnetic impurity-doped systems, the residual resistivity in the normal state has nearly the same value when Tc becomes zero. The residual resistivity value is almost consistent with the universal value of sheet resistance for two-dimensional superconductors, suggesting that Tc is suppressed by electron localization in Co/Ni-doped LaFePO0.95F0.05.

  13. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  14. Phase Transition of Spin-Peierls Systems with Impurities

    Institute of Scientific and Technical Information of China (English)

    XU Bo-Wei; DING Guo-Hui; YE Fei

    2000-01-01

    The quasi-one-dimensional spin-Peierls(SP) systems with impurities are studied in their bosonized form. The spins of the dimerized state are bounded into singlets with an SP gap, while the impurities of doped systems will induce fluctuations of the coupling strength between the spins at different sites and break some pairs of spin singlets. The doping suppresses the dimerized SP state and induces a Kosterlitz-Thouless phase transition from the dimerized state into the undimerized one.

  15. Deterministic phase slips in mesoscopic superconducting rings

    Science.gov (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-11-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  16. Effect of Zn impurities on the superconducting state of high Tc cuprates.

    Science.gov (United States)

    Garg, A.; Kanigel, A.; Randeria, M.; Trivedi, N.

    2010-03-01

    We study the effect of Zn impurities on the strongly correlated d-wave superconducting state. We solve the t-t^'-J model in the presence of unitary scatterers, with the no-double-occupancy constraint imposed by Gutzwiller approximation and the disorder-induced inhomogeneity treated within the Bogoliubov-deGennes (BdG) approach. We study the effect of strong correlations on the quasibound states and its interplay with local moment formation. The density of mobile holes is reduced by the presence of unitary scatterers, resulting in a suppression of the superfluid density but a much weaker effect on the superconducting gap. We investigate the effect on spectral properties, such as the suppression of coherence peaks and low energy spectral weight in the density of states and contrast our results with our earlier study [1] that found protected low-energy excitations in the presence of Born scatterers. We compare our results with recent ARPES experiments [2] on Zn-doped Bi2212. [1] A. Garg, M. Randeria, and N. Trivedi, Nature Phys. 4, 762 (2008). [2] A. Kanigel et al., (unpublished).

  17. Superconducting Pairing Correlations near a Kondo-destruction Quantum Critical Point in Cluster Impurity Models

    Science.gov (United States)

    Cai, Ang; Pixley, Jedediah; Si, Qimiao

    Heavy fermion metals represent a canonical system to study superconductivity driven by quantum criticality. We are particularly motivated by the properties of CeRhIn5, which shows the characteristic features of a Kondo destruction quantum critical point (QCP) in its normal state, and has one of the highest Tc's among the heavy fermion superconductors. As a first step to study this problem within a cluster-EDMFT approach, we analyze a four-site Anderson impurity model with the antiferromagnetic spin component of the cluster coupled to a sub-Ohmic bosonic bath. We find a QCP that belongs to the same universality class as the single-site Bose-Fermi Anderson model. Together with previous work on a two-site model, our result suggests that the Kondo destruction QCP is robust as cluster size increases. More importantly, we are able to calculate the d-wave pairing susceptibility, which we find to be enhanced near the QCP. Using this model as the effective cluster model of the periodic Anderson model, we are also able to study the superconducting pairing near the Kondo-destruction QCP of the lattice model; preliminary results will be presented.

  18. Superconductivity in an expanded phase of ZnO: an ab initio study

    Science.gov (United States)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  19. Zeroth Order Phase Transition in a Holographic Superconductor with Single Impurity

    CERN Document Server

    Zeng, Hua Bi

    2014-01-01

    We studied the single normal impurity effect in superconductor by using the holographic method. When the size of impurity is much smaller compared to the host superconductor, we reproduced the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic) impurity with small impurity strength or impurities with small concentration. While by increasing the size of impurity in a fixed host superconductor we also find a decrease $T_c$ of the host superconductor, the phase transition at the critical impurity strength is of zeroth order.

  20. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  1. Impurity-limited resistance and phase interference of localized impurities under quasi-one dimensional nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-12-28

    The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point out a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The

  2. Electron tunneling into superconducting indium and lead films containing the magnetic impurity manganese

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Juine-Kai [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics

    1980-01-01

    Tunneling measurements of quench-condensed In-Mn and Pb-Mn alloy films were made. The results were compared with Shiba's theory of superconductors containing magnetic impurities. The localized excited impurity states predicted by Shiba's theory were observed in both alloys. In addition to s-wave scattering, it was necessary to include p- and d-wave scattering of the conduction electrons in the theory in order to explain the experimental data. Partial agreement between the theory and the experimental data was obtained using phase shifts from band calculations by A.B. Kunz. The results on In-Mn also agree with thermal conductivity data.

  3. Thermal conductivity and gap structure of the superconducting phases of UPt{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Suderow, H.; Huxley, A.; Flouquet, J. [CEA, Grenoble (France); Brison, J.P. [CNRS, Grenoble (France)

    1997-07-01

    We present new measurements of the thermal conductivity ({kappa}) of Upt{sub 3} down to very low temperatures (16 mK) and under magnetic fields (up to 4 T) which cover all the superconducting phases of Upt{sub 3}. The measurements in zero field are compared with recent theoretical predictions for the thermal conductivity, which is dominated by impurity states at the lowest temperatures studied. The measurements under magnetic field at low temperatures are surprising since they don`t show the expected low field square root dependence, {kappa} {proportional_to} {radical}B. The discontinuity of d{kappa}/dT at T{sub c} changes drastically when passing from the high field low temperature C phase to the low field high temperature A phase: this is related to the change of the symmetry of the superconducting order parameter when crossing the A {yields} C phase transition.

  4. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.

    Science.gov (United States)

    Sentef, Michael; Werner, Philipp; Gull, Emanuel; Kampf, Arno P

    2011-09-16

    The two-dimensional Hubbard model exhibits superconductivity with d-wave symmetry even at half-filling in the presence of a next-nearest neighbor hopping. Using plaquette cluster dynamical mean-field theory with a continuous-time quantum Monte Carlo impurity solver, we reveal the non-Fermi liquid character of the metallic phase in proximity to the superconducting state. Specifically, the low-frequency scattering rate for momenta near (π, 0) varies nonmonotonically at low temperatures, and the dc conductivity is T linear at elevated temperatures with an upturn upon cooling. Evidence is provided that pairing fluctuations dominate the normal-conducting state even considerably above the superconducting transition temperature.

  5. Phase diagram and neutron spin resonance of superconducting NaFe1 -xCuxAs

    Science.gov (United States)

    Tan, Guotai; Song, Yu; Zhang, Rui; Lin, Lifang; Xu, Zhuang; Tian, Long; Chi, Songxue; Graves-Brook, M. K.; Li, Shiliang; Dai, Pengcheng

    2017-02-01

    We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1 -xCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x ≈2 % with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x ≈50 % . Using transport measurements, we demonstrate that the resistivity in NaFe1 -xCuxAs exhibits non-Fermi-liquid behavior near x ≈1.8 % . Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As . The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1 -xCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near x ≈50 % with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1 -xCuxAs and other iron pnictides.

  6. Polarons and Mobile Impurities Near a Quantum Phase Transition

    Science.gov (United States)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  7. Quantum phase transitions in the bosonic single-impurity Anderson model

    Science.gov (United States)

    Lee, H.-J.; Bulla, R.

    2007-04-01

    We consider a quantum impurity model in which a bosonic impurity level is coupled to a non-interacting bosonic bath, with the bosons at the impurity site subject to a local Coulomb repulsion U. Numerical renormalization group calculations for this bosonic single-impurity Anderson model reveal a zero-temperature phase diagram where Mott phases with reduced charge fluctuations are separated from a Bose-Einstein condensed phase by lines of quantum critical points. We discuss possible realizations of this model, such as atomic quantum dots in optical lattices. Furthermore, the bosonic single-impurity Anderson model appears as an effective impurity model in a dynamical mean-field theory of the Bose-Hubbard model.

  8. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  9. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    Science.gov (United States)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  10. Massive Quark Propagator in the Colour-Superconducting Phase

    Institute of Scientific and Technical Information of China (English)

    黄梅; 庄鹏飞; 赵维勤

    2002-01-01

    A more general expression for the quark propagator including both chiral and diquark condensates has been derived by using energy projectors. This makes it possible to study the phase transition from the hadron phase to the colour-superconductivity phase in the moderate baryon density region by using the Feynman diagrammatic method or the Green function method.

  11. Magnetic phase diagrams based on static and dynamic magnetic behaviour in Ru-based superconducting ferromagnets.

    Science.gov (United States)

    Nigam, R; Pan, A V; Dou, S X

    2011-11-02

    In this work, we present magnetic phase diagrams of a RuSr(2)Eu(1.5)Ce(0.5)Cu(2)O(10-δ) (Ru-1222) superconducting ferromagnet derived from its static and dynamic magnetic responses, measured by temperature and field dependences of dc magnetization and nonlinear ac susceptibility in both low and high magnetic fields. Comparison of magnetic phase diagrams of phase pure and impure samples singles out the intrinsic and extrinsic magnetic features, naturally proposing a unified model of Ru-1222 magnetic behaviour. The results considered within the proposed interpretation indicate full agreement between static and dynamic properties which, if measured in combination, effectively complement each other, uncovering existing ambiguities.

  12. Superconducting phase domains for memory applications

    NARCIS (Netherlands)

    Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M..Y.; Golubov, A.

    2016-01-01

    In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin supercon

  13. Non-Fermi-liquid behavior in quantum impurity models with superconducting channels

    Science.gov (United States)

    Žitko, Rok; Fabrizio, Michele

    2017-02-01

    We study how the non-Fermi-liquid nature of the overscreened multichannel Kondo impurity model affects the response to a BCS pairing term that, in the absence of the impurity, opens a gap Δ . We find that the low-energy spectrum in the limit Δ →0 actually does not correspond to the spectrum strictly at Δ =0 . In particular, in the two-channel Kondo model, the Δ →0 ground state is an orbitally degenerate spin singlet, while it is an orbital singlet with a residual spin degeneracy at Δ =0 . In addition, there are fractionalized spin-1/2 subgap excitations whose energy in units of Δ tends toward a finite and universal value when Δ →0 , as if the universality of the anomalous power-law exponents that characterize the overscreened Kondo effect turned into universal energy ratios when the scale invariance is broken by Δ ≠0 . This intriguing phenomenon can be explained by the renormalization flow toward the overscreened fixed point and the gap cutting off the orthogonality catastrophe singularities. We also find other non-Fermi-liquid features at finite Δ : the local density of states lacks coherence peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a nonmonotonic function of temperature. The persistent subgap excitations are characteristic of the non-Fermi-liquid fixed point of the model, and thus depend on the impurity spin and the number of screening channels.

  14. On topological phases in disordered p-wave superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Maria-Theresa

    2015-07-10

    Topological phases of matter have been the subject of intense experimental and theoretical research during the last years. Prominent examples are the Quantum Hall Effect, Topological Insulators or Topological Superconductors. The latter host special excitations, the Majorana states, at their boundaries, which can be thought of as the halves of an electron that can exist separately in this special case. These Majorana states have attracted great interest as they exhibit so-called non-Abelian braiding statistics, which could make them useful tools in the search for fault-tolerant quantum computation. In this context topologically superconducting wires are particularly useful as the Majorana states are located unambiguously at the wire's end, where they form localized end states. Topologically superconducting wires are not known to exist in nature but they can be engineered from commonly available ingredients: semiconductor or ferromagnet nano- wires and conventional superconductors. The nano-wires can inherit superconductivity by the proximity effect and can then exhibit a topologically nontrivial phase. By now, several experiments have been performed on such hybrid structures, reporting measurements that are consistent with the existence of a topologically superconducting phase in the nanowire. Most theoretical investigations on these systems, so far, have been restricted to a one-dimensional effective model: The one-dimensional p-wave superconductor, which is the prototype of a topologically superconducting wire. A nanowire, however, is in general in a quasi-one dimensional regime, with a continuous longitudinal but a quantized transverse degree of freedom. In this Thesis we study the multichannel generalization of a topologically superconducting wire by means of a two-dimensional p + ip-superconductor that is restricted to a narrow-strip geometry. Such systems can be in a topological phase, characterized by the existence of a zero-energy excitation at the

  15. Sample-specific conductance fluctuations modulated by the superconducting phase

    NARCIS (Netherlands)

    den Hartog, SG; Kapteyn, CMA; van Wees, BJ; Klapwijk, TM; Borghs, G

    1998-01-01

    We present an overview of sample-specific transport properties tuned by the superconducting phase difference between two superconductors connected to a disordered 2-dimensional electron gas (2DEG). We demonstrate a crossover from ensemble-averaged to sample-specific resistance oscillations of a T-sh

  16. Orbital fluctuation theory in iron-based superconductors: s-wave superconductivity, structure transition, and impurity-induced nematic order

    OpenAIRE

    Kontani, H.; Inoue, Y.; Saito, T.; Yamakawa, Y.; Onari, S.

    2012-01-01

    The main features in iron-based superconductors would be (i) the orthorhombic transition accompanied by remarkable softening of shear modulus, (ii) high-Tc superconductivity close to the orthorhombic phase, and (iii) nematic transition in the tetragonal phase. In this paper, we present a unified explanation for them, based on the orbital fluctuation theory, considering both the e-ph and the Coulomb interaction. It is found that a small e-ph coupling constant ($\\lambda ~ 0.2$) is enough to pro...

  17. EFFECTS OF INTERSTITIAL IMPURITIES ON PHASE TRANSFORMATION OF Ti-Al ALLOYS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    According to the Average Lattice and Atom Models of the Empirical Electron Theory of Solids and Molecules(EET), effects of interstitial impurities on valence electron structures and phase transformation of Ti-Al alloys are analyzed, and descendant degree of bond energy, melting point and liquidus temperatures affected by interstitial impurities are calculated by the bond energy formula of the EET, and then the main experimental results which are not confirmed about phase transformation in Ti-Al alloys are explained.The results are that, because of the effects of interstitial impurities, atom states increase, bond structures are seriously anisotropic, β→α transformation is hindered, and the phase transformation in an intermediate content is very complex. Also, the melting point and liquidus temperatures decrease, and average decreased degree is estimated through approximation by the EET.

  18. NMR Studies of the Candidate Topological Superconductor Sn1-xInxTe: Spin-Triplet Superconductivity Robust against Magnetic Impurities

    Science.gov (United States)

    Lu, X. R.; Ma, L.; Dai, J.; Wang, P.; Normand, B.; Yu, W.; Zhong, R. D.; Schneeloch, J.; Xu, Z. J.; Gu, G. D.

    2013-03-01

    In-doped SnTe is a low-carrier-density semiconductor with strong spin-orbit coupling, and has been proposed to be a topological superconductor. We report nuclear magnetic resonance (NMR) studies of both 119Sn and 125Te nuclei, performed on single crystals of Sn1-xInxTe, where Tc = 1 . 8 K for x = 0 . 1 . Under an applied field of 0.33 T, the spin-lattice relaxation rate 1/119T1 drops rapidly below 1.2 K, indicating bulk superconductivity. We observe absolutely no change in the Knight shift with temperature when T superconductivity. We find no coherence peak below Tc in 1/119T1 , suggesting an unconventional order parameter but also the possible role of impurities. In the normal state we find that 1/119T1 and 1/125T1 have Fermi-liquid behavior at high fields, but at low fields show a large Curie-Weiss-type enhancement indicative of magnetic impurity effects. Thus the fact that Tc in our samples is insensitive to the sample purity suggests that superconductivity in Sn1-xInxTe is robust against magnetic impurities, in contrast to the situation in conventional superconductors.

  19. Phase boundary of the hexagonal-prism superconducting network in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    金绍维; 李伟; 易佑民; 甄胜来; 缪胜清

    2002-01-01

    In this paper, we systematically study the phase boundary Tc(H ) of a hexagonal-prism superconducting network inan external magnetic field H of arbitrary magnitude and direction. The result indicates that the phase boundary of thehexagonal-prism superconducting circuit varies more sharply than that of the cubic circuit. The potential applicationsof the hexagonal-prism superconducting circuit are also discussed.

  20. Tailoring Surface Impurity Content to Maximize Q-factors of Superconducting Resonators

    Energy Technology Data Exchange (ETDEWEB)

    Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Melnychuk, Oleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sergatskov, Dmitri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    Quality factor of superconducting radio-frequency (SRF) cavities is degraded whenever magnetic flux is trapped in the cavity walls during the cooldown. In this contribution we study how the trapped flux sensitivity, defined as the trapped flux surface resistance normalized for the amount of flux trapped, depends on the mean free path. A variety of 1.3 GHz cavities with different surface treatments (EP, 120 C bake and different N-doping) were studied in order to cover the largest range of mean free path nowadays achievable, from few to thousands of nanometers. A bell shaped trend appears for the range of mean free path studied. Over doped cavities falls at the maximum of this curve defining the largest values of sensitivity. In addition, we have also studied the trend of the BCS surface resistance contribution as a function of mean free path, revealing that N-doped cavities follow close to the theoretical minimum of the BCS surface resistance as a function of the mean free path. Adding these results together we unveil that optimal N-doping treatment allows to maximize Q-factor at 2 K and 16 MV/m until the magnetic field fully trapped during the cavity cooldown stays below 10 mG.

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Development and validation of a reversed phase liquid chromatographic method for analysis of griseofulvin and impurities.

    Science.gov (United States)

    Kahsay, Getu; Adegoke, Aremu Olajire; Van Schepdael, Ann; Adams, Erwin

    2013-06-01

    A simple and robust reversed phase liquid chromatographic method was developed and validated for the quantitative determination of griseofulvin (GF) and its impurities in drug substances and drug products (tablets). Chromatographic separation was achieved on a Discovery C18 (250mm×4.6mm, 5μm) column kept at 30°C. The mobile phase consisted of a gradient mixture of mobile phase A (water-0.1% formic acid pH 4.5, 80:20, v/v) and B (ACN-water-0.1% formic acid pH 4.5, 65:15:20, v/v/v) pumped at a flow rate of 1.0mL/min. UV detection was performed at 290nm. The method was validated for its robustness, sensitivity, precision, accuracy and linearity based on ICH guidelines. The robustness study was performed by means of an experimental design and multivariate analysis. Satisfactory results were obtained from the validation studies. The use of volatile mobile phases allowed for the identification of three main impurities present above the identification threshold using mass spectrometry (MS). The developed LC method has been applied for the assay and impurity determination of GF drug substances and tablets. The method could be very useful for the quality control of GF and its impurities in bulk and formulated dosage forms.

  3. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, Anhui (China); Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, Chunfeng [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  4. Synthesis methods and character of iron-based mixed-anion superconductor with suppression of the amorphous FeAs impurity phase

    Science.gov (United States)

    Fujioka, Masaya; Ozaki, Toshinori; Okazaki, Hiroyuki; Saleem, Denholme; Deguchi, Keita; Demura, Satoshi; Hara, Hiroshi; Watanabe, Tohru; Takeya, Hiroyuki; Yamaguchi, Takahide; Kumakura, Hiroaki; Takano, Yoshihiko

    2013-03-01

    To obtain the high superconducting properties of polycrystalline SmFeAsO1-xFx, we investigated the following three synthesis methods: a high pressure synthesis, a low temperature synthesis with gradual cooling and a metal added synthesis. Generally, polycrystalline SmFeAsO1-xFx is composed of superconducting grains and a little amorphous FeAs compounds. These areas randomly co-exist and amorphous areas are located between the superconducting grains. Therefore, we suggest that the superconducting current is prevented by the amorphous areas. In fact, although the single crystal of this material shows a large critical current density of 106 A/cm2, polycrystalline SmFeAsO1-xFx shows a significant depression of critical current density due to this grain boundary blocking effect. To obtain a high global critical current density, it is important to investigate how to remove the amorphous FeAs. It is found that the impurity phase of amorphous FeAs is decreased by using the above three synthesis methods.

  5. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    Science.gov (United States)

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  6. Method development for impurity profiling in SFC: The selection of a dissimilar set of stationary phases.

    Science.gov (United States)

    Galea, Charlene; Mangelings, Debby; Heyden, Yvan Vander

    2015-01-01

    Supercritical fluid chromatography (SFC) is drawing considerable interest as separation technique in the pharmaceutical industry. The technique is already well established in chiral separations both analytically and on a preparative scale. The use of SFC as a technique for drug impurity profiling is examined here. To define starting conditions in method development for drug impurity profiling, a set of dissimilar stationary phases is screened in parallel. The possibility to select a set of dissimilar columns using the retention factors (k-values) for a set of 64 drugs measured on 27 columns in SFC was examined. Experiments were carried out at a back-pressure of 150 bar and 25 °C with a mobile phase consisting of CO2 and methanol with 0.1% isopropylamine (5-40% over 10 min) at a flow rate of 3 mL/min. These k-values were then used to calculate correlation coefficients on the one hand and to perform a principal component analysis on the other. The Kennard and Stone algorithm, besides dendrograms and correlation-coefficient colour maps were used to select a set of 6 dissimilar stationary phases. The stationary phase characterization results from this study were compared to those from previous studies found in the literature. Retention mechanisms for compounds possessing different properties were also evaluated. The dissimilarity of the selected subset of 6 stationary phases was validated using mixtures of compounds with similar properties and structures, as one can expect in a drug impurity profile.

  7. Towards phase-coherent caloritronics in superconducting circuits.

    Science.gov (United States)

    Fornieri, Antonio; Giazotto, Francesco

    2017-10-06

    The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

  8. Phase error reduction in superconductive undulators using induction shimming

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, Elisabeth; Bernhard, Axel; Afonso Rodriguez, Veronica; Grau, Andreas; Peiffer, Peter; Widmann, Christina; Baumbach, Tilo [KIT, Karlsruhe (Germany)

    2013-07-01

    The reduction of field errors in superconductive undulators is more demanding than in room temperature permanent magnet undulators. Various basic concepts exist but most of them have the disadvantage that they require field measurements at liquid-Helium temperature and modifications of the undulator coils at room temperature. Thus one or more thermal cycles are needed for an iterative improvement of the field quality. In order to avoid such a procedure it was proposed to cover the undulator coils with a thin layer of coupled superconductive loops which passively compensate the field errors via induction of persistent correction currents. In previous measurements this concept proved to work in principle and conclusions on an optimised shim configuration and field measurement setup could be drawn. In this paper we present the results of new measurements using one 12-period superconductive undulator short model and applying an optimised induction shim configuration. Due to further improvements of the field measurement setup these experiments for the first time give a quantitative indication of the phase error reduction efficiency of induction shimming.

  9. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  10. Validated Reverse Phase HPLC Method for the Determination of Impurities in Etoricoxib

    Directory of Open Access Journals (Sweden)

    S. Venugopal

    2011-01-01

    Full Text Available This paper describes the development of reverse phase HPLC method for etoricoxib in the presence of impurities and degradation products generated from the forced degradation studies. The drug substance was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The degradation of etoricoxib was observed under base and oxidation environment. The drug was found stable in other stress conditions studied. Successful separation of the drug from the process related impurities and degradation products were achieved on zorbax SB CN (250 x 4.6 mm 5 μm particle size column using reverse phase HPLC method. The isocratic method employed with a mixture of buffer and acetonitrile in a ratio of 60:40 respectively. Disodium hydrogen orthophosphate (0.02 M is used as buffer and pH adjusted to 7.20 with 1 N sodium hydroxide solution. The HPLC method was developed and validated with respect to linearity, accuracy, precision, specificity and ruggedness.

  11. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  12. Reinvestigation of superconducting phase diagram of UGe{sub 2} by AC magnetic susceptibility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ban, S. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)]. E-mail: f060214d@mbox.nagoya-u.ac.jp; Deguchi, K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan); Aso, N. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Homma, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Sato, N.K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)

    2007-03-15

    We report a superconducting phase diagram of the ferromagnetic superconductor UGe{sub 2} investigated by AC magnetic susceptibility measurements. In contrast to previous phase diagrams, we found that the superconducting transition temperature and volume fraction show a 'M-shaped' structure as a function of pressure. From this observation, we suggest that both of two critical points will play a crucial role in the occurrence of superconductivity in UGe{sub 2}.

  13. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    Science.gov (United States)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  14. Phase transition time delays in irradiated superheated superconducting granules

    CERN Document Server

    Abplanalp, M; Czapek, G; Diggelmann, U; Furlan, M; Gabutti, A; Janos, S; Moser, U; Pozzi, R; Pretzl, Klaus P; Schmiemann, K; Perret-Gallix, D; Van den Brandt, B; Konter, J A; Mango, S

    1994-01-01

    The time difference between a particle interaction in a Superheated Superconducting Granule (SSG) and the resulting phase transition signal has been explored. Detectors containing Zn and Sn SSG were irradiated with neutrons and protons to study the heating mechanism taking place in nuclear recoil and ionizing events. Scattered neutrons have been detected by a scintillator hodoscope behind the SSG with a recoil energy measurement resolution of 10\\% and an interaction time resolution of 1ns. The fast transition of the metastable granules allowed to determine the elapsed time between an energy deposition and the phase transition signal. In the case of Sn granules, the results show that the time distributions are narrow and independent of the deposited energy in nuclear recoil and ionizing events. In Zn, however, the time distributions are much broader and depend on the energy deposition in the granule.

  15. Phase-controlled superconducting heat-flux quantum modulator

    Science.gov (United States)

    Giazotto, F.; Martínez-Pérez, M. J.

    2012-09-01

    We theoretically put forward the concept of a phase-controlled superconducting heat-flux quantum modulator. Its operation relies on phase-dependent heat current predicted to occur in temperature-biased Josephson tunnel junctions. The device behavior is investigated as a function of temperature bias across the junctions, bath temperature, and junctions asymmetry as well. In a realistic Al-based setup the structure could provide temperature modulation amplitudes up to ˜50 mK with flux-to-temperature transfer coefficients exceeding ˜125 mK/Φ0 below 1 K, and temperature modulation frequency of the order of a few MHz. The proposed structure appears as a promising building-block for the implementation of caloritronic devices operating at cryogenic temperatures.

  16. On the superconducting phase transitions of UPt sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Taillefer, L.; Behnia, K.; Hasselbach, K.; Flouquet, J. (Centre de Recherches sur les Tres Basses Temperatures, CNRS, 38 - Grenoble (France)); Hayden, S.M.; Vettier, C. (Inst. Laue-Langevin, 38 - Grenoble (France))

    1990-12-01

    The possible role of antiferromagnetic order in causing a multiplicity of superconducting phase transitions in UPt{sub 3} is investigated. Two results are presented which shed light on this question. First, a small hydrostatic pressure is found to have a significant effect on both (1) the neutron scattering intensity of the antiferromagnetic Bragg peak, which is more than halved by 2 kbar, and (2) the H{sub c2}(T) curve, from which the kink - regarded as a signature of phase multiplicity - disappears above 1.5 kbar. Secondly, the kink in H{sub c2}(T) is observed for all field directions within the basal plane. This evidence is discussed in connection with current theories. (orig.).

  17. Evidence for an Anti-polar Phase in Normal and Superconducting States in all HTSC

    OpenAIRE

    2010-01-01

    It is strongly argued that high temperature superconductors (HTSC) exhibit an anti-polar phase with a long range order in both normal and superconducting states. This anti-polar phase is directly related to the onset of superconductivity in all HTSC and it is responsible for strong coupling and of two dimensionality aspect of HTSC, as it is described below.

  18. Determination of Mesalamine Related Impurities from Drug Product by Reversed Phase Validated UPLC Method

    Directory of Open Access Journals (Sweden)

    Trivedi Rakshit Kanubhai

    2011-01-01

    Full Text Available In the present study gradient reversed-phase UPLC method was developed for simultaneous determination and separation of impurities and degradation products from drug product. The chromatographic separation was performed on acquity UPLC BEH C18 column (50 mm×2.1 mm, 1.7 µm using gradient elution. Other UPLC parameters which were optimised are flow rate, 0.7 mL/min; detection wavelength, 220 nm; column oven temperature, 40 °C and injection volume 7 µL. Stability indicating capability was established by forced degradation experiments and separation of known degradation products. The method was validated as per International Conference on Harmonization (ICH guideline. For all impurities and mesalamine, LOQ (limit of quantification value was found precise with RSD (related standard daviation of less than 2.0%. In essence, the present study provides an improved low detection limit and lower run time for evaluation of pharmaceutical quality of mesalamine delayed-release formulation. Moreover, the developed method was successfully applied for quantification of impurities and degradation products in mesalamine delayed-release formulation. The same method can also be used for determination of related substances from mesalamine drug substance.

  19. Ultrasonic signatures at the superconducting and the pseudogap phase boundaries in YBCO cuprates.

    Energy Technology Data Exchange (ETDEWEB)

    Shehter, Arkady [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory; Betts, Jonathan B. [Los Alamos National Laboratory; Balakirev, Fedor F. [Los Alamos National Laboratory; McDonald, Ross David [Los Alamos National Laboratory; Riggs, Scott C. [Los Alamos National Laboratory; Ramshaw, Brad [University of British Columbia, Canada; Liang, Ruixing [University of British Columbia, Canada; Hardy, Walter N. [University of British Columbia, Canada; Bonn, Doug A. [University of British Columbia, Canada

    2012-08-28

    A major issue in the understanding of cuprate superconductors is the nature of the metallic state from which high temperature superconductivity emerges. Central to this issue is the pseudogap region of the doping-temperature phase diagram that extends from room temperature to the superconducting transition. Although polarized neutron scattering studies hint at magnetic order associated with the pseudogap, there is no clear thermodynamic evidence for a phase boundary. Such evidence has a straightforward physical interpretation, however, it is difficult to obtain over a temperature range wide enough to encompass both the pseudogap and superconducting phases. We address this by measuring the elastic response of detwinned single crystals, an underdoped YBCO{sub 6.60} with superconducting transition at T{sub c} = 61.6K and a slightly overdoped YBCO{sub 6.98} with T{sub c} = 88.0K. We observe a discontinuity in the elastic moduli across the superconducting transition. Its magnitude requires that pair formation is coincident with superconducting coherence (the onset of the Meissner effect). For both crystals the elastic response reveals a phase transition at the pseudogap boundary. In slightly overdoped YBCO that transition is 20K below T{sub c}, extending the pseudogap phase boundary inside the superconducting dome. This supports a description of the metallic state in cuprates where a pseudogap phase boundary evolves into a quantum critical point masked by the superconducting dome.

  20. Phase-controlled coherent population trapping in superconducting quantum circuits

    Institute of Scientific and Technical Information of China (English)

    程广玲; 王一平; 陈爱喜

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single∆-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 orπ, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice ofπ/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phaseπ/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.

  1. Role of impurity oxygen in superconductivity of "non-doped" T'-(La,RE)2CuO4

    OpenAIRE

    Tsukada, A.; Noda, M; Yamamoto, H; Naito, M.

    2005-01-01

    We have systematically investigated the effect of oxygen nonstoichiometry in a nominally undoped superconductor T'-(La,Y)2CuO4+y. In the experiments, the reduction condition was changed after the sample growth by MBE. The superconductivity is very sensitive to the reduction condition. With systematically increasingly reduced atmospheres, resistivity shows a continuous drop and no discontinuity is observed even until the appearance of superconductivity. The absence of the highly insulating sta...

  2. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  3. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  4. Fluid-particle hybrid simulation on the transports of plasma, recycling neutrals, and carbon impurities in the Korea Superconducting Tokamak Advanced Research divertor region

    Science.gov (United States)

    Kim, Deok-Kyu; Hong, Sang Hee

    2005-06-01

    A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.

  5. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  6. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  7. The wave phase velocity in superconducting transmission lines near T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhakhmetov, A.R.; Lobov, G.D.; Shtykov, V.V.; Zhgoon, S.A. [Moscow Power Engineering Inst. (Russian Federation). Radio Engineering Dept.

    1998-06-01

    A peculiarity in behavior of electromagnetic waves phase velocity ({nu}{sub ph}), propagating in superconducting planar transmission lines, in the vicinity of the transition temperature (T{sub c}) was observed in experiment and deduced theoretically. (orig.) 5 refs.

  8. Dense superconducting phases of copper-bismuth at high pressure

    Science.gov (United States)

    Amsler, Maximilian; Wolverton, Chris

    2017-08-01

    Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu11Bi7 , were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high densities from ab initio calculations. In particular, a Cu2Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu11Bi7 and CuBi, cubic Cu2Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu2Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm3 at 0 GPa is achieved. The moderate electron-phonon coupling of λ =0.68 leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu11Bi7 and CuBi, as well as in elemental Cu and Bi.

  9. Development and validation of a reversed phase liquid chromatographic method for analysis of oxytetracycline and related impurities.

    Science.gov (United States)

    Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2013-03-05

    A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities.

  10. Evidence of two superconducting phases in Ca1−xLaxFe2As2

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2013-10-01

    Full Text Available Single crystals of Ca1−xLaxFe2As2 with x ranging from 0 to 0.25, have been grown and characterized by structural, transport, and magnetic measurements. Coexistence of two superconducting phases is observed, in which the phase with the lower superconducting transition temperature (Tc has Tc ∼ 20 K and the higher Tc phase has Tc higher than 40 K. These data also delineate an x-T phase diagram in which the single magnetic/structural phase transition in undoped CaFe2As2 appears to split into two distinct phase transitions, both of which are suppressed with increasing La substitution. Superconductivity emerges when x is about 0.06 and coexists with the structural/magnetic transition until x is ∼ 0.13. With increasing concentration of La, the structural/magnetic transition is totally suppressed, and Tc reaches its maximum value of about 45 K for 0.15 ⩽ x ⩽ 0.19. A domelike superconducting region is not observed in the phase diagram, however, because no obvious over-doping region can be found. Two superconducting phases coexist in the x-T phase diagram of Ca1−xLaxFe2As2. The formation of the two separate phases and the origin of the high Tc in Ca1−xLaxFe2As2 have been studied and discussed in detail.

  11. Universal limiting pressure for a three-flavor color superconducting PNJL model phase diagram

    CERN Document Server

    Ayriyan, A; Blaschke, D; Lastowiecki, R

    2016-01-01

    The phase diagram of a three-flavor Polyakov-loop Nambu-Jona-Lasinio model is analyzed for the case of isospin symmetric matter with color superconducting phases. The coexistence of chiral symmetry breaking and two-flavor color superconductivity (2SC phase) and a thermodynamic instability due to the implementation of a color neutrality constraint is observed. It is suggested to use a universal hadronization pressure to estimate the phase border between hadronic and quark-gluon plasma phases. Trajectories of constant entropy per baryon are analyzed for conditions appropriate for heavy-ion collisions in the NICA-FAIR energy range.

  12. Saturation of impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic: part 1 experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F J; Ebbinghaus, B; Kirkorian, O; VanKonynenburg, R

    2000-05-25

    The saturation of impurity-rich accessory phases in a Ce-analog baseline ceramic formulation for the immobilization of excess plutonium has been tested by synthesizing an impurity-rich baseline compositions at 1300 C, 1350 C, and 1400 C in air. Impurity oxides are added at the 10 wt% level. The resulting phases assemblages are typically rich in pyrochlore, Hf-zirconolite (hafnolite), brannerite and rutile, but in many instances also contain an accessory mineral enriched in the impurity oxide. The concentration of that oxide in coexisting pyrochlore sets the saturation limit for solid solution of the component in question. In most cases, the accessory phase does not contain significant amounts of Ce, Gd or U. Exceptions are the stabilization of a Ca-lanthanide phosphate and a phosphate glass when P{sub 2}O{sub 5} is added to the formulation. P{sub 2}O{sub 5} addition is also very effective in reducing the modal amount of pyrochlore in the form relative to brannerite. Addition of the sodium-aluminosilicate, NaAlSiO{sub 4}, also results in the formation of a grain boundary melt at run conditions, but the fate of this phase on cooling is not well determined. At temperatures above 1300 C, addition of 10 wt% Fe{sub 2}O{sub 3} also leads to melting. Substitution of cations of different valences can also be associated with model-dependent changes in the oxidation state of uranium via charge transfer reactions. A set of simple components is suggested for the description of pyrochlores in both impurity-free and impurity-rich formulations.

  13. Numerical renormalization group for impurity quantum phase transitions: structure of critical fixed points

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Vojta, Matthias [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128 Karlsruhe (Germany)

    2005-11-02

    The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.

  14. Numerical renormalization group for impurity quantum phase transitions: structure of critical fixed points

    Science.gov (United States)

    Lee, Hyun-Jung; Bulla, Ralf; Vojta, Matthias

    2005-11-01

    The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.

  15. Strongly correlated superconductivity and pseudogap phase near a multiband Mott insulator.

    Science.gov (United States)

    Capone, Massimo; Fabrizio, Michele; Castellani, Claudio; Tosatti, Erio

    2004-07-23

    Near a Mott transition, strong electron correlations may enhance Cooper pairing. This is demonstrated in the dynamical mean field theory solution of a twofold-orbital degenerate Hubbard model with an inverted on-site Hund rule exchange, favoring local spin-singlet configurations. Close to the Mott insulator (which here is a local version of a valence bond insulator) a pseudogap non-Fermi-liquid metal, a superconductor, and a normal metal appear, in striking similarity with the physics of cuprates. The strongly correlated s-wave superconducting state has a larger Drude weight than the corresponding normal state. The role of the impurity Kondo problem is underscored.

  16. Homogeneous superconducting phase in TiN film: A complex impedance study

    Science.gov (United States)

    Diener, P.; Schellevis, H.; Baselmans, J. J. A.

    2012-12-01

    The low frequency complex impedance of a high resistivity 92 μ Ω cm and 100 nm thick TiN superconducting film has been measured via the transmission of several high sensitivity GHz microresonators, down to TC/50. The temperature dependence of the kinetic inductance follows closely BCS local electrodynamics, with one well defined superconducting gap. This evidences the recovery of a homogeneous superconducting phase in TiN far from the disorder and composition driven transitions. Additionally, we observe a linearity between resonator quality factor and frequency temperature changes, which can be described by a two fluid model.

  17. Quantum phase transition in ultra small doubly connected superconducting cylinders

    Science.gov (United States)

    Sternfeld, I.; Koret, R.; Shtrikman, H.; Tsukernik, A.; Karpovski, M.; Palevski, A.

    2008-02-01

    The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/ ξ(0). If d >ξ(0) the known Little-Parks oscillations are observed. On the other hand if d ξ(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.

  18. Quantum phase transition in ultra small doubly connected superconducting cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Sternfeld, I. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)], E-mail: itayst@post.tau.ac.il; Koret, R. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Shtrikman, H. [Department of Condensed Matter, Weizmann Institute of Science, Rehovot 76100 (Israel); Tsukernik, A. [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978 (Israel); Karpovski, M.; Palevski, A. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2008-02-15

    The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/{xi}(0). If d >{xi}(0) the known Little-Parks oscillations are observed. On the other hand if d <{xi}(0), the superconducting state is energetically not favored around odd multiples of half flux quanta even at T{approx}0, resulting in the so called destructive regime [Y. Liu, et al., Science 294 (2001) 2332]. We developed a novel technique to fabricate superconducting doubly connected nanocylinders with both diameter and thickness less than 100 nm, and performed magnetoresistance measurements on such Nb and Al cylinders. In the Nb cylinders, where d >{xi}(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.

  19. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena

    2009-04-29

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  20. Superconducting resonator used as a phase and energy detector for linac setup

    Science.gov (United States)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  1. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.

    Science.gov (United States)

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-07-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.

  2. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  3. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation

    Institute of Scientific and Technical Information of China (English)

    S.Karamat; R.S. Rawat; P. Lee; T.L. Tan; R.V. Ramanujan

    2014-01-01

    We have prepared a series of (ZnO)1-x(Fe2O3)x r 0.10 bulk samples with various concentrations of Fe dopant by ball milling and investigated their structural, compositional, optical and magnetic properties by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectrometer and vibrating sample magnetometer (VSM), respectively. Information about different impurity phases was obtained through Rietveld refinements of XRD data analysis. XPS results showed different valence states (Fe2 þ and Fe3 þ ) supported by shaking satellite peaks in samples. With increasing Fe doping percentage, the crystal quality deteriorated and a shift of E2 low band (characteristic of ZnO) has been observed in Raman spectra. Energy band gap estimated from reflectance UV–vis spectroscopy showed shift for all bulk samples. The magnetic behavior was examined using a vibrating sample magnetometer (VSM), indicating ferromagnetic behavior at room temperature (300 K). The effective magnetic moment per Fe atom decreases with increase in doping percentage which indicates that ferromagnetic behavior arises from the substitution of Fe ions in the ZnO lattice.

  4. Resonant States in High-Temperature Superconductors with Impurities

    CERN Document Server

    Kovacevic, Z L; Hayn, R

    2002-01-01

    A microscopic theory of resonant states for the Zn-doped CuO_2 plane in superconducting phase is formulated within the effective t-J model. In the model derived from the original p-d model Zn impurities are considered as vacancies for the d states on Cu sites. In the superconducting phase in addition to the local static perturbation induced by the vacancy a dynamical perturbation appears which results in frequency-dependent perturbation matrix. By employing the T-matrix formalism for the Green functions in terms of the Hubbard operators the local density of electronic states with d-, p- and s-symmetry is calculated.

  5. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  6. Chemical analysis of superconducting phase in K-doped picene

    Science.gov (United States)

    Kambe, Takashi; Nishiyama, Saki; Nguyen, Huyen L. T.; Terao, Takahiro; Izumi, Masanari; Sakai, Yusuke; Zheng, Lu; Goto, Hidenori; Itoh, Yugo; Onji, Taiki; Kobayashi, Tatsuo C.; Sugino, Hisako; Gohda, Shin; Okamoto, Hideki; Kubozono, Yoshihiro

    2016-11-01

    Potassium-doped picene (K3.0picene) with a superconducting transition temperature (T C) as high as 14 K at ambient pressure has been prepared using an annealing technique. The shielding fraction of this sample was 5.4% at 0 GPa. The T C showed a positive pressure-dependence and reached 19 K at 1.13 GPa. The shielding fraction also reached 18.5%. To investigate the chemical composition and the state of the picene skeleton in the superconducting sample, we used energy-dispersive x-ray (EDX) spectroscopy, MALDI-time-of-flight (MALDI-TOF) mass spectroscopy and x-ray diffraction (XRD). Both EDX and MALDI-TOF indicated no contamination with materials other than K-doped picene or K-doped picene fragments, and supported the preservation of the picene skeleton. However, it was also found that a magnetic K-doped picene sample consisted mainly of picene fragments or K-doped picene fragments. Thus, removal of the component contributing the magnetic quality to a superconducting sample should enhance the volume fraction.

  7. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    Science.gov (United States)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  8. Superconducting phase prepared from Ta{sub 3}Si under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Murao, R; Kusaba, K; Fukuoka, K; Sugiyama, K; Syono, Y [IMR, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kikuchi, M [Kansei Fukushi Research Center, Tohoku Fukushi University1-8-1 Kunimi, Aoba-ku, Sendai, Miyagi 981-8522 (Japan); Atou, T [SMC, Materials and Structures Lab. Tokyo Tech. 4259 Nagatsuta-cho Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Kikegawa, T, E-mail: r_murao@imr.tohoku.ac.j [IMSS, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-03-01

    High-pressure behaviour of Ta{sub 3}Si intermetallic compound was investigated by shock compression and static compression methods. Superconducting phase with T{sub C} = 9.3 K was found in the sample shocked to 50-61 GPa, however most of the shock recovered sample indicated the starting stable phase with the Ti{sub 3}P-type structure. The new superconducting phase was not obtained from static compression up to 15 GPa and 800 {sup 0}C. Bulk modulus of Ta{sub 3}Si with the Ti{sub 3}P-type structure was determined to be K{sub 0} = 246(4) GPa. The present results suggest that a rapid phase transformation occurred during shock compression, but most of the high-pressure phase was reverted to the stable phase in the decompression process.

  9. The pronounced role of impurity phases in the optical properties of Mn catalyzed ZnS nanostructures

    Directory of Open Access Journals (Sweden)

    U. Nosheen

    2015-09-01

    Full Text Available We report the effect of Mn self-doping in Mn catalyzed ZnS nanostructures grown via vapor liquid solid mechanism, which also resulted in the formation of additional impurity minority phases like ZnO and MnO2. The synthesized ZnS nanostructures were subsequently annealed in the range of 500 °C – 700 °C in an inert environment to remove impurity phases and enhance the incorporation of dopant. Room temperature photoluminescence showed strong defect assisted luminescence. It was observed that green emission due to intrinsic defects of ZnS nanostructures was reduced in magnitude and Mn related orange/red luminescence increased in magnitude in nanostructures annealed at high temperature. The presence of impurity phases led to the observation of surface optical and interface phonon modes as observed in the Raman spectroscopy. Dielectric continuum and phonon confinement models were employed to determine the correlation lengths of the optical phonon modes.

  10. Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-01

    The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

  11. Thermal study on the impurity effect on thermodynamic stability of the glacial phase in triphenyl phosphite-triphenyl phosphate system

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Ikue [Department of Chemistry, Naruto University of Education, Naruto, Tokushima 772-8502 (Japan); Takeda, Kiyoshi [Department of Chemistry, Naruto University of Education, Naruto, Tokushima 772-8502 (Japan)]. E-mail: takeda@naruto-u.ac.jp; Murata, Katsuo [Department of Chemistry, Naruto University of Education, Naruto, Tokushima 772-8502 (Japan)

    2005-06-15

    To investigate the impurity effect on thermodynamic stability of the glacial phase, an apparently amorphous metastable phase observed in triphenyl phosphite (TPP), the differential scanning calorimetry (DSC) was carried out in the temperature range 120-350 K for binary mixtures between TPP and triphenyl phosphate (TPPO). Heating up from the glassy liquid, supercooled liquid phase transformed into glacial phase below the crystallization temperature for all the samples with x < 0.2, where x denotes the mole fraction of TPPO. Both transformation temperatures from liquid to glacial and from glacial to crystal increased and temperature range that glacial phase appears narrowed with the content of TPPO. The peak intensity of exothermic effect due to the transformation from liquid to glacial becomes larger whereas that from glacial to crystal reduced. The kinetic and thermodynamic stabilities were discussed for liquid and glacial phases based on the DSC results.

  12. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.;

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phas...

  13. Neutron scattering study on the magnetic and superconducting phases of MnP

    Science.gov (United States)

    Yano, Shinichiro; Lancon, Diane; Ronnow, Henrik; Hansen, Thomas; Gardner, Jason

    We have performed series of neutron scattering experiments on MnP. MnP has been investigated for decades because of its rich magnetic phase diagram. The magnetic structure of MnP is ferromagnetic (FM) below TC = 291 K. It transforms into a helimagnetic structure at TS = 47 K with a propagation vector q = 0 . 117a* . Superconductivity was found in MnP under pressures of 8 GPa with a TSC around 1 K by J.-G. Cheng. Since Mn-based superconductors are rare, and the superconducting phase occurs in the vicinity of FM, new magnetic and helimagnetic phases, there is a need to understand how the magnetism evolves as one approach the superconducting state. MnP is believed to be a double helix magnetic structure at TS = 47 K. We observed new 2 δ and 3 δ satellite peaks whose intensity are 200 ~ 1000 times smaller than these of 1 δ satellite peaks on the cold triple axis spectrometer SIKA under zero magnetic fields. We also found the periods of helimagnetic structure changes as a function of temperature. If time permits, we will discuss recent experiments under pressure. However, we have complete picture of magnetic structure of this system with and without applied pressure, revealing the interplay between the magnetic and superconducting phases.

  14. The Effect of Nonmagnetic Impurities on Phase-Transition Kinetics and Correlation Effects in a Quasi-1D Ising Nanomagnetic

    Science.gov (United States)

    Shabunina, E. V.; Spirin, D. V.; Popov, A. A.; Udodov, V. N.; Potekaev, A. I.

    2013-05-01

    Using a Monte Carlo simulation, the effect of external field, temperature, system's dimensions and interaction of non-nearest neighbors on the relaxation time and critical indices of an antiferromagnetic-to-ferromagnetic phase transition is investigated taking into account nonmagnetic impurities within a modified, onedimensional, nanosized Ising model. It is shown that the non-equilibrium processes taking place in the magnetic material could be classified as fast and slow, whose velocities differ by more than a thousand times. In the case of fast processes, metastable (including ferromagnetic) states (observed experimentally) are the first to form, while in the case of slow processes the system transits into a stable state. The behavior of the dynamic critical exponent ( z) and static correlation-length critical exponent ( ν) is revealed for the model of a 1D ferromagnetic for the case of arbitrary concentrations of nonmagnetic impurities.

  15. Consistency of measured phase boundaries of the FFLO superconducting phase for different materials and types of probes

    Science.gov (United States)

    Agosta, Charles; Fortune, Nathanael; Hannahs, Scott; Park, Ju-Hyun; Schleuter, John; Liang, Lucy; Gao, Shuyao; Bishop-van Horn, Logan; Newman, Max; Gu, Shuyao; Liang, Lucy

    New magnetocaloric and specific heat measurements of the high field superconducting state in the organic superconductor κ-­ (BEDT­-TTF)2Cu(NCS)2 are compared to rf penetration depth, magnetic torque, and NMR measurements. The position of the phase lines separating the uniform superconducting state with the FFLO state and the normal state are mostly in good agreement with each other. The order of the phase transitions can only be determined from the calorimetric measurements and will be compared to theory. Results from other organic superconductors show that there is universal behavior. As an example, the distance between the lower and upper magnetic field phase line containing the FFLO state is proportional to the upper critical field. The position of the lower phase line, the Clogston ­Chandrasakar paramagnetic limit, will be compared to semi empirical calculations based on the specific heat for five different superconductors.

  16. Quantum phase transition in a multiconnected superconducting Jaynes-Cummings lattice

    Science.gov (United States)

    Seo, Kangjun; Tian, Lin

    2015-05-01

    The connectivity and tunability of superconducting qubits and resonators provide us with an appealing platform to study the many-body physics of microwave excitations. Here we present a multiconnected Jaynes-Cummings lattice model which is symmetric with respect to the nonlocal qubit-resonator couplings. Our calculation shows that this model exhibits a Mott insulator-superfluid-Mott insulator phase transition at commensurate fillings, featured by symmetric quantum critical points. Phase diagrams in the grand canonical ensemble are also derived, which confirm the incompressibility of the Mott insulator phase. Different from a general-purposed quantum computer, it only requires two operations to demonstrate this phase transition: the preparation and the detection of commensurate many-body ground state. We discuss the realization of these operations in a superconducting circuit.

  17. Misfit dislocations and phase transformations in high-T sub c superconducting films

    CERN Document Server

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  18. Symmetry phase diagrams of the superconducting ground states induced by correlated hoppings interactions

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Millan, J. [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Perez, Luis A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico)], E-mail: lperez@fisica.unam.mx; Shelomov, Evgen [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Wang, Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, C.P. 04510, Mexico D.F. (Mexico)

    2007-09-01

    The formation of p- and d-wave superconducting ground states on a square lattice is studied within the BCS formalism and a generalized Hubbard model, in which a second-neighbor correlated hopping ({delta}t{sub 3}) is included in addition to the on site and nearest neighbor repulsions. The triplet superconductivity is obtained when a small distortion of the right angles in the square lattice is introduced. This distortion can be characterized by the difference between the values of {delta}t{sub 3}{sup {+-}} in the x {+-} y directions, i.e., {delta}{sub 3}=({delta}t{sub 3}{sup +}-{delta}t{sub 3}{sup -})/2. The phase diagram is analyzed in the space of the electron density (n) and {delta}{sub 3}. The results show that the p- and d-channel superconductivities are respectively enhanced in the low and high electron density regions.

  19. Quasiparticle specific heats for the crystalline color superconducting phase of QCD

    CERN Document Server

    Casalbuoni, R; Mannarelli, M; Nardulli, G; Ruggieri, M; Stramaglia, S; 10.1016/j.physletb.2003.09.071

    2003-01-01

    We calculate the specific heats of quasiparticles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase. (21 refs).

  20. Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD

    CERN Document Server

    Casalbuoni, Roberto; Mannarelli, M; Nardulli, Giuseppe; Ruggieri, Marco; Stramaglia, S

    2003-01-01

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  1. Quasi-particle specific heats for the crystalline color superconducting phase of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R.; Gatto, R.; Mannarelli, M.; Nardulli, G.; Ruggieri, M.; Stramaglia, S

    2003-11-27

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  2. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    Science.gov (United States)

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT3Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT4Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

    Science.gov (United States)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2014-03-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences.

  4. Nanopipe formation as a result of boron impurity segregation in gallium nitride grown by halogen-free vapor phase epitaxy

    Science.gov (United States)

    Kimura, Taishi; Aoki, Yuko; Horibuchi, Kayo; Nakamura, Daisuke

    2016-12-01

    The work reported herein demonstrated that nanopipes can be formed via a surfactant effect, in which boron impurities preferentially migrate to semipolar and nonpolar facets. Approximately 3 μm-thick GaN layers were grown using halogen-free vapor phase epitaxy. All layers grown in pyrolytic boron nitride (pBN) crucibles were found to contain a high density of nanopipes in the range of 1010 to 1011 cm-2. The structural properties of these nanopipes were analyzed by X-ray rocking curve measurements, transmission electron microscopy, and three-dimensional atom probe (3DAP) tomography. The resulting 3DAP maps showed nanopipe-sized regions of boron segregation, and these nanopipes were not associated with the presence of dislocations. A mechanism for nanopipe formation was developed based on the role of boron as a surfactant and considering energy minima. A drastic reduction in the nanopipe density was achieved upon replacing the pBN crucibles with tantalum carbide-coated carbon crucibles. Consequently, we have confirmed that nanopipes can be formed solely due to surface energy changes induced by boron impurity surface segregation. For this reason, these results also indicate that nanopipes should be formed by other surfactant impurities such as Mg and Si.

  5. Reduced phase error through optimized control of a superconducting qubit

    CERN Document Server

    Lucero, Erik; Bialczak, Radoslaw C; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A D; Sank, Daniel; Wang, H; Weides, Martin; Wenner, James; Yamamoto, Tsuyoshi; Cleland, A N; Martinis, John

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to $\\sim 1.6^{\\circ}$ per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit $|2\\rangle$ state, is also reduced to $\\sim 10^{-4}$ for $20\\%$ faster gates.

  6. Cooling of Compact Stars with Color Superconducting Phase in Quark Hadron Mixed Phase

    CERN Document Server

    Noda, Tsuneo; Matsuo, Yasuhide; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki

    2011-01-01

    We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a sort of neutron star which has high effective temperature, and it is consistent with the well known standard cooling model. The observation also gives the mass range of $M \\geq 1.5 M_\\odot$, which is inconsistent with current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which cannot be explained by the standard cooling processes: we invoke some kinds of exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we give a new cooling scenario to explain the observation of Cas A by constructing models, which include a quark color superconducting phase with a large energy gap, which appears at ultrahigh density region and reduces neutrino emissivity. In our model, a compact star h...

  7. Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase

    CERN Document Server

    Casalbuoni, R; Gatto, R; Mannarelli, M; Nardulli, G; Ruggieri, M

    2004-01-01

    We present an approximate gap equation for different crystalline structures of the LOFF phase of high density QCD at T=0. This equation is derived by using an effective condensate term obtained by averaging the inhomogeneous condensate over distances of the order of the crystal lattice size. The approximation is expected to work better far off any second order phase transition. As a function of the difference of the chemical potentials of the up and down quarks, $\\delta\\mu$, we get that the octahedron is energetically favored from $\\delta\\mu=\\Delta_0/\\sqrt 2$ to $0.95\\Delta_0$, where $\\Delta_0$ is the gap for the homogeneous phase, while in the range $0.95\\Delta_0-1.32\\Delta_0$ the face centered cube prevails. At $\\delta\\mu=1.32\\Delta_0$ a first order phase transition to the normal phase occurs.

  8. Improvement of the phase transition homogeneity of superheated superconducting tin granules

    CERN Document Server

    Calatroni, Sergio; Czapek, G; Ebert, T R; Hasenbalg, F; Hauser, M G; Janos, S; Kainer, K U; Knoop, K M; Moser, U; Palmieri, V G; Pretzl, Klaus P; Sahli, B; Sgobba, Stefano; Vollenberg, W; Wyss, C

    2000-01-01

    A considerably improved phase transition homogeneity was observed with superheated superconducting Sn spheres as a result of laser melting and fast cooling. These spheres exhibited a very homogeneous phase transition behaviour independent of the orientation of the spheres with respect to the direction of the external magnetic field. Compared to previously untreated Sn spheres the spread of the phase transition boundaries was reduced by almost an order of magnitude. In addition, we studied mass production of Sn structures using vacuum evaporation and deposition. First encouraging results are reported. (7 refs).

  9. Improvement of the phase transition homogeneity of superheated superconducting tin granules

    Energy Technology Data Exchange (ETDEWEB)

    Calatroni, S.; Casalbuoni, S. E-mail: sara@lhc.lhep.unibe.ch; Czapek, G.; Ebert, T.; Hasenbalg, F.; Hauser, M.; Janos, S.; Kainer, K.U.; Knoop, K.M.; Moser, U.; Palmieri, V.G.; Pretzl, K.; Sahli, B.; Sgobba, S.; Vollenberg, W.; Wyss, Ch.P

    2000-04-07

    A considerably improved phase transition homogeneity was observed with superheated superconducting Sn spheres as a result of laser melting and fast cooling. These spheres exhibited a very homogeneous phase transition behaviour independent of the orientation of the spheres with respect to the direction of the external magnetic field. Compared to previously untreated Sn spheres the spread of the phase transition boundaries was reduced by almost an order of magnitude. In addition, we studied mass production of Sn structures using vacuum evaporation and deposition. First encouraging results are reported.

  10. Quantum phase-slips in superconducting AlO{sub x} nanowire arrays at microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Sebastian T.; Pfirrmann, Marco; Voss, Jan N.; Muenzberg, Julian; Radtke, Lucas; Probst, Sebastian; Rotzinger, Hannes [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Weides, Martin [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Physics, Johannes Gutenberg University Mainz, D-55128 Mainz (Germany); Mooij, Hans E. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands); Ustinov, Alexey V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow region, 143025 (Russian Federation)

    2015-07-01

    Superconducting nanowires in the quantum phase slip (QPS) regime allow to study the flux and phase dynamics in duality to Josephson junction systems. However, due to the vanishing self-capacitance of the nanowires, the microwave response significantly differs. We experimentally study parallel arrays of nanowires which are embedded in a resonant circuit at GHz frequencies. The samples are probed at ultra-low microwave power and applied magnetic field at mK temperatures. The AlO{sub x} nanowires, with a sheet resistance in the kΩ range, are fabricated by sputter deposition of aluminium in a controlled oxygen atmosphere. The wires are defined with conventional electron beam lithography down to a width of approximately 15 nm. We present the fabrication of the nanowire arrays and measurement results for arrays coupled to superconducting microwave resonators.

  11. Bismuthates: BaBiO{sub 3} and related superconducting phases

    Energy Technology Data Exchange (ETDEWEB)

    Sleight, Arthur W., E-mail: arthur.sleight@oregonstate.edu

    2015-07-15

    Highlights: • BaBiO{sub 3} has the perovskite structure, but tilting of the BiO{sub 6} octahedra destroy the ideal cubic symmetry except at temperatures above 820 K. BaBiO{sub 3} is a diamagnetic semiconductor due to a CDW, which is equivalent to a Ba{sub 2}Bi{sup 3+}Bi{sup 5+}O{sub 6} representation. • Recent calculations and experimental results confirm that there is no significant deviation from the oxidation states of 3+ and 5+. • Superconductivity with a T{sub c} as high as 13 K occurs for BaPb{sub 1−x}Bi{sub x}O{sub 3} phases where the 6s band is about 25% filled, and superconductivity with a T{sub c} as high as 34 K occurs for Ba{sub 1−x}K{sub x}BiO{sub 3} phases where the 6s band is about 35% filled. • These two solid solutions can have cubic, tetragonal, or orthorhombic symmetry. • However, superconductivity has only been observed when the symmetry is tetragonal. - Abstract: BaBiO{sub 3} has the perovskite structure, but tilting of the BiO{sub 6} octahedra destroy the ideal cubic symmetry except at temperatures above 820 K. BaBiO{sub 3} is a diamagnetic semiconductor due to a charge density wave (CDW), which is equivalent to a Ba{sub 2}Bi{sup 3+}Bi{sup 5+}O{sub 6} representation. Recent calculations and experimental results confirm that there is no significant deviation from the oxidation states of 3+ and 5+. Superconductivity with a T{sub c} as high as 13 K occurs for BaPb{sub 1−x}Bi{sub x}O{sub 3} phases where the 6s band is about 25% filled, and superconductivity with a T{sub c} as high as 34 K occurs for Ba{sub 1−x}K{sub x}BiO{sub 3} phases where the 6s band is about 35% filled. Structures in these two solid solutions can have cubic, tetragonal, orthorhombic, or monoclinic symmetry. However, superconductivity has only been observed when the symmetry is tetragonal.

  12. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Uranaka, T.; Tsuji, K. [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  13. Superconductivity in the amorphous phase of topological insulator Bi x Sb100-x alloys

    Science.gov (United States)

    Barzola-Quiquia, J.; Lauinger, C.; Zoraghi, M.; Stiller, M.; Sharma, S.; Häussler, P.

    2017-01-01

    In this work we investigated the electrical properties of rapidly quenched amorphous Bi x Sb{}100-x alloys in the temperature range of 1.2 K to 345 K. The resistance reveals that for a broad range of different compositions, including that for the topological insulator (TI), a superconducting state in the amorphous phase is present. After crystallization and annealing at an intermediate temperature, we found that in pure Bi and Bi x Sb{}100-x alloys with composition corresponding to the TI, the superconductivity persists, but the transition shifts to a lower temperature. The highest superconducting transition temperature {T}{{C}0} was found for pure Bi and those TI’s, with a shift to low temperatures when the Sb content is increased. After annealing at a maximum temperature of T = 345 K, the samples are non-superconducting within the experimental range and the behavior changes from semiconducting-like for pure Bi, to metallic-like for pure Sb. Transition temperature {T}{{C}0} of the amorphous Bi x Sb{}100-x alloys have been calculated in the BCS-Eliashberg-McMillan framework, modified for binary alloys. The results can explain the experimental results and show that amorphous Bi x Sb{}100-x exhibits a strong to intermediate electron-phonon coupling.

  14. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    Science.gov (United States)

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  15. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions

    Science.gov (United States)

    Weng, Z. F.; Smidman, M.; Jiao, L.; Lu, Xin; Yuan, H. Q.

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  16. The research of parallel-coupled linear-phase superconducting filter

    Science.gov (United States)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-01

    This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO3/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than -12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  17. Superconducting phases of strange quark matter in the NJL model

    CERN Document Server

    Paulucci, L; Ferrer, E J; de la Incera, V

    2013-01-01

    We analyze the color-flavor-locked phase of strange quark matter modelled by the three-flavor Nambu-Jona-Lasinio (NJL) framework with and without magnetic field and discuss some additional constraints on the stability scenario when a high magnetic field is applied. We compare the results obtained by employing the MIT Bag Model and discuss the pairing gap behavior and its influence on the equation of state.

  18. Phase diagram and superconductivity at 58.1 K in α-FeAs-free SmFeAsO1-xFx

    Science.gov (United States)

    Fujioka, M.; Denholme, S. J.; Ozaki, T.; Okazaki, H.; Deguchi, K.; Demura, S.; Hara, H.; Watanabe, T.; Takeya, H.; Yamaguchi, T.; Kumakura, H.; Takano, Y.

    2013-08-01

    The phase diagram of SmFeAsO1-xFx in terms of x is exhibited in this study. Specimens of SmFeAsO1-xFx from x = 0 to x = 0.3 were prepared by low-temperature sintering with slow cooling. The low-temperature sintering suppresses the formation of the amorphous FeAs, which is inevitably produced as an impurity when using high-temperature sintering. Moreover, slow cooling is effective in obtaining a high fluorine concentration. The compositional change from feedstock composition is quite small after this synthesis. We can reproducibly observe a record superconducting transition for an iron-based superconductor at 58.1 K. This achievement of a high superconducting transition is due to the success in substituting a large amount of fluorine. A shrinking of the a lattice parameter caused by fluorine substitution is observed and the substitutional rate of fluorine changes at x = 0.16.

  19. A study of mixed phase behavior in the lanthanide-substituted superconducting oxide ErBa sub 2 Cu sub 3 O sub 7

    Energy Technology Data Exchange (ETDEWEB)

    Zandbergen, H.W.; Holland, G.F.; Tejedor, P.; Gronsky, R.; Stacy, A.M. (Univ. of California, Berkeley (USA))

    1987-07-01

    Substitution of lanthanide ions, Ln{sup 3+}, for Y in the novel superconducting oxide YBa{sub 2}Cu{sub 3}O{sub 7} has been studied largely to investigate the effect of magnetic 4f{sup n} ions on superconductivity. A possibility that should also be considered however is that slight variation in the size of the lanthanide ions might lead to different structural types. For instance, La does not form the YBa{sub 2}Cu{sub 3}O{sub 7} structure, preferring instead the La{sub 3}Ba{sub 3}Cu{sub 6}O{sub 4} habit. Changes in the size of Ln could also be important on the microscopic scale, where different defect structures could occur. Defects as well as other impurities will adversely affect the current carrying capacity, J{sub c}, of these new high T{sub c} superconductors. The challenge in improving the performance of the Y-Ba-Cu-O type superconductors is to develop an understanding of the relationship between their fabrication, processing, performance, and microstructure. Here the authors report the synthesis and characterization, both magnetic and structural of ErBa{sub 2}Cu{sub 3}O{sub 7}. High resolution electron micrographs show the presence of an unusual defect structure in this pure phase.

  20. Stability-indicating reversed-phase HPLC method development and characterization of impurities in vortioxetine utilizing LC-MS, IR and NMR.

    Science.gov (United States)

    Liu, Lei; Cao, Na; Ma, Xingling; Xiong, Kaihe; Sun, Lili; Zou, Qiaogen; Yao, Lili

    2016-01-05

    The current study reports the development and validation of a stability-indicating reversed phase HPLC method for the separation and identification of potential impurities in vortioxetine, a recently developed antidepressant. The structures of a new compound and four process-related impurities formed during the synthesis were characterized and confirmed by NMR, MS, and IR spectroscopy analyses. The most probable formation mechanisms of the impurities identified were proposed. Based on the characterization data, the new compound was proposed to be 1-[4-[(2,4-dimethylphenyl)thio]phenyl]-piperazine. In addition, an efficient chromatographic method was optimized to separate and quantify the impurities, which were obtained in the 0.05-0.75 μg/mL range. The developed HPLC method was validated with respect to accuracy, precision, linearity, robustness, and limits of detection and quantitation.

  1. Multiple superconducting phases in heavy fermion compounds PrOs4Sb12 and CeCoIn5

    Indian Academy of Sciences (India)

    Yuji Matsuda

    2006-01-01

    In recently discovered heavy fermion compounds, quasi-two-dimensional CeCoIn5 and skutterudite PrOs4Sb12, multiple superconducting phases with different symmetries manifest themselves below c. The angle-resolved magnetothermal transport measurements revealed that in PrOs4Sb12 a novel change in the symmetry of the superconducting gap function occurs deep inside the superconducting state. The ultrasound velocity measurements revealed that in CeCoIn5 the Fulde-Ferrel-Larkin-Ovchinikov (FFLO) phase, in which the order parameter is spatially modulated and has planar nodes aligned perpendicular to the vortices, appears at low temperature and high field. These results open up a new realm for the study of the superconductivity with multiple phases.

  2. A cryogenic phase locking loop system for a superconducting integrated receiver

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Yagoubov, P. A.; Pylypenko, O. M.

    2009-08-01

    The authors present a new cryogenic device, an ultrawideband cryogenic phase locking loop system (CPLL). The CPLL was developed for phase locking of a flux-flow oscillator (FFO) in a superconducting integrated receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is the cryogenic phase detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of a superconductor-insulator-superconductor tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of cables 50 cm and the total loop delay 4.5 ns. So small a delay results in a CPLL synchronization bandwidth as wide as 40 MHz and allows phase locking of more than 60% of the power emitted by the FFO, even for FFO linewidths of about 11 MHz. This percentage of phase locked power is three times that achieved with conventional room temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.

  3. Phase segregation of superconductivity and ferromagnetism at the LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Mohanta, N; Taraphder, A

    2014-01-15

    The highly conductive two-dimensional electron gas formed at the interface between insulating SrTiO3 and LaAlO3 shows low-temperature superconductivity coexisting with inhomogeneous ferromagnetism. The Rashba spin-orbit interaction with the in-plane Zeeman field of the system favors p(x) ± ip(y)-wave superconductivity at finite momentum. Owing to the intrinsic disorder at the interface, the role of spatial inhomogeneity in the superconducting and ferromagnetic states becomes important. We find that, for strong disorder, the system breaks up into mutually excluded regions of superconductivity and ferromagnetism. This inhomogeneity-driven electronic phase separation accounts for the unusual coexistence of superconductivity and ferromagnetism observed at the interface.

  4. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  5. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  6. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    Directory of Open Access Journals (Sweden)

    Peter Keefe

    2004-03-01

    Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.

  7. Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals

    Science.gov (United States)

    Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.

    2016-08-01

    In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature.

  8. Pressure dependence of structural phase transition and superconducting transition in CsI

    CERN Document Server

    Nirmala-Louis, C

    2003-01-01

    The self-consistent band structure calculation for CsI performed both in CsCl and HCP structures using the TB-LMTO method is reported. The equilibrium lattice constant, bulk modulus and the phase-transition pressure at which the compound undergoes structural phase transition from CsCl to HCP are predicted from the total-energy calculations. The band structure, density of states (DOS), electronic charge distributions, metallization and superconducting transition temperature (T sub c) of CsI are obtained as a function of pressure for both the CsCl and HCP structures. It is found that the charge transfer from s and p states to d state causes metallization and superconductivity in CsI. The highest T sub c estimated is 2.11 K and the corresponding pressure is 1.8 Mbar. This value is in agreement with the recent experimental observation. The experimental trend - ''metallization and superconductivity is rather insensitive to the crystal structure of CsI'' - is also confirmed in our work. (Abstract Copyright [2003], ...

  9. Superconducting properties of the KxWO3 tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family

    Science.gov (United States)

    Haldolaarachchige, Neel; Gibson, Quinn; Krizan, Jason; Cava, R. J.

    2014-03-01

    We report on the superconducting properties of the KxWO3 tetragonal tungsten bronze. The highest superconducting transition temperature (Tc=2.1 K) was obtained for K0.38WO3. Tc decreases linearly with increasing K content. Using the measured values for the upper critical field Hc2 and the specific heat C, we estimate the orbital critical field Hc2(0), coherence length ξ(0), Debye temperature ΘD, and coupling constant λe-p. The magnitude of the specific-heat jump at Tc suggests that the KxWO3 tetragonal tungsten bronze is a weakly coupled superconductor. The superconducting phase diagram of the doped tungsten bronze family is presented.

  10. The superconducting phase and electronic excitations of (Rb,Cs) Fe 2 As 2

    Science.gov (United States)

    Kanter, J.; Shermadini, Z.; Khasanov, R.; Amato, A.; Bukowski, Z.; Batlogg, B.

    2011-03-01

    We present specific heat, transport and Muon-Spin Rotation (μ SR) results on (Rb,Cs) Fe 2 As 2 . RbFe 2 As 2 was only recently found to be superconducting below 2.6 K by Bukowski et al. Compared to the related BaFe 2 As 2 the electron density is lower and no magnetic order is observed. For the superconducting phase the superfluid density was calculated from μ SR data. The temperature dependence of the superfluid density and the magnetic penetration depth is well described by a multi-gap scenario. In addition the electronic contribution the specific heat was studied for different compositions and magnetic fields and reveals a high value for the Sommerfeld coefficient γ .

  11. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide

    Science.gov (United States)

    Hao, L. Y.; Zhou, X. J.; Yang, Z. B.; Zhang, H. L.; Sun, H. C.; Cao, H. X.; Dai, P. H.; Li, J.; Hatano, T.; Wang, H. B.; Wen, Q. Y.; Wu, P. H.

    2016-12-01

    We report a practical superconducting terahertz (THz) source, comprising a stack of Bi2Sr2CaCu2O8 intrinsic Josephson junctions (IJJs) and a vanadium dioxide (VO2) tunable attenuator with coplanar interdigital contacts. The electrical triggering phase transitions are observed not only at room temperature, but also at low temperatures, which provides a proof of the electrical triggering. Applying this, the VO2 attenuator is implemented for the independent regulations on the emission powers from the IJJ THz emitter, remaining frequencies and temperatures unchanged. The attenuation can be tuned smoothly and continuously within a couple of volts among which the maximum is, respectively, -5.6 dB at 20 K or -4.3 dB at 25 K. Such a power-adjustable radiation source, including the VO2 attenuator, can further expand its practicability in cryogenic THz systems, like superconducting THz spectrometers.

  12. Magnetic instabilities along the superconducting phase boundary of Nb /Ni multilayers

    Science.gov (United States)

    Joshi, Amish G.; Kryukov, Sergiy A.; De Long, Lance E.; Gonzalez, Elvira M.; Navarro, Elena; Villegas, Javier E.; Vicent, Jose L.

    2007-05-01

    We report vibrating reed and superconducting quantum interference device magnetometer data that exhibit prominent dips or oscillations of the superconducting (SC) onset temperature, ΔTC(H )≈0.01-0.7K, for a [Nb(23nm)/Ni(5nm)]5 multilayer (ML) in dc magnetic fields applied nearly parallel to the ML plane. The vibrating reed data exhibit reproducible structures below TC that may reflect multiple SC transitions, but they are sensitive to ac field amplitude and dc field orientation. This striking behavior poses challenges for theoretical and experimental investigations of interfaces between SC and ferromagnetic layers that involve magnetic pair breaking effects, "pi phase shifts" of the SC order parameter, and exotic ("LOFF") pairing states. Alternatively, the anomalies may mark dynamical instabilities within a confined, strongly anisotropic Abrikosov vortex lattice.

  13. Development and validation of a reversed-phase liquid chromatographic method for analysis of demeclocycline and related impurities.

    Science.gov (United States)

    Kahsay, Getu; Maxa, Jaroslav; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2012-06-01

    A simple, robust, and rapid reversedphase high-performance liquid chromatographic method for the analysis of demeclocycline and its impurities is described. Chromatographic separations were achieved on a Symmetry Shield RP8 (75 mm × 4.6 mm, 3.5 μm) column kept at 40°C. The mobile phase was a gradient mixture of acetonitrile, 0.06 M sodium edetate (pH 7.5), 0.06 M tetrapropylammonium hydrogen sulphate (pH 7.5) and water, A (2:35:35:28 v/v/v/v) and B (30:35:35:0 v/v/v/v) pumped at a flow rate of 1 mL/min. UV detection was performed at 280 nm. The developed method was validated according to the ICH guidelines for specificity, limit of detection, limit of quantification, linearity, precision, and robustness. An experimental design was applied for robustness study. Results show that the peak shape, chromatographic resolution between the impurities, and the total analysis time are satisfactory and better than previous methods. The method has been applied for the analysis of commercial demeclocycline bulk samples available on the market.

  14. The research of parallel-coupled linear-phase superconducting filter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai, E-mail: kyang@uestc.edu.cn; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-15

    Highlights: • Parallel-connected linear phase filter can be achieved when the group delays of sub-networks compensate each other. • We give the coupling and routing diagrams of four linear phase filters with self-synthesized coupling matrixes, and verified the correctness of theory data and the feasibility of the circuit design. • There are a variety of topological coupling and routing diagrams for a same order filter. • We give a reasonable arrangement of design steps for high-order parallel-coupled linear phase filter. - Abstract: This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO{sub 3}/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than −12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  15. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    Science.gov (United States)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  16. Josephson quartic oscillator as a superconducting phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)

    2010-07-01

    Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.

  17. A ferroelectric quantum phase transition inside the superconducting dome of Sr1-xCaxTiO3-δ

    Science.gov (United States)

    Rischau, Carl Willem; Lin, Xiao; Grams, Christoph P.; Finck, Dennis; Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Gallais, Yann; Fauqué, Benoît; Hemberger, Joachim; Behnia, Kamran

    2017-07-01

    SrTiO3, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. The two orders may be accidental neighbours or intimately connected, as in the picture of quantum critical ferroelectricity. Here, we show that in Sr1-xCaxTiO3-δ (0.002 content, a quantum phase transition destroys the ferroelectric order. We detect an upturn in the normal-state scattering and a significant modification of the superconducting dome in the vicinity of this quantum phase transition. The enhancement of the superconducting transition temperature with calcium substitution documents the role played by ferroelectric vicinity in the precocious emergence of superconductivity in this system, restricting possible theoretical scenarios for pairing.

  18. Phase transition and superconductivity of SrFe2As2 under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Montgomery, Jeffrey M [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Yogesh [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2011-01-01

    High pressure x-ray diffraction and electrical resistance measurements have been carried out on SrFe{sub 2}As{sub 2} to a pressure of 23 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 10 GPa under non-hydrostatic conditions. The experimental relation that T-CT transition pressure for 122 Fe-based superconductors is dependent on ambient pressure volume is affirmed. The superconducting transition temperature is observed at 32 K at 1.3 GPa and decreases rapidly with a further increase of pressure in the region where the T-CT transition occurs. Our results suggest that T{sub C} falls below 10 K in the pressure range of 10-18 GPa where the CT phase is expected to be stable.

  19. Effects of calcium impurity on phase relationship, ionic conductivity and microstructure of Na$^{+}$-$\\beta/beta"$-alumina solid electrolyte

    Indian Academy of Sciences (India)

    SUNG-TAE LEE; DAE-HAN LEE; SANG-MIN LEE; SANG-SOO HAN; SANG-HYUNG LEE; SUNG-KI LIM

    2016-06-01

    Ca-doped Na$^{+}$-$\\beta/beta"$-alumina was synthesized using a solid-state reaction. The changes in the properties of Na$^{+}$-$\\beta/beta"$-alumina resulting from the presence of Ca impurity were studied. Ca (0–5 wt%) was added to the respective samples, which were then sintered. The specimens were characterized using X-ray diffraction, scanningelectron microscopy, densimetry and impedance analysis. In the sintered specimens, the $\\beta"$-alumina phase fraction decreased as Ca content increased, whereas the relative sintered density increased. The surface morphology of Cadoped Na$^{+}$-$\\beta/beta"$-alumina specimens showed a Ca-rich layer, which was the main cause of increase in the specificresistance.

  20. Enhanced Superconductivity in Close Proximity to the Structural Phase Transition of Sr1-xBaxNi2P2

    Science.gov (United States)

    Kudo, Kazutaka; Kitahama, Yutaka; Iba, Keita; Takasuga, Masaya; Nohara, Minoru

    2017-03-01

    The structural evolution and superconductivity of a 122-type solid solution Sr1-xBaxNi2P2 were studied. We found that an orthorhombic-tetragonal structural phase transition takes place at x = 0.5, and is characterized by the P-P dimers breaking. The superconducting transition temperature exhibited its highest value of 2.85 K at x = 0.4.

  1. Enantioseparation and impurity determination of the enantiomers of novel phenylethanolamine derivatives by high performance liquid chromatography on amylose stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jing [Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016 (China); Guan Jin [Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016 (China); School of Applied Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142 (China); Pan Li [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 (China); Jiang Kun [Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016 (China); Cheng Maosheng [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 (China); Li Famei [Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016 (China)], E-mail: lifamei@syphu.edu.cn

    2008-03-10

    Simple and efficient analytical HPLC methods using Chiralpak AS-H as chiral stationary phase were developed for direct enantioseparation of 11 novel phenylethanolamine derivatives. The chromatographic experiments were performed in normal phase mode with n-hexane-ethanol-triethylamine (TEA) as mobile phase. Excellent baseline enantioseparation was obtained for most of compounds. The effects of the concentration of organic modifiers and column temperature were studied for the enantiomeric separation. The mechanism of chiral recognition was discussed based on the relationship between the thermodynamic parameters and structures of compounds. It was found that the enantioseparations were all enthalpy driven, and the tert-butyl groups of compounds had significant influence on the chiral recognition. Trantinterol enantiomers were resolved (R{sub s} = 2.73) within 14 min using n-hexane-ethanol-TEA (98:2:0.1, v/v/v) as mobile phase with a flow rate of 0.8 mL min{sup -1} at 30 deg. C. The optimized method was validated for linearity, precision, accuracy and stability in solution and proved to be robust. The limits of detection (LOD) and quantification (LOQ) for (+)-trantinterol were 0.15 and 0.46 {mu}g mL{sup -1}. The method was applied for enantiomeric impurity determination of (-)-trantinterol bulk samples.

  2. Possible misleading interpretations on magnetic and transport properties in BiFeO{sub 3} nanoparticles caused by impurity phase

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Fabian E.N.; Pasca, Gabriel A.C.; Souza, Jose A., E-mail: joseantonio.souza@ufabc.edu.br

    2015-07-31

    Highlights: • The samples have different magnetic structure due to frustrated magnetic interactions. • The results suggest the appearance of interfacial polarization due to leakage current. • How an apparently single phase sample can lead to misleading interpretations. - Abstract: BiFeO{sub 3} nanoparticles were synthesized by a wet chemical method. X-ray powder diffraction indicated single phase samples. The sample S1 shows a ferromagnetic-like behavior whereas S2 exhibits an antiferromagnetic-like character with lower magnetic moment and coercive field. Magnetic measurements at high temperature reveal two phase transitions, one related to BiFeO{sub 3} and another from α-Fe{sub 2}O{sub 3} magnetic impurity in contrast to X-ray diffraction. We observed an increase of remanent polarization, coercive electrical field, and the appearance of interfacial polarization due to higher leakage current density. We discuss how an apparently single phase sample can lead to misleading interpretations in magnetic and dielectric properties.

  3. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  4. Qualitative modifications and new dynamic phases in the phase diagram of one-dimensional superconducting wires driven with electric currents

    Science.gov (United States)

    Kallush, Shimshon; Berger, Jorge

    2014-06-01

    After an initial transient period, the conduction regime in a one-dimensional superconducting wire that carries a fixed current is either normal, periodic, or stationary. The phase diagram for these possibilities was studied in Phys. Rev. Lett. 99, 167003 (2007), 10.1103/PhysRevLett.99.167003 for particular values of the length and the material parameters. We have extended this study to arbitrary length and to a range of material parameters that includes realistic values. Variation of the length leads to scaling laws for the phase diagram. Variation of the material parameters leads to new qualitative features and new phases, including a parameter region in which all three regimes are possible.

  5. Critical point in the superconducting phase diagram of UPt/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K.; Taillefer, L.; Flouquet, J.

    1989-07-03

    We report on detailed measurements of the specific heat of UPt/sub 3/, performed on a high-quality single crystal in a magnetic field perpendicular to the /ital c/ axis, at temperatures down to 100 mK. Two distinct phase transitions at zero field are seen to converge at a critical point, near /ital H/=5 kOe, which coincides with the sharp break in the /ital H//sub /ital c/2/ curve. Beyond that point, there is evidence for only one phase. Combining these thermodynamic results with ultrasonic attenuation and /ital H//sub /ital c/2/ data, an /ital H/-/ital T/ diagram is constructed which consists of a ''polycritical'' point and several superconducting phases.

  6. Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators

    Science.gov (United States)

    Tian, Lin

    Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.

  7. Investigation of the influence of quenched nonmagnetic impurities on phase transitions in the three-dimensional Potts model

    Science.gov (United States)

    Murtazaev, A. K.; Babaev, A. B.; Aznaurova, G. Ya.

    2008-04-01

    The influence of quenched nonmagnetic impurities on phase transitions in the three-dimensional Potts model with the number of spin states q = 3 is investigated using the Wolff single-cluster algorithm of the Monte Carlo method. The systems with linear sizes L = 20-44 at the spin concentrations p = 1.0, 0.9, 0.8, and 0.7 are analyzed. It is demonstrated with the use of the method of fourth-order Binder cumulants that the second-order phase transition occurs in the model under consideration at the spin concentrations p = 0.9, 0.8, and 0.7 and that the first-order phase transition is observed in the pure model ( p = 1.0). The static critical exponents α (heat capacity), γ (susceptibility), β (magnetization), and ν (correlation length) are calculated in the framework of the finite-size scaling theory. The problem regarding the universality classes of the critical behavior of weakly diluted systems is discussed.

  8. Epitaxial growth of hexagonal tungsten bronze Cs x WO3 films in superconducting phase region exceeding bulk limit

    Science.gov (United States)

    Soma, Takuto; Yoshimatsu, Kohei; Ohtomo, Akira

    2016-07-01

    We report epitaxial synthesis of superconducting Cs x WO3 (x = 0.11, 0.20, and 0.31) films on Y-stabilized ZrO2 (111) substrates. The hexagonal crystal structure was verified not only for the composition within the stable region of the bulk (x = 0.20 and 0.31), but also for the out-of-range composition (x = 0.11). The onset of the superconducting transition was recorded at 5.8 K for x = 0.11. We found a strong correlation between the superconducting transition temperature (T C) and the c-axis length, irrespective of the Cs content. These results indicated that the hidden superconducting phase region of hexagonal tungsten bronze is accessible using epitaxial synthesis of lightly doped films.

  9. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Kondrashov, Oleg V. [Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Skvortsov, Mikhail A. [Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka (Russian Federation); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  10. Dynamical control and novel quantum phases in impurity doped linear ion crystals

    CERN Document Server

    Ivanov, Peter A; Singer, Kilian; Schmidt-Kaler, Ferdinand

    2010-01-01

    We explore the behavior of the phonon number distribution in an heterogeneous linear ion crystal. The presence of ion species with different masses changes dramatically the transverse energy spectrum, in such a way that two eigenfrequencies become non-analytic functions of the mass ratio in the form of a sharp cusp. This non-analyticity induces a quantum phase transition between condensed and conducting phase of the transverse local phonons. In order to continuously vary the mass ratio we adiabatically modify a locally applied laser field, exerting optical dipole forces which reduces the effective mass.

  11. First-order superconducting phase transition in CeCoIn5.

    Science.gov (United States)

    Bianchi, A; Movshovich, R; Oeschler, N; Gegenwart, P; Steglich, F; Thompson, J D; Pagliuso, P G; Sarrao, J L

    2002-09-23

    The superconducting phase transition in heavy fermion CeCoIn5 (T(c)=2.3 K in zero field) becomes first order when the magnetic field H parallel [001] is greater than 4.7 T, and the transition temperature is below T0 approximately 0.31T(c). The change from second order at lower fields is reflected in strong sharpening of both specific heat and thermal expansion anomalies associated with the phase transition, a strong magnetocaloric effect, and a steplike change in the sample volume. This effect is due to Pauli limiting in a type-II superconductor, and was predicted theoretically in the mid-1960s.

  12. Possible "Magnéli" Phases and Self-Alloying in the Superconducting Sulfur Hydride

    Science.gov (United States)

    Akashi, Ryosuke; Sano, Wataru; Arita, Ryotaro; Tsuneyuki, Shinji

    2016-08-01

    We theoretically give an infinite number of metastable crystal structures for the superconducting sulfur hydride HxS under pressure. Previously predicted crystalline phases of H2S and H3S have been thought to have important roles for experimentally observed low and high Tc, respectively. The newly found structures are long-period modulated crystals where slablike H2S and H3S regions intergrow on a microscopic scale. The extremely small formation enthalpy for the H2S -H3S boundary indicated by first-principles calculations suggests possible alloying of these phases through the formation of local H3S regions. The modulated structures and gradual alloying transformations between them not only explain the peculiar pressure dependence of Tc in sulfur hydride observed experimentally, but also could prevail in the experimental samples under various compression schemes.

  13. Gain-assisted optical bistability and multistability in superconducting phase quantum circuits

    Science.gov (United States)

    Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.

    2017-02-01

    We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.

  14. Aqueous-phase reforming of crude glycerol : effect of impurities on hydrogen production

    NARCIS (Netherlands)

    Boga, Dilek A.; Liu, Fang; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    The aqueous-phase reforming (APR) of a crude glycerol that originates from an industrial process and the effect of the individual components of crude glycerol on APR activity have been studied over 1 wt% Pt/Mg-Al) O, 1 wt% Pt/Al2O3, 5 wt% Pt/Al2O3 and 5 wt% Pt/C catalysts at 29 bar and 225 degrees C

  15. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Science.gov (United States)

    Wong, C. H.; Wu, R. P. H.; Lortz, R.

    2017-03-01

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature TDC is observed when the inner superconducting cylindrical surface is rotated in the angular plane. TDC reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below TDC. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  16. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  17. Phase fluctuation in overdoped cuprates? Superconducting dome due to Mott-ness of the tightly bound preformed pairs

    Science.gov (United States)

    Ku, Wei; Yang, Fan

    2015-03-01

    In contrast to the current lore, we demonstrate that even the overdoped cuprates suffer from superconducting phase fluctuation in the strong binding limit. Specifically, the Mott-ness of the underlying doped holes dictates naturally a generic optimal doping around 15% and nearly complete loss of phase coherence around 25%, giving rise to a dome shape of superconducting transition temperature in excellent agreement with experimental observations of the cuprates. We verify this effect with a simple estimation using Gutzwiller approximation of the preformed pairs, obtained through variational Monte Carlo calculation. This realization suggests strongly the interesting possibility that the high-temperature superconductivity in the cuprates might be mostly described by Bose-Einstein condensation, without crossing over to amplitude fluctuating Cooper pairs. Supported by Department of Energy, Office of Basic Energy Science DE-AC02-98CH10886.

  18. Self-heterodyne detection of the in situ phase of an atomic superconducting quantum interference device

    Science.gov (United States)

    Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.; Edwards, Mark; Tiesinga, E.

    2015-09-01

    We present theoretical and experimental analysis of an interferometric measurement of the in situ phase drop across and current flow through a rotating barrier in a toroidal Bose-Einstein condensate (BEC). This experiment is the atomic analog of the rf-superconducting quantum interference device (SQUID). The phase drop is extracted from a spiral-shaped density profile created by the spatial interference of the expanding toroidal BEC and a reference BEC after release from all trapping potentials. We characterize the interferometer when it contains a single particle, which is initially in a coherent superposition of a torus and reference state, as well as when it contains a many-body state in the mean-field approximation. The single-particle picture is sufficient to explain the origin of the spirals, to relate the phase-drop across the barrier to the geometry of a spiral, and to bound the expansion times for which the in situ phase can be accurately determined. Mean-field estimates and numerical simulations show that the interatomic interactions shorten the expansion time scales compared to the single-particle case. Finally, we compare the mean-field simulations with our experimental data and confirm that the interferometer indeed accurately measures the in situ phase drop.

  19. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities

    Science.gov (United States)

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-01

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium

  20. On the study of phase formation and critical current density in superconducting MgB2

    Indian Academy of Sciences (India)

    Suchitra Rajput; Sujeet Chaudhary; Subhash C Kashyap; Pankaj Srivastava

    2006-06-01

    Superconducting bulk MgB2 samples have been synthesized by employing sintering technique without using any additional process steps, generally undertaken in view of the substantial loss of magnesium, during heat treatment. Starting with Mg rich powders having different atomic ratios of Mg : B, as against the nominally required Mg : B = 1 : 2 ratio, we have obtained superconducting MgB2 samples of different characteristics. The effect of excess Mg in the starting mixture and processing temperature on the phase-formation, transition temperature (C) and critical current density (C) have been investigated by electrical transport and a.c. susceptibility measurements. The X-ray diffraction and X-ray photoelectron spectroscopic analyses of MgB2 bulk samples have been carried out to understand the role of excess Mg and the effect of processing temperature. It is established that MgB2 samples with high critical current density can be synthesized from a Mg rich powder having Mg : B in 2 : 2 ratio, at temperatures around 790°C. Critical current density has been found to vary systematically with processing temperature.

  1. The metallic transport of (TMTSF){sub 2}X organic conductors close to the superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Auban-Senzier, P; Jerome, D [Laboratoire de Physique des Solides, UMR 8502 CNRS Universite Paris-Sud, 91405 Orsay (France); Doiron-Leyraud, N; Rene de Cotret, S; Sedeki, A; Bourbonnais, C; Taillefer, L [Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, QC, J1K 2R1 (Canada); Alemany, P [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Canadell, E [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Bellaterra (Spain); Bechgaard, K, E-mail: pascale.senzier@lps.u-psud.fr, E-mail: denis.jerome@lps.u-psud.fr, E-mail: ndl@physique.usherbrooke.ca, E-mail: cbourbon@physique.usherbrooke.ca, E-mail: ltaillef@physique.usherbrooke.ca, E-mail: p.alemany@ub.edu, E-mail: canadell@icmab.es [Department of Chemistry, HC Oersted Institute, Copenhagen (Denmark)

    2011-08-31

    Comparing resistivity data of the quasi-one-dimensional superconductors (TMTSF){sub 2}PF{sub 6} and (TMTSF){sub 2}ClO{sub 4} along the least conducting c*-axis and along the high conductivity a-axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs the transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles density functional theory calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for {rho}{sub c} a temperature dependence aT + bT{sup 2}. Taking into account the strong pressure dependence of the anisotropy, the T-linear {rho}{sub c} is found to correlate with the suppression of the superconducting T{sub c}, in close analogy with {rho}{sub a} data. This work reveals the domain of existence of the three-dimensional coherent regime in the generic (TMTSF){sub 2}X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors. (paper)

  2. Microscopic Derivation of the Ginzburg-Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism

    Science.gov (United States)

    Val'kov, V. V.; Zlotnikov, A. O.

    2016-12-01

    On the basis of the periodic Anderson model, the microscopic Ginzburg-Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.

  3. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  4. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Dexter, G. Burt, R.G. Carter, I. Tahir, H. Wang, K. Davis, R. Rimmer

    2011-03-01

    The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  5. Bound state, phase separation and superconductivity in presence of Rashba spin-orbit coupling

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2017-06-01

    We have investigated the phase diagram for the t - J model at low electronic densities in presence of Rashba spin-orbit coupling (RSOC). We have rigorously derived a bound state criterion which arises out of a competition between the kinetic energy of the electrons and the exchange coupling between them. Further, we have obtained that the phase diagram consists of three phases, namely, a gas of electrons, a gas of bound pairs, and a fully phase separated state. Subsequently an extension of the pairing scenario is done at finite densities by solving a BCS gap equation. Finite superconducting correlations are observed for J values much lower than that required for the formation of a single bound pair, thereby indicating that pairing in a many particle environment requires weaker interaction strengths than that in the dilute case. We have further obtained that the RSOC increases the transition temperature for a p-wave pairing state, while it diminishes the same for an s-wave pairing correlations.

  6. Influence of Oxygen Content on the Superconductivity of Bi-Based Oxides Homologous to 2212 Phase

    Science.gov (United States)

    Deshimaru, Yuichi; Otani, Tetsuya; Shimizu, Youichi; Miura, Norio; Yamazoe, Noboru

    1991-10-01

    Thermal desorption of oxygen and its relevance to superconductivity were examined for a series of oxides Bi2Sr2-xCa1+xCu2Oy (x=0, 0.25, 0.5, 0.8 and 1.0) isostructural to the 2212 phase. The total oxygen desorbed up to 600°C amounted to 2˜ 3× 10-5 mol/g for each oxide. Tc was constant at about 80 K for all the as-prepared oxides but Tc decreased linearly with x from 97 K (x=0) to 67 K (x=1.0) for the oxygen-desorbed oxides. The total oxygen contents (y) were determined and correlated with Tc, which increased for x=0 and 0.25, whereas it went through a maximum at about y=8.15 for x=0.8.

  7. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  8. Bifurcation Diagram and Pattern Formation of Phase Slip Centers in Superconducting Wires Driven with Electric Currents

    Science.gov (United States)

    Rubinstein, J.; Sternberg, P.; Ma, Q.

    2007-10-01

    We provide here new insights into the classical problem of a one-dimensional superconducting wire exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip centers (PSC’s) where the order parameter vanishes. Retaining temperature and applied current as parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions can be found. One of the most interesting features of the analysis is the evident collision of real eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex elements of the spectrum.

  9. Detection of second harmonic of phase dependence of superconducting current in Nb/Au/YBCO heterojunctions

    CERN Document Server

    Komissinskij, F V; Ilichev, E V; Ivanov, Z G

    2001-01-01

    The results of the experimental study on the current phase dependence (CPD) of the heterotransitions, consisting of the niobium and the YBa sub 2 Cu sub 3 O sub x (YBCO) film with an additional interlayer from gold (Nb/Au/YBCO) are presented. The CPD measurement is carried out through the radiofrequency superconducting quantum interferometer. The CPD second harmonic is determined in the Nb/Au/YBCO heterotransitions. Possible causes of its appearance are discussed within the frames of the d +- s combined symmetry of the YBCO order parameter. One of the causes of the CPD second harmonic appearance is the twinning of the YBCO films (001). The second cause of existing the anomalously high critical current consists in the availability of the Nb/Au boundary with the transparence of approx 10 sup - sup 1 in the Nb/Au/YBCO

  10. Berry{close_quote}s phase and a possible new topological current drive in certain weak link superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, F.; Shenoy, S.R. [International Center for Theoretical Physics, P. O. Box 586, Miramare, 34100 Trieste (Italy)

    1996-06-01

    We examine the consequences of Berry{close_quote}s phase for the dynamics of Josephson junctions and junction arrays in which moving vortices are present. For both a large annular Josephson junction and a 2D junction array, Berry{close_quote}s phase produces a new current drive in the superconducting phase dynamics of these weak link systems. This Berry phase effect is shown to be physically inequivalent to a known effect in junction arrays associated with the Aharonov-Casher phase. {copyright} {ital 1996 The American Physical Society.}

  11. Characterization of process-related impurities including forced degradation products of alogliptin benzoate and the development of the corresponding reversed-phase high-performance liquid chromatography method.

    Science.gov (United States)

    Zhou, YuXia; Zhou, WenTao; Sun, LiLi; Zou, QiaoGen; Wei, Ping; OuYang, PingKai

    2014-06-01

    The characterization of process-related impurities and forced degradants of alogliptin benzoate (Alb) in bulk drugs and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Alb was found to be unstable under acid and alkali stress conditions and two major degradation products (Imp-F and Imp-G) were observed. The optimum separation was achieved on Kromasil C18 (250 × 4.6 mm, 5 μm) using 0.1% perchloric acid (pH adjusted to 3.0 with triethylamine) and acetonitrile as a mobile phase in gradient mode. The proposed method was found to be stability indicating, precise, linear (0.10-75.0 μg/mL), accurate, sensitive, and robust for the quantitation of Alb and its process-related substances and degradation products. The structures of 11 impurities were characterized and confirmed by NMR spectroscopy, MS, and IR spectroscopy, and the most probable formation mechanisms of all impurities were proposed according to the synthesis route. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of a Validated LC Method for Separation of Process-Related Impurities Including the R-Enantiomer of S-Pramipexole on Polysaccharide Chiral Stationary Phases.

    Science.gov (United States)

    Ramisetti, Nageswara Rao; Kuntamukkala, Ramakrishna; Arnipalli, Manikanta Swamy

    2015-07-01

    Despite the availability of a few methods for individual separation of S-pramipexole from its process-related impurities, no common liquid chromatography (LC) method is reported so far in the literature. The present article describes the development of a single-run LC method for simultaneous determination of S-pramipexole and its enantiomeric and process-related impurities on a Chiralpak AD-H (150 x 4.6 mm, 5μm) column using n-hexane/ethanol/n-butylamine (75:25:0.1 v/v/v) as a mobile phase in an isocratic mode of elution at a flow rate of 1.2 ml/min at 30°C. The chromatographic eluents were monitored at a wavelength of 260 nm using a photodiode array detector. Excellent enantioseparation with good resolutions (Rs ≥ 2.88) and peak shapes (As ≤ 1.21) for all analytes was achieved. The proposed method was validated according to International Conference Harmonization (ICH) guidelines in terms of accuracy, precision, sensitivity, and linearity. Limits of quantification of impurities (0.25-0.55 μg/ml) indicate the highest sensitivity achievable by the proposed method. The method has an advantage of selectivity and suitability for routine determination of not only chiral impurity but also all possible related substances in active pharmaceutical ingredients of S-pramipexole.

  13. Development and validation of a new stability indicating reversed phase liquid chromatographic method for the determination of prednisolone acetate and impurities in an ophthalmic suspension.

    Science.gov (United States)

    Marley, Adrian; Stalcup, Apryll M; Connolly, Damian

    2015-01-01

    A new stability indicating reversed phase high performance liquid chromatography (RP-HPLC) method was developed and validated under current International Conference of Harmonisation (ICH) guidance for the determination of prednisolone acetate (PAC) and impurities in an ophthalmic suspension. The developed method is presented as an alternative to a modified version of the current RP-HPLC method described in the USP monograph for the assay of PAC in an ophthalmic suspension. Along with the assay of PAC, the new method is also capable of identifying and quantifying eight selected PAC impurities and degradation products in an ophthalmic suspension. Using an Agilent Poroshell 120 EC-C18 100 mm × 4.6mm (dp: 2.7 μm) column set to 60°C with step gradient elution generated using mobile phase A: acetonitrile/water (10:90) (v/v) and mobile phase B: acetonitrile delivered at 1.2 mL min(-1), all peaks of interest are eluted in 33 min with resolution of 1.5 between the critical pairs. The developed method was validated for PAC and impurities to ICH recommendations for accuracy, linearity, precision (repeatability), limit of detection, limit of quantitation, robustness and specificity.

  14. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    Science.gov (United States)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  15. Simultaneous suppression of superconductivity and structural phase transition under pressure in Ca10(Ir4As8)(Fe2 -xIrxAs2)5

    Science.gov (United States)

    Kitagawa, Shunsaku; Araki, Shingo; Kobayashi, Tatsuo C.; Ishii, Hiroyuki; Fujimura, Kazunori; Mitsuoka, Daisuke; Kudo, Kazutaka; Nohara, Minoru

    2014-12-01

    We measured the pressure dependence of in-plane resistivity ρa b in the recently discovered iron-based superconductor Ca10(Ir4As8) (Fe2-xIrxAs2) 5 , which shows a unique structural phase transition in the absence of magnetic ordering, with a superconducting transition temperature Tc=16 K and a structural phase transition temperature Ts≃100 K at ambient pressure. Tc and Ts are suppressed on applying pressure and disappear at approximately 0.5 GPa, suggesting a relationship between superconductivity and structure. Ca10(Ir4As8) (Fe2-xIrxAs2) 5 is a rather rare example in which the superconductivity appears only in a low-temperature ordered phase. The fact that the change in the crystal structure is directly linked with superconductivity suggests that the crystal structure as well as magnetism are important factors governing superconductivity in iron pnictides.

  16. Phase Diagram Of UGe2: The Magnetic Transition within the Ferromagnetic Phase and the Superconducting Transition; the Effect of Magnetic Field on the Ambient-Pressure Ferromagnetic Phase

    Science.gov (United States)

    Phillips, N. E.; Bouquet, F.; Fisher, R. A.; Hardy, F.; Oeschler, N.; Lashley, J. C.; Flouquet, J.; Huxley, A.

    2007-03-01

    Superconductivity in UGe2 occurs near 1.2 GPa at the 0-K termination of the phase boundary (Tx, Px) of a magnetic transition that occurs within the ferromagnetic phase. Ambient-pressure specific-heat measurements show a hysteretic transition at Tx(0) ˜ 22 K, reminiscent of the CDW/SDW transition in α-U, and consistent with the suggestion that the transition in UGe2 is also a CDW/SDW transition. The magnetic field dependence of the specific heat, at ambient pressure, demonstrates the presence of structure in the electron density of states and an unusual nature of the ferromagnetic ordering at the Curie temperature. Specific-heat measurements to 1.8 GPa give an estimate of the latent heat of the transition and determine the phase boundary for 1 <= T <= 11 K. Contrary to expectations, the onset temperature of the superconducting transition is independent of pressure in the region in which it was observed, 1.08 <= P <= 1.35 GPa.

  17. Improvement of superconducting properties of (Bi, Pb)-2223phase by TlF{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Saoudel, A., E-mail: dca.saoudel@yahoo.fr [LEND, Faculty of Science and Technology, Med Seddik Benyahia University, 18000 Jijel (Algeria); Amira, A.; Mahamdioua, N.; Boudjadja, Y. [LEND, Faculty of Science and Technology, Med Seddik Benyahia University, 18000 Jijel (Algeria); Varilci, A.; Altintas, S.P.; Terzioglu, C. [Department of Physics, Faculty of Arts and Sciences, Abant Izzet Baysal University, 14280 Bolu (Turkey)

    2016-11-15

    In this work, the superconducting properties of thallium fluoride (TlF{sub 3})doped Bi{sub 1.8−x}Tl{sub x}Pb{sub 0.35}Sr{sub 2}Ca{sub 2Cu3}O{sub y}F{sub 3x}(x=0–0.15)compounds are presented. The X-ray diffraction analysis shows that the proportion of (Bi, Pb)-2223phase is higher than the secondary (Bi, Pb)-2212one in all samples and its highest value is about 82.74%for x=0.05. From the resistivity curves, the highest values of the onset critical transition temperature (T{sub c.on}), the offset critical transition temperature (T{sub c.off}) are seen for x=0.10. The calculation of activation energy (U{sub 0}) in the TAFF (thermally activation flux flow) region proves the positive effect of TlF{sub 3} doping on the dissipative behavior of energy near T{sub c.off}. Flux pinning strength is enhanced by increasing TlF{sub 3}content up to x=0.10, and decreased by the application of a magnetic field. The other superconducting parameters like T(H{sub c2}), T(H{sub irr}), ξ(0) and μ{sub 0}H{sub c2}(0) are also improved significantly by doping. The obtained results of Ac susceptibility measurements show that the onset temperature of diamagnetism is improved by TlF{sub 3} doping, in accordance with the resistivity results.

  18. Reversed-phase ultra-performance liquid chromatographic method development and validation for determination of impurities related to torsemide tablets.

    Science.gov (United States)

    Patel, Hitesh B; Mohan, Arivozhi; Joshi, Hitendra S

    2011-01-01

    A simple RP-ultra-performance LC method was developed and validated for determination of impurities related to torsemide tablets. The rapid method provided adequate separation of all known related impurities and degradation products. Separation was achieved on a Zorbax SB-C18 column (50 x 4.6 mm id, 1.8 microm particle size) with binary gradient elution, and detection was performed at 288 nm. The drug product was subjected to oxidative, hydrolytic, photolytic, and thermal stress conditions to prove the specificity of the proposed method. The linearity and recovery were investigated for known impurities in the range of 0.025 to 1.0%, with respect to the drug concentration in the prepared sample. The linearity of the calibration curve for each of the impurities and torsemide was found to be very good (r2 > 0.999). Relative response factors for each of the known impurities were established by the slope ratio method from the linearity study.

  19. Anomalous behaviors in resistivity and magnetization of reduction-treated multi phase ceramics of Pr124/Pr123 and inhomogeneous Pr247

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M., E-mail: hag@kit.ac.j [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto (Japan); Shima, T. [Advanced Technology Center, Kyoto Institute of Technology, Kyoto (Japan); Tanaka, S. [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto (Japan); Koyama, K. [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima (Japan)

    2010-12-15

    A superconductive sign found in electric resistivity behavior of mixed ceramic Pr124/Pr123 is searched and discussed, to advance preceding discussion about the superconductive region induced by intergrain charge transfer effect in ceramic Pr247 containing the related impurity phases. Observed reduction effects for largely impure ceramic of Pr247 with Pr124 and Pr123 and for simply dual-phase sample of Pr124/Pr123 inform us that the oxygen-reduction brings not only superconductive electron doping but also normal resistivity enhancement. Milder heat treatment condition is expected to assist possible attainment of zero-resistivity for Pr124/Pr123.

  20. Bulk superconductivity in Tl 2Ba 2CaCu 2O 8 and TlBa 2Ca 2Cu 3O 9 phases

    Science.gov (United States)

    Sulpice, A.; Giordanengo, B.; Tournier, R.; Hervieu, M.; Maignan, A.; Martin, C.; Michel, C.; Provost, J.

    1988-09-01

    Well-crystallized Tl 2Ba 2CaCu 2O 8 phases have been observed superconducting or normal below 108 K depending on their stoichiometry. This observation is an evidence that a (Cu IL&.zbnd;O -) mixed valence induced by vacancies or substitution on different sites gives rise to superconductivity in this phase. The new phase TlBa 2Ca 2CuO 9 which intrinsically contains a mixed valence has been observed as having a sharp transition to bulk superconductivity in the Meissner effect at a critical temperature of 120 K. This temperature is much higher than the recently observed one.

  1. A validated stability-indicating normal phase LC method for clopidogrel bisulfate and its impurities in bulk drug and pharmaceutical dosage form.

    Science.gov (United States)

    Durga Rao, Dantu; Kalyanaraman, L; Sait, Shakil S; Venkata Rao, P

    2010-05-01

    A novel stability-indicating normal phase liquid chromatographic (NP-LC) method was developed for the determination of purity of clopidogrel drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of clopidogrel along with the chiral impurities. This method can be also be used for the estimation of assay of clopidogrel in drug substance as well as in drug product. The method was developed using Chiralcel OJ-H (250mmx4.6mm, 5microm) column. n-Hexane, ethanol and diethyl amine in 95:5:0.05 (v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 240nm. Clopidogrel bisulfate was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.

  2. Size dependence of phase transition temperatures of ferromagnetic ,ferroelectric and superconductive nanocrystals

    Institute of Scientific and Technical Information of China (English)

    LANG Xing-you; JIANG Qing

    2007-01-01

    With the miniaturization of devices,size and interface effects become increasingly important for the properties and performances of nanomaterials.Here,we present a thermodynamic approach to the mechanism behind size-induced unusual behavior in the phase stabilities of ferromagnetic(FM),antiferromagnetic(AFM),ferroelectric (FE),and superconductive(SC)nanocrystals,which are different dramatically from their bulk counterparts.This method is based on the Lindemann criterion for melting,Mott's expression for the vibrational melting entropy,and the Shi model for the size-dependent melting temperature.Simple and unified functions,without any adjustable parameter,are established for the size and interface dependences of thermal and phase stabilities of FM,AFM,FE and SC nanocrystals.According to these analytic functions,as the size of nanocrystals is reduced,the thermal and phasestabilities may strengthen or weaken,depending on the confluence of the.surface/volume ratio of nanocrystals and the FM(AFM,FE or SC)/substrate interface situations.The validity of this model is confirmed by a large number of experimental results.This theory will be significant for the choice of materials and the design of devices for practicalapplication.

  3. Phase Diagram and Electronic Properties of High-Tc Superconducting Oxides

    Science.gov (United States)

    Pavuna, Davor

    We firstly briefly summarize some of the most relevant recent results and open questions across rather complex electronic phase diagram of cuprates. We continue with a discussion of results on thin superconducting oxide films grown by laser ablation. Systematic studies show that BSCCO-phases and LSCO-214 exhibit conductor-like Fermi edge, whereas materials containing "chains" (like YBCO-123) are prone to very rapid surface degradation, most likely related to critical oxygen loss at the outermost layers. Recently, direct ARPES dispersion measurements on in-situ grown, strained 10UC thin LSCO-214 films (Tc = 44 K) have shown the band crossing of Fermi level well before the Brillouin zone boundary. This is in contrast to the flat band observed in unstrained single crystals — and to the band flattening predicted by band calculations for in-plane compressive strain. In spite of density of states reduction near the Fermi level, the critical temperature increases in strained films with respect to unstrained crystals; this poses further challenge to HTSC theory.

  4. NIR photoluminescence of bismuth-doped CsCdBr{sub 3} – The first ternary bromide phase with a univalent bismuth impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Alexey N., E-mail: alexey.romanov@list.ru [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Veber, Alexander A. [Universität Erlangen-Nürnberg, Lehrstuhl für Glas und Keramik, Martensstraße 5, 91058 Erlangen (Germany); Vtyurina, Daria N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Kouznetsov, Mikhail S.; Zaramenskikh, Ksenia S.; Lisitsky, Igor S. [State Scientific-Research and Design Institute of Rare-Metal Industry “Giredmet” JSC, 5-1 B.Tolmachevsky Lane, 119017 Moscow (Russian Federation); Fattakhova, Zukhra T.; Haula, Elena V. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Loiko, Pavel A.; Yumashev, Konstantin V. [Center for Optical Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Avenue, 220013 Minsk (Belarus); Korchak, Vladimir N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation)

    2015-11-15

    Single crystals of ternary bromide phase CsCdBr{sub 3} doped with univalent bismuth cations are prepared for the first time by the Bridgman method. Bi{sup +} impurity center emits a broadband long-lived near-infrared photoluminescence with a maximum at ~1053 nm. The characteristics of this photoluminescence and its relations with the energy spectrum of Bi{sup +} impurity center are discussed. A comparison of Bi{sup +} photoluminescence in CsCdBr{sub 3} and ternary chlorides (studied previously) is performed. - Highlights: • Single crystals of Bi{sup +}-doped ternary bromide CsCdBr{sub 3} were prepared. • Broadband NIR photoluminescence was observed from Bi{sup +}-doped CsCdBr{sub 3}. • Single optical center is responsible for NIR emission in Bi{sup +}-doped CsCdBr{sub 3}.

  5. Impurity effect on Kramer-Pesch core shrinkage in s-wave vortex and chiral p-wave vortex

    Science.gov (United States)

    Hayashi, Nobuhiko; Kato, Yusuke; Sigrist, Manfred

    2005-04-01

    The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investigated in the Born limit by means of a quasiclassical approach. It is shown that in the chiral p-wave phase the Kramer-Pesch effect displays a certain robustness against impurities owing to a specific quantum effect, while the s-wave phase reacts more sensitively to impurity scattering. This suggests chiral p-wave superconductors as promising candidates for the experimental observation of the Kramer-Pesch effect.

  6. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.

    Science.gov (United States)

    He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2013-07-01

    The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

  7. Exploring the Fragile Antiferromagnetic Superconducting Phase in CeCoIn5

    DEFF Research Database (Denmark)

    Blackburn, E.; Das, P.; Eskildsen, M.R.

    2010-01-01

    CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis...

  8. Enhancement of phase separation and superconductivity in Mn-doped K0.8Fe2-yMnySe2 crystals.

    Science.gov (United States)

    Li, M T; Chen, L; Li, Z W; Ryu, G H; Lin, C T; Zhang, J C

    2013-08-21

    Single crystals of K0.8Fe2-yMnySe2 with slight Mn doping have been grown by a self-flux method. X-ray diffraction measurements show enhanced phase separation with increasing Mn doping in the compounds. The superconducting transition temperature increases to Tc,onset ∼ 46.1 K for the sample with y ∼ 0.03, as observed by electrical transport measurements. Our results demonstrate that the doping of Mn does not suppress the superconductivity, and on the contrary increases the superconducting shield fraction and transition temperature, an effect which may originate from the Mn dopant's high preference to fill into iron vacancies in the Mn-doped samples. It suggests that the Mn dopant can induce a local lattice strain or distortion that profitably modifies the microstructure of the superconducting/metallic phase, leading to superconductivity of the compound.

  9. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle.

  10. Gain-assisted superluminal microwave pulse propagation via four-wave mixing in superconducting phase quantum circuits

    CERN Document Server

    Sabegh, Z Amini; Maleki, M A; Mahmoudi, M

    2015-01-01

    We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.

  11. Structure and composition of the superconducting phase in alkali iron selenide KyFe1.6+xSe2

    Science.gov (United States)

    Carr, Scott V.; Louca, Despina; Siewenie, Joan; Huang, Q.; Wang, Aifeng; Chen, Xianhui; Dai, Pengcheng

    2014-04-01

    We use neutron diffraction to study the temperature evolution of the average structure and local lattice distortions in insulating and superconducting potassium iron selenide KyFe1.6+xSe2. In the high temperature paramagnetic state, both materials have a single phase with a crystal structure similar to that of the BaFe2As2 family of iron pnictides. While the insulating KyFe1.6+xSe2 forms a √5 ×√5 iron vacancy ordered block antiferromagnetic (AF) structure at low temperature, the superconducting compounds spontaneously phase separate into an insulating part with √5 ×√5 iron vacancy order and a superconducting phase with chemical composition of KzFe2Se2 and BaFe2As2 structure. Therefore, superconductivity in alkaline iron selenides arises from alkali deficient KzFe2Se2 in the matrix of the insulating block AF phase.

  12. Theoretical predictions of novel superconducting phases of BaGe3 stable at atmospheric and high pressures.

    Science.gov (United States)

    Zurek, Eva; Yao, Yansun

    2015-03-16

    A series of new superconducting binary silicides and germanides have recently been synthesized under high-pressure high-temperature conditions. A representative member of this group, BaGe3, was theoretically investigated using evolutionary structure searches coupled with structural analogies in the pressure range from 1 atm to 250 GPa, where three new phases were discovered. At 1 atm, in addition to the synthesized P63/mmc phase, we predicted two new phases, I4/mmm and Amm2, to be dynamically stable. The Amm2 structure comprises Ge clusters and triangular prisms intercalated with Ba and Ge atoms, a unique structural motif unknown to this group. The I4/mmm structure has been previously synthesized in binary silicides and is calculated to be thermodynamically stable in BaGe3 between 15.6 and 35.4 GPa. Above 35.4 GPa, two new phases of P6̅m2 and R3̅m symmetry become the global minima and remain so up to the highest pressure considered. These two phases have very similar enthalpies, and both feature layers of double Kagome nets of Ge intercalated with Ba-Ge layers. The predicted phases are suggested to be metallic with itinerant electrons and to be potentially superconducting from the considerable electron-phonon coupling strength. Density functional perturbation calculations combined with the Allen-Dynes-modified McMillan formula were used to estimate the superconducting critical temperatures (Tc) for these new phases, which, with slight pressure variations, are comparable to the experimental Tc measured for the P63/mmc phase.

  13. A Single Gradient Stability-Indicating Reversed-Phase LC Method for the Estimation of Impurities in Omeprazole and Domperidone Capsules.

    Science.gov (United States)

    Seshadri, Raja Kumar; Raghavaraju, Thummala Veera; Chakravarthy, Ivon Elisha

    2013-01-01

    A gradient reversed-phase liquid chromatographic (RP-LC) method was developed for the quantitative estimation of impurities in the pharmaceutical dosage form of Omeprazole and Domperidone capsules. The developed method is a stability-indicating test method for the estimation of impurities generated during the formulation and storage of Omeprazole and Domperidone capsules. The chromatographic separation was achieved on a column packed with octadecyl silane, having a column length of 250 mm and diameter of 4.6 mm with a particle size of 5 μm, and by following a gradient program using a combination of a monobasic potassium phosphate buffer (0.05M) and acetonitrile. Since the spectral properties were similar, both compounds' individual impurities were estimated at 285 nm. Forced degradation studies were performed on Omeprazole pellets (enteric coated) and Domperidone pellets (SR coated) encapsulated in size '1' hard gelatin capsules. Omeprazole and Domperidone were degraded using acid hydrolysis (0.1 N hydrochloric acid), base (0.1 N sodium hydroxide), oxidation (50% hydrogen peroxide), heat (105 °C), and UV light (254 nm). The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.

  14. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  15. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)

    1992-09-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  16. Impact of pseudogap on photoinduced superconducting phase transition in underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Y., E-mail: toda@eng.hokudai.ac.jp [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Mertelj, T.; Kusar, P. [Complex Matter Department, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia); Kurosawa, T.; Oda, M.; Ido, M. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Mihailovic, D. [Complex Matter Department, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia)

    2013-10-15

    Highlights: • QP dynamics of UD-Bi2212 in the photoinduced phase transition was investigated by pump-probe spectroscopy. • The pump fluence dependence of the QP dynamics shows a delay of the SC recovery. • The observed delay time is comparable to a recovery time of PG, suggesting a role of PG responsible for the SC formation. -- Abstract: We report nonequilibrium quasiparticle (QP) dynamics in underdoped Bi2212 crystals using ultrafast optical spectroscopy, which allows to analyze the dynamics associated with the superconducting (SC) and psuedogap (PG) QPs independently. In the saturation condition of the SC component, where the SC condensate is fully destroyed within the photoexcited volume, we found a delay of the SC state recovery associated with a transient normal state. The delay increases linearly with increasing the pump fluence. The QP dynamics also shows a contribution of the PG component, whose magnitude at the start of the SC state recovery was almost constant at various pump fluences, suggesting a critical level of PG order before the SC condensate can recover.

  17. Development of an ion-pair reversed-phase HPLC method with indirect UV detection for determination of phosphates and phosphites as impurities in sodium risedronate.

    Science.gov (United States)

    Breuzovska, Katerina; Dimitrovska, Aneta; Kitanovski, Zoran; Petrusevska, Jelena; Ribarska, Jasmina Tonic; Jolevska, Suzana Trajkovic

    2010-01-01

    A method based on RP-HPLC with indirect UV detection was developed for the determination of phosphates and phosphites as impurities in sodium risedronate. RP separation of the phosphates and phosphites was achieved by adding tetrabutylammonium hydroxide as an ion-pairing agent in the mobile phase. Potassium hydrogen phthalate was added to the mobile phase as an ionic chromophore in order to obtain high background absorption of the mobile phase. Separation was performed on a C18 column using a mixture of pH 8.2 buffer (containing 0.5 mM tetrabutylammonium hydroxide and 1 mM phthalate) and acetonitrile (95 + 5, v/v) as the mobile phase, with indirect UV detection at 248 nm. The validation of the method included determination of specificity/selectivity, linearity, LOD, LOQ, accuracy, precision, and robustness. The LOD was 0.86 microg/mL for phosphates and 0.76 microg/mL for phosphites. The LOQ was 2.60 microg/mL for phosphates and 2.29 microg/mL for phosphites. The developed method is suitable for quantitative determination of phosphates and phosphites as impurities in QC of sodium risedronate.

  18. Topological Quantum Phase Transition and Superconductivity Induced by Pressure in the Bismuth Tellurohalide BiTeI.

    Science.gov (United States)

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G; Kumar, Nitesh; Sankar, Raman; Schnelle, Walter; Shekhar, Chandra; Chou, Fang-Cheng; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2017-03-06

    A pressure-induced topological quantum phase transition has been theoretically predicted for the semiconductor bismuth tellurohalide BiTeI with giant Rashba spin splitting. In this work, evolution of the electrical transport properties in BiTeI and BiTeBr is investigated under high pressure. The pressure-dependent resistivity in a wide temperature range passes through a minimum at around 3 GPa, indicating the predicted topological quantum phase transition in BiTeI. Superconductivity is observed in both BiTeI and BiTeBr, while resistivity at higher temperatures still exhibits semiconducting behavior. Theoretical calculations suggest that superconductivity may develop from the multivalley semiconductor phase. The superconducting transition temperature, Tc , increases with applied pressure and reaches a maximum value of 5.2 K at 23.5 GPa for BiTeI (4.8 K at 31.7 GPa for BiTeBr), followed by a slow decrease. The results demonstrate that BiTeX (X = I, Br) compounds with nontrivial topology of electronic states display new ground states upon compression.

  19. Behavior of impurities in TRIAM-IM

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki; Nakamura, Kazuo; Kawasaki, Shoji; Jotaki, Eriko; Makino, Kenichi; Ito, Sanae; Ito, Satoshi [Kyushu Univ., Fukuoka (Japan)

    1994-09-01

    This research is the spectroscopic research on the behavior of impurities in the superconducting strong magnetic field tokamak, TRIAM-1M. In the experiment at the TRIAM-1M, the steady operation of the tokamak by the current drive using 8.2 GHz low hybrid waves has been aimed at toward the practical use of nuclear fusion reactors. In this research, the design and manufacture of the spectroscope system for diagnosing the behavior of impurities and the evaluation of the amount of impurities and effective charge number were carried out. The main impurities were metallic impurities of molybdenum, iron and chrome, and light element impurity of oxygen. The spatial distribution measurement was performed by using a multi-channel vacuum ultraviolet spectroscope system for the spectrum line intensity, and the change with time lapse of the radial distribution of impurity amount was derived. As the results, the amounts of iron and chrome which are the impurities of stainless steel system rapidly increased at plasma center in the latter half of discharge. The increase of the molybdenum amount which is the limiter material was small as compared with iron and chrome, and the amount of oxygen impurity hardly changed throughout discharge. The change with time lapse of the effective charge number in radial distribution was from 4 to 6 during discharge. (K.I.).

  20. Development and validation of a stability-indicating reverse phase ultra performance liquid chromatographic method for the estimation of nebivolol impurities in active pharmaceutical ingredients and pharmaceutical formulation.

    Science.gov (United States)

    Thummala, Veera Raghava Raju; Lanka, Mohana Krishna

    2015-10-01

    A sensitive, stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed for the quantitative estimation of nebivolol impurities in active pharmaceutical ingredient (API) and pharmaceutical formulation. Efficient chromatographic separation was achieved on an Acquity BEH C18 column (100 mm x 2.1 mm, 1.7 μm) with mobile phase of a gradient mixture. The flow rate of the mobile phase was 0.18 mL/min with column temperature of 30 degrees C and detection wavelength of 281 nm. The relative response factor values of (R*)-2-( benzylamino)-1-((S*)-6-fluorochroman-2-yl) ethanol ((R x S*) NBV-), (R)-1-((R)-6-fluorochroman-2-yl)-2-((S)-2-((S)-6-fluoro-chroman-2-yl)-2-hydroxyethyl-amino) ethanol ((RRSS) NBV-3), 1-(chroman-2-yl)-2-(2-(6-fluorochroman-2-yl)-2-hydroxyethyl amino) ethanol (monodesfluoro impurity), (S)-1-((R)-6-fluorochroman-2-yl)-2-((R)-2 (S*)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino) ethanol hydrochloride ((RSRS) NBV-3) and (R*)-1-((S*)-6-fluorochroman-2-yl)-2-((S*)-2-((S*)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino) ethanol ((R* S* S* S*) NBV-2) were 0.65, 0.91, 0.68, 0.92 and 0.91 respectively. Nebivolol formulation sample was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal, humidity and photolytic degradation. Nebivolol was found to degrade significantly under peroxide stress condition. The degradation products were well resolved from nebivolol and its impurities. The peak purity test results confirmed that the nebivolol peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to International Conference on Hormonization (ICH) guidelines with respect to specificity, linearity, limits of detection and quantification, accuracy, precision and robustness.

  1. Observation of Momentum-Confined In-Gap Impurity State in Ba_{0.6}K_{0.4}Fe_{2}As_{2}: Evidence for Antiphase s_{±} Pairing

    Directory of Open Access Journals (Sweden)

    P. Zhang

    2014-07-01

    Full Text Available We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba_{0.6}K_{0.4}Fe_{2}As_{2} and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave-vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak scattering between bands with opposite sign of the superconducting-gap phase. This weak scattering, likely due to off-plane nonmagnetic (Ba, K disorder, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting-gap phase changes sign within holelike (and electronlike bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.

  2. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  3. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus.

    Science.gov (United States)

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2016-02-24

    We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.

  4. Oxygen isotope effect on the superconductivity and stripe phase in La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$

    OpenAIRE

    Wang, G. Y.; Zhang, J D; Yang, R. L.; Chen, X. H.

    2007-01-01

    The oxygen isotope effect on the superconductivity, stripe phase and structure transition is systematically investigated in La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ with static stripe phase. Substitution of $^{16}$O by $^{18}$O leads to a decrease in superconducting transition temperature T$_C$, while enhances the temperature of the structural transition from low-temperature-orthorhombic (LTO) phase to low-temperature-tetragonal (LTT) phase. Compared to the Nd free sample, a larger isotope effec...

  5. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. (Instytut Fizyki, Polska Akademia Nauk, Al. Lotnikow 32/46, PL-02668 Warszawa (Poland))

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  6. Superconducting phase formation in random neck syntheses: a study of the Y-Ba-Cu-O system by magneto-optics and magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J B; Landau, I L; Hulliger, J [Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012-Berne (Switzerland); Albrecht, J [Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2009-04-15

    Magneto-optical imaging and magnetization measurements were applied to investigate the local formation of a superconducting phase effected by a random neck synthesis in the Y-Ba-Cu-O system. Polished pellets of strongly inhomogeneous ceramic samples show clearly the appearance of superconducting material in the intergrain zones of binary primary particles reacted under different conditions. Susceptibility measurements allowed evaluation of the superconducting critical temperature, which turned out to be close to that of optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-x}.

  7. A novel monoclinic phase of impurity-doped CaGa2S4 as a phosphor with high emission intensity

    Directory of Open Access Journals (Sweden)

    Akihiro Suzuki

    2012-06-01

    Full Text Available In the solid-state synthesis of impurity-doped CaGa2S4, calcium tetrathiodigallate(III, a novel phosphor material (denominated as the X-phase, with monoclinic symmetry in the space group P21/a, has been discovered. Its emission intensity is higher than that of the known orthorhombic polymorph of CaGa2S4 crystallizing in the space group Fddd. The asymmetric unit of the monoclinic phase consists of two Ca, four Ga and eight S sites. Each of the Ca and Ga atoms is surrounded by seven and four sulfide ions, respectively, thereby sharing each of the sulfur sites with the nearest neighbours. In contrast, the corresponding sites in the orthorhombic phase are surrounded by eight and four S atoms, respectively. The photoluminescence peaks from Mn2+ and Ce3+ in the doped X-phase, both of which are supposed to replace Ca2+ ions, have been observed to shift towards the high energy side in comparison with those in the orthorhombic phase. This suggests that the crystal field around the Mn2+ and Ce3+ ions in the X-phase is weaker than that in the orthorhombic phase.

  8. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  9. Collapsed tetragonal phase and superconductivity of BaFe[subscript 2]As[subscript 2] under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter; Stemshorn, Andrew; Tsoi, Georgiy; Vohra, Yogesh K.; Sefat, Athena S.; Sales, Brian C.; Hope, Kevin M.; Weir, Samuel T. (UAB); (ORNL); (LLNL); (Montevallo)

    2010-11-12

    High pressure x-ray diffraction and electrical resistance measurements have been carried out on BaFe{sub 2}As{sub 2} to a pressure of 35 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 17 GPa under nonhydrostatic conditions as compared to 22 GPa under hydrostatic conditions. The superconducting transition temperature increases rapidly with pressure up to 34 K at 1 GPa and decreases gradually with a further increase in pressure. Our results suggest that T{sub C} falls below 10 K in the pressure range of 16-30 GPa, where CT phase is expected to be stable under high-pressure and low-temperature conditions.

  10. Superconductivity and phase diagram of (Li0.8Fe0.2)OHFeSe1 -xSx

    Science.gov (United States)

    Lu, X. F.; Wang, N. Z.; Luo, X. G.; Zhang, G. H.; Gong, X. L.; Huang, F. Q.; Chen, X. H.

    2014-12-01

    A series of (Li0.8Fe0.2)OHFeSe1 -xSx (0 ≤x ≤1 ) samples were successfully synthesized via hydrothermal reaction method and the phase diagram is established. Magnetic susceptibility suggests that an antiferromagnetism arising from (Li0.8Fe0.2)OH layers coexists with superconductivity, and the antiferromagnetic transition temperature nearly remains constant for various S doping levels. In addition, the lattice parameters of the both a and c axes decrease and the superconducting transition temperature Tc is gradually suppressed with the substitution of S for Se, and eventually superconductivity vanishes at x =0.90 . The decrease of Tc could be attributed to the effect of chemical pressure induced by the smaller ionic size of S relative to that of Se, being consistent with the effect of hydrostatic pressure on (Li0.8Fe0.2)OHFeSe . But the detailed investigation on the relationships between Tc and the crystallographic facts suggests a very different dependence of Tc on anion height from the Fe2 layer or C h -Fe 2 -C h angle from those in FeAs-based superconductors.

  11. Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Effect of impurities and processing on silicon solar cells. Phase II. Summary and eleventh quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

    1978-07-01

    The effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells were investigated. A variety of aspects including thermal treatments, crystal growth rate, base doping concentration (low resistivity), base doping type (n vs. p), grain boundary structure, and carbon/oxygen-metal interactions (float zone vs Czochralski growth) were studied. The effects of various metallic impurities were studied, introduced singly or in combination into Czochralski, float zone and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The totality of the solar cell data (comprising over 4000 cells) indicate that impurity-induced performance loss is primarily due to reduction in base diffusion length. Based on this assumption an analytical model has been developed which predicts cell performance as a function of metal impurity content. The model has now been verified for p-base material by correlating the projected and measured performance of solar cells made on 19 ingots bearing multiple impurities.

  12. STRUCTURE AND SUPERCONDUCTIVITY OF Mg(B1-xCx)2 COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    ZHANG SHAO-YING; CHENG ZHAO-HUA; SHEN BAO-GEN; RONG CHUAN-BING; ZHAO TONG-YUN; ZHANG JIAN

    2001-01-01

    In this paper, we report on the structural properties and superconductivity of Mg(B1-xCx)2 compounds. Powder X-ray diffraction results indicate that the samples crystallize in a hexagonal AlB2-type structure. Due to the chemical activity of Mg powders, a small amount of MgO impurity phase is detected by X-ray diffraction. The lattice parameters decrease slightly with the increasing carbon content. Magnetization measurements indicate that the non-stoichiometry of MgB2 has no influence on the superconducting transition temperature and the transition temperature width. The addition of carbon results in a decrease of Tc and an increase of the superconducting transition width, implying the loss of superconductivity.

  13. Topological quantum phase transition and superconductivity induced by pressure in the bismuth tellurohalide BiTeI

    OpenAIRE

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G.; Kumar, Nitesh; Sankar, Raman; Schnelle, Walter; Shekhar, Chandra; Chou, F. C.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    A pressure-induced topological quantum phase transition has been theoretically predicted for the semiconductor BiTeI with giant Rashba spin splitting. In this work, the evolution of the electrical transport properties in BiTeI and BiTeBr is investigated under high pressure. The pressure-dependent resistivity in a wide temperature range passes through a minimum at around 3 GPa, indicating the predicted transition in BiTeI. Superconductivity is observed in both BiTeI and BiTeBr while the resist...

  14. Magnetic field induced phase branches of the superconducting transition in two-dimensional square Π-loop arrays

    Institute of Scientific and Technical Information of China (English)

    Liu Dang-Ting; Tian Ye; Chen Geng-Hua; Yang Qian-Sheng

    2008-01-01

    Based on the results of explicit forms of free energy density for each possible arrangement of magnetization fluxes in large-scale two-dimensional (2D) square Π-loop arrays given by Li et al [2007 Chin.Phys.16 1450],the field-cooled superconducting phase transition is further investigated by analysing the free energy of the arrays with a simplified symmetrical model.Our analytical result is exactly the same as that obtained in Li's paper by means of numerical calculations.It is shown that the phase transition splits into two branches with either ferromagnetic or anti-ferromagnetic flux ordering,which depends periodically on the strength of external magnetic flux φe through each loop and monotonically on the screen parameter β of the loops in the arrays.In principle,the diagram of the phase branches is similar to that of its one-dimensional counterpart.The influence of thermal fluctuation on the flux ordering during the transition from normal to superconducting states of the Π-loop arrays is also discussed.

  15. Comparative studies between the influence of single- and multi-walled carbon nanotubes addition on Gd-123 superconducting phase

    Science.gov (United States)

    Abou-Aly, A. I.; Anas, M.; Ebrahim, Shaker; Awad, R.; Eldeen, I. G.

    2016-12-01

    The effect of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) addition on the phase formation and the superconducting properties of GdBa2Cu3O7-δ phase has been studied. Therefore, composite superconductor samples of type (CNTs)x GdBa2Cu3O7-δ, 0.0 ≤ x ≤ 0.1 wt.% have been synthesized by a standard solid-state reaction technique. The samples have been characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of XRD show an enhancement in the phase formation up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively. SEM and TEM reveal that CNTs form an electrical network resulting in well-connected superconducting grains. The electrical properties of the prepared samples have been examined by electric resistivity and I-V measurements, and their results reinforce the XRD, SEM and TEM. Consequently, both Tc and Jc improve as the addition percentage increases up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively.

  16. Homogeneous superconducting phase in TiN film: A complex impedance study

    NARCIS (Netherlands)

    Diener, P.; Schellevis, H.; Baselmans, J.J.A.

    2012-01-01

    The low frequency complex impedance of a high resistivity 92 μ Ω cm and 100 nm thick TiN superconducting film has been measured via the transmission of several high sensitivity GHz microresonators, down to TC/50. The temperature dependence of the kinetic inductance follows closely BCS local electrod

  17. Antiferromagnetism and its relation to the superconducting phases of UPt3

    DEFF Research Database (Denmark)

    Isaacs, E.D.; Zschack, P.; Broholm, C.L.

    1995-01-01

    as the magnetic correlation lengths are not affected by the presence or absence of a visible splitting in the superconducting transition. The simplest models wherein antiferromagnetic order provides the symmetry-breaking field for the splitting do not provide a compete explanation of our results....

  18. The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Ellingsen, Kjerstin; Lindholm, Dag; M`Hamdi, Mohammed

    2016-06-01

    Oxygen and carbon are the most common impurities in multi-crystalline silicon. The general mechanism for formation and transport of O and C in the solidification furnace is as follows: oxygen from the silica crucible comes into the melt and combines with a silicon atom and evaporates at the gas/melt interface in the form of silicon oxide (SiO). Argon inert gas, injected into the furnace chamber, carries the SiO to the hot graphite fixtures, where it reacts with carbon to form carbon monoxide (CO) and silicon carbide (SiC). CO is carried by the gas to the melt free surface, where it dissociates into carbon and oxygen. Finally, during solidification oxygen and carbon are incorporated into the crystal. A global furnace model accounting for heat transfer, melt flow, gas flow and impurity transport has been applied to investigate the oxygen and carbon formation and transport in a vertical Bridgman furnace during the holding phase when the furnace is at its hottest. A case study is performed to investigate the effect of the applied heating power on the carbon and oxygen concentrations in the melt prior to solidification.

  19. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    . The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  20. Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La2-xSrxCuO4+y

    DEFF Research Database (Denmark)

    Udby, Linda; Larsen, Jacob; Christensen, Niels Bech

    2013-01-01

    We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La2-xSrxCuO4+y, x=0.04, 0.065, 0.09. For all samples, we find long-range modulated magnetic order below TN≃Tc=39 K. In sharp co...

  1. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  2. Evolution of High-Temperature Superconductivity from a Low-T_{c} Phase Tuned by Carrier Concentration in FeSe Thin Flakes.

    Science.gov (United States)

    Lei, B; Cui, J H; Xiang, Z J; Shang, C; Wang, N Z; Ye, G J; Luo, X G; Wu, T; Sun, Z; Chen, X H

    2016-02-19

    We report the evolution of superconductivity in an FeSe thin flake with systematically regulated carrier concentrations by the liquid-gating technique. With electron doping tuned by the gate voltage, high-temperature superconductivity with an onset at 48 K can be achieved in an FeSe thin flake with T_{c} less than 10 K. This is the first time such high temperature superconductivity in FeSe is achieved without either an epitaxial interface or external pressure, and it definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with T_{c}^{onset} as high as 48 K in bulk FeSe. Intriguingly, our data also indicate that the superconductivity is suddenly changed from a low-T_{c} phase to a high-T_{c} phase with a Lifshitz transition at a certain carrier concentration. These results help to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on the further pursuit of a higher T_{c} in these materials.

  3. Vertical temperature boundary of the pseudogap under the superconducting dome in the phase diagram of Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Loret, B.; Sakai, S.; Benhabib, S.; Gallais, Y.; Cazayous, M.; Méasson, M. A.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Forget, A.; Colson, D.; Paul, I.; Civelli, M.; Sacuto, A.

    2017-09-01

    Combining electronic Raman scattering experiments with cellular dynamical mean field theory, we present evidence of the pseudogap in the superconducting state of various hole-doped cuprates. In Bi2Sr2CaCu2O8 +δ we track the superconducting pseudogap hallmark, a peak-dip feature, as a function of temperature T and doping p , well beyond the optimal one. We show that, at all temperatures under the superconducting dome, the pseudogap disappears at the doping pc, between 0.222 and 0.226, where also the normal-state pseudogap collapses at a Lifshitz transition. This demonstrates that the superconducting pseudogap boundary forms a vertical line in the T -p phase diagram.

  4. Highly responsive ground state of PbTaSe2: Structural phase transition and evolution of superconductivity under pressure

    Science.gov (United States)

    Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; Sun, Kewei; Zhou, Lin; Nguyen, Manh Cuong; Yuan, Zhujun; Zhang, Chenglong; Schilling, James S.; Kramer, Matthew J.; Jia, Shuang; Wang, Cai-Zhuang; Ho, Kai-Ming; Canfield, Paul C.; Bud'ko, Sergey L.

    2017-06-01

    Transport and magnetic studies of PbTaSe2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ˜0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ˜425 K. The new, high temperature/high pressure phase has a similar crystal structure and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe2 has an exceptionally pressure sensitive, structural phase transition with Δ Ts/Δ P ≈-1400 K/GPa near room temperature, and ≈-1700 K/GPa near 4 K. This first order transition causes a ˜1 K (˜25 % ) steplike decrease in Tc as pressure is increased through 0.25 GPa.

  5. Evaluation of Pharmaceutical Quality of Mesalamine Delayed Release Tablets Using a New High Sensitivity Reversed-Phase UPLC Method for its Genotoxic/Aniline Impurity

    Directory of Open Access Journals (Sweden)

    Rakshit Kanubhai Trivedi

    2011-01-01

    Full Text Available A reversed phase ultra performance liquid chromatography (UPLC method was developed and validated for the quantification of aniline in mesalamine delayed-release tablets. The optimization of the experimental condition was carried out considering some important requirements like, detection limit, short run time and reproducibility. In the present study, isocratic reversed-phase UPLC method was developed for determination and separation of aniline from the drug product. The drug and impurity are well separated by using a reversed phase (Reprosil Gold C18-XBD column and mobile phase comprising of buffer pH 6.0 and acetonitrile in the ratio of 90:10 v/v. Other UPLC parameters which were optimised are flow rate, 0.5 mL/min; detection wavelength, 200 nm; column oven temperature, 50 °C and injection volume 7 µL. Stability indicating capability was also established by forced degradation experiments. The method was validated as per ICH guideline. LOQ (limit of quantification concentration (18 ng/mL was found precise with RSD of less than 2%. In essence, the present study provides an improved low detection limit and lower run time for evaluation of pharmaceutical quality of mesalamine delayed-release formulation. Moreover, the developed method was also successfully applied for quantification of aniline in mesalamine delayed-release formulation. The same method can also be used for determination of aniline from drug substances.

  6. Assessing the kinetics of high temperature oxidation of Inconel 617 in a dedicated HTR impure helium facility coupling thermogravimetry and gas phase chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Chapovaloff, J., E-mail: chpvlff@aol.com [AREVA NP, Centre Technique, Département Corrosion-Chimie, 30 Bd de l’industrie, 71200 Le Creusot (France); Ecole Nationale Supérieure des Mines, SMS-EMSE, CNRS: UMR5146, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, 91191 Gif sur Yvette (France); Combrade, P., E-mail: pierre.combrade@orange.fr [AREVA NP, Centre Technique, Département Corrosion-Chimie, 30 Bd de l’industrie, 71200 Le Creusot (France); ACXCOR, 63, chemin de l’Arnica, 42660 Le Bessat (France); Pijolat, M., E-mail: mpijolat@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR5148, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France); Wolski, K., E-mail: wolski@emse.fr [Ecole Nationale Supérieure des Mines, SMS-EMSE, CNRS: UMR5146, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •New facility coupling thermogravimetry (TGA) with gas phase chromatography (GPC). •Dedicated for HT oxidation study in VHTR impure helium containing CO, H{sub 2}O and H{sub 2}. •The oxidation kinetics obeys a complete parabolic law due to a mixed kinetic regime. •CO contributes during initial stage of oxidation only for very low H{sub 2}O partial pressure. •Long-term oxidation of Inconel 617 by H{sub 2}O is diffusion controlled with constant kp. -- Abstract: A new facility coupling thermogravimetric analysis (TGA) with gas phase chromatography (GPC) has been developed. This facility is dedicated for studying high temperature oxidation of Inconel 617 in impure helium environment containing H{sub 2}O, H{sub 2} and CO at very low partial pressures (in the Pa range), which is representative of the high temperature reactor (HTR) concept developed within the Generation IV Forum. Simultaneous acquisition of mass gain and gas composition has allowed the influence of carbon monoxide and water vapour on the kinetics of oxidation to be studied. GPC measurements of gas consumption have allowed the plotting of individual mass gain curves for oxidation by H{sub 2}O and CO. During isothermal exposure at 1123 K for 20 h, the oxidation was mainly due to water vapour with a minor contribution of carbon monoxide during the first hours. The contribution of water vapour to the oxidation kinetics was extracted. It was shown to obey a complete parabolic law and to be limited by an interfacial reaction during the first few hours of oxidation and to be controlled by a mixed interfacial and diffusion process, diffusion becoming the rate-determining step for long term oxidation. There was very good agreement between GPC measurements and the experimental TGA results.

  7. Quasiparticle entropy in the high-field superconducting phase of CeCoIn(5).

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2012-09-14

    The heavy-fermion superconductor CeCoIn(5) displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures T≥100  mK and fields H≤12  T aligned along different directions. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for H∥[100] a reduction of entropy was found that quantitatively agrees with the expectation for spin-density-wave order without FFLO superconductivity. Our data exclude the formation of a FFLO state in CeCoIn(5) for out-of-plane field directions, where no spin-density-wave order exists.

  8. Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu; Jena, Puru, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Zhang, Shunhong [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Qian [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2016-06-20

    Motivated by the growth of superconducting atomic hexagonal Ga layers on GaN surface we have calculated the electronic properties of Hf intercalated honeycomb Ga layers using first-principles theory. In contrast to the hexagonal Ga layers where substrate is necessary for their stability, we find the above structure to be dynamically stable in its freestanding form with small formation energy. In particular, six Dirac cones composed of Hf-d{sub xy}/d{sub x2-y2} orbitals are observed in the first Brillouin zone, slightly below the Fermi energy. Spin-orbit coupling opens a large band gap of 177 meV on these Dirac cones. By calculating its mirror Chern number, we demonstrate that this band gap is topologically nontrivial and protected by mirror symmetry. Such mirror symmetry protected band gaps are rare in hexagonal lattice. A large topological crystalline quantum spin Hall conductance σ{sub SH} ∼ −4 e{sup 2}/h is also revealed. Moreover, electron-phonon coupling calculations reveal that this material is superconducting with a transition temperature T{sub c} = 2.4 K, mainly contributed by Ga out-of-plane vibrations. Our results provide a route toward manipulating quantum spin Hall and superconducting behaviors in a single material which helps to realize Majorana fermions and topological superconductors.

  9. Determination of the fraction of amorphous phases in superconducting samples; Determinacao da fracao de fases amorfas em amostras supercondutoras

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junior, G.G.; Ogasawara, T., E-mail: georgeg@metalmat.ufjr.b [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Dept. de Eng. Metalurgica e Materiais; Bispo, E.R.; Polasek, A. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Amorim, H.S. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2010-07-01

    The study phase formation of high critical temperature superconducting (Bi, Pb) - 2223 by partial melting and recrystallization aims to improve the microstructure of the material. Was used for X-ray diffraction characterization of the phases present. The DDM method (Derivative Difference Minimization) was used for the refinement of structures, quantification of the phases and determination the fraction of this amorphous. The advantage this method is not necessary to introduce an internal standard to determine the amorphous fraction. Were observed in the powder precursor phases (Bi, Pb) {sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi, Pb) -2223, 93% of the sample, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) and Bi{sub 2}Sr{sub 2}CuO{sub z} (Bi-2201). The powder precursor was heat treated at 820-870 deg C. To minimize volatilization of lead, the material was placed in silver crucibles closed. To get a high recovery of (Bi, Pb) - 2223, the material was cooled slowly, due to slow kinetic of formation of this phase. We observed a partial recovery phase (Bi, Pb) -2223. (author)

  10. Effect of Hafnium Impurities on the Magnetoresistance of {YBa}2{Cu}3{O}_{7-δ }

    Science.gov (United States)

    Savich, S. V.; Samoylov, A. V.; Kamchatnaya, S. N.; Goulatis, I. L.; Vovk, R. V.; Chroneos, A.; Solovjov, A. L.; Omelchenko, L. V.

    2017-02-01

    In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of {YBa}2{Cu}3{O}_{7-δ } ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature "tails" (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature ( T > T_c), the temperature dependence of the excess paraconductivity can be described within the Aslamazov-Larkin theoretical model of the fluctuation conductivity for layered superconductors.

  11. The Potts model on a Bethe lattice with nonmagnetic impurities

    Energy Technology Data Exchange (ETDEWEB)

    Semkin, S. V., E-mail: li15@rambler.ru; Smagin, V. P. [Vladivistok State University of Economics and Service (VSUES) (Russian Federation)

    2015-10-15

    We have obtained a solution for the Potts model on a Bethe lattice with mobile nonmagnetic impurities. A method is proposed for constructing a “pseudochaotic” impurity distribution by a vanishing correlation in the arrangement of impurity atoms for the nearest sites. For a pseudochaotic impurity distribution, we obtained the phase-transition temperature, magnetization, and spontaneous magnetization jumps at the phase-transition temperature.

  12. A Comparative Thermodynamic Analysis of Impurity Incorporation in Vapor Phase Epitaxial InP and GaAs.

    Science.gov (United States)

    1983-10-31

    Crystal Growth, 8, 1971. 3. Thurmond C.D., J. Phys. Chem. Solids, 26, 1965. 4. Prausnitz J.M., Molecular Thermodynamics of Fluid-Phase Equilibrium...Methods of Reactor Analysis, Academic .. Pres’, 1964. S𔃿. Prausnitz J.M., Molecular Thermodynamics of Flui’-Phase Equilibrium, Prentice Hail, 1969. 6

  13. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  14. Electronic inhomogeneities in the superconducting phase of CaFe1.96Ni0.04As2 single crystals

    Science.gov (United States)

    Dutta, Anirban; Kumar, Neeraj; Thamizhavel, A.; Gupta, Anjan K.

    2015-02-01

    Superconductivity in CaFe2-xNixAs2 emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and the AFM phase overlaps with superconducting (SC) phase for a small range of x-values. We present scanning tunneling microscopy and spectroscopy study of an underdoped CaFe2-xNixAs2 single crystal in the vicinity of the boundary of the two phases. Both resistivity and magnetic susceptibility measurements show a superconducting TC of 15 K and from later we deduce a superconducting fraction of 1.2%. Topographic images show reasonably flat surface with signatures of atomic resolution. Spectra between 120 K and 20 K are spatially homogeneous and show signatures of spin density wave (SDW) gap. Below TC, spectra show significant spatial inhomogeneity with a depression in density of states in±5 meV energy range. Inhomogeneity reduces significantly as the temperature goes above TC and disappears completely far above TC. These observations are discussed in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the SC dome boundary on the underdoped side of the phase diagram.

  15. Properties of heavily impurity-doped PbSnTe liquid-phase epitaxial layers grown by the temperature difference method under controlled Te vapor pressure

    Science.gov (United States)

    Yasuda, Arata; Takahashi, Yatsuhiro; Suto, Ken; Nishizawa, Jun-ichi

    2017-07-01

    We propose the use of heavily impurity-doped Pb1-xSnxTe/PbTe epitaxial layers grown via the temperature difference method under controlled vapor pressure (TDM-CVP) liquid-phase epitaxy (LPE) for the preparation of IV-VI compounds for mid- to far-infrared optical device applications. A flat surface morphology and the distribution of a constant Sn concentration for 0.05 ≤ x ≤ 0.33 were observed in the epitaxial layers using electron-probe microanalysis. The segregation coefficient of Sn in Pb1-xSnxTe grown via TDM-CVP LPE (Tg = 640 °C) was xSSn?xLSn = 0.28. The appearance of the Fermi level pinning and persistent photoconductivity effects in In-doped PbSnTe were also proposed; we estimated that the activation energies of these processes were 2.8 and 39.7 meV, respectively, based on the In-doped Pb1-xSnxTe carrier profile as a function of ambient temperature. In Hall mobility measurements, Sn was assumed to be a main scattering center in the Pb1-xSnxTe epitaxial crystals. The impurity effect was also observed in Pb1-xSnxTe epitaxial growth, similar to the effects observed for Tl-doped PbTe bulk crystals. We concluded that the heavily doped Pb1-xSnxTe crystals grown via TDM-CVP LPE can be used to fabricate high-performance mid- to far-infrared optical devices.

  16. Thermodynamic signature of a magnetic-field-driven phase transition within the superconducting state of an underdoped cuprate

    Science.gov (United States)

    Kemper, J. B.; Vafek, O.; Betts, J. B.; Balakirev, F. F.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Boebinger, G. S.

    2016-01-01

    More than a quarter century after the discovery of the high-temperature superconductor (HTS) YBa2Cu3O6+δ (YBCO; ref. ), studies continue to uncover complexity in its phase diagram. In addition to HTS and the pseudogap, there is growing evidence for multiple phases with boundaries which are functions of temperature (T), doping (p) and magnetic field. Here we report the low-temperature electronic specific heat (Celec) of YBa2Cu3O6.43 and YBa2Cu3O6.47 (p = 0.076 and 0.084) up to a magnetic field (H) of 34.5 T, a poorly understood region of the underdoped H-T-p phase space. We observe two regimes in the low-temperature limit: below a characteristic magnetic field H' ~ 12-15 T, Celec/T obeys an expected H1/2 behaviour; however, near H' there is a sharp inflection followed by a linear-in-H behaviour. H' rests deep within the superconducting phase and, thus, the linear-in-H behaviour is observed in the zero-resistance regime. In the limit of zero temperature, Celec/T is proportional to the zero-energy electronic density of states. At one of our dopings, the inflection is sharp only at lowest temperatures, and we thus conclude that this inflection is evidence of a magnetic-field-driven quantum phase transition.

  17. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  18. Inhomogeneous superconductivity in organic conductors: the role of disorder and magnetic field.

    Science.gov (United States)

    Haddad, S; Charfi-Kaddour, S; Pouget, J-P

    2011-11-23

    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non-superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature T(c) shows a clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of T(c) with impurities. On the basis of the time dependent Ginzburg-Landau theory, we derive a model to account for this striking feature of T(c) in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated T(c) quantitatively agrees with experiments. We also focus on the effect of superconducting fluctuations on the upper critical fields H(c2) of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that H(c2) may be strongly enhanced by such fluctuations.

  19. Quantum critical points in quantum impurity systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)]. E-mail: bulla@cpfs.mpg.de

    2005-04-30

    The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.

  20. Quantum critical points in quantum impurity systems

    Science.gov (United States)

    Lee, Hyun Jung; Bulla, Ralf

    2005-04-01

    The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.

  1. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  2. On the non-superconducting state in the phase diagram of Na{sub x}CoO{sub 2}.yH{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masatoshi, E-mail: e43247a@nucc.cc.nagoya-u.ac.j [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); JST, TRIP, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Kobayashi, Yoshiaki [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); JST, TRIP, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Moyoshi, Taketo [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2010-12-15

    For the understanding of the superconducting state of Na{sub x}CoO{sub 2}.yH{sub 2}O (x {approx} 0.3), we have carried out various kinds of experimental studies. Among results of these studies, we show here data of the specific heats, frequency-dependent ac-magnetic susceptibility and {sup 59}Co-NQR and {sup 2}D NMR and argue what electronic state is realized in the nonsuperconducting phase, which appears in the T-3{nu}{sub Q} phase diagram of this system, {nu}{sub Q} being the Co-NQR quadrupole frequency. The transition observed in this phase at {approx}7 K is not due to a magnetic ordering but possibly due to a charge ordering or the CDW formation. Slightly below this transition temperature, the system exhibit glassy behavior. The results indicate that the superconducting phase cannot necessarily be considered to be located near the magnetic phase.

  3. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  5. A calculation of Eliashberg equations for superconducting phase under the ultra-high magnetic field of strong coupling cases in 2 and 3 dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H. [Dept. of Mathematics and Physical Science, Graduate School of Science and Technology, Chiba Univ. (Japan); Natsume, Y. [Chiba Univ. (Japan). Dept. of Physics

    1995-04-01

    The estimation of Tc for the superconducting phase under the ultra-high magnetic feild is discussed on the basis of numerical calculation by the use of the expression of Eliashberg equations for strong coupling theory. The essenthial effect of the retardation of the interaction by phonons on making the gap is pointed out in comparison between 2 and 3 dimensinal systems. (orig.)

  6. Development and validation of reversed phase high performance liquid chromatographic method for determination of moxonidine in the presence of its impurities.

    Science.gov (United States)

    Milovanović, Svetlana; Otašević, Biljana; Zečević, Mira; Zivanović, Ljiljana; Protić, Ana

    2012-02-05

    A simple, rapid, isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the analysis of moxonidine and its impurities in tablet formulations. The chromatographic separation was achieved on a Symmetry shield C18 column (250 mm × 4.6 mm, 5 μm) by employing a mobile phase consisting of methanol-potassium phosphate buffer (0.05 M) mixture (15:85, v/v) (pH 3.5) at a flow rate of 1 ml min⁻¹; detection at 255 nm. Central composite design technique and response surface method were used to evaluate the effects of variations of selected factors (buffer pH value, column temperature, methanol content) in order to achieve the best isocratic separation within short analysis time (less than 10 min), as well as for robustness test considerations. The method fulfilled the validation criteria: specificity, linearity, accuracy, precision, limit of detection and limit of quantitation. The method was successfully applied for the analysis of commercial moxonidine tablets.

  7. Superconducting Properties of the K$_{{x}}$WO$_{3}$ Tetragonal Tungsten Bronze and the Superconducting Phase Diagram of the Tungsten Bronze Family

    OpenAIRE

    Haldolaarachchige, Neel; Gibson, Quinn; Krizan, Jason; Cava, R. J.

    2014-01-01

    We report the superconducting properties of the K$_{x}$WO$_{3}$ tetragonal tungsten bronze. The highest superconducting transition temperature ($T_{c}=2.1$K) was obtained for K$_{0.38}$WO$_{3}$. $T_{c}$ decreases linearly with increasing K content. Using the measured values for the upper critical field $H_{c2}$, and the specific heat $C$, we estimate the orbital critical field $H_{c2}$(0), coherence length $\\xi$(0), Debye temperature $\\Theta _{D}$ and coupling constant $\\lambda _{ep}$. The ma...

  8. What Controls the Phase Diagram and Superconductivity in Ru-Substituted BaFe2As2?

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, R. S.; Liu, Chang; Fernandes, R.M.; Jiang, Riu; Strehlow, C.P.; Kondo, Takeshi; Thaler, A.; Schmalian, Joerg; Bud-ko, S.J.; Canfield, P.C.; Kaminski, A.

    2011-12-23

    We use high resolution angle-resolved photoemission to study the electronic structure of the iron based high-temperature superconductors Ba(Fe{sub 1-x}Ru{sub x}){sub 2}As{sub 2} as a function of Ru concentration. We find that substitution of Ru for Fe is isoelectronic, i.e., it does not change the value of the chemical potential. More interestingly, there are no measured, significant changes in the shape of the Fermi surface or in the Fermi velocity over a wide range of substitution levels (0 < x < 0.55). Given that the suppression of the antiferromagnetic and structural phase is associated with the emergence of the superconducting state, Ru substitution must achieve this via a mechanism that does not involve changes of the Fermi surface. We speculate that this mechanism relies on magnetic dilution which leads to the reduction of the effective Stoner enhancement.

  9. Superconductivity and phase instability of NH3-free Na-intercalated FeSe1-zSz

    OpenAIRE

    Guo, Jiangang; Lei, Hechang; Hayashi, Fumitaka; Hosono, Hideo

    2014-01-01

    The discovery of ThCr2Si2-type AxFe2-ySe2 (A = K, Rb, Cs and Tl) with Tc ~ 30K make much progress in iron-based superconducting field, but their multiple-phase separations are disadvantageous for understanding the origin. On the other hand, for small alkali metals, studies on (Li,Na)FeCu(S,Se)2 and NaFe2-{\\delta}S2 shows that these compounds possess CaAl2Si2-type structure, implying that ThCr2Si2-type structure is unstable for small alkali-metal intercalated FeSe under high-temperature. Here ...

  10. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  11. Quantum device prospects of superconducting nanodiamond films

    Science.gov (United States)

    Mtsuko, D.; Churochkin, D.; Bhattacharyya, S.

    2016-02-01

    Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson's tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron-doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.

  12. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    Science.gov (United States)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  13. Evidence for conventional superconducting behavior in noncentrosymmetric Mo3Al2C

    Science.gov (United States)

    Bonalde, I.; Kim, H.; Prozorov, R.; Rojas, C.; Rogl, P.; Bauer, E.

    2011-10-01

    We report on measurements of the magnetic penetration depth of polycrystalline samples of nonmagnetic Mo3Al2C (Tc=9 K) without inversion symmetry. Two previous specific-heat measurements in this compound found different anomalous peaks in the low-temperature limit. One of these peaks was attributed to the superconducting transition at 3 K of the impurity phase Mo2C. We argue here that the second anomalous peak may be caused by the superconducting transition of SiC:Al at 1.45 K, another impurity phase possibly present in Mo3Al2C samples. The temperature-independent behavior of the penetration depth observed below 0.5 K is taken as firm evidence for the presence of a nodeless superconducting gap in Mo3Al2C. Numerical calculations using the BCS expression for the penetration depth give qualitative support for an isotropic energy gap in Mo3Al2C. The present results suggest that Mo3Al2C is a conventional s-wave superconductor, although two-gap or anisotropic-gap superconductivity cannot be ruled out.

  14. Superconductivity in compensated and uncompensated semiconductors.

    Science.gov (United States)

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  15. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  16. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  17. High-pressure synthesis and superconductivity of the Laves phase compound Ca(Al,Si)2 composed of truncated tetrahedral cages Ca@(Al,Si))12.

    Science.gov (United States)

    Tanaka, Masashi; Zhang, Shuai; Inumaru, Kei; Yamanaka, Shoji

    2013-05-20

    The Zintl compound CaAl2Si2 peritectically decomposes to a new ternary cubic Laves phase Ca(Al,Si)2 and an Al-Si eutectic at temperatures above 750 °C under a pressure of 13 GPa. The ternary Laves phase compound can also be prepared as solid solutions Ca(Al(1-x)Si(x))2 (0.35 ≤ x ≤ 0.75) directly from the ternary mixtures under high-pressure and high-temperature conditions. The cubic Laves phase structure can be regarded as a type of clathrate compound composed of face-sharing truncated tetrahedral cages with Ca atoms at the center, Ca@(Al,Si)12. The compound with a stoichiometric composition CaAlSi exhibits superconductivity with a transition temperature of 2.6 K. This is the first superconducting Laves phase compound composed solely of commonly found elements.

  18. Finite-Temperature Phase Diagram of the d=3 tJ Model with Quenched Disorder

    Science.gov (United States)

    Berker, A. Nihat; Hinczewski, Michael

    2008-03-01

    We study a quenched disordered d=3 tJ Hamiltonian with static vacancies as a model of nonmagnetic impurities in high-Tc materials.[1,2] Using a position-space renormalization-group approach, we calculate the evolution of the finite-temperature phase diagram with impurity concentration p, and find several features with close experimental parallels: away from half-filling we see the rapid destruction of a spin-singlet liquid phase (analogous to the superconducting phase in cuprates) which is eliminated for p >=0.05; in the same region for these dilute impurity concentrations we observe an enhancement of antiferromagnetism. The antiferromagnetic phase near half-filling is robust against impurity addition, and disappears only for p >=0.40. [1] M. Hinczewski and A.N. Berker, Eur. Phys. J. B 51, 461 (2006). [2] M. Hinczewski and A.N. Berker, arXiv:cond-mat/0607171v1 [cond-mat.str-el].

  19. Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa

    Science.gov (United States)

    Guigue, Bastien; Marizy, Adrien; Loubeyre, Paul

    2017-01-01

    The H3S compound was reproducibly synthesized by laser heating hydrogen-embedded solid sulfur samples at various pressures above 75 GPa in a diamond anvil cell. X-ray diffraction studies were conducted up to 160 GPa and the crystal structure has been identified with space group C c c m . The stability of this sole orthorhombic H3S phase up to 160 GPa contradicts ab initio calculations that predict the stability of a sequence of two metallic superconductive structures above 110 GPa, with R 3 m and I m 3 ¯m symmetries. This work also has strong implications for the current understanding of the 200 K superconductivity phenomenon in H2S since it seems to rule out the hypothesis of the decomposition of H2S into sulfur and superconducting H3S .

  20. Structural and magnetic phase diagram of CeFeAsO(1- x)F(x) and its relation to high-temperature superconductivity.

    Science.gov (United States)

    Zhao, Jun; Huang, Q; de la Cruz, Clarina; Li, Shiliang; Lynn, J W; Chen, Y; Green, M A; Chen, G F; Li, G; Li, Z; Luo, J L; Wang, N L; Dai, Pengcheng

    2008-12-01

    Recently, high-transition-temperature (high-Tc) superconductivity was discovered in the iron pnictide RFeAsO(1-x)F(x) (R, rare-earth metal) family of materials. We use neutron scattering to study the structural and magnetic phase transitions in CeFeAsO(1-x)F(x) as the system is tuned from a semimetal to a high-Tc superconductor through fluorine (F) doping, x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a collinear antiferromagnetic order with decreasing temperature. With increasing fluorine doping, the structural phase transition decreases gradually and vanishes within the superconductivity dome near x=0.10, whereas the antiferromagnetic order is suppressed before the appearance of superconductivity for x>0.06, resulting in an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO(1-x)F(x) with other Fe-based superconductors suggests that the structural perfection of the Fe-As tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.

  1. Magnetic impurities in spin-split superconductors

    Science.gov (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  2. Analysis of the effects of asymmetric faults in three-phase superconducting inductive fault current limiters

    Science.gov (United States)

    Ferreira, R.; Pina, J. M.; Vilhena, N.; Arsénio, P.; Pronto, A. G.; Martins, J.

    2014-05-01

    Inductive fault current limiters of magnetic shielding type can be described in terms of the excursion in the plane defined by flux linked with primary and line current, and this methodology has been previously applied to single-phase devices. Practical applications, however, require three-phase limiters, which, for the sake of compactness, may be built by three legged cores, instead of three single phase units. This has the advantage of using well established methods of power transformers industry, but the performance of the devices depends on the type of fault, e.g. phase to ground or phase to phase. For instance, in a three legged core, a phase to ground fault affects healthy phases, and these are the most frequent faults in distribution grids, where such systems are envisaged. The effects of asymmetric faults are analysed in this paper, by means of measured excursions in the linked flux-current plane.

  3. Competition between the s-wave and p-wave superconductivity phases in a holographic model

    CERN Document Server

    Nie, Zhang-Yu; Gao, Xin; Zeng, Hui

    2013-01-01

    We build a holographic superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. In this model, the s-wave and p-wave condensates can be consistently realized. We find that there are totally four phases in this model, namely, the normal phase without any condensate, s-wave phase, p-wave phase and the s+p coexisting phase. By calculating Gibbs free energy, the s+p coexisting phase turns out to be thermodynamically favored once it can appear. The phase diagram with the dimension of the scalar operator and temperature is drawn. The temperature range for the s+p coexisting phase is very narrow, which shows the competition between the s-wave and p-wave orders in the superconductor model.

  4. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  5. Overscreened Kondo effect, (color) superconductivity and Shiba states in Dirac metals and quark matter

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study the interplay between the Kondo effect and (color) superconductivity in doped Dirac metals with magnetic impurities and in quark matter with colorful impurities. We first point out that the overscreened Kondo effect arises in the normal state of these systems. Next the (color) superconducting gap is incorporated as a mean field and the phase diagram for a varying gap and temperature is constructed nonperturbatively. A rich phase structure emerges from a competition of effects unique to a multichannel system. The Kondo-screened phase is shown to disappear for a sufficiently large gap. Peculiarity of quark matter due to the confining property of non-Abelian gauge fields is noted. We also investigate the spectrum of sub-gap excited states, called Shiba states. Based on a model calculation and physical reasoning we predict that, as the coupling of the impurity to the bulk is increased, there will be more than one quantum phase transition due to level crossing among overscreened states.

  6. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count.

    Science.gov (United States)

    Parker, Dinah R; Smith, Matthew J P; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Baker, Peter J; Pratt, Francis L; Pitcher, Michael J; Blundell, Stephen J; Clarke, Simon J

    2010-02-05

    Using a combination of neutron, muon, and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. The electron count is the dominant factor, since Ni doping has double the effect of Co doping for the same doping level. We follow the structural, magnetic, and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.

  7. Persistent ferromagnetism and topological phase transition at the interface of a superconductor and a topological insulator.

    Science.gov (United States)

    Qin, Wei; Zhang, Zhenyu

    2014-12-31

    At the interface of an s-wave superconductor and a three-dimensional topological insulator, Majorana zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an interface will induce bound states that broaden into impurity bands inside (but near the edges of) the superconducting gap, which remains open unless the impurity concentration is too high. Next we find that an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field approximation, the ferromagnetic Curie temperature is found to be essentially independent of the superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity and persistent ferromagnetism at the interface allows realization of a novel topological phase transition from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new platform for topological quantum computation.

  8. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  9. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  10. Effect of Pressure on Magneto-Transport Properties in the Superconducting and Normal Phases of the Metallic Double Chain Compound Pr2Ba4Cu7O15-δ

    Science.gov (United States)

    Kuwabara, Masayoshi; Matsukawa, Michiaki; Sugawara, Keisuke; Taniguchi, Haruka; Matsushita, Akiyuki; Hagiwara, Makoto; Sano, Kazuhiro; Ōno, Yoshiaki; Sasaki, Takahiko

    2016-12-01

    To examine the electronic phase diagram of superconducting CuO double chains, we report the effect of external pressure on the magneto-transport properties in superconducting and non-superconducting polycrystalline samples of Pr2Ba4Cu7O15-δ at low temperatures (1.8-40 K) under various magnetic fields (up to 14 T). In the as-sintered non-superconducting sample, the magneto-resistance (MR) follows a power law of H3/2 at low temperatures, which is in no agreement with the H2 dependence of MR in the PrBa2Cu4O8 system. The negative pressure dependence of the superconducting phase is qualitatively consistent with a theoretical prediction on the basis of the Tomonaga-Luttinger liquid theory. The 48-h-reduced superconducting sample at ambient pressure exhibits no clear increase in MR for T > Tc,on = 26.5 K. In contrast, with the application of pressure to the superconducting sample, the MR effects reappear and are also well fitted by H3/2. The model of slightly warped Fermi surfaces explains not only the MR effect of the non-superconducting sample, but is also related to the reasons for the pressure-induced MR phenomena of the superconducting sample.

  11. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    Science.gov (United States)

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3).

  12. Effects of Impurities Content (Oxygen, Carbon, Nitrogen) on Microstructure and Phase Transformation Temperatures of Near Equiatomic TiNi Shape Memory Alloys

    OpenAIRE

    Olier, P.; Barcelo, F.; Bechade, J.; Brachet, J; Lefevre, E.; Guenin, G.

    1997-01-01

    Investigation of precipitation is performed on several near equiatomic TiNi alloys elaborated by arc melting or by powder metallurgy (combustion synthesis mode). These alloys contain various amount of impurities (oxygen, carbon , nitrogen). We show that such impurities result in both oxides (Ti4Ni2Ox, with x ≤ 1) and carbonitrides (TiCxN1-x, with ≤ 1) precipitation. X-ray diffraction measurements are performed on residues of electrochemical extraction to determine the structure and the lattic...

  13. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  14. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases.

    Science.gov (United States)

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC.

  15. Holonomic quantum computation with superconducting charge-phase qubits in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhibo [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China) and Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: zbfeng010@163.com; Zhang Xinding [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)

    2008-03-03

    We theoretically propose a feasible scheme to realize holonomic quantum computation with charge-phase qubits placed in a microwave cavity. By appropriately adjusting the controllable parameters, each charge-phase qubit is set as an effective four-level subsystem, based on which a universal set of holonomic quantum gates can be realized. Further analysis shows that our system is robust to the first-order fluctuation of the gate charges, and the intrinsic leakages between energy levels can be ignored.

  16. Superconductivity of columbium

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.B.; Zemansky, M.W.; Boorse, H.A.

    1950-11-15

    Isothermal critical magnetic field curves and zero field transitions for several annealed specimens of columbium have been measured by an a.c. mutual inductance method at temperatures from 5.1 deg K to the zero field transition temperature. The H-T curve was found to fit the usual parabolic relationship H = H{sub 0}(1-T(2)/T(2){sub 0}) with H{sub 0} = 8250 oersteds and T{sub 0} = 8.65 deg K. The initial slope of the curve was 1910 oersteds/deg. The electronic specific heat in the normal state calculated from the thermodynamic equations is 0.0375T and the approximate Debye characteristic temperature in the superconducting state, 67 deg K. Results on a different grade of columbium with a tantalum impurity of 0.4 percent, according to neutron scattering measurements, were in agreement, with the data obtained from columbium of 0.2 percent maximum tantalum impurity.

  17. Synthesis, Isolation and Characterization of Process-Related Impurities in Oseltamivir Phosphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma

    2012-01-01

    Full Text Available Three known impurities in oseltamivir phosphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally the known impurities were synthesized and characterized.

  18. Implementation of a Controlled-Phase Gate and Deutsch-Jozsa Algorithm with Superconducting Charge Qubits in a Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2007-01-01

    Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing a quantum controlled-phase gate (QPG) and Deutsch-Jozsa (DJ) algorithm by a controllable interaction. In the present scheme, the SQUID works in the charge regime, and the cavity field is ultilized as quantum data-bus, which is sequentially coupled to only one qubit at a time. The interaction between the selected qubit and the data bus, such as resonant and dispersive interaction, can be realized by turning the gate capacitance of each SQUID.Especially, the busis not excited and thus the cavity decay is suppressed during the implementation of DJ algorithm.For the QPG operation, the mode of the bus is unchanged in the end of the operation, although its mode is really excited during the operations. Finally, for typical experiment data, we analyze simply the experimental feasibility of the proposed scheme. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.

  19. Development and test in grid of 630 kVA three-phase high temperature superconducting transformer

    Institute of Scientific and Technical Information of China (English)

    Yinshun WANG; Xiang ZHAO; Junjie HAN; Huidong LI; Yin GUAN; Qing BAO; Xi XU; Shaotao DAI; Naihao SONG; Fengyuan ZHANG; Liangzhen LIN; Liye XIAO

    2009-01-01

    A 630-kVA 10.5 kV/0.4kV three-phase high temperature superconducting (HTS) power transformer was successfully developed and tested in a live grid.The windings were wound by hermetic stainless steel-reinforced multi-filamentary Bi2223/Ag tapes.The struc-tures of primary windings are solenoid with insulation and cooling path among layers,and those of secondary windings consist of double-pancakes connected in parallel.Toroidal cryostat is made from electrical insulating glass fiber reinforced plastics (GFRP) materials with room temperature bore for commercial amorphous alloy core with five limbs.Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature.An insulation technology of double-half wrapping up the Bi2223/Ag tape with Kapton film is used by a winding machine developed by the authors.Fundamental char-acteristics of the transformer are obtained by standard short-circuit and no-load tests,and it is shown that the transformer meets operating requirements in a live grid.

  20. Magnetic properties of the Larkin-Ovchinnikov-Fulde-Ferrell superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R. [Department of Physics, University of Florence, and INFN, Florence (Italy)]. E-mail: casalbuoni@fi.infn.it; Gatto, R. [Department of Physics, University of Geneva (Switzerland); Mannarelli, M. [Department of Physics, University of Bari, and INFN, Bari (Italy)]. E-mail: mannarelli@ba.infn.it; Nardulli, G. [Department of Physics, University of Bari, and INFN, Bari (Italy)]. E-mail: giuseppe.nardulli@ba.infn.it; Ruggieri, M. [Department of Physics, University of Bari, and INFN, Bari (Italy)]. E-mail: marco.ruggieri@ba.infn.it

    2004-10-21

    We compute, at the first order in the fine structure constant, the parameters of the electromagnetic Lagrangian for the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell phase in quantum chromodynamics (QCD) and in condensed matter. In particular we compute for QCD with two flavors the dielectric and the magnetic permeability tensors, and for condensed matter superconductors the penetration depth of external magnetic fields.

  1. Roles of axial anomaly on neutral quark matter with color superconducting phase

    CERN Document Server

    Zhang, Zhao

    2011-01-01

    We investigate effects of the axial anomaly term with a chiral-diquark coupling on the phase diagram within a two-plus-one-flavor Nambu-Jona-Lasinio (NJL) model under the charge-neutrality and $\\beta$-equilibrium constraints. We find that when such constraints are imposed, the new anomaly term plays a quite similar role as the vector interaction does on the phase diagram, which the present authors clarified in a previous work. Thus, there appear several types of phase structures with multiple critical points at low temperature $T$, although such phase diagrams with low-$T$ critical point(s) are never realized without these constraints even within the same model Lagrangian. This drastic change is attributed to an enhanced interplay between the chiral and diquark condensates due to the anomaly term at finite temperature; the u-d diquark coupling is strengthened by the relatively large chiral condensate of the strange quark through the anomaly term, which in turn definitely leads to the abnormal behavior of the ...

  2. Reversed-phase liquid chromatography with electrospray mass detection and 1H and 13C NMR characterization of new process-related impurities, including forced degradants of efavirenz: related substances correlated to the synthetic pathway.

    Science.gov (United States)

    Gadapayale, Kamalesh; Kakde, Rajendra; Sarma, V U M

    2015-01-01

    In this study, a stability-indicating reversed-phase liquid chromatographic electrospray mass spectrometric method was developed and validated for the determination of process-related impurities and forced degradants of Efavirenz in bulk drugs. Efavirenz was subjected to acid, alkaline hydrolysis, H2O2 oxidation, photolysis, and thermal stress. Significant degradation was observed during alkaline hydrolysis, and the degradants were isolated on a mass-based purification system and characterized by high-resolution mass spectrometry, positive electrospray ionization tandem mass spectrometry, and (1)H and (13)C NMR spectroscopy. Accurate mass measurement and NMR spectroscopy revealed the possible structure of process-related impurities and degradant under stress conditions. The acceptable separation was accomplished on Waters bondapak C18 column (250 mm × 4.6 mm; 5 μm), using 5 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 mL/min. The eluents were monitored by diode array detector at 247 nm and quantitation limits were obtained in the range of 0.1-2.5 μg/mL for Efavirenz, degradants, and process-related impurities. The liquid chromatography method was validated with respect to accuracy, precision, linearity, robustness, and limits of detection and quantification as per International Conference on Harmonization guidelines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phase-periodic proximity-effect compensation in symmetric normal/superconducting mesoscopic structures

    OpenAIRE

    Petrashov, Victor; Shaikhaidarov, R S; Sosnin, I. A.; DELSING, P; Claeson, T; Volkov, A.

    1998-01-01

    The conductance (G) of mirror-symmetric, disordered normal (N) metal mesoscopic structures with two interfaces to superconductors (S) has been studied experimentally with applied condensate phase differences Delta phi between the N/S interfaces. At Delta phi = 2n pi(n = 0,1,2,3,...) the conductance showed reentrance to the normal state below the temperature corresponding to the Thouless energy. The current-voltage characteristics were found to be: strongly nonlinear even at distances between ...

  4. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  5. Inelastic neutron scattering study of a nonmagnetic collapsed tetragonal phase in nonsuperconducting CaFe2As2: evidence of the impact of spin fluctuations on superconductivity in the iron-arsenide compounds.

    Science.gov (United States)

    Soh, J H; Tucker, G S; Pratt, D K; Abernathy, D L; Stone, M B; Ran, S; Bud'ko, S L; Canfield, P C; Kreyssig, A; McQueeney, R J; Goldman, A I

    2013-11-27

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  6. Superconducting filter with a linear phase for third-generation mobile communications

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Zhang Xueqiang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Meng Qingduan [Electronics and Information Engineering Department, Henan University of Science and Technology, Luoyang 471003 (China); Sun Liang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Zhang Qiang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Chunguang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Shunzhou [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080 (China); He Aisheng [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Hong [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); He Yusheng [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China)

    2007-07-15

    A linear phase filter using two cross-coupled quadruplet structures to achieve self-equalization was designed at 2012.5 MHz with 5 MHz bandwidth for a third-generation mobile communications system. This filter was fabricated using double-sided YBCO films on a 2 inch diameter, 0.5 mm thick MgO substrate. In the measurement, it showed good matching in the passband, with reflection better than -15 dB. Moreover, the group delay variation is less than 50 ns over 89% of the filter bandwidth.

  7. Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dembowski, C.; Dietz, B.; Graef, H.D.; Heine, A.; Leyvraz, F.; Miski-Oglu, M.; Richter, A.; Seligman, T.H.

    2002-11-01

    The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant. (orig.)

  8. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  9. Superconducting phase fluctuations in SmFeAsO0.8F0.2 from diamagnetism at a low magnetic field above Tc

    Science.gov (United States)

    Prando, G.; Lascialfari, A.; Rigamonti, A.; Romanó, L.; Sanna, S.; Putti, M.; Tropeano, M.

    2011-08-01

    Superconducting fluctuations (SFs) in SmFeAsO0.8F0.2 (characterized by superconducting transition temperature Tc≃52.3 K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response above Tc to magnetic fields up to 1 T is similar to that previously reported for underdoped cuprate superconductors and justified in terms of metastable superconducting islands of nonzero order parameter lacking long-range coherence because of strong phase fluctuations. In the high-field regime (H≳1.5 T) scaling arguments predicted on the basis of the Ginzburg-Landau theory for conventional SFs are confirmed, at variance with what is observed in the low-field regime. This fact shows that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SFs of novel character and the conventional SFs. High magnetic fields (1.5 T ≲H≪Hc2) are found to suppress the former while leaving unaltered the latter.

  10. Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure.

    Science.gov (United States)

    Medvedev, S; McQueen, T M; Troyan, I A; Palasyuk, T; Eremets, M I; Cava, R J; Naghavi, S; Casper, F; Ksenofontov, V; Wortmann, G; Felser, C

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T(C) superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T(C) values up to 55 K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of beta-Fe(1.01)Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as T(C) rises, owing to a collapse of the separation between the Fe(2)Se(2) layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe(1.01)Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  11. Electronic and magnetic phase diagram of [Beta]Fe[subscript1.01]Se with superconductivity at 36.7 K under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.; McQueen, T.M.; Troyan, I.A.; Palasyuk, T.; Eremets, M.I.; Cava, R.J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; Felser, C.; (Paderborn); (MXPL-M); (Mainz); (Princeton)

    2010-09-17

    The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T{sub C} superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T{sub C} values up to 55 K. Recently, superconductivity has been reported in FeSe, which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of {beta}-Fe{sub 1.01}Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as T{sub C} rises, owing to a collapse of the separation between the Fe{sub 2}Se{sub 2} layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe{sub 1.01}Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behavior.

  12. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7K under pressure

    Science.gov (United States)

    Medvedev, S.; McQueen, T. M.; Troyan, I. A.; Palasyuk, T.; Eremets, M. I.; Cava, R. J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; Felser, C.

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new `gold rush' in high-TC superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach TC values up to 55K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of β-Fe1.01Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7K under an applied pressure of 8.9GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as TC rises, owing to a collapse of the separation between the Fe2Se2 layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7GPa and completed at 38GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  13. Bound States in Boson Impurity Models

    Science.gov (United States)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  14. Theoretical investigation of formation of impurity bipolaronic states in covalent semiconductors and high temperature superconductors

    CERN Document Server

    Yavidov, B Y

    2001-01-01

    superconducting properties of doped HTSC compounds have been accounted for with framework of lattice and impurity bipolarons concepts. The theoretical results obtained are in satisfactory agreement with experiment. A theory has been developed of carrier localization around an impurity which takes account of correlation effect between carriers, short- and long range interaction in 'carrier-impurity-lattice' system within the framework of the continuum model in the adiabatic approximation. Possibility of impurity (bi)polaron formation in covalent semiconductors (Si) and high temperature superconductors (HTSC) (La sub 2 sub - sub x Sr sub x Cu sub 4) has been studied theoretically. The impurity bi polaron formation has been analyzed by two scenarios: paring and sequential localization of carriers in the vicinity of impurity atom. It is shown that the impurity bi polaron of large radius does not form in Si while its formation is possible in crystals with x<0.186, where x is the ratio of high frequency dielectr...

  15. Magnetic impurity transition in a (d + s)-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, L.S. [Quantum Physics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2010-03-15

    We consider the superconducting state of d + s symmetry with finite concentration of Anderson impurities in the limit {delta}{sub s} /{delta}{sub d} << 1. The model consists of a BCS-like term in the Hamiltonian and the Anderson impurity treated in the self-consistent large-N mean field approximation. Increasing impurity concentration or lowering the ratio {delta}{sub s} /{delta}{sub d} drives the system through a transition from a state with two sharp peaks at low energies and exponentially small density of states at the Fermi level to one with N(0) {approx_equal}({delta}{sub s} /{delta}{sub d}){sup 2}. This transition is discontinuous if the energy of the impurity resonance is the smallest energy scale in the problem. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  17. Silicon materials task of the low cost solar array project(Phase III): effect of impurities and processing on silicon solar cells. Thirteenth quarterly report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Mollenkopf, H.C.; McCormick, J.R.

    1979-01-01

    The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity--process interactions on the performance of terrestrial silicon solar cells. Gettering experiments with phosphorus oxychloride gas phase treatments at 950/sup 0/C, 1000/sup 0/C, and 1150/sup 0/C have been completed for two Ti-doped ingots (3 x 10/sup 13/ cm/sup -3/ and 2.1 x 10/sup 14/ cm/sup -3/ Ti doping levels, respectively), two molybdenum doped ingots (8 x 10/sup 11/ and 4.2 x 10/sup 12/ cm/sup -3/ Mo) and one iron-doped ingot (3 x 10/sup 14/ cm/sup -3/ Fe). First generation Co and W-doped ingots were grown and processed to solar cells. Miniature solar cells and diodes were used to map the characteristics of wafers from a 3 inch diameter ingot doped with Mn or Ti. A model has been developed to describe the behavior of solar cells bearing non-uniform distributions of impurities or defects.

  18. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  19. Observation of double resistance anomalies and excessive resistance in mesoscopic superconducting Au0.7In0.3 rings with phase separation

    Science.gov (United States)

    Wang, H.; Rosario, M. M.; Russell, H. L.; Liu, Y.

    2007-02-01

    We have measured mesoscopic superconducting Au0.7In0.3 rings prepared by e -beam lithography and sequential deposition of Au and In at room temperature followed by a standard lift-off procedure. The majority of the samples are found to exhibit highly unusual double resistance anomalies, two resistance peaks with the peak resistances larger than the normal-state resistance, near the onset of superconductivity in the R(T) (resistance vs temperature) curves, and an h/2e resistance oscillation with a very small amplitude. A magnetic field applied perpendicular to the ring plane appears to suppress the low-temperature peak easily, but only broadens the high-temperature peak. In the intermediate-field range, the high-temperature resistance peak becomes flat down to the lowest temperature, resulting apparently in a magnetic-field-induced metallic state with its resistance higher than the normal-state resistance, referred to here as excessive resistance. The dynamical resistance vs bias current measurements carried out in samples showing double resistance anomalies suggest that there are two critical currents in these samples. We attribute the double resistance anomalies and the two critical currents to the presence of two superconducting phases originating from the phase separation of Au0.7In0.3 in which In-rich grains of AuIn precipitate in a uniform In-dilute matrix of Au0.9In0.1 . The local superconducting transition temperature of the In-rich grains is higher than that of the In-dilute matrix. The double resistance anomalies are not found in a sample showing the conventional h/2e Little-Parks (LP) resistance oscillation, which we believe is due to the absence of the phase separation in this particular sample. Finally, we argue that the h/2e resistance oscillation observed in samples showing double resistance anomalies is not the LP but rather the Altshuler-Aronov-Spivak resistance oscillation of normal electrons enhanced by superconductivity.

  20. Superconductivity of reduction-treated ceramic material of Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-{delta}} mixed with the related structure phases

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M. [Department Comprehensive Sciences, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)], E-mail: hag@kit.ac.jp; Tanaka, S.; Shima, T.; Gotoh, K. [Department Comprehensive Sciences, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Kanda, S.; Saito, T.; Koyama, K. [University of Tokushima, Tokushima 770-8502 (Japan)

    2008-09-15

    Superconductivity caused by oxygen reduction treatment for sintered Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-{delta}} (Pr247) synthesized using citrate pyrolysis precursor method is examined experimentally. The sintered sample tends to be heterogeneous structure including Pr124 phase and stacking fault structure rich in CuO single chains. In this work, such a heterogeneous sample and nearly pure phase one were prepared, and the electric conductive behaviors were examined comparatively for various reduction grade sample series. In enough reduced stages, superconductivity with onset temperature 25-28 K was observed for both heterogeneous and purer samples. At transition process by the reduction, superconductivity of the heterogeneous samples can arise from lower oxygen-reduction% than purer Pr247 material. The results may possibly suggest superconductivity by CuO double chains besides Pr247 crystal in our heterogeneous ceramic system.

  1. Removal Of Volatile Impurities From Copper Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Schuler, A.; Frei, A.; Sturzenegger, M.

    2005-03-01

    To study the removal of volatile impurities from two different copper concentrates they have been heated on a thermo balance to temperatures between 900 and 1500 C. This sample treatment revealed that both concentrates undergo strong weight losses at 500 and 700 C. They were attributed to the removal of sulfur. Elemental analyses of the residues by ICP spectrometry have shown that the thermal treatment efficiently removes the volatile impurities. Already below 900 C most of the arsenic is removed by evaporation, the largest fraction of lead and zinc is removed in the temperature interval of 1300-1500 C. It was observed that quartz in the concentrate leads to the formation of a silicon-enriched phase besides a metal rich sulfide phase. The former is interpreted as an early stage of a silicate slag. Elemental analysis showed that the formation of this distinct slag phase does not hinder the efficient removal of volatile impurities. (author)

  2. Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Underdoped Bi2Sr2CaCu2O8+δ

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Davis, J.; Fujita, K.; Schmidt, A.R.; Kim, C.K.; Eisaki, H.; Uchida, S.

    2009-08-28

    A possible explanation for the existence of the cuprate 'pseudogap' state is that it is a d-wave superconductor without quantum phase rigidity. Transport and thermodynamic studies provide compelling evidence that supports this proposal, but few spectroscopic explorations of it have been made. One spectroscopic signature of d-wave superconductivity is the particle-hole symmetric 'octet' of dispersive Bogoliubov quasiparticle interference modulations. Here we report on this octet's evolution from low temperatures to well into the underdoped pseudogap regime. No pronounced changes occur in the octet phenomenology at the superconductor's critical temperature T{sub c}, and it survives up to at least temperature T {approx} 1.5 T{sub c}. In this pseudogap regime, we observe the detailed phenomenology that was theoretically predicted for quasiparticle interference in a phase-incoherent d-wave superconductor. Thus, our results not only provide spectroscopic evidence to confirm and extend the transport and thermodynamics studies, but they also open the way for spectroscopic explorations of phase fluctuation rates, their effects on the Fermi arc, and the fundamental source of the phase fluctuations that suppress superconductivity in underdoped cuprates.

  3. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  4. The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Lee, Gyeong Geun; Kim, Sung Woo; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-08-15

    Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium (H{sub 2} 20pa, H{sub 2}O 0.5pa, CH{sub 3} 2pa and CO 5pa) at 950 .deg. C. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions ((H{sub 2} 20pa, H{sub 2}O 0.05pa, CH{sub 4} 5pa and CO 2pa) and 950 .deg. C) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

  5. A study of the impurity-induced phase transition in Ba sub x Sr sub 1 sub - sub x TiO sub 3 within the framework of the transverse-field Ising model

    CERN Document Server

    Wu Hua

    2003-01-01

    The transverse-field Ising model is successfully applied to the Ba sub x Sr sub 1 sub - sub x TiO sub 3 system. An impurity-induced paraelectric-ferroelectric phase transition is found for proper parameters. An explanation is offered for the results of the susceptibility chi(x, T), the transition temperature T sub m (x), the spontaneous polarization (P ) versus x and versus T, the field dependence of chi(x, T) and that of the polarization (P ) versus E for x, 0.2 <= x <= 0.95.

  6. Field-induced magnetic phases in the normal and superconducting states of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.;

    2004-01-01

    We present a comprehensive neutron-diffraction study of the magnetic structures of ErNi2B2C in the presence of a magnetic field applied along [010], [110], or [001]. In zero field, the antiferromagnetic structure is transversely polarized with Qapproximate to0.55a* and the moments along the b...... no hysteresis and stays stable up to a field close to the upper critical field of superconductivity, when the field is applied along [010]. Except for this possible effect, the influences of the superconducting electrons on the magnetic structures are not directly visible. Another peculiarity is that Q rotates...

  7. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elliott; Schnepp, Zoe [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Hall, Simon R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)], E-mail: simon.hall@bristol.ac.uk

    2008-11-15

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  8. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities.

    Science.gov (United States)

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; Chatterjee, Kamalesh; Wise, W D; Gu, G D; Hudson, E W; Boyer, Michael C

    2016-12-16

    We use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω_{1}≈4  meV and Ω_{2}≈15  meV, allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as well as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.

  9. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  10. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  11. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  12. Liquid-chromatographic separation and determination of process-related impurities, including a regio-specific isomer of celecoxib on reversed-phase C18 column dynamically coated with hexamethyldisilazane.

    Science.gov (United States)

    Rao, R Nageswara; Meena, S; Nagaraju, D; Rao, A Raghuram; Ravikanth, S

    2006-09-01

    A simple and rapid reversed-phase high-performance liquid-chromatographic method for the separation and determination of process-related impurities of celecoxib (CXB) in bulk drugs and pharmaceuticals was developed. The separation of impurities viz., 4-methylacetophenone (I), 1-(4-methylphenyl)-4,4,4-trifluorobutane-1,3-dione (II), 4-hydrazinobenzene sulfonamide (III) and a regio-specific isomer [3-(4-methylphenyl)-5-trifluoromethyl-1H-pyrazole-1-yl]-benzenesulfonamide (IV), was accomplished on an Inertsil ODS-3 column dynamically coated with 0.1% hexamethyldisilazane (HMDS) in acetonitrile:water (55:45 v/v) as a mobile phase and detection at 242 nm using PDA at ambient temperature. The chromatographic conditions were optimized by studying the effects of HMDS, an organic modifier, time of silanization and column temperature. The method was validated and found to be suitable not only for monitoring the synthetic reactions, but also to evaluate the quality of CXB.

  13. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  14. Key role of work hardening in superconductivity/superfluidity, heat conductivity and ultimate strain increase, evolution, cancer, aging and other phase transitions

    CERN Document Server

    Kisel, V P

    2009-01-01

    The shear/laminar flow of liquids/gas/plasma/biological cells (BC), etc. is equivalent to dislocation-like shear of solids. The turbulent flow is the next stage of deformation/ multiplication of dislocation-like defects and their ordering in sub-grains and grain-boundaries, then grains slip-rotation in the direction approximately perpendicular to the shear flow. It is shown that phase transitions are governed by unified deformation hardening/softening under hydrostatic pressure, particle irradiation and impurity (isotope) chemical pressure, hard confining conditions and cooling, etc. thus changing electric, magnetic, ferroelectric, thermal, optical properties.1-2 Dislocation-like work hardening, DWH, is determined by non-monotonous properties of dislocation double edge-cross-jog slip, and ultrastrong DWH gives the lowest drag for any dislocation-like plasticity at phase transitions. This provides the same micromechanisms of the ultimate stage of conventional deformation (superfluidity) of ordinary liquids, i....

  15. Identification, Characterization, and Quantification of Impurities of Safinamide Mesilate: Process-Related Impurities and Degradation Products.

    Science.gov (United States)

    Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying

    2017-07-01

    The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.

  16. Effect of starting materials on the superconducting properties of SmFeAsO1-xFx tapes

    Science.gov (United States)

    Wang, Chunlei; Yao, Chao; Zhang, Xianping; Gao, Zhaoshun; Wang, Dongliang; Wang, Chengduo; Lin, He; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2012-03-01

    SmFeAsO1-xFx tapes were prepared using three kinds of starting materials. This showed that the starting materials have an obvious effect on the impurity phases in the final superconducting tapes. Compared with the other samples, the samples fabricated with SmAs, FeO, Fe2As, and SmF3 have the smallest arsenide impurity phases and voids. As a result, these samples possess much denser structures and better grain connectivities. Moreover, among the three kinds of sample fabricated in this work, this kind of sample has the highest zero resistivity temperature, ˜40 K, and the largest critical current density, ˜4600 A cm-2, in self-field at 4.2 K. This is the highest Jc value reported so far for SmFeAsO1-xFx wires and tapes.

  17. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.

    1998-01-01

    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  18. Exact solution of a t-J chain with impurity

    Energy Technology Data Exchange (ETDEWEB)

    Beduerftig, G. [Hannover Univ. (Germany). Inst. fuer Theoretische Physik; Essler, F.H.L. [Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Frahm, H. [Hannover Univ. (Germany). Inst. fuer Theoretische Physik

    1997-04-07

    We study the effects of an integrable impurity in a periodic t-J chain. The impurity couples to both spin and charge degrees of freedom and has the interesting feature that the interaction with the bulk can be varied continuously without losing integrability. We first consider ground state properties close to half-filling in the presence of a small bulk magnetic field. We calculate the impurity contributions to the (zero-temperature) susceptibilities and the low-temperature specific heat and determine the high-temperature characteristics of the impurity. We then investigate transport properties by computing the spin and charge stiffnesses at zero temperature. Finally the impurity phase shifts are calculated and the existence of an impurity bound state in the holon sector is established. (orig.).

  19. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  20. Structural Identification and Characterization of Potential Impurities of Azelnidipine

    Directory of Open Access Journals (Sweden)

    Sureshbabu Kapavarapu

    2016-06-01

    Full Text Available Azelnidipine (AZL is a pale yellowish white tablet (16mg with diameter of 9.2mm and thickness of 3.3mm. A reverse phase performance liquid chromatographic method was developed for the determination of AZL in bulk and pharmaceutical dosage form. During the synthesis of bulk drug of AZL, we observed four impurities. All the impurities were detected by a gradient high performance liquid chromatographic (HPLC method. LC-MS was performed to identify the mass number of these impurities. A thorough study was carried out to characterize the impurities. These impurities were synthesized, characterized and were co-injected with the sample containing impurities and are found to be matching with the impurities present in the sample. Based on the complete spectral analysis (UV, IR, NMR and MS these impurities were characterized as 1 Azelnidipine Stage-I para impurity [Impurity 1], whose molecular formula is C14 H15 NO5 and molecular weight is 277.27, 2 Azelnidipine Intermediate [Impurity 2], whose molecular formula is C14H15NO5 and molecular weight is 277.27, 3 4-Nitro Azelnidipine [Impurity 3], whose molecular formula is C33H34N4O6 and molecular weight is 582.65 and, 4 2-Nitro Azelnidipine [Impurity 4], whose molecular formula is C33H34N4O6 and molecular weight is 582.65. The proposed method was validated as per International Conference on Harmonization (ICH guidelines. The method was accurate, precise, specific and rapid found to be suitable for the quantitative analysis of the drug and dosage form.

  1. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Science.gov (United States)

    Malik, Bilal A.; Malik, Manzoor A.; Asokan, K.

    2016-04-01

    We report the superconducting state properties of YBa2Cu3O7 (YBCO) on introduction of BaZrO3 (BZO) as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt%) composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  2. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Directory of Open Access Journals (Sweden)

    Bilal A. Malik

    2016-04-01

    Full Text Available We report the superconducting state properties of YBa2Cu3O7 (YBCO on introduction of BaZrO3 (BZO as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt% composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  3. Signs of superconductivity at 110 K on inclusions of TiB sub k boride phases into titanium matrix

    CERN Document Server

    Volkov, V V; Berzverkhij, P P; Martynets, V G; Matizen, E V

    2002-01-01

    Verification of theoretical forecasts on the possibility of the high-temperature superconductivity of the high-temperature superconductivity (HTSC) in the TiB sub k titanium borides is accomplished. It is established that the jump-like change in the temperature dependence of the electric resistance R(T) at 110 K takes place on the titanium samples, the surfaces whereof are coated with the borides diffusion layers of the TiB sub k variable in-depth composition. This proves the presence of the borides diffusion layers are applied onto the metallic titanium by means of treating its surface with the B sub 2 H sub 6 + H sub 2 gases mixture at the temperature of 610-700 deg C with the subsequent annealing in vacuum. The boride layers composition is studied through the mass-spectrometry method

  4. Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM

    Science.gov (United States)

    Hamidian, M. H.; Firmo, I. A.; Fujita, K.; Mukhopadhyay, S.; Orenstein, J. W.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E.-A.; Davis, J. C.

    2012-05-01

    Direct visualization of electronic-structure symmetry within each crystalline unit cell is a new technique for complex electronic matter research (Lawler et al 2010 Nature 466 347-51, Schmidt et al 2011 New J. Phys. 13 065014, Fujita K et al 2012 J. Phys. Soc. Japan 81 011005). By studying the Bragg peaks in Fourier transforms of electronic structure images and particularly by resolving both the real and imaginary components of the Bragg amplitudes, distinct types of intra-unit-cell symmetry breaking can be studied. However, establishing the precise symmetry point of each unit cell in real space is crucial in defining the phase for such a Bragg-peak Fourier analysis. Exemplary of this challenge is the high-temperature superconductor Bi2Sr2CaCu2O8+δ for which the surface Bi atom locations are observable, while it is the invisible Cu atoms that define the relevant CuO2 unit-cell symmetry point. Here we demonstrate, by imaging with picometer precision the electronic impurity states at individual Zn atoms substituted at Cu sites, that the phase established using the Bi lattice produces a ˜2%(2π) error relative to the actual Cu lattice. Such a phase assignment error would not diminish reliability in the determination of intra-unit-cell rotational symmetry breaking at the CuO2 plane (Lawler et al 2010 Nature 466 347-51, Schmidt et al 2011 New J. Phys. 13 065014, Fujita K et al 2012 J. Phys. Soc. Japan 81 011005). Moreover, this type of impurity atom substitution at the relevant symmetry site can be of general utility in phase determination for the Bragg-peak Fourier analysis of intra-unit-cell symmetry.

  5. Application of Phase Lock Loop in Superconducting RF Technology%锁相环在超导射频技术中的应用

    Institute of Scientific and Technical Information of China (English)

    常玮; 何源; 李春龙; 高郑; 朱正龙; 薛纵横; 宋玉; 张锐

    2014-01-01

    利用压控振荡器锁相环路(VCO-PLL)锁定超导射频谐振腔体的本征频率,使腔体稳定谐振。在原理验证阶段,利用NI-Labview对实验原理做了仿真。得到的仿真结果显示,环路增益选取的不同会直接影响整个系统的锁定状态。在实验测试阶段,根据原理和仿真结果搭建了相应的实验平台,从而得到环路锁定的测试结果。最后在低温超导态测试阶段,用经过验证的实验平台对IMP-HWR010超导腔体进行了频率锁定测试,并得到了腔体频率随氦压变化的实际测量结果,df/dp约为0.73 Hz/Pa。%The main issue of this paper is to introduce the application of phase lock loop (PLL) in supercon-ducting RF technology. The voltage-controlled oscillator phase lock loop (VCO-PLL) can be used for locking the eigen frequency of the superconducting cavity. It can keep superconducting cavity resonant stably. In this paper, the principle of the cavity locking by the VCO-PLL is verified by a simulation, which is done by using NI-Labview software. The simulation result shows that the different gain of the PLL system can impact the locking situation of the whole system. In the test stage, the locking test plant is set up and passed validation. Finally, at the low temperature test stage, the frequency of the IMP-HWR010 superconducting cavity is locked by the test plant. The frequency change with helium pressure of the cavity is about 0.73 Hz/Pa.

  6. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  7. Phase identification and superconducting transitions in Sr-doped Pr{sub 1.85}Ce{sub 0.15}CuO{sub 4+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Varela, A. [Departameto de Quimica Inorganica, Facultad de Quimicas, Universidad Complutense, 28040 Madrid (Spain); Vallet-Regi, M. [Departameto de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid (Spain)]|[Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas, 28230 Madrid (Spain); Gonazalez-Calbet, J.M. [Departameto de Quimica Inorganica, Facultad de Quimicas, Universidad Complutense, 28040 Madrid (Spain)]|[Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo, 155, Las Rozas, 28230 Madrid (Spain)

    1997-10-01

    Sr-doped Pr{sub 1.85}Ce{sub 0.15}CuO{sub 4+{delta}} samples have been prepared with accurate control of the oxygen content. The stability of both T{sup {prime}} and T{sup {asterisk}} phases is strongly dependent on Sr and oxygen content. An electron diffraction study indicates that, in some cases, anionic vacancies are ordered leading to a pseudo-tetragonal superlattice with unit cell parameters 2{radical}2{bold a}{sub t}{times}{bold c}{sub t}. Structural transitions and superconducting phases created by hole doping in such a system are also reported. {copyright} {ital 1997 Materials Research Society.}

  8. Effect of next-nearest-neighbour interaction on $d_{x^{2}−y^{2}}$ -wave superconducting phase in 2D t-J model

    Indian Academy of Sciences (India)

    N S Mondal; N K Ghosh

    2010-01-01

    n exact diagonalization calculation of the t-J model on 2D square cluster has been studied for the ground state properties of HTSC. Effect of next-nearest-neighbour hopping and magnetic (both antiferromagnetic and ferromagnetic) interaction on $d_{x^{2} −y^{2}}$-wave pairing has been shown. Relative strength of the next-nearest-neighbour interaction with respect to that of near-neighbour interaction for the strongest $d_{x^{2} −y^{2}}$-wave pairing has been estimated. A schematic phase diagram is shown. It is shown that a two-sublattice model with antiferromagnetic interaction between them and a small intra-ferromagnetic-type interaction in one sublattice favours $d_{x^{2} −y^{2}}$-wave superconductivity and moderate negative type NNN hopping adds flavours to this phase.

  9. Effect of cooling rate on evolution of superconducting phases during decomposition and recrystallization of (Bi,Pb)-2223 core in Ag-sheathed tape

    Institute of Scientific and Technical Information of China (English)

    LI Jingyong; LI Jianguo; ZHENG Huiling; LI Chengshan; LU Yafeng; ZHOU Lian

    2006-01-01

    The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.

  10. Studies of Magnetic Impurities in Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Calleja, Eduardo; Dai, Jixia; Gu, Genda; McElroy, Kyle

    2013-03-01

    Impurities in high temperatures superconductors, studied with spectroscopic imaging scanning tunneling spectroscopy (SI-STS) have served as a valuable tool to investigate the electronic structure of these materials (E.W. Hudson et al., Nature 411, 920 (2001), S.H.Pan et al., Nature 403,746 (2000)). These experiments revealed the appearance of a quasi-localized bound state near the impurity site whose structure is sensitive to the superconducting gap symmetry and the band structure and originates from the charge scattering nature of these impurities. We studied the effects of Fe impurities in Bi2Sr2CaCu2O8+δ and discovered that the impurities have a different behavior than those previously observed. In particular the quasi bound state near the impurity seems to be behaving as that predicted for a magnetic impurity. The superconducting gap and local electronic density of states was studied in the vicinity of the impurities using SI-STS and will be presented.

  11. Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

    Science.gov (United States)

    Ge, Lin; Ni, Qing; Cai, Guifan; Sang, Tianyi; Guo, Lucun

    2016-08-01

    Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the "scavenger + promoter" strategy presented in this work.

  12. Moving impurity in an inhomogenous Bose-Einstein condensate

    Science.gov (United States)

    Mathew, Ranchu; Tiesinga, Eite

    2016-05-01

    We study the dynamics of a non-uniform Bose-Einstein condensate (BEC) under the influence of a moving weak point-like impurity. When the condensate density varies slowly compared to its healing length the critical velocity of the impurity, beyond which the condensate becomes unstable, can be calculated using the Local Density Approximation (LDA). This critical velocity corresponds to the smallest local sound speed. The LDA breaks down when the length scale of density variations is of the order of the healing length. We have calculated corrections to the critical velocity in this regime as an asymptotic expansion in the size of the BEC. We also discuss the experimental implications of our calculations by studying the stability of the atomic analogue of a Superconducting Quantum Interference Device (SQUID). The atom-SQUID consists of a BEC in a ring trap with rotating barrier. The impurity corresponds to imperfections in the ring trap.

  13. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  14. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  15. Synthesis, Isolation and Characterization of Process-Related Impurities in Salbutamol Sulphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma

    2011-01-01

    Full Text Available Three known and one unknown impurities in salbutamol sulphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally synthesized and characterized the known and unknown imputities.

  16. Current fluctuations in unconventional superconductor junctions with impurity scattering

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tamura, Shun; Tanaka, Yukio

    2017-06-01

    The order parameter of bulk two-dimensional superconductors is classified as nodal if it vanishes for a direction in momentum space, or gapful if it does not. Each class can be topologically nontrivial if Andreev bound states are formed at the edges of the superconductor. Nonmagnetic impurities in the superconductor affect the formation of Andreev bound states and can drastically change the tunneling spectra for small voltages. Here, we investigate the mean current and its fluctuations for two-dimensional tunnel junctions between normal-metal and unconventional superconductors by solving the quasiclassical Eilenberger equation self-consistently, including the presence of nonmagnetic impurities in the superconductor. As the impurity strength increases, we find that superconductivity is suppressed for almost all order parameters since (i) at zero applied bias, the effective transferred charge calculated from the noise-current ratio tends to the electron charge e , and (ii) for finite bias, the current-voltage characteristics follows that of a normal-state junction. There are notable exceptions to this trend. First, gapful nontrivial (chiral) superconductors are very robust against impurity scattering due to the linear dispersion relation of their surface Andreev bound states. Second, for nodal nontrivial superconductors, only px-wave pairing is almost immune to the presence of impurities due to the emergence of odd-frequency s -wave Cooper pairs near the interface. Due to their anisotropic dependence on the wave vector, impurity scattering is an effective pair-breaking mechanism for the remaining nodal superconductors. All these behaviors are neatly captured by the noise-current ratio, providing a useful guide to find experimental signatures for unconventional superconductivity.

  17. The I{sub c}(H)-T{sub c}(H) phase boundary of superconducting Nb thin films with periodic and quasiperiodic antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Kemmler, M.; Cozma, R.; Kleiner, R.; Koelle, D. [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Misko, V.; Peeters, F. [Departement Fysica, Universiteit Antwerpen (Belgium); Nori, F. [Advanced Science Institute, RIKEN (Japan)

    2011-07-01

    The magnetic field dependent critical current I{sub c}(H) of superconducting thin films with artificial defects strongly depends on the symmetry of the defect arrangement. Likewise the critical temperature T{sub c}(H) of superconducting wire networks is heavily influenced by the symmetry of the system. Here we present experimental data on the I{sub c}(H)-T{sub c}(H) phase boundary of Nb thin films with artificial defect lattices of different symmetries. For this purpose we fabricated 60 nm thick Nb films with antidots in periodic (triangular) and five different quasiperiodic arrangements. The parameters of the antidot arrays were varied to investigate the influence of antidot diameter and array density. Experiments were performed with high temperature stability ({delta}T<1 mK) at 0.5{<=}T/T{sub c}{<=}1. From the I-V-characteristics at variable H and T we extract I{sub c}(H) and T{sub c}(H) for different voltage and resistance criteria. The experimental data for the critical current density are compared with results from numerical molecular dynamics simulations.

  18. A two-phase charge-density real-space-pairing model of high-T{sub c} superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, C.J. [Cambridge Univ. (United Kingdom). Dept. of Metallurgy and Materials Science

    1999-03-01

    It is usually assumed that high-T{sub c} superconductors have a periodic band structure and a periodic charge density, although amorphous low-T{sub c} superconductors are known. In this paper, it is suggested that the CuO{sub 2} conduction planes of cuprate superconductors consist of regions of two different charge densities which do not normally repeat periodically. It is suggested that the pairing of holes occurs in real space in cuprate superconductors. It is proposed that the hole-pairing mechanism is magnetic exchange coupling and the pairing force is strong, the pairing energy being greater than kT at room temperature. The bound hole pair is essentially a bipolaron. A real-space model is very tentatively suggested in which the CuO{sub 2} planes of YBa{sub 2}Cu{sub 3}O{sub 7} contain nanodomains of a 3 x 3 hole lattice surrounded by interfaces one unit cell wide in which the holes are paired. In the superconducting state in this model, the existing hole pairs condense and move coherently and collectively around the insulating nanodomains, like trams running around blocks of houses, with one hole on each tramline. The hole pairs move in an elegant manner with hole pairs hopping from oxygen to oxygen via adjacent copper sites. The model explains the superconducting current being in the ab plane and it also explains the very short coherence lengths. Because the pairing force is strong, the model suggests that room-temperature superconductivity might be possible in carefully designed new oxide materials. (orig.) 22 refs.

  19. A two-phase charge-density real-space-pairing model of high-Tc superconductivity.

    Science.gov (United States)

    Humphreys

    1999-03-01

    It is usually assumed that high-T(c) superconductors have a periodic band structure and a periodic charge density, although amorphous low-T(c) superconductors are known. In this paper, it is suggested that the CuO(2) conduction planes of cuprate superconductors consist of regions of two different charge densities which do not normally repeat periodically. It is suggested that the pairing of holes occurs in real space in cuprate superconductors. It is proposed that the hole-pairing mechanism is magnetic exchange coupling and the pairing force is strong, the pairing energy being greater than kT at room temperature. The bound hole pair is essentially a bipolaron. A real-space model is very tentatively suggested in which the CuO(2) planes of YBa(2)Cu(3)O(7) contain nanodomains of a 3 x 3 hole lattice surrounded by interfaces one unit cell wide in which the holes are paired. In the superconducting state in this model, the existing hole pairs condense and move coherently and collectively around the insulating nanodomains, like trams running around blocks of houses, with one hole on each tramline. The hole pairs move in an elegant manner with hole pairs hopping from oxygen to oxygen via adjacent copper sites. The model explains the superconducting current being in the ab plane and it also explains the very short coherence lengths. Because the pairing force is strong, the model suggests that room-temperature superconductivity might be possible in carefully designed new oxide materials.

  20. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton p...

  1. Classical impurities and boundary Majorana zero modes in quantum chains

    Science.gov (United States)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  2. Detection, isolation and characterization of principle synthetic route indicative impurity in telmisartan

    OpenAIRE

    Srinivasan, V.; Sivaramakrishnan, H.; Karthikeyan, B

    2016-01-01

    An unknown impurity was detected in the telmisartan bulk drug (active pharmaceutical ingredient – API) using an isocratic reversed-phase high performance liquid chromatography (HPLC). This impurity was isolated by preparative HPLC. Spectral data of the isolated impurity were collected. Based on the spectral data deriving from two dimensional nuclear magnetic spectroscopy (2D-NMR) and mass spectrometry (MS), the impurity was characterized as “methyl 4′,4′-dibromo methyl biphenyl-2-carboxylate”...

  3. Investigation of Impurity Ion Transport with Laser Blow-off in HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    CUI Zheng-Ying; DONG Yun-Bo; DENG Wei; YANG Qing-Wei; DING Xuan-Tong; HUANG Yuan; SUN Ping; ZHENG Yong-Zhen; SHI Pei-Lan; LU Jie; FU Bing-Zhong; ZHANG Peng; PAN Yu-Dong

    2006-01-01

    @@ Non-recycling impurities are injected into ohmic HL-2A plasma for the first time. The impurities of titanium and aluminium are injected in the discharges with varying plasma density and current. The convection and diffusion process of the injected impurity ions during the inward phase are qualitatively investigated. The results show that the transport of impurities is much slower in the central region of the plasma than outside of it and that it is greatly enhanced during sawtooth crashes.

  4. The effect of magnetic impurity scattering in Au films

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The magnetic impurity scattering plays an important role in the phase coherence behavior of thin films.By using the thickness and disorder dependences of the low temperature logarithmic anomaly in resistivity we are able to determine the concentration of magnetic impurities in Au films and demonstrate that the low temperature saturation or plateau in phase decoherence time is closely related with the Kondo effect.

  5. Vortex-glass transformation within the surface superconducting state of β-phase Mo1-x Re x alloys

    Science.gov (United States)

    Sundar, Shyam; Chattopadhyay, M. K.; Sharath Chandra, L. S.; Rawat, R.; Roy, S. B.

    2017-02-01

    We have performed an experimental study on the temperature dependence of electrical resistivity ρ(T) and heat capacity C(T) of the Mo{}1-xRe x (x=0.20,0.25) alloy superconductors in different magnetic fields. In the presence of applied magnetic field, the electrical resistivity of these alloys goes to zero at a temperature well above the bulk superconducting transition temperature obtained with the help of heat capacity measurements in the same magnetic field. Our study indicates the presence of a surface superconducting state in these alloys, where the flux lines are pinned in the surface sheath of the superconductor. The configuration of the flux lines (two-dimensional pancake-like) in the surface sheath is understood in the realm of the flux-spot model. Experimental evidence in support of the surface mixed-state state or ‘Kulik vortex-state’ and the occurrence of a vortex-liquid to vortex-glass transition is presented.

  6. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  7. Influence of Pb-rich phases of precursor powder on microstructural evolution in the silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.;

    2010-01-01

    The influence of Pb-rich phases of precursor powder on microstructural evolution during the first heat treatment of the silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox ((Bi,Pb)-2223/Ag) superconducting tapes was studied by means of in situ synchrotron X-ray diffraction. Three monofilament tapes were fabricat...

  8. Anisotropic phase diagram and superconducting fluctuations of single-crystalline SmFeAsO0.85F0.15

    Science.gov (United States)

    Welp, U.; Chaparro, C.; Koshelev, A. E.; Kwok, W. K.; Rydh, A.; Zhigadlo, N. D.; Karpinski, J.; Weyeneth, S.

    2011-03-01

    We report on the specific-heat determination of the anisotropic phase diagram of single crystals of optimally doped SmFeAsO1-xFx. In zero field, we find a clear cusplike anomaly in C/T with ΔC/Tc=24 mJ/mol K2 at Tc=49.5 K. In magnetic fields along the c axis, pronounced superconducting fluctuations induce broadening and suppression of the specific-heat anomaly which can be described using three-dimensional lowest-Landau-level scaling with an upper critical field slope of -3.5 T/K and an anisotropy of Γ =8. The small value of ΔC/Tc yields a Sommerfeld coefficient γ ˜ 8 mJ/mol K2, indicating that SmFeAsO1-xFx is characterized by a modest density of states and strong coupling.

  9. Scattering effect of the well-ordered MgB4 impurity phase in two-step sintered polycrystalline MgB2 with glycine addition

    Science.gov (United States)

    Cai, Qi; Liu, Yongchang; Guo, Qianying; Ma, Zongqing

    2017-04-01

    Glycine-doped MgB2 bulk was prepared by two-step sintering in this study, first at 750 °C and then 900 °C. The MgB4 particles are induced to precipitate where the dislocations concentrated after C substitution or along the steps of screw dislocation during crystal growth, forming ordered MgB4 arrays throughout the MgB2 grain. By means of atomic force microscope, the detected magnetic domains are arranged in agreement with the ordered MgB4 particles after the measurement of magnetic hysteresis loop, which supported that the nano-scale MgB4 domain structure brought strong scattering effects and indicated that atomic force microscopy could test the role of the impurities. As a result, the extrapolating upper critical field H c2(0 K) is enhanced to 22.8 T for the sample with ordered MgB4, while only 18.1 T for the un-doped sample underwent the same sintering program. Besides, carbon substitution contributed to the enhancement of H c2 as well.

  10. Search for superconductivity in micrometeorites.

    Science.gov (United States)

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  11. THE IMPURITY OF SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1962-04-19

    Science is impure in two ways. There is not a 'pure' science. By this I mean that physics impinges on astronomy, on the one hand, and chemistry on biology on the other. And not only does each support its neighbors but derives sustenance from them. The same can be said of chemistry. Biology is, perhaps, the example par excellence today of an 'impure' science. Beyond this, there is no 'pure' science itself divorced from human values. The importance of science to the humanities and the humanities to science in their complementary contribution to the variety of human life grows daily. The need for men familiar with both is imperative. We are faced today with a social decision resulting from our progress in molecular genetics at least equal to, and probably greater than, that required of us twenty years ago with the maturity of nuclear power.

  12. Simulated Effects of Odd-Alkane Impurities in a Hexane Monolayer on Graphite

    OpenAIRE

    Pint, Cary L.; Roth, Michael W.

    2005-01-01

    We present the results of molecular dynamics simulations of odd alkane impurities present within the hexane (even alkane) monolayer. We simulate various temperatures at ca. 3%, 5%, 10%, and 15% impurities of propane, pentane, heptane, nonane, and undecane, each having a low-temperature solid phase belonging to a different space group as compared to hexane, to study the effects of impurities on the various phases and phase transitions for hexane monolayers that are well-characterized through p...

  13. Gaussian impurity moving through a Bose-Einstein superfluid

    Science.gov (United States)

    Pinsker, Florian

    2017-09-01

    In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.

  14. The effects of interstitial oxygen on superconducting electronic phases in strontium and oxygen co-doped La1.937Sr0.063CuO4+δ

    Institute of Scientific and Technical Information of China (English)

    Shen Cai-xia; Shen Xiao-Li; Lu Wei; Dong Xiao-Li; Li Zheng-Cai; Xiong Ji-Wu; Zhou Fang

    2008-01-01

    Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaClO solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc≈40K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.

  15. Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations

    Science.gov (United States)

    Kalagov, G. A.; Kompaniets, M. V.; Nalimov, M. Yu.

    2014-11-01

    We use quantum-field renormalization group methods to study the phase transition in an equilibrium system of nonrelativistic Fermi particles with the "density-density" interaction in the formalism of temperature Green's functions. We especially attend to the case of particles with spins greater than 1/2 or fermionic fields with additional indices for some reason. In the vicinity of the phase transition point, we reduce this model to a ϕ 4 -type theory with a matrix complex skew-symmetric field. We define a family of instantons of this model and investigate the asymptotic behavior of quantum field expansions in this model. We calculate the β-functions of the renormalization group equation through the third order in the ( 4 ∈)-scheme. In the physical space dimensions D = 2, 3, we resum solutions of the renormalization group equation on trajectories of invariant charges. Our results confirm the previously proposed suggestion that in the system under consideration, there is a first-order phase transition into a superconducting state that occurs at a higher temperature than the classical theory predicts.

  16. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na(1-x)FeAs.

    Science.gov (United States)

    Liu, Qingqing; Yu, Xiaohui; Wang, Xiancheng; Deng, Zheng; Lv, Yuxi; Zhu, Jinlong; Zhang, Sijia; Liu, Haozhe; Yang, Wenge; Wang, Lin; Mao, Hokwang; Shen, Guoyin; Lu, Zhong-Yi; Ren, Yang; Chen, Zhiqiang; Lin, Zhijun; Zhao, Yusheng; Jin, Changqing

    2011-05-25

    The effect of pressure on the crystalline structure and superconducting transition temperature (T(c)) of the 111-type Na(1-x)FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs(4) tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T(c)(P) behavior of Na(1-x)FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As-Fe-As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T(c) for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

  17. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  18. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  19. Some aspects regarding impurities profile in fipronil-HPLC method

    Directory of Open Access Journals (Sweden)

    Ana Csuma,

    2011-12-01

    Full Text Available Using a substance as active pharmaceutical ingredient in veterinary drug formulation requires the characterization of this substance as content in active compound and so in terms of impurities possiblepresent in it, the latter being a mandatory requirement for a drug application. Fipronil is a synthetic product belonging to pesticide class used in veterinary practice to manufacture of some products against fleas, given spot–on or in form of spray, in cats and dogs. The main impurities in fipronil include process related impuritiesand degradation products as a result of exposure to environmental conditions: reduction, oxidation, photolysis and hydrolysis. A HPLC method suitable for analytical separation of fipronil from its impurities was established. Separation was achieved on a reversed phase column using a mixture of methanol, acetonitrile and water as mobile phase. In the chosen chromatographic conditions the resolution between fipronil and its sulphone (the main impurity was > 3 and the tailing factor (T < 2.0. Related impurities have absorbed in thesame band of UV wavelength as the main compound fipronil. Comparing the area of impurities obtained for sample solution with the area of the main peak in diluted standard solution allowed the detection of impurities at concentration < 0.1 %. Chromatographic separation on the same analytical column and detection at 280 nm was validated for assay of the content of active substance in fipronil used as ingredient in drug formulations.

  20. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  1. Generalized Wilson chain for solving multichannel quantum impurity problems

    Science.gov (United States)

    Mitchell, Andrew K.; Galpin, Martin R.; Wilson-Fletcher, Samuel; Logan, David E.; Bulla, Ralf

    2014-03-01

    The numerical renormalization group is used to solve quantum impurity problems, which describe magnetic impurities in metals, nanodevices, and correlated materials within dynamical mean field theory. Here we present a simple generalization of the Wilson chain, which improves the scaling of computational cost with the number of conduction bands, bringing more complex problems within reach. The method is applied to calculate the t matrix of the three-channel Kondo model at T =0, which shows universal crossovers near non-Fermi-liquid critical points. A nonintegrable three-impurity problem with three bands is also studied, revealing a rich phase diagram and novel screening and overscreening mechanisms.

  2. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  3. Pressure-induced phase transitions and correlation between structure and superconductivity in iron-based superconductor Ce(O(0.84)F(0.16))FeAs.

    Science.gov (United States)

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing

    2013-07-15

    High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

  4. The interaction between a beam and a superconducting cavity module: Measurements in CESR and CESR-Phase 3 goals

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S.; Flynn, G.; Hartung, W.; Kirchgessner, J.; Moffat, D.; Muller, H.; Padamsee, H.; Pisharody, M.; Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

    1996-08-01

    Plans for the next generation of electron-positron colliders (B-factories and B-factory-like machines) call for high beam currents to produce luminosities of the order of 10 (exp 33). To store these high currents in a machine, special attention must be paied to the interaction of the beam with discontinuities in the surrounding vacuum chamber. RF cavities are among the biggest perturbations in accelerator vacuum chambers and are therefore among the biggest sources of beam instabilities. Accelerating structures of new machines are being designed to have smaller impedance to reduce the beam-cavity interaction. Prototypes for the cavity, input coupler, cryostat, and higher-order mode (HOM) loads were subjected and are tested in CESR. A superconducting (SRF) cavity was installed in addition to the four five-cell normal conducting cavities. As a result, the calorimetry and RF power results agree with predictions up to their respective uncertainties. The results of wake potential sampling suggested that the wake fields of the SRF cavity will not limit the performance of CESR in bunch train operation. No beam instabilities or dangerous HOMs were encountered while sweeping the HOM frequencies using the cavity tuner or while exciting multipole HOMs by displacing the beam off axis. (G.K.)

  5. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  6. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  7. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition ; impurity effects.

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, A. J.

    1999-01-13

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior.

  8. Impurity sources in TEXTOR

    Science.gov (United States)

    Pospieszczyk, A.; Bay, H. L.; Bogen, P.; Hartwig, H.; Hintz, E.; Konen, L.; Ross, G. G.; Rusbuldt, D.; Samm, U.; Schweer, B.

    1987-02-01

    The deuterium, oxygen and carbon fluxes from the main limiter and the deuterium fluxes from the wall are measured in TEXTOR for an "all carbon" surrounding as a function of central density ne, of applied ICRH-power and of different wall conditions (carbonization). For this purpose, emission spectroscopy both with filter systems and spectrometers has been used. It is found that a major release mechanism for light impurities is via the formation of molecules. Oxygen seems to enter the discharge from the liner via O-D containing molecules, whereas the limiter acts as the main carbon source by the release of hydro-carbons as indicated by the observed CD-band spectra. Both oxygen and carbon fluxes are reduced by about a factor of two after a fresh carbonization. Above a certain critical density the plasma detaches from the limiter and forms a stable discharge with a radiation cooled boundary layer and with a major fraction of particles now reaching the wall instead of the limiter. The critical density rises with decreasing impurity fluxes or with increasing heating powers.

  9. Separation mechanism of chiral impurities, ephedrine and pseudoephedrine, found in amphetamine-type substances using achiral modifiers in the gas phase.

    Science.gov (United States)

    Holness, Howard K; Jamal, Adeel; Mebel, Alexander; Almirall, José R

    2012-11-01

    A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte-modifier clusters was also performed, and showed either "bridged" or "independent" binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.

  10. On the state of Mn impurity implanted in Si

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, A. F., E-mail: rmdp@girmet.ru [State Institute for Rare Metals (Russian Federation); Bublik, V. T. [Moscow State Institute of Steel and Alloys (Russian Federation); Vdovin, V. I. [Institute for Chemical Problems of Microelectronics (Russian Federation); Agafonov, Yu. A. [Russian Academy of Sciences, Institute of Microelectronics, Technology, and High Purity Materials (Russian Federation); Balagurov, L. A. [State Institute for Rare Metals (Russian Federation); Zinenko, V. I. [Russian Academy of Sciences, Institute of Microelectronics, Technology, and High Purity Materials (Russian Federation); Kulemanov, I. V. [State Institute for Rare Metals (Russian Federation); Shcherbachev, K. D. [Moscow State Institute of Steel and Alloys (Russian Federation)

    2009-07-15

    The state of manganese impurity in implanted silicon at implantation doses of up to 5 x 10{sup 16} cm{sup -2} has been investigated by X-ray diffraction and transmission electron microscopy. It is established that, after short-term vacuum annealing at 850{sup o}C, most of the implanted manganese impurities are in microinclusions up to 20 nm in size formed by a tetragonal silicide phase of the Mn{sub 15}Si{sub 26} type.

  11. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  12. Anisotropic superconductivity driven by kinematic interaction

    Science.gov (United States)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  13. Superconductivity in MgB2: Clean or Dirty?

    NARCIS (Netherlands)

    Mazin, I.I.; Andersen, O.K.; Jepsen, O.; Dolgov, O.V.; Kortus, J.; Golubov, A.A.; Kuz'menko, A.B.; Marel, van der D.

    2002-01-01

    A large number of experimental facts and theoretical arguments favor a two-gap model for superconductivity in MgB2. However, this model predicts strong suppression of the critical temperature by interband impurity scattering and, presumably, a strong correlation between the critical temperature and

  14. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  15. Nanoscale superconducting-gap variations and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    NARCIS (Netherlands)

    F. Massee; Y. Huang; R. Huisman; S. de Jong; J.B. Goedkoop; M.S. Golden

    2009-01-01

    We present tunneling data from superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherencelike peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Δ. The average peak-to-peak

  16. Global and local superconductivity in boron-doped granular diamond.

    Science.gov (United States)

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  17. Superconducting Dome in a Gate-Tuned Band Insulator

    NARCIS (Netherlands)

    Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y.

    2012-01-01

    A dome-shaped superconducting region appears in the phase diagrams of many unconventional superconductors. In doped band insulators, however, reaching optimal superconductivity by the fine-tuning of carriers has seldom been seen. We report the observation of a superconducting dome in the temperature

  18. Gutzwiller wave function for finite systems: superconductivity in the Hubbard model

    Science.gov (United States)

    Tomski, Andrzej; Kaczmarczyk, Jan

    2016-05-01

    We study the superconducting phase of the Hubbard model using the Gutzwiller variational wave function (GWF) and the recently proposed diagrammatic expansion technique (DE-GWF). The DE-GWF method works on the level of the full GWF and in the thermodynamic limit. Here, we consider a finite-size system to study the accuracy of the results as a function of the system size (which is practically unrestricted). We show that the finite-size scaling used, e.g. in the variational Monte Carlo method can lead to significant, uncontrolled errors. The presented research is the first step towards applying the DE-GWF method in studies of inhomogeneous situations, including systems with impurities, defects, inhomogeneous phases, or disorder.

  19. Recent trends in the impurity profile of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Kavita Pilaniya

    2010-01-01

    Full Text Available Various regulatory authorities such as the International Conference on Harmonization (ICH, the United States Food and Drug administration (FDA, and the Canadian Drug and Health Agency (CDHA are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs. The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC-Mass Spectroscopy (MS, LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.

  20. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations.

    Science.gov (United States)

    Kim, Ki Chul; Allendorf, Mark D; Stavila, Vitalie; Sholl, David S

    2010-09-07

    First-principles calculations represent a potent tool for screening metal hydride mixtures that can reversibly store hydrogen. A number of promising new hydride systems with high hydrogen capacity and favorable thermodynamics have been predicted this way. An important limitation of these studies, however, is the assumption that H(2) is the only gas-phase product of the reaction, which is not always the case. This paper summarizes new theoretical and numerical approaches that can be used to predict thermodynamic equilibria in complex metal hydride systems with competing reaction pathways. We report thermochemical equilibrium calculations using data obtained from density functional theory (DFT) computations to describe the possible occurrence of gas-phase products other than H(2) in three complex hydrides, LiNH(2), LiBH(4), and Mg(BH(4))(2), and mixtures of these with the destabilizing compounds LiH, MgH(2), and C. The systems under investigation contain N, C, and/or B and thus have the potential to evolve N(2), NH(3), hydrocarbons, and/or boranes as well as H(2). Equilibria as a function of both temperature and total pressure are predicted. The results indicate that significant amounts of these species can form under some conditions. In particular, the thermodynamic model predicts formation of N(2) and NH(3) as products of LiNH(2) decomposition. Comparison with published experimental data indicates that N(2) formation must be kinetically limited. Our examination of C-containing systems indicates that methane is the stable gas-phase species at low temperatures, not H(2). On the other hand, very low amounts of boranes (primarily BH(3)) are predicted to form in B-containing systems.

  1. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  2. The effect of Al2O3 nanopowder addition on the phase formation and the superconducting properties of Bi1.6Pb0.4Sr1.9Ca2.1Cu3O10-y

    Directory of Open Access Journals (Sweden)

    A Aftabi

    2009-08-01

    Full Text Available   In this work Bi1.6Pb0.4Sr1.9Ca2.1Cu3O10-y superconducting system (Bi2223 has been prepared by solid state reaction and the effect of nanoalumina additive on the phase formation and supercoducting properties have been investigated. XRD investigations show that addition of 0.2 wt% of nanoalumina on the superconducting system improved Bi-2223 phase formation . The results show that Jc increases from 36 A/cm2 for the nanoalumina free sample to 107 A/cm2 for the sample with 0.5 wt% nanoalumina.On the other hand results show that the transition temperature (Tc of all samples is around 108 K and addition of nanoalumina has not affected Tc significantly .

  3. Tuning the competing phases of bilayer ruthenate C a3R u2O7 via dilute Mn impurities and magnetic field

    Science.gov (United States)

    Zhu, M.; Peng, J.; Tian, W.; Hong, T.; Mao, Z. Q.; Ke, X.

    2017-04-01

    We have systematically investigated the evolution of the magnetic structure of the bilayer ruthenate C a3(Ru1-xM nx) 2O7 induced upon Mn doping. For 0 phase boundary. Below TMIT, the magnetic transition is accompanied by a structural transition, as well as a dramatic change in the electronic properties from a Mott insulator to a localized phase. On the contrary, an incommensurate-to-commensurate spin structure transition is observed for TMIT

  4. Critical quasiparticles in single-impurity and lattice Kondo models

    Science.gov (United States)

    Vojta, M.; Bulla, R.; Wölfle, P.

    2015-07-01

    Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.

  5. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  6. Anisotropic phase diagram and superconducting fluctuations in SmFeAsO{sub 0.85}F{sub 0.15}.

    Energy Technology Data Exchange (ETDEWEB)

    Welp, U.; Chaparro, C.; Koshelev, A. E.; Kwok, W. K.; Rydh, A.; Zhigadlo, N. D.; Karpinski, J.; Weyeneth, S. (Materials Science Division); (Stockholm Univ.); (ETH Zurich); (Univ. Zurich)

    2011-03-24

    We report on the specific-heat determination of the anisotropic phase diagram of single crystals of optimally doped SmFeAsO{sub 1-x}F{sub x}. In zero field, we find a clear cusplike anomaly in C/T with {Delta}C/T{sub c} = 24 mJ/mol K{sup 2} at T{sub c} = 49.5 K. In magnetic fields along the c axis, pronounced superconducting fluctuations induce broadening and suppression of the specific-heat anomaly which can be described using three-dimensional lowest-Landau-level scaling with an upper critical field slope of -3.5 T/K and an anisotropy of {Lambda} = 8. The small value of {Delta}C/T{sub c} yields a Sommerfeld coefficient {gamma} {approx} 8 mJ/mol K{sup 2}, indicating that SmFeAsO{sub 1-x}F{sub x} is characterized by a modest density of states and strong coupling.

  7. Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures.

    Science.gov (United States)

    Gresty, Nathalie C; Takabayashi, Yasuhiro; Ganin, Alexey Y; McDonald, Martin T; Claridge, John B; Giap, Duong; Mizuguchi, Yoshikazu; Takano, Yoshihiko; Kagayama, Tomoko; Ohishi, Yasuo; Takata, Masaki; Rosseinsky, Matthew J; Margadonna, Serena; Prassides, Kosmas

    2009-11-25

    The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and electronic responses to the application of pressure. T(c) depends sensitively on applied pressure attaining a broad maximum of 23.3 K at approximately 3 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting ground state. High-resolution synchrotron X-ray diffraction shows that the superconducting phase is metrically orthorhombic at ambient pressure but pressurization to approximately 3 GPa leads to a structural transformation to a more distorted structure with monoclinic symmetry. The exact coincidence of the crystal symmetry crossover pressure with that at which T(c) is maximum reveals an intimate link between crystal and electronic structures of the iron chalcogenide superconductors.

  8. Electron-Phonon Anomaly Related to Charge Stripes: Static Stripe Phase Versus Optimally Doped Superconducting La1.85Sr0.15CuO4

    Science.gov (United States)

    Reznik, D.; Pintschovius, L.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.

    2007-05-01

    Inelastic neutron scattering was used to study the Cu-O bond-stretching vibrations in optimally doped La1.85Sr0.15CuO4 (Tc = 35 K) and in two other cuprates showing static stripe order at low temperatures, i.e. La1.48Nd0.4Sr0.12CuO4 and La1.875Ba0.125CuO4. All three compounds exhibit a very similar phonon anomaly, which is not predicted by conventional band theory. It is argued that the phonon anomaly reflects a coupling to charge inhomogeneities in the form of stripes, which remain dynamic in superconducting La1.85Sr0.15CuO4 down to the lowest temperatures. These results show that the phonon effect indicating stripe formation is not restricted to a narrow region of the phase diagram around the so-called 1/8 anomaly but occurs in optimally doped samples as well.

  9. Electron Spin Pairing and the Phase Diagram of High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; HAN Ru-Shan

    2001-01-01

    The origin of the instability of the normal state of electrons in the superconducting copper oxides is shown by the K-J model, in which the superexchange (K) between local moments and the Kondo exchange ( J) between electron and local moment are considered. The suppression of superexchange via impurity doping may induce effective spin coupling between electrons and triplet pairing (S = 1, Sz = 0). The spin pairing theory explains the phase diagram of high-To superconductors, especially the superconducting transition temperature Tc, the pseudogap temperature T* and the magnetic crossover temperature Tn as a function of the doped hole concentration. The universal expression for the empirical law of the superconducting transition temperature is derived from the theory.

  10. Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Trezza, M.; Cirillo, C.; Sabatino, P.; Carapella, G.; Attanasio, C. [CNR-SPIN Salerno and Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, Fisciano I-84084 (Italy); Prischepa, S. L. [Belarusian State University of Informatics and Radioelectronics, P. Browka 6, Minsk 220013 (Belarus)

    2013-12-16

    We report on the transport properties of an array of N∼30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H, which can be both consistently described by quantum tunneling of phase slips.

  11. Direct Spectroscopic Evidence for Phase Competition between the Pseudogap and Superconductivity in Bi2Sr2CaCu2O8+δ

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Makoto [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nowadnick, Elizabeth A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); He, Rui-Hua [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vishik, Inna M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Moritz, Brian [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of North Dakota, Grand Forks, ND (United States); He, Yu [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Tanaka, Kiyohisa [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Osaka Univ. (Japan); Moore, Robert G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, Donghui [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yoshida, Yoshiyuki [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Ishikado, Motoyuki [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Japan Atomic Energy Agency, Tokai (Japan); Sasagawa, Takao [Tokyo Inst. of Technology (Japan); Fujita, Kazuhiro [Univ. of Tokyo (Japan); Cornell Univ., Ithaca, NY (United States); Ishida, Shigeyuku [Univ. of Tokyo (Japan); Uchida, Shinichi [Univ. of Tokyo (Japan); Eisaki, Hiroshi [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Hussain, Zahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Zhi-Xun [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)

    2014-11-02

    In the high-temperature (Tc) cuprate superconductors, increasing evidence suggests that the pseudogap, existing below the pseudogap temperature T*, has a distinct broken electronic symmetry from that of superconductivity. Particularly, recent scattering experiments on the underdoped cuprates have suggested that a charge ordering competes with superconductivity. However, no direct link of this physics and the important low-energy excitations has been identified. We report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as a compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with a theoretical calculation confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. Our observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two intertwined phases and the complex phase diagram near the pseudogap critical point.

  12. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Bahner, C. T.; Shoun, R. R.; McDowell, W. J.

    1977-09-01

    Dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl((dibutylcarbamoyl)methyl)-phosphonate (DBDBCMP) and di(2-ethylhexyl)((diethylcarbamoyl)-methyl)phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl/sub 4/ as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen ((diethylcarbamoyl)methyl)-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions.

  13. Determining the spin-orbit coupling via spin-polarized spectroscopy of magnetic impurities

    Science.gov (United States)

    Kaladzhyan, V.; Simon, P.; Bena, C.

    2016-10-01

    We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic impurities in two-dimensional as well as one-dimensional systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a combination of a numerical T -matrix approximation and a direct analytical calculation of the bound-state wave function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the FT of the spin-polarized LDOS, a quantity accessible via spin-polarized scanning tunneling microscopy, allows to accurately extract the strength of the spin-orbit coupling. Also, we confirm that the presence of magnetic impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have access to the value of the spin-orbit coupling.

  14. Probing electronic phase transitions with phonons via inelastic neutron scattering: superconductivity in borocarbides, charge and magnetic order in manganites

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.

    2007-11-02

    The present thesis concentrates on the signatures of strong electron-phonon coupling in phonon properties measured by inelastic neutron scattering. The inelastic neutron scattering experiments were performed on the triple-axis spectrometers 1T and DAS PUMA at the research reactors in Saclay (France) and Munich (Germany), respectively. The work is subdivided into two separate chapters: In the first part, we report measurements of the lattice dynamical properties, i.e. phonon frequency, linewidth and intensity, of the conventional, i.e. phonon-mediated, superconductor YNi{sub 2}B{sub 2}C of the rare-earth-borocarbide family. The detailed check of theoretical predictions for these properties, which were calculated in the theory group of our institute, was one major goal of this work. We measured phonons in the normal state, i.e. T>T{sub c}, for several high symmetry directions up to 70 meV. We were able to extract the full temperature dependence of the superconducting energy gap 2{delta}(T) from our phonon scans with such accuracy that even deviations from the weak coupling BCS behaviour could be clearly observed. By measuring phonons at different wave vectors we demonstrated that phonons are sensitive to the gap anisotropy under the precondition, that different phonons get their coupling strength from different parts of the Fermi surface. In the second part, we investigated the properties of Mn-O bond-stretching phonons in the bilayer manganite La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}. At the doping level x=0.38 this compound has an ferromagnetic groundstate and exhibits the so-called colossal magnetoresistance effect in the vicinity of the Curie temperature T{sub C}. The atomic displacement patterns of the investigated phonons closely resemble possible Jahn-Teller distortions of the MnO{sub 6} octahedra, which are introduced in this compound by the Jahn-Teller active Mn{sup 3+} ions. We observed strong renormalizations of the phonon frequencies and clear peaks of

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Hofstadter's Butterfly and Phase Transition of Checkerboard Superconducting Network in a Magnetic Field

    Science.gov (United States)

    Hou, Jing-Min; Tian, Li-Jim

    2010-03-01

    We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes-Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum.

  16. The road to superconducting spintronics

    Science.gov (United States)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  17. Effect of impurities on the successive phase transitions in (Cs sub 1 sub - sub x Rb sub x) sub 2 ZnI sub 4 compounds

    CERN Document Server

    Aleksandrova, I P; Falvello, L R; Torres, J M; Sukhovskii, A A

    2002-01-01

    The heat capacity, nuclear quadrupole resonance (NQR) and x-ray diffraction of (Cs sub 1 sub - sub x Rb sub x) sub 2 ZnI sub 4 single crystals have been measured, for x=0, 0.001, 0.005, 0.01, 0.025 and 0.05. The normal to incommensurate (N-Inc) phase transition at T sub I , the incommensurate to commensurate (Inc-C) lock-in transition at T sub L and the structural commensurate monoclinic to triclinic transition at T sub L sub T , observed in the parent compound (x=0), takes place for x=0, 0.001, 0.005 and 0.01. For x=0.025 only T sub I and T sub L are detected, while for x=0.05 no transitions were observable. The values of T sub I and T sub L increase with x while T sub L sub T decreases and disappears at the concentration x=0.025. The effect of defects, besides modifying the transition temperatures, is that of broadening and lowering the heat capacity anomaly at the lock-in transition until its total quenching for x=0.05. No observable hysteresis is detected in this transition. NQR and x-ray diffraction data...

  18. Load frequency stabilization by coordinated control of Thyristor Controlled Phase Shifters and superconducting magnetic energy storage for three types of interconnected two-area power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Praghnesh [Department of Electrical Engineering, Charotar Institute of Technology, Changa 388 421, Gujarat (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur 713 209, West Bengal (India); Roy, Ranjit [Department of Electrical Engineering, S.V. National Institute of Technology, Surat 395 007, Gujarat (India)

    2010-12-15

    In this paper, automatic generation control with interconnected two-area multi-unit all-hydro power system and two more test systems as all-thermal and thermal-hydro mixed haves been investigated. The transfer function of hydro turbine having non-minimum phase characteristics makes it different from the steam turbine. Upon application of small load perturbation to such all-hydro system, the frequency is severely disturbed and the system eventually becomes unstable. To stabilize the system for such load disturbance, comparative transient performance of two cases as (a) Thyristor Controlled Phase Shifter (TCPS) installed in series with the tie-line in coordination with Superconducting Magnetic Energy Storage (SMES) and (b) SMES located at each terminal of both areas are analyzed. It is observed that the case (b) i.e. SMES located at each terminal of both areas suppresses the frequency oscillations more effectively in integral controller assisted AGC of two-area multi-unit all-hydro system and the other two systems as well. In addition, the effectiveness of proposed frequency stabilizers is guaranteed by analyzing the transient responses of the system with different system parameters, various load patterns and in the event of temporary and permanent tie-line outage. Gains of the integral controller in AGC loop and parameters of TCPS and SMES are optimized with the help of a relatively novel particle swarm optimization, developed by the authors, called as craziness-based particle swarm optimization (CRPSO). The optimizing performance has been compared to that of real-coded genetic algorithm (RGA) to establish its superiority. (author)

  19. On the effect of Cd doping for Ca in La 3CaBa 3Cu 7O y superconducting cuprate

    Science.gov (United States)

    Kandyel, Elsayed; Elsabawy, Khaled M.

    2006-02-01

    We report on the influence of isovalent substitution of Cd 2+ for Ca 2+ on the structural, electrical and magnetic properties of La 3CaBa 3Cu 7O y. Based on X-ray diffraction and DSC measurements, Cd can replace upto 100% of Ca ions without affecting the basic crystal structure or the formation of any impurity phases. Both Tc and oxygen content decrease monotonously with Cd content. Contrary to Y-123, the transition from the region of maximal Tc to the non-superconducting state takes place within a narrow range of oxygen content. The difference in chemical properties between Cd and Ca, as well as the observed concomitant decrease in the oxygen content, is believed to be responsible for the structural changes and suppression of superconductivity through the reduction of oxygen in the Cu-O layers when Cd replaces Ca.

  20. On the effect of Cd doping for Ca in La{sub 3}CaBa{sub 3}Cu{sub 7}O {sub y} superconducting cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Kandyel, Elsayed [Faculty of Science, Department of Chemistry, Tanta University, Tanta 31527 (Egypt)]. E-mail: skandyel@yahoo.com; Elsabawy, Khaled M. [Faculty of Science, Department of Chemistry, Tanta University, Tanta 31527 (Egypt)

    2006-02-15

    We report on the influence of isovalent substitution of Cd{sup 2+} for Ca{sup 2+} on the structural, electrical and magnetic properties of La{sub 3}CaBa{sub 3}Cu{sub 7}O {sub y}. Based on X-ray diffraction and DSC measurements, Cd can replace upto 100% of Ca ions without affecting the basic crystal structure or the formation of any impurity phases. Both T {sub c} and oxygen content decrease monotonously with Cd content. Contrary to Y-123, the transition from the region of maximal T {sub c} to the non-superconducting state takes place within a narrow range of oxygen content. The difference in chemical properties between Cd and Ca, as well as the observed concomitant decrease in the oxygen content, is believed to be responsible for the structural changes and suppression of superconductivity through the reduction of oxygen in the Cu-O layers when Cd replaces Ca.

  1. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  2. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    N. Chamel

    2017-09-01

    Neutron stars, the compact stellar remnants of core-collapse supernova explosions, are unique cosmic laboratories for exploring novel phases of matter under extreme conditions. In particular, the occurrence of superfluidity and superconductivity in neutron stars will be briefly reviewed.

  3. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    Science.gov (United States)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  4. Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators

    Science.gov (United States)

    Fratino, L.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2016-06-01

    High-temperature superconductivity emerges upon doping a state of matter that is insulating because of interactions. A widely studied model considers one orbital per CuO2 unit cell on a square lattice with a strong intraorbital repulsion that leads to a so-called Mott-Hubbard insulator. Here we solve a model that takes into account, within each unit cell, two oxygen orbitals where there is no electron-electron repulsion and a copper orbital with strong electron-electron repulsion. The insulating phase is a so-called charge-transfer insulator, not a Mott-Hubbard insulator. Using cluster dynamical mean-field theory with continuous-time quantum Monte Carlo as an impurity solver and 12 atoms per cluster, we report the normal and superconducting phase diagram of this model as a function of doping, interaction strength, and temperature. As expected, the three-orbital model is consistent with the experimental observation that doped holes are located predominantly on oxygens, a result that goes beyond the one-orbital model. Nevertheless, the phase boundary between pseudogap and correlated metal, the Widom line, and the origin of the pairing energy (kinetic vs potential) are similar to the one-orbital model, demonstrating that these are emergent phenomena characteristic of doped Mott insulators, independently of many microscopic details. Broader implications are discussed.

  5. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K.

    Science.gov (United States)

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-12

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

  6. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  7. Effects of oxide precursors on superconducting properties of polycrystalline SmFeAsO1-xFx

    Science.gov (United States)

    Yuan, F. F.; Ding, Y.; Sun, Y.; Zhuang, J. C.; Zhou, W.; Li, G. Z.; Sumption, M.; Li, X. W.; Shi, Z. X.

    2013-12-01

    A series of polycrystalline SmFeAsO1-xFx samples were synthesized by one-step and two-step method at ambient pressure using different oxide precursors, namely As2O3, Fe2O3 and nano-Fe2O3 powder, as the source of element O. Results of X-ray diffraction and magnetic measurements manifest that starting oxides affected the phase formation and superconducting properties of SmFeAsO1-xFx. As2O3 as oxide precursor contributes to the fast formation of superconducting phase for a short period of sintering time. And samples prepared using As2O3 show higher superconducting transition temperature Tc and more stable fluorine doping level. Compared with Fe2O3, nano-Fe2O3 promotes fluorine doping into the O site. While using Fe2O3 leads to higher level of Fe and SmOF impurities. The critical current density Jcm were derived from magnetic hysteresis loops. Sample prepared using As2O3 shows higher Jcm in low temperature and high magnetic fields.

  8. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Science.gov (United States)

    Hecht, T.; Weichselbaum, A.; von Delft, J.; Bulla, R.

    2008-07-01

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap Δ. This allows us to calculate the impurity spectral function A(ω) very accurately for frequencies |ω|~Δ, and to resolve, in a certain parameter regime, sharp peaks in A(ω) close to the gap edge.

  9. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, T; Weichselbaum, A; Delft, J von [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen (Germany); Bulla, R [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)], E-mail: Theresa.Hecht@physik.uni-muenchen.de

    2008-07-09

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap {delta}. This allows us to calculate the impurity spectral function A({omega}) very accurately for frequencies |{omega}|{approx}{delta}, and to resolve, in a certain parameter regime, sharp peaks in A({omega}) close to the gap edge.

  10. Refractometry of TGS crystals doped with L-threonine impurity under uniaxial pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stadnyk, V. I., E-mail: vasylstadnyk@ukr.net; Kiryk, Yu. I. [Lviv National University (Ukraine)

    2013-07-15

    The temperature and spectral dependences of the refractive indices of triglycine sulphate (TGS) crystals doped with L-threonine impurity have been investigated. It is established that the introduction of an impurity weakens the temperature dependence of refractive indices. The electronic polarizability, refractions, and parameters of UV oscillators of mechanically deformed impurity crystals are calculated. The temperature coefficients of the phase transition shift are determined.

  11. Suppression of magnetism and development of superconductivity within the collapsed tetragonal phase of Ca[subscript 0.67]Sr[subscript 0.33]Fe[subscript 2]As[subscript 2] under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J.R.; Butch, N.P.; Kirshenbaum, K.; Saha, S.R.; Samudrala, G.; Weir, S.T.; Vohra, Y.K.; Paglione, J. (LLNL); (UAB); (Maryland)

    2012-10-24

    Structural and electronic characterizations of (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} have been performed as a function of pressure up to 12 GPa using conventional and designer diamond anvil cells. The compound (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} behaves intermediately between its end members, displaying a suppression of magnetism and the onset of superconductivity. Like other members of the AFe{sub 2}As{sub 2} family, (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} undergoes a pressure-induced isostructural volume collapse, which we associate with the development of As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase abruptly cuts off the magnetic state and supports superconductivity with a maximum T{sub c} = 22.2 K. The maximum T{sub c} of the superconducting phase is not strongly correlated with any structural parameter, but its proximity to the abrupt suppression of magnetism as well as the volume-collapse transition suggests that magnetic interactions and structural inhomogeneity may play a role in its development.

  12. Impurity Influence on Nitride LEDs

    Directory of Open Access Journals (Sweden)

    O.I. Rabinovich

    2014-07-01

    Full Text Available Light emitting diodes (LEDs are widely used nowadays. They are used in major parts of our life. But it is still necessary to improve their characteristics. In this paper the impurity and Indium atoms influence on the LEDs characteristics is investigated by computer simulation. Simulation was carried out in Sim Windows. The program was improved for this purpose by creating new files for AlGaInN heterostructure and devices including more than 25 basic parameters. It was found that characteristics depend on impurity and indium atoms changes a lot. The optimum impurity concentration for doping barriers between quantum wells was achieved. By varying impurity and Indium concentration the distribution in AlGaInN heterostructure LEDs characteristics could be improved.

  13. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  14. Heavy fermion superconductivity

    Science.gov (United States)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  15. Phase diagram of K(x)Fe(2-y)Se(2-z)S(z) and the suppression of its superconducting state by an Fe2-Se/S tetrahedron distortion.

    Science.gov (United States)

    Lei, Hechang; Abeykoon, Milinda; Bozin, Emil S; Wang, Kefeng; Warren, J B; Petrovic, C

    2011-09-23

    We report structurally tuned superconductivity in a K(x)Fe(2-y)Se(2-z)S(z) (0 ≤ z ≤ 2) phase diagram. Superconducting T(c) is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T(c) coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.

  16. Structural characteristics of the new high-T/sub c/ superconducting phase Bi/sub 2/ Sr/sub 2/ Ca Cu/sub 2/ O/sub 8+x/

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, E.; Orozco, E.; Fuentes-Maya, J.; Mendoza, A.; Gasga, J.R.; Martinez, L.; Perez, R.; Garcia, A.; Schabes, P.S.; Acosta, D.

    1988-01-01

    A structural characterization of the superconducting phases in Bi/sub 2/ Sr/sub 2/ Ca Cu/sub 2/ O/sub 8+x/ is carried out. X-ray measurements are in agreement with recently reported diffraction patterns indicating an orthorhombic structure with large c-axis parameter (/approx/ 30A). Twin boundaries which are commonly found in high-T/sub c/ superconducting compounds based on Y or rare earths are however not frequent in these new type of superconductors. Transmission Electron Microscope images show a layered type of structure and electron diffraction patterns which confirm the orthorhombic structure. The resistivity measurements show a large drop at 100/sup 0/K with a T/sub c/ of the order of 76/sup 0/K.

  17. Stripes and superconductivity in cuprates

    Science.gov (United States)

    Tranquada, John M.

    2012-06-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  18. Stripes and superconductivity in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov [Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2012-06-01

    Holes doped into the CuO{sub 2} planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  19. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    -TC superconductors (Tamegai et al, and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al.We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.

  20. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  1. Theoretical visualization of atomic-scale impurity states in Fe-based superconductors

    Science.gov (United States)

    Choubey, Peayush; Hirschfeld, Peter; Berlijn, Tom; Cao, Chao

    2013-03-01

    We study the impurity induced local density of states (LDOS) in Fe-based superconductors, incorporating Wannier functions to obtain a higher resolution derived from a downfolding of density functional theory bands onto a 10-Fe tight-binding model. This enables us to compare our results with those obtained experimentally using STM. We solve the ten orbital Bogoliubov-de Gennes (BdG) equations for the single impurity problem and obtain the superconducting state lattice space Green's function, which is then transformed to the Wannier basis. The utility and limitations of this approximation are discussed. PJH and PC were supported by DOE DE-FG02-05ER46236.

  2. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  3. Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Nineteenth quarterly report, April 1980-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Hanes, M.H.; Mollenkopf, H.C.; McCormick, J.R.

    1980-07-01

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Nine 4 ohm-cm p type silicon ingots were grown and evaluated in support of the experimental program this quarter. Of these, three were polycrystalline ingots doped with Cr, Mo, and V, respectively, produced under conditions which successfully eliminated the metal-rich inclusions formed when growth of these heavily-doped specimens was attempted during the last quarter. Evaluation of polycrystalline ingots doped to the mid 10/sup 13/ cm/sup -3/ range with Ti or V showed little evidence for grain boundary segregation. Deep level spectroscopy on both as-grown wafers and solar cells showed little variation in impurity concentration from place to place across the ingot regardless of the presence of grain boundaries or other structural features. Deep level spectroscopy was also used to monitor the electrically active impurity concentrations in ingots to be used for process studies, aging experiments, and high efficiency cells. The basic aspects of a model to describe efficiency behavior in high efficiency cells have been formulated and a computer routine is being implemented for back field type devices to analyze the functional relationships between impurity concentrations and cell performance.

  4. Power balance and characterization of impurities in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.

    1993-12-31

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T{sub e} and higher n{sub e} than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  5. Removal of impurity phases from electrochemical devices

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a solid oxide cell comprising a support layer, a first electrode layer, an electrolyte layer, and a second cathode layer, wherein at least one of the electrode layers comprises electrolyte material, a catalyst and agglomerated particles selected from the group...... consisting of alkali oxides, earth alkali oxides and transition metal oxides....

  6. Suppression of superconductivity by twin boundaries in FeSe.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2012-09-28

    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90° change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45° to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experimental and theoretical findings in other iron pnictides. Furthermore, vortices appear to accumulate on twin boundaries, consistent with the degraded superconductivity there. The variation in superconductivity is likely caused by the increased Se height in the vicinity of twin boundaries, providing the first local evidence for the importance of this height to the mechanism of superconductivity.

  7. Detection, isolation and characterization of principle synthetic route indicative impurity in telmisartan

    Directory of Open Access Journals (Sweden)

    V. Srinivasan

    2016-11-01

    Full Text Available An unknown impurity was detected in the telmisartan bulk drug (active pharmaceutical ingredient – API using an isocratic reversed-phase high performance liquid chromatography (HPLC. This impurity was isolated by preparative HPLC. Spectral data of the isolated impurity were collected. Based on the spectral data deriving from two dimensional nuclear magnetic spectroscopy (2D-NMR and mass spectrometry (MS, the impurity was characterized as “methyl 4′,4′-dibromo methyl biphenyl-2-carboxylate”. The arrived structure was further confirmed by theoretical studies.

  8. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Impurity features in Ni-YSZ-H2-H2O electrodes

    DEFF Research Database (Denmark)

    Utz, A.; Hansen, Karin Vels; Norrman, Kion;

    2011-01-01

    -of-flight secondary ion mass spectrometry). This analysis yields comprehensive information on composition and lateral distribution of impurity species as well as the size of impurity features. Small impurity striations are found at the triple phase boundary (TPB) as well as on the former electrode......–electrolyte interface and the impurity features were found to be influenced by the electrode configuration and the initial behavior of the Ni electrode during thermal exposure (creep or shrinkage).Furthermore, the electrochemical performance (the line specific resistance LSR) was compared to data reported for Ni point...... anodes. Good agreement was obtained for data with comparable impurity features.Additionally, an order of magnitude estimation of the effect of SiO2 content on surface coverage with an impurity film is performed for different electrode designs (point, patterned and cermet anode) and shows different...

  10. The crystallography of color superconductivity

    CERN Document Server

    Bowers, J A; Bowers, Jeffrey A.; Rajagopal, Krishna

    2003-01-01

    We describe the crystalline phase of color superconducting quark matter. This phase may occur in quark matter at densities relevant for compact star physics, with possible implications for glitch phenomena in pulsars. We use a Ginzburg-Landau approach to determine that the crystal has a face-centered-cubic (FCC) structure. Moreover, our results indicate that the phase is robust, with gaps, critical temperature, and free energy comparable to those of the color-flavor-locked (CFL) phase. Our calculations also predict ``crystalline superfluidity'' in ultracold gases of fermionic atoms.

  11. Proposed experimental test of the theory of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu

    2016-06-15

    Highlights: • The conventional theory of superconductivity predicts no charge flow when the normal-superconductor phase boundary moves. • The theory of hole superconductivity predicts flow and counterflow of charge. • An experiment to measure a voltage is proposed. • No voltage will be measured if the conventional theory is correct. • A voltage will be measured if the theory of hole superconductivity is correct. - Abstract: The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  12. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    Science.gov (United States)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  13. Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4

    Science.gov (United States)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  14. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  15. A unified theory of superconductivity

    CERN Document Server

    Huang, Xiuqing

    2008-01-01

    In this work, we argue that the phonon-mediated BCS theory may be incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, spin--charge stripe order, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates, MgB2 and the newly-discovered Fe-based family) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2, iron-based and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a triangular vortex lattice in pure MgB2 single crystal with a charge carrier density n=1.49*10^22/cm3. For iron-based superconductors, the relationship between the superconducting vortex phases and the optimal doping levels are analytically ...

  16. Inhomogeneous superconductivity in quasi-one dimensional organic conductors and ropes of carbon nanotubes

    Science.gov (United States)

    Bellafi, B.; Haddad, S.; Sfar, I.; Charfi-Kaddour, S.

    2009-03-01

    It has been reported that, in quasi-one dimensional organic conductors, superconductivity may coexist macroscopically with non-superconducting states giving rise to an inhomogeneous phase. We investigate, based on the time-dependent Ginzburg-Landau theory, the effect of disorder on the stability of the superconducting phase in such a mixed state. We also focus on the interplay between superconductivity and disorder in ropes of carbon nanotubes. We show that the superconducting transition temperature in quasi-one organic conductors is reduced by disorder but does not obey the Abrikosov-Gorkov law. However, and contrary to what is expected, disorder can further superconductivity in ropes of carbon nanotubes.

  17. Silicon materials task of the Low-Cost Solar Array Project: Phase IV. Effects of impurities and processing on silicon solar cells. Twenty-first quarterly report, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

    1981-01-30

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600/sup 0/C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after groth, preferentially segregates to grain boundaries and becomes electrically deactivated. Both Al and Au introduce deep levels when grown into silicon crystals. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty-year device lifetime. Combined electrical bias and thermal stressing of silicon solar cells containing Nb, Fe, Cu, Ti, Cr, and Ag, respectively produces no performance loss after 100 hour exposures up to 225/sup 0/C. Ti and V, but not Mo, can be gettered from polycrystalline silicon by POCl/sub 3/ or HCl at temperatures of 1000 and 1100/sup 0/C.

  18. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  19. Phase composition and properties of superconducting ceramics based on Bi1.7Pb0.3Sr2Ca2Cu3O y precursors fabricated by melt quenching in a solar furnace

    Science.gov (United States)

    Gulamova, D. D.; Uskenbaev, D. E.; Fantozzi, G.; Chigvinadze, J. G.; Magradze, O. V.

    2009-06-01

    Production of superconducting ceramics based on precursors with rated composition Bi1.7Pb0.3Sr2Ca2Cu3O y is studied. The precursors are synthesized in a solar furnace by melt rapid quenching. The phase composition of the samples is examined by microstructural and X-ray analyses. The temperature dependences of the resistance and magnetic susceptibility are measured. The influence of the composition and crystal structure of the substrate on texturing in the Bi-Sr-Ca-Cu-O system is studied. It is found that the type of quenching plays a significant role, while the type of substrate is of minor significance.

  20. Superconductivity in MgB2: clean or dirty?

    Science.gov (United States)

    Mazin, I I; Andersen, O K; Jepsen, O; Dolgov, O V; Kortus, J; Golubov, A A; Kuz'menko, A B; Van Der Marel, D

    2002-09-01

    A large number of experimental facts and theoretical arguments favor a two-gap model for superconductivity in MgB2. However, this model predicts strong suppression of the critical temperature by interband impurity scattering and, presumably, a strong correlation between the critical temperature and the residual resistivity. No such correlation has been observed. We argue that this fact can be understood if the band disparity of the electronic structure is taken into account, not only in the superconducting state, but also in normal transport.

  1. Chevrel-phase solid solution Mo 6Se 8- xTe x. Study of its superconducting, magnetic and NMR properties

    Science.gov (United States)

    Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.

    2000-09-01

    The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.

  2. Variability and self-average of impurity-limited resistance in quasi-one dimensional nanowires

    Science.gov (United States)

    Sano, Nobuyuki

    2017-02-01

    The impurity-limited resistance in quasi-one dimensional (quasi-1D) nanowires is studied under the framework of the Lippmann-Schwinger scattering theory. The resistance of cylindrical nanowires is calculated theoretically under various spatial configurations of localized impurities with a simplified short-range scattering potential. Then, the relationship between the phase interference and the variability in the impurity-limited resistances is clarified. We show that there are two different and independent mechanisms leading to the variability in impurity-limited resistances; incoherent and phase-coherent randomization processes. The latter is closely related to the so-called "self-average" and its physical origin under nanowire structures is clarified. We point out that the ensemble average also comes into play in the cases of long channel nanowires, which leads to the self-average resistance of multiple impurities.

  3. Effect of Born and unitary impurity scattering on the Kramer-Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    Science.gov (United States)

    Hayashi, Nobuhiko; Kurosawa, Noriyuki; Arahata, Emiko; Kato, Yusuke; Tanuma, Yasunari; Tanaka, Yukio; Golubov, Alexander A.

    2013-11-01

    We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer-Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer-Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit.

  4. Impact of diffusion limited aggregates of impurities on nematic ordering

    Science.gov (United States)

    Harkai, S.; Ambrožič, M.; Kralj, S.

    2017-02-01

    We study the impact of random bond-type disorder on two-dimensional (2D) orientational ordering of nematic liquid crystal (LC) configurations. The lattice Lebwohl-Lasher pseudospin model is used to model orientational ordering perturbed by frozen-in rod-like impurities of concentration p exhibiting the isotropic orientational probability distribution. The impurities are either (i) randomly spatially distributed or (ii) form diffusion limited aggregation (DLA)-type patterns characterized by the fractal dimensions df, where we consider cases df ∼ 1.7 and df ∼ 1.9. The degree of orientational ordering is quantified in terms of the orientational pair correlation function G(r) . Simulations reveal that the DLA pattern imposed disorder has a significantly weaker impact for a given concentration of impurities. Furthermore, if samples are quenched from the isotropic LC phase, then the fractal dimension is relatively strongly imprinted on quantitative characteristics of G(r) .

  5. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  6. Adjacent stage impurity ratio in rare earth countercurrent extraction process

    Institute of Scientific and Technical Information of China (English)

    CHENG Fuxiang; WU Sheng; LIAO Chunsheng; YAN Chunhua

    2013-01-01

    Impurity components decrease stage by stage in a cascade of rare earth (RE) extraction separation,and adjacent stage impurity ratio (ASIR) which is defined as the ratio of an impurity's contents in the aqueous/organic phase of two adjacent stages can be used to evaluate the capacity of impurity removal for the two stages.On the basis of extraction equilibrium and mass balance,the ASIR in a two-component extraction separation was deducted and its simplified expressions were given for different process sections according to reasonable assumptions.The calculation simulation was then carried out to obtain the ASIR distribution in the cascade.The results showed that in both the extraction and scrubbing sections the ASIR principally increased with the decrease of the molar proportion of the impurity but along with a flat appearing in the purification zone located in the middle of the cascade.The ASIR intuitively exhibits the nmning status of RE extraction separation and purification,which could provide a theoretic guide for investigating the influence factors of RE extraction separation process in practical industry.

  7. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  8. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  9. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  10. Superconductivity: The persistence of pairs

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  11. Identification, synthesis, isolation and spectral characterization of potential impurities of montelukast sodium.

    Science.gov (United States)

    Saravanan, M; Siva Kumari, K; Pratap Reddy, P; Naidu, M N; Moses Babu, J; Srivastava, Alok Kumar; Lakshmi Kumar, T; Chandra Sekhar, B V V N; Satyanarayana, Bollikonda

    2008-11-04

    During the process development of montelukast sodium, three polar impurities and one non-polar impurity with respect to montelukast sodium were detected by simple reverse phase high-performance liquid chromatography (HPLC). Initially, all the four impurities were identified by the liquid chromatography-mass spectrometry (LC-MS) data and out of four impurities, three have been prepared by the synthetic method and remaining one is isolated by preparative HPLC. Based on the spectral data (IR, (1)H NMR, (13)C NMR and MS), the structure of these impurities 1-4 were characterised as 1-[[[(1R)-1-[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropane acetamide (impurity-1), {1-[1-{3-[2-(7-chloro-quinolin-2-yl)-vinyl]-phenyl}-3-(2-isopropenyl-phenyl)-propylsulfanylmethyl]-cyclopropyl}-acetic acid (impurity-2), 1-[[[(1R)-1-[3-[(1E)-2-(7-chloro-2-quinolinyl)ethyl]phenyl-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropaneacetic acid (impurity-3) and 1-[[[(1R)-1-[3-[(1E)-2-(2-quinolinyl)ethenyl]phenyl-3-[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropaneacetic acid (impurity-4).

  12. Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films

    Science.gov (United States)

    Kumar, Dinesh; Chandran, Maneesh; Ramachandra Rao, M. S.

    2017-05-01

    Aggregation of impurity levels into an impurity band in heavily boron doped diamond results in a background continuum and discrete zone centre phonon interference during the inelastic light scattering process. In order to understand the Raman scattering effect in granular BDD films, systematically heavily doped samples in the semiconducting and superconducting regimes have been studied using the excitation wavelengths in the UV and visible regions. A comprehensive analysis of the Fano resonance effect as a function of the impurity concentrations and the excitation frequencies is presented. Various Raman modes available in BDD including signals from the grain boundaries are discussed.

  13. Superconducting fluctuations in organic molecular metals enhanced by Mott criticality.

    Science.gov (United States)

    Nam, Moon-Sun; Mézière, Cécile; Batail, Patrick; Zorina, Leokadiya; Simonov, Sergey; Ardavan, Arzhang

    2013-12-02

    Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-T(c) cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above T(c). By studying alloys of quasi-two-dimensional organic molecular metals in the κ-(BEDT-TTF)₂X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all.

  14. Probing the connections between superconductivity, stripe order, and structure in La1.905Ba0.095Cu1-yZnyO4

    Science.gov (United States)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Jie, Qing; Hücker, M.; Zheludev, A.; Tian, Wei; Winn, B. L.; Zarestky, J. L.; Singh, D. K.; Hong, Tao; Li, Qiang; Gu, Genda; Tranquada, J. M.

    2012-04-01

    The superconducting system La2-xBaxCuO4 is known to show a minimum in the transition temperature Tc at x=(1)/(8) where maximal stripe order is pinned by the anisotropy within the CuO2 planes that occurs in the low-temperature-tetragonal (LTT) crystal structure. For x=0.095, where Tc reaches its maximum value of 32 K, there is a roughly coincident structural transition to a phase that is very close to LTT. Here, we present a neutron scattering study of the structural transition, and demonstrate how features of it correlate with anomalies in the magnetic susceptibility, electrical resistivity, thermal conductivity, and thermoelectric power. We also present measurements on a crystal with 1% Zn substituted for Cu, which reduces Tc to 17 K, enhances the spin stripe order, but has much less effect on the structural transition. We make the case that the structural transition correlates with a reduction of the Josephson coupling between the CuO2 layers, which interrupts the growth of the superconducting order. We also discuss evidence for two-dimensional superconducting fluctuations in the normal state, analyze the effective magnetic moment per Zn impurity, and consider the significance of the anomalous thermopower often reported in the stripe-ordered phase.

  15. Probing the connections between superconductivity, stripe order, and structure in La1.905Ba0.095Cu1 yZnyO4

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jinsheng [University of California, Berkeley; Xu, Zhijun [Brookhaven National Laboratory (BNL); Xu, Guangyong [Brookhaven National Laboratory (BNL); Jie, Qing [Brookhaven National Laboratory (BNL); Hucker, M. [Brookhaven National Laboratory (BNL); Zheludev, A [ETH Zurich, Switzerland; Tian, Wei [Ames Laboratory and Iowa State University; Winn, Barry L [ORNL; Zarestky, Jerel L [ORNL; Singh, D. K. [University of Maryland and NIST; Hong, Tao [ORNL; Li, Qiang [Brookhaven National Laboratory (BNL); Gu, Genda [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL)

    2012-01-01

    The superconducting system La2 xBaxCuO4 is known to show a minimum in the transition temperature, Tc, at x = 1/8 where maximal stripe order is pinned by the anisotropy within the CuO2 planes that occurs in the low-temperature-tetragonal (LTT) crystal structure. For x = 0.095, where Tc reaches its maximum value of 32 K, there is a roughly coincident structural transition to a phase that is very close to LTT. Here we present a neutron scattering study of the structural transition, and demonstrate how features of it correlate with anomalies in the magnetic susceptibility, electrical resistivity, thermal conductivity, and thermoelectric power. We also present measurements on a crystal with 1% Zn substituted for Cu, which reduces Tc to 17 K, enhances the spin stripe order, but has much less effect on the structural transition. We make the case that the structural transition correlates with a reduction of the Josephson coupling between the CuO2 layers, which interrupts the growth of the superconducting order. We also discuss evidence for two-dimensional superconducting fluctuations in the normal state, analyze the effective magnetic moment per Zn impurity, and consider the significance of the anomalous thermopower often reported in the stripeordered phase.

  16. Suppression of Superconductivity by Twin Boundaries in FeSe

    OpenAIRE

    Hoffman, Jenny Eve; Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Wang, Lili; He, Ke; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2012-01-01

    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90{\\deg} change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45{\\deg} to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experiment...

  17. Effect of nonmagnetic zinc impurity on Tc in LaFe1−xZnxPO0.94F0.06 superconductors

    Directory of Open Access Journals (Sweden)

    Yuke Li

    2012-12-01

    Full Text Available We study the effect of nonmagnetic Zn impurity on superconductivity in the LaFe1−yZnyPO0.94F0.06 system by measuring the transport and magnetic properties. It is found that Zn doping drastically suppresses the superconducting transition temperature Tc. This is consistent with the theoretic prediction in the scenario of s±-wave or d-wave pairing.

  18. Fundamental aspects of metallic impurities and impurity interactions in silicon during device processing

    Energy Technology Data Exchange (ETDEWEB)

    Graff, K. [TEMIC, TELEFUNKEN, Heilbronn (Germany)

    1995-08-01

    A review on the behavior of metallic impurities in silicon can be considerably simplified by a restriction on pure, dislocation-free, monocrystalline silicon. In this case interactions between different impurities and between impurities and grown-in lattice defects can be reduced. This restriction is observed in Chapter 1 for discussing the general behavior of metallic impurities in silicon.

  19. Stripes and Superconductivity in Cuprates

    OpenAIRE

    Tranquada, John M.

    2011-01-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pair...

  20. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  1. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xicgang; HE Ke; WANG Lili; MA Xucun

    2011-01-01

    @@ Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, followed by phase coherent condensation.Since the discovery by K.Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest.One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  2. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xiegang; HE Ke; WANG Lili; MA Xucun; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun

    2011-01-01

    Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, tbllowed by phase coherent condensation, Since the discovery by K. Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest. One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  3. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  4. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  5. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  6. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  7. Coexistence of Antiferromagnetism with Superconductivity in CePt2In7: Microscopic Phase Diagram Determined by In115 NMR and NQR

    Science.gov (United States)

    Sakai, H.; Tokunaga, Y.; Kambe, S.; Ronning, F.; Bauer, E. D.; Thompson, J. D.

    2014-05-01

    Single crystals of the heavy-fermion antiferromagnet CePt2In7 with a Néel temperature (TN) of 5.2 K at ambient pressure have been investigated by zero-field In115-nuclear magnetic and quadrupole resonance measurements as a function of applied pressure. Within the antiferromagnetic state, the character of Ce's 4f electron appears to change from localized to itinerantlike at P*˜2.4 GPa, approximately the pressure where superconductivity first emerges. With increased pressure, the superconducting transition Tc reaches a maximum just at or slightly before antiferromagnetic order disappears, and not at the pressure Pc˜3.4 GPa, where the steeply decreasing Néel boundary extrapolates to zero temperature. For P >Pc, the spin relaxation rate drops sharply by more than 2 orders of magnitude at Tc, suggestive of a first-order transition.

  8. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  9. Micellar liquid chromatography of terephthalic acid impurities.

    Science.gov (United States)

    Richardson, Ashley E; McPherson, Shakeela D; Fasciano, Jennifer M; Pauls, Richard E; Danielson, Neil D

    2017-03-31

    The production of terephthalic acid (TPA) by oxidation of p-xylene is an important industrial process because high purity TPA is required for the synthesis of polyethylene terephthalate, the primary polymer used to make plastic beverage bottles. Few separation methods have been published that aim to separate TPA from eight major aromatic acid impurities. This work describes a "green" micellar liquid chromatography (MLC) method using a C18 column (100×2.1mm, 3.5μm), an acidic 1% sodium dodecyl sulfate (SDS) mobile phase, and a simple step flow rate gradient to separate TPA and eight impurities in less than 20min. The resulting chromatogram shows excellent peak shape and baseline resolution of all nine acids, in which there are two sets of isomers. Partition coefficients and equilibrium constants have been calculated for the two sets of isomers by plotting the reciprocal of the retention factor versus micelle concentration. Quantitation of the nine analytes in an actual industrial TPA sample is possible. Limits of detection for all nine acids range from 0.180 to 1.53ppm (2.16-19.3 pmoles) and limits of quantitation range from 0.549 to 3.45ppm (6.48-43.0 pmoles). In addition, the method was tested on two other reversed phase C18 columns of similar dimensions and particle diameter from different companies. Neither column showed quite the same peak resolution as the original column, however slight modifications to the mobile phase could improve the separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Aspects of Color Superconductivity

    CERN Document Server

    Hong, D K

    2001-01-01

    I discuss some aspects of recent developments in color superconductivity in high density quark matter. I calculate the Cooper pair gap and the critical points at high density, where magnetic gluons are not screened. The ground state of high density QCD with three light flavors is shown to be a color-flavor locking state, which can be mapped into the low-density hadronic phase. The meson mass at the CFL superconductor is also calculated. The CFL color superconductor is bosonized, where the Fermi sea is identified as a $Q$-matter and the gapped quarks as topological excitations, called superqualitons, of mesons. Finally, as an application of color supercoductivity, I discuss the neutrino interactions in the CFL color superconductor.

  11. Impurities in Silicon Nanocrystals: The intentional and the inherent

    Science.gov (United States)

    Rowe, David J.

    Silicon nanocrystals (SiNCs) have become an important class of materials in the fields of photovoltaics, thermoelectrics, lighting, and medicine. Impurities within SiNCs dramatically alter the electrical and optical properties of the host material, whether the impurity is intentionally added in an attempt to manipulate properties, or is inherent to the material and its natural state. Despite such remarkable changes, impurity incorporation within SiNCs remains poorly understood, since concepts applied to understanding impurities in bulk materials may not completely translate to nanomaterials. Understanding the effect of SiNC impurities requires new technologies to produce materials suitable for study combined with new insights to expound the differences in the nanoscale physics. Nonthermal plasma-assisted gas-phase synthesis provides an excellent route to producing and investigating impurities within SiNCs due to the unique chemical reaction environment of the plasma. The robustness of such a technique allows for the production of very pure SiNCs or SiNCs with added impurities simply by adding different chemicals to the plasma. The chapters in this document focus on the effect that different impurities have on the properties of SiNCs. Chapter 2 focuses on heavily P-doped SiNCs exhibiting the first known observation of a unique electrical and optical property known as localized surface plasmon resonance (LSPR) within free-standing SiNCs. Chapter 3 explains the synthesis of B- and P-doped SiGeNC alloys and their deposition into thin films for thermoelectric applications. Chapter 4 highlights research which uses P-doped SiNCs to form emitter layers for pn-junction type solar cells, including device fabrication and optical characterization. Chapter 5 examines inherent impurities in the form of dangling bond defects which may be responsible for the quenching of SiNC photoluminescence, and their evolution during the process of air-ambient oxidation. Several appendices at

  12. Status report of the three phase 25 kA, 1.5 kW thermally switched superconducting rectifier, transformer and switches

    NARCIS (Netherlands)

    Kate, ten H.H.J.; Holtslag, A.H.M.; Knoben, J.; Steffens, H.A.; Klundert, van de L.J.M.

    1983-01-01

    A 25 kA, 1.5 kW superconducting rectifier system has been developed. This rectifier system working like an a.c.-d.c, converter with a primary current of 35 A at 0.1Hz, will energize a 25 kA coil with an average power of 5.4 MJ/hr and a proposed energy efficiency of at least 96%. Such a highly effici

  13. Heat treatment effects on the superconducting properties of Ag-doped SrKFeAs compounds

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The superconducting properties of polycrystalline Sr0.6K0.4Fe2As2 were strongly influenced by Ag doping(Supercond.Sci.Technol.23(2010) 025027).Ag addition is mainly dominated by silver diffusing,so the annealing process is one of the essential factors to achieve high quality Ag doped Sr0.6K0.4Fe2As2.In this paper,the optimal annealing conditions were studied for Ag doped Sr0.6K0.4Fe2As2 bulks prepared by a one-step solid reaction method.It is found that the annealing temperature has a strong influence on the superconducting properties,especially on the critical current density Jc.As a result,higher heat treatment temperature(~900℃) is helpful in diffusing Ag and reducing the impurity phase gathered together to improve the grain connectivity.In contrast,low-temperature sintering is counterproductive for Ag doped samples.These results clearly suggest that annealing at ~900℃ is necessary for obtaining high Jc Ag-doped samples.

  14. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  15. Superconductivity Bordering Rashba Type Topological Transition

    Science.gov (United States)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-01

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  16. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  17. Ambient pressure superconductivity emerging in the antiferromagnetic phases of the novel heavy fermion compounds Ce{sub 3}PdIn{sub 11} and Ce{sub 3}PtIn{sub 11}

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvilova, Marie; Prokleska, Jan; Uhlirova, Klara; Sechovsky, Vladimir; Custers, Jeroen [Department of Condensed Matter Physics, Charles University, Prague, Ke Karlovu 5, 121 16 (Czech Republic)

    2015-07-01

    Ce{sub n}T{sub m}In{sub 3n+2m} (n=1,2; m=1; T=transition metal) heavy fermion compounds are known to be on the verge of a magnetic to non-magnetic quantum critical point (QCP). In close vicinity of the QCP they exhibit an unconventional superconducting state. However, this family of compounds is interesting for an other reason. The compounds crystallize in the tetragonal structures which provide the possibility to tune the structural dimensionality from more 2D to 3D (stoichiometries: 115-218-103). This makes them ideal candidates to investigate the influence of the parameter dimensionality with respect to quantum criticality. Ce{sub 3}TIn{sub 11} (T=Pd,Pt) single crystals were prepared for the first time. Ce{sub 3}PtIn{sub 11} (Ce{sub 3}PdIn{sub 11}) exhibits two successive transitions at T{sub 1}=2.2K (T{sub 1}=1.7K) and T{sub N}=2.0K (T{sub N} =1.5K) into incommensurate and commensurate local moment antiferromagnetic states, respectively. Applying magnetic field along the c-axis gradually suppresses both transitions; they merge at 4T and split again in higher fields. Superconductivity emerges at T{sub C}=0.32K (T{sub C}=0.39K) and it is enhanced by the application of hydrostatic pressure. The unusual magnetic phase diagram will be discussed in the context of superconductivity and magnetism in related compounds.

  18. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  19. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  20. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    Science.gov (United States)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  1. Effects of oxide precursors on superconducting properties of polycrystalline SmFeAsO{sub 1−x}F{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, F.F.; Ding, Y.; Sun, Y.; Zhuang, J.C.; Zhou, W. [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Li, G.Z.; Sumption, M. [Center for Superconducting and Magnetic Materials (CSMM), Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Li, X.W. [School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Shi, Z.X., E-mail: zxshi@seu.edu.cn [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China)

    2013-12-15

    Highlights: •Polycrystalline SmFeAsO{sub 1−x}F{sub x} samples were prepared by different oxide precursors. •Phase formation and superconductivity of these samples were comparatively studied. •Results show that nano-Fe{sub 2}O{sub 3} and As{sub 2}O{sub 3} promote fluorine doping. -- Abstract: A series of polycrystalline SmFeAsO{sub 1−x}F{sub x} samples were synthesized by one-step and two-step method at ambient pressure using different oxide precursors, namely As{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and nano-Fe{sub 2}O{sub 3} powder, as the source of element O. Results of X-ray diffraction and magnetic measurements manifest that starting oxides affected the phase formation and superconducting properties of SmFeAsO{sub 1−x}F{sub x}. As{sub 2}O{sub 3} as oxide precursor contributes to the fast formation of superconducting phase for a short period of sintering time. And samples prepared using As{sub 2}O{sub 3} show higher superconducting transition temperature T{sub c} and more stable fluorine doping level. Compared with Fe{sub 2}O{sub 3}, nano-Fe{sub 2}O{sub 3} promotes fluorine doping into the O site. While using Fe{sub 2}O{sub 3} leads to higher level of Fe and SmOF impurities. The critical current density J{sub cm} were derived from magnetic hysteresis loops. Sample prepared using As{sub 2}O{sub 3} shows higher J{sub cm} in low temperature and high magnetic fields.

  2. Unusual temperature evolution of superconductivity in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Schlegel, Ronny; Baumann, Danny; Grafe, Hans-Joachim; Beck, Robert [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    We have performed temperature dependent scanning tunneling spectroscopy on an impurity-free surface area of a LiFeAs single crystal. Our data reveal a highly unusual temperature evolution of superconductivity: at T{sub c}{sup *}=18 K a partial superconducting gap opens, as is evidenced by subtle, yet clear features in the tunneling spectra, i.e. particle-hole symmetric coherence peaks and dip-hump structures. At T{sub c}=16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, this is accompanied by an almost jump-like increase of the gap energy at T{sub c} to about 87% of its low-temperature gap value. The energy of the dip as measured by its distance to the coherence peak remains practically constant in the whole temperature regime T ≤ T{sub c}{sup *}. We compare these findings with established experimental and theoretical results.

  3. Control of core argon impurity profile by ECH in KSTAR L-mode plasmas

    Science.gov (United States)

    Hong, Joohwan; Lee, Seung Hun; Kim, Juhyung; Seon, C. R.; Lee, S. G.; Park, G. Y.; Lee, K. D.; Henderson, S. S.; Lee, H. Y.; Park, Jae Sun; Jang, Juhyeok; Jang, Siwon; Jeon, Taemin; O'Mullane, M.; Choe, Wonho

    2015-06-01

    Experiments on trace argon impurity transport in L-mode discharges were performed on Korea superconducting tokamak advanced research (KSTAR) with electron cyclotron resonance heating (ECH). Ar emission was measured by soft x-ray (SXR) arrays and vacuum UV (VUV) diagnostics. A significant reduction in the core Ar emissivity was observed with core ECH. The reduction was the largest with on-axis heating and became smaller with outward heating positions. The diffusivity and convection velocity of Ar were obtained by analysis of the SXR data with the SANCO impurity transport code for the on-axis ECH and the non-ECH shots. In the on-axis ECH case, both diffusivity and convection velocity increased. Furthermore, the convection changed its direction from inward to outward in the plasma core (r/a < 0.3), resulting in a hollow profile of the total Ar density. Together with the reduction in the SXR signals, the hollow impurity profile in the core and the reversal of the convection velocity consistently confirm that ECH can reduce impurity accumulation in the core region. Neoclassical impurity transport and linear stability of micro-turbulence were calculated and discussed in relation to the possible transport mechanism.

  4. Effects of disorder on coexistence and competition between superconducting and insulating states

    NARCIS (Netherlands)

    Mostovoy, MV; Marchetti, FM; Simons, BD; Littlewood, PB

    2005-01-01

    We study effects of nonmagnetic impurities on the competition between the superconducting and electron-hole pairing. We show that disorder can result in coexistence of these two types of ordering in a uniform state, even when in clean materials they are mutually exclusive.

  5. Low cost, formable, high T(sub c) superconducting wire

    Science.gov (United States)

    Smialek, James L. (Inventor)

    1991-01-01

    A ceramic superconductivity part such as a wire is produced through the partial oxidation of a specially formulated copper alloy in the core. The alloys contain low level quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperature, superconducting oxide phases are formed as a thin film.

  6. Superconducting Proximity Effect in Graphene Nanodevices: A Transport and Tunneling Study

    Science.gov (United States)

    Wang, I.-Jan

    on a tight-binding model. In addition, gate-tunability and the chiral nature of Dirac fermions in graphene, both of which are essential in our experiments, are also discussed. Chapter 2 provides a theoretical background to superconductivity, with an emphasis on its manifestation in inhomogeneous systems at the mesoscopic scale. The Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long- and short-junction limits. We will also show how the existence of impurity affects the physics presented in our experiments. Chapter 3 demonstrates the first graphene-based superconducting devices that we investigated. Fabrication and low-temperature measurement techniques of SGS junctions made of graphene and NbN, a type II superconductor with a large gap (TC ~ 12K) and a large critical field (HC2 > 9T ) are also discussed. Chapter 4 focuses on the development of h-BN-encapsulated graphene Josephson junctions. The pick-up and transfer techniques for the 2- dimensional Van der Waals materials that we used to make these heterostructures are described in details. The device we fabricated in this way exhibits ballistic transport characteristics, i.e. the signs of low disorder in graphene, in both normal and superconducting regimes. In Chapter 5, the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. In order to study the intrinsic properties of the sample, we developed a new fabrication scheme aiming at preserving the pristine nature of the 2-DEGS as well as to minimize the doping introduced by external probes. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2-dimensional limit, but also what we call the "Andreev scattering state" in the energy continuum.

  7. Unconventional superconductivity of the heavy fermion compound UNi{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Andrey

    2008-07-01

    The heavy fermion compound UNi{sub 2}Al{sub 3} exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi{sub 2}Al{sub 3} has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl{sub 2} impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi{sub 2}Al{sub 3} single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi{sub 2}Al{sub 3} were grown on single crystalline YAlO{sub 3} substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi{sub 2}Al{sub 3} thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity {rho}(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi{sub 2}Al{sub 3}. The initial slope of the upper critical field H'{sub c2}(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi{sub 2}Al{sub 3

  8. Role of magnetic dopants in the phase diagram of Sm 1111 pnictides: The case of Mn

    Science.gov (United States)

    Lamura, G.; Shiroka, T.; Bordignon, S.; Sanna, S.; Moroni, M.; De Renzi, R.; Carretta, P.; Biswas, P. K.; Caglieris, F.; Putti, M.; Wurmehl, S.; Singh, S. J.; Shimoyama, J.; Gastiasoro, M. N.; Andersen, B. M.

    2016-12-01

    The deliberate insertion of magnetic Mn dopants in the Fe sites of the optimally doped SmFeAsO0.88F0.12 iron-based superconductor can modify in a controlled way its electronic properties. The resulting phase diagram was investigated across a wide range of manganese contents (x ) by means of muon-spin spectroscopy (μ SR ), both in zero and in transverse fields, to probe the magnetic and the superconducting order, respectively. The pure superconducting phase (at x superconductivity coexists with static magnetic order. After completely suppressing superconductivity for x =0.08 , a further increase in Mn content reinforces the natural tendency towards antiferromagnetic correlations among the magnetic Mn ions. The sharp drop of Tc and the induced magnetic order in the presence of magnetic disorder/dopants, such as Mn, are both consistent with a recent theoretical model of unconventional superconductors (M. N. Gastiasoro et al., Phys. Rev. Lett. 117, 257002 (2016), 10.1103/PhysRevLett.117.257002), which includes correlation-enhanced RKKY couplings between the impurity moments.

  9. Superconductivity in anti-post-Perovskite vanadium compounds.

    Science.gov (United States)

    Wang, Bosen; Ohgushi, Kenya

    2013-11-29

    Superconductivity, which is a quantum state induced by spontaneous gauge symmetry breaking, frequently emerges in low-dimensional materials. Hence, low dimensionality has long been considered as necessary to achieve high superconducting transition temperatures (TC). The recently discovered post-perovskite (ppv) MgSiO3, which constitutes the Earth's lowermost mantle (D" layer), has attracted significant research interest due to its importance in geoscience. The ppv structure has a peculiar two-dimensional character and is expected to be a good platform for superconductivity. However, hereunto, no superconductivity has been observed in isostructural materials, despite extensive investigation. Here, we report the discovery of superconductivity with a maximum TC of 5.6 K in V3PnNx (Pn = P, As) phases with the anti-ppv structure, where the anion and cation positions are reversed with respect to the ppv structure. This discovery stimulates further explorations of new superconducting materials with ppv and anti-ppv structures.

  10. Current-induced destruction of type I superconductivity: The role of the one- and two-dimensional mixed state

    Science.gov (United States)

    Robin, D.; Rinderer, L.; Posada, E.

    1982-02-01

    New experimental and theoretical results on the current-induced phase transition in cylindrical wires (tin) are presented: The London model for the intermediate state of current-carrying superconductors has been modified, taking into account magnetoresistance, and has been extended to hollow cylinders. Evidence for the one- and two-dimensional mixed state first proposed by Landau has been obtained from the study of the quasistatic voltage-current curves of solid and hollow cylindrical specimens, respectively. The kinetic phenomena during the current-induced destruction of superconductivity in solid cylindrical wires have previously been studied by Posada and Rinderer, but only measurements on hollow wires of high purity presented in this paper confirm the isothermal electromagnetic theory of Rothen and Bestgen for a current-induced phase transition. For currents close to Silsbee's critical current, in pure specimens as well as for impure specimens, for any current above the critical, the dynamic destruction of superconductivity in wires is no longer isothermal. For these cases the nonisothermal theory of Posada and Rinderer has been extended to the case of hollow cylinders and successfully compared with experiments.

  11. Superconductivity below 120 K of new thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, B.; Sulpice, A.; Tournier, R.; Hervieu, M.; Maignan, A.; Martin, C.; Michel, C.; Provost, J.; Raveau, B.

    1989-05-01

    Well-cristallized Tl/sub 2/Ba/sub 2/CaCu/sub 2/0/sub 8/ phases have been observed superconducting or normal below 108 K depending on their stoichiometry. This observation is an evidence that a (Cu/sup ii/-0/sup -/) mixed valence induced by vacancies or substitutions on different sites gives rise to superconductivity in this phase. The new phase TlBa/sub 2/Ca/sub 2/Cu/sub 3/O/sub 9/ which intrinsically contains a mixed valence has been observed as having a sharp transition to bulk superconductivity in the Meissner effect at a critical temperature of 120 K.

  12. Impurity-induced divertor plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  13. Impurity-induced divertor plasma oscillations

    Science.gov (United States)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  14. Characterization of the phase composition, crystal structure and superconducting properties of Fe{sub 1.02}Se{sub y}Te{sub 1−y−x}S{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Abouhaswa, A.S., E-mail: aliabohaswa@hotmail.com [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); Merentsov, A.I. [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); Baranov, N.V. [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); M.N. Miheev Institute of Metal Physics, Ural Branch of RAS, 620990, Ekaterinburg (Russian Federation)

    2016-08-15

    Highlights: • The Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5−x}S{sub x} and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6−x}S{sub x} samples have been synthesized. • The S for Te substitution results in a small expansion of the crystal lattice of the PbO-type phase. • This expansion is attributed to changes in the phase relation and chemical composition of phases. • There is a correlation between the changes of T{sub c} and lattice parameters of the PbO-type phase. - Abstract: Two series of the Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5–x}S{sub x} (I) and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6–x}S{sub x} (II) samples with the sulfur for tellurium substitution and with the invariable Se concentrations have been synthesized and studied by means of X-ray diffraction, scanning electron microscopy, electrical resistivity and magnetic susceptibility measurements. The superconducting PbO-type phase is found to persists in the first series up to x = 0.4 and in the second one up to x = 0.5. Despite the lower ionic radius of sulfur in comparison with tellurium the replacement of tellurium by sulfur does not lead to contraction of the unit cell volume of the superconducting phase in both I and II series with ternary mixture of chalcogens. Variations of the lattice parameters caused by the S for Te substitution in the Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5–x}S{sub x} and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6–x}S{sub x} samples are found to be less pronounced than that reported for the Fe{sub 1.02}Te{sub 0.5}Se{sub 0.5-x}S{sub x} system and are accompanied by lowering of the critical temperature. The behavior of the lattice parameters and critical temperature of Fe(S,Se,Te) materials with the ternary mixture of chalcogens at substitutions is ascribed to the changes in the volume fraction and chemical compositions of the coexisting tetragonal and hexagonal phases.

  15. Interpretation of scanning tunneling quasiparticle interference and impurity states

    Science.gov (United States)

    Kreisel, Andreas; Choubey, P.; Berlijn, T.; Andersen, B. M.; Hirschfeld, P. J.

    2015-03-01

    We use a simple method of calculating inhomogeneous, atomic-scale phenomena in superconductors to obtain real-space conductance maps as measured in scanning tunneling spectroscopy (STM). Our approach makes use of first principles Wannier functions in conjunction with self-consistent solutions of the Bogoliubov-de Gennes equations on a lattice to image superconducting phenomena. This method is a powerful tool since it captures correctly local symmetries on the surface that can be lower than the global lattice symmetry; it improves the spatial resolution from one pixel per lattice point to the sub-atomic scale; and simplifies the interpretation of STM data. As an example, we show how the pattern observed around a Zn impurity in BSCCO-2212, can be understood by accounting for the tails of the Cu Wannier functions, and thus compare perfectly to experimental findings. Further applications of this method include the investigation of impurity states in multiorbital systems as well as the study of quasi particle interference phenomena to enable a better understanding of novel phenomena in high temperature superconductors. P.C., A.K., and P.J.H. were supported by DOE DE-FG02-05ER46236, T.B. as a Wigner Fellow at the Oak Ridge National Laboratory, and B.M.A. and A.K. by Lundbeckfond fellowship (Grant A9318).

  16. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of ransient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NARCIS (Netherlands)

    Bielert, E.R.; Verweij, A.P.; Kate, ten H.H.J.

    2013-01-01

    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat fr

  17. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  18. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  19. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  20. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sui; CHEN Wan-Fang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He H is only a criterion for microscopic superfluidity of 4He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-To cuprates.