WorldWideScience

Sample records for superconducting fluctuation diamagnetism

  1. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  2. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  3. Superconductivity, diamagnetism, and the mean inner potential of solids

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E. [Department of Physics, University of California San Diego, La Jolla, CA (United States)

    2014-01-15

    The mean inner potential of a solid is known to be proportional to its diamagnetic susceptibility. Superconductors exhibit giant diamagnetism. What does this say about the connection between superconductivity and mean inner potential? Nothing, according to the conventional theory of superconductivity. Instead, it is proposed that a deep connection exists between the mean inner potential, diamagnetism, and superconductivity: that they are all intimately linked to the fundamental charge asymmetry of matter. It is discussed how this physics can be probed experimentally and what the implications of different experimental findings would be for the understanding of superconductivity. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Superconducting fluctuation effect in CaFe0.88Co0.12AsF

    Science.gov (United States)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-11-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF single crystals. Superconducting fluctuations, featured by magnetic field enhanced and exponential temperature dependent diamagnetism, are observed above the superconducting transition temperature T c, which is similar to that of cuprate superconductors, but less pronounced. In addition, the ratio of T c versus superfluid density follows well the Uemura line of high-T c cuprates, which suggests the exotic nature of the superconductivity in CaFe0.88Co0.12AsF.

  5. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  6. Design of diamagnetic loop on EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Xi Weibin; Shen Biao; Qian Jinping; Wu Songtao; Wan Baonan

    2007-01-01

    The design of EAST diamagnetic measurement system including diamagnetic loop and compensation loop has been given. The advantage of this method is that, the compensation loop is applied for eliminating the change of toroidal flux produced by the toroidal coils and the adjustable structure can be used to decrease the error signals come from the poloidal field. On the other hand, the effect of the material and structure on the diamagnetic loop is detailedly checked during engineering design. Error analysis of the measurement system is given. (authors)

  7. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  8. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    Science.gov (United States)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  9. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  10. Magnetic properties and superconducting-fluctuation diamagnetism above Tc in Bi2-xPbxSr2CaCu2O8+δ (x=0.0, 0.1, 0.2, 0.3, 0.5) and

    International Nuclear Information System (INIS)

    Lee, W.C.; Cho, J.H.; Johnston, D.C.

    1991-01-01

    The magnetic susceptibilities χ(T) of the title compounds above and below T c are reported. For the Bi 2-x Pb x Sr 2 CaCu 2 O 8+δ (Bi 2:2:1:2) system, optimization of the phase purity and superconducting properties is found between x=0.2 and 0.3. The χ(T) data for these Bi 2:2:1:2 and for the two Bi 2:2:2:3 samples increase monotonically with temperature from T c up to at least 400 K, exhibiting strong negative curvature below ∼200 K. From theoretical fits to the data in the two-dimensional regime above T c using the static Lawrence-Doniach model as modified by Klemm, we conclude that the negative curvature in χ(T) for each sample arises from superconducting-fluctuation diamagnetism (SFD). The data are thus consistent with a superconducting order parameter of s-wave symmetry. From the fits to the data, the Ginzburg-Landau coherence lengths in the CuO 2 planes were obtained and found to be ξ ab (0)=20.4(2) A for Bi 2:2:1:2 and 11.8(4) A for Bi 2:2:2:3. The value for Bi 2:2:1:2 is comparable to those calculated from upper critical magnetic-field data for this compound (23.5--27.1 A). Our ξ ab (0) values for Bi 2:2:1:2 and Bi 2:2:2:3 are also comparable with that (13.6 A) found from our previous similar analysis of the SFD in YBa 2 Cu 3 O 7 . The possible role of the bridging oxygens out of the CuO 2 plane in Bi 2:2:2:3 and the influence of the dynamics in the fits to the SFD in the Bi-based compounds remain to be addressed

  11. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  12. Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

    Directory of Open Access Journals (Sweden)

    A. Di Bernardo

    2015-11-01

    Full Text Available In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic or attract (paramagnetic external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.

  13. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  14. Superconducting quasiparticle lifetimes due to spin-fluctuation scattering

    International Nuclear Information System (INIS)

    Quinlan, S.M.; Scalapino, D.J.; Bulut, N.

    1994-01-01

    Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor

  15. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  16. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  17. Review - On-chip diamagnetic repulsion in continuous flow

    Directory of Open Access Journals (Sweden)

    Mark D Tarn, Noriyuki Hirota, Alexander Iles and Nicole Pamme

    2009-01-01

    Full Text Available We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm were examined in two concentrations of MnCl2 (6 and 10%. The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  18. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  19. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  20. Fluctuation model of organic superconductivity: Internal inconsistencies and contradictory experimental evidence

    International Nuclear Information System (INIS)

    Kwak, J.F.

    1983-01-01

    Internal inconsistencies in the scheme of large superconducting fluctuations, as applied to the superconducting (TMTSF) 2 X compounds (ditetramethyltetraselenafulvalenium salts), are discussed. In particular, it is shown that the assumption of very small interchain coupling is self-contradictory. These materials are actually best regarded as (anisotropic) three-dimensional superconductors. The fluctuation scheme does not provide a consistent interpretation of the data, but is in fact contradicted by many key measurements, including the thermal conductivity, heat capacity, conductivity anisotropy, and critical-field anisotropy

  1. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    International Nuclear Information System (INIS)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  2. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  3. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  4. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  5. Superconductivity in Mesocrystalline Inverse Opal Structures

    Science.gov (United States)

    Lungu, Anca; Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir

    2000-03-01

    Mesocrystalline inverse opal structures were fabricated by the electrodeposition of metallic lead in synthetic opals. In these structures, the superconducting regions percolate in all directions through the voids in the artificial opals and their size is comparable to the coherence length for bulk lead. The inverse lead opals were proven superconducting, with a transition temperature close to that of bulk lead (between 7.2 K and 7.36 K) and broad transition regions. The magnetic behavior of the inverse opals was very different from that of bulk lead. Due to the reduced dimensonality of the superconducting regions, not surprisingly, the magnetic properties of our samples were found to be similar to those of type II superconductors. The critical magnetic field (or the field at which T_copals was proven at least two times larger than that for bulk lead and (dT_c/dH) was observed 2.7 times smaller. We found a reversible ZFC-FC magnetic behavior in the temperature range between T* and T_c. We also performed magnetic relaxation measurements and studied the fluctuation diamagnetism above T_c.

  6. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Clemens [ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, Brisbane (Australia); Lisenfeld, Juergen [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Shnirman, Alexander [Institut fuer Theory der Kondensierten Materie, Karlsruhe Institute of Technology, Karlsruhe (Germany); LD Landau Institute for Theoretical Physics, Moscow (Russian Federation); Poletto, Stefano [IBM TJ Watson Research Centre, Yorktown Heights (United States)

    2016-07-01

    Since the very first experiments, superconducting circuits have suffered from strong coupling to environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function of time. We present measurements of such fluctuations in a 3D-transmon circuit and develop a qualitative model based on interactions within a bath of background two-level systems (TLS) which emerge from defects in the device material. In our model, the time-dependent noise density acting on the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support the model by providing experimental evidence of such energy fluctuations observed in a single TLS in a phase qubit circuit.

  7. Quenching of superconductivity in disordered thin films by phase fluctuations

    International Nuclear Information System (INIS)

    Hebard, A.F.; Palaanen, M.A.

    1992-01-01

    The amplitude Ψ 0 and phase Φ of the superconducting order parameter in thin-film systems are affected differently by disorder and dimensionality. With increasing disorder superconducting long range order is quenched in sufficiently thin films by physical processes driven by phase fluctuations. This occurs at both the zero-field vortex-antivortex unbinding transition and at the zero-temperature magnetic-field-tuned superconducting-insulating transition. At both of these transitions Ψ 0 is finite and constant, vanishing only when temperature, disorder, and/or magnetic field are increased further. Experimental results on amorphous-composite InO x films are presented to illustrate these points and appropriate comparisons are made to other experimental systems. (orig.)

  8. Fluctuation induced diamagnetism versus paraconductivity in Y1Ba2Cu3O7-δ single crystals

    International Nuclear Information System (INIS)

    Torron, C.; Diaz, A.; Jegoudez, J.; Maza, J.; Pomar, A.; Revcolevschi, A.; Veira, J.A.; Vidal, F.

    1994-01-01

    The rounding effects above the superconducting transition of the electrical resistivity and of the magnetic susceptibility in low magnetics fields have been measured in the same YBa 2 Cu 3 O 7-δ (YBCO) single crystals. When analyzed in terms of independent gaussian fluctuations of the superconducting order parameter in layered materials, an scenario compatible with these experimental results is: Absence of appreciable Maki-Thompson contribution to the paraconductivity, ξ ab (0) = (10 ± 2) A, ξ c (0) = (1.2 ± 0.3) A, d e = s = 11.7 A, and conventional 1 s o wave pairing or one complex component unconventional pairing. (orig.)

  9. Quantum phase slips and voltage fluctuations in superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Andrew G. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Zaikin, Andrei D. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-06-15

    We argue that quantum phase slips (QPS) may generate non-equilibrium voltage fluctuations in superconducting nanowires. In the low frequency limit we evaluate all cumulants of the voltage operator which obey Poisson statistics and show a power law dependence on the external bias. We specifically address quantum shot noise which power spectrum S{sub Ω} may depend non-monotonously on temperature. In the long wire limit S{sub Ω} decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T → 0. Our predictions can be directly tested in future experiments with superconducting nanowires. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Investigation of structure, specific heat and superconducting transition in Mg1-xAlxB2(x∼0.5)

    International Nuclear Information System (INIS)

    Xiang, J.Y.; Zheng, D.N.; Lang, P.L.; Zhao, Z.X.; Luo, J.L.

    2004-01-01

    We have carried out structure, magnetic and specific heat measurements on aluminum doped magnetism diboride samples Mg 1-x Al x B 2 in order to investigate possible superconductivity at the x=0.5 concentration. A diamagnetic signal was observed in magnetization measurements accompanied by a decrease in resistivity. However, the diamagnetic signal was extremely small as compared to what expected from full diamagnetism. Also, the transition both in magnetization and resistance was very broad. We propose that the diamagnetism is due to a very small amount of superconducting phase such as MgB 2 and the resistive transition is due to the percolation behavior. Furthermore, we performed specific heat measurements, which are considered as a tool to investigate the bulk nature of superconducting transition, on the x=0.5 sample to verify the existence of superconductivity. We observed no evident superconducting transition in the entire temperature region from 2 to 300 K. The undistinguishable data between 0 and 5 T magnetic fields also indicated the absence of bulk superconductivity in the x=0.5 sample

  11. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  12. The effect of collisionality and diamagnetism on the plasma dynamo

    International Nuclear Information System (INIS)

    Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1995-01-01

    Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs

  13. Zero electrical resistance of perfect conductor and diamagnet

    International Nuclear Information System (INIS)

    Palaspagar, R.S.

    2012-01-01

    Intense research has taken place to discover new superconductors, to understand the physics that underlies the properties of superconductors, and to develop new applications for these materials. The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists, engineers and businessmen. In this paper we will discuss about the brief history of superconductors. And we will discuss also phenomenons of superconductors and the two different types of superconductor that exist today. We can say that superconductor exhibits infinite conductivity. A bulk specimen of metal in the superconducting state exhibits perfect diamagnetism, with the magnetic induction B=0 named as Meissner effect. It would have been very difficult to have arrived at the theory of superconductivity by purely deductive reasoning from the basic equations of quantum mechanics. A successful quantum theory of superconductivity has provided the basic for subsequent work and the importance of the phase of the superconducting wave function. If we could make a material that was superconducting at room temperature then our computers would work faster because they would allow electric currents to flow more easily. That would mean electric appliances in our homes and offices would waste much less power. We could also make 'Maglev' (magnetic levitation) trains that would float on rails using linear motors and get us around with a fraction of the power used by current locomotives. (author)

  14. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  15. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  16. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  17. Effect of pressure on spin fluctuations and superconductivity in heavy-fermion UPt3

    International Nuclear Information System (INIS)

    Willis, J.O.; Thompson, J.D.; Fisk, Z.; de Visser, A.; Franse, J.J.M.; Menovsky, A.

    1985-01-01

    We have determined the effect of hydrostatic pressure on the susceptibility, on the T 2 temperature dependence of the spin-fluctuation resistivity, and on superconductivity in UPt 3 . The spin-fluctuation temperature T/sub s/, derived from the slope of resistivity versus T 2 , is used within a Fermi-liquid picture to calculate the susceptibility chi at T = 0 K. The depression of this calculated chi with pressure agrees with the directly measured value partial lnchi/partialP = -24 Mbar -1 . Both the superconducting transition temperature T/sub c/ and the initial slope of the upper critical field also decrease under pressure. We find that partial lnT/sub c//partialP = -25 Mbar -1 and speculate upon correlations between chi and T/sub c/

  18. Pairing fluctuation effects on the single-particle spectra for the superconducting state

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors

  19. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  20. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  1. Spin fluctuations and superconductivity in Mo.sub.3./sub.Sb.sub.7./sub..

    Czech Academy of Sciences Publication Activity Database

    Candolfi, C.; Lenoir, B.; Dauscher, A.; Bellouard, C.; Hejtmánek, Jiří; Šantavá, Eva; Tobola, J.

    2007-01-01

    Roč. 99, č. 3 (2007), 037006/1-037006/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : spin fluctuations * paramagnons * superconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.944, year: 2007

  2. Faraday diamagnetism under slowly oscillating magnetic fields

    Science.gov (United States)

    Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke

    2018-04-01

    Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.

  3. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    Science.gov (United States)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  4. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  5. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  6. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  7. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    Science.gov (United States)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  9. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Science.gov (United States)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  10. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    Science.gov (United States)

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  11. Conductivity fluctuation and superconducting parameters of the YBa2Cu3-x (PO4) x O7-δ material

    International Nuclear Information System (INIS)

    Rojas Sarmiento, M.P.; Uribe Laverde, M.A.; Vera Lopez, E.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    Synthesis of the YBa 2 Cu 3- x (PO 4 ) x O 7- δ superconducting material by the standard solid-state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T C ) when substitution of phosphate in the Cu sites is performed. A bulk T C =97 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the X-ray diffraction technique shows the crystalline appropriated distribution of PO 4 into the CuO 2 superconducting planes. In order to examine the effect of phosphates on the pairing mechanism close to T C , conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian-like fluctuations. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The Ginzburg number for this superconducting material is predicted and the critical magnetic fields, critical current density and the jump in the specific heat at the critical temperature are theoretically determined

  12. Diamagnetic response in zigzag hexagonal silicene rings

    International Nuclear Information System (INIS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-01-01

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  13. Diamagnetic response in zigzag hexagonal silicene rings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Chen, Qiao [Department of Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Tian, Hongyu [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Liu, Junfeng, E-mail: liu.jf@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China)

    2016-09-16

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  14. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    Science.gov (United States)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  15. Resistive transition of superconducting-wire networks. Influence of pinning and fluctuations

    International Nuclear Information System (INIS)

    Giroud, M.; Buisson, O.; Wang, Y.Y.; Pannetier, B.; Mailly, D.

    1992-01-01

    The authors studied the resistive transition of several 2-D superconducting-wire networks of various coupling strengths, which they characterize in terms of the Kosterlitz-Thouless transition temperature and the ratio ξ/a of the coherence length to the array period. In the extreme strong-coupling limit where the mesh size is of the order of the zero-temperature coherence length, the superconducting behavior is well described by the mean-field properties of the superconducting wave function. Extending to 2-D array, the 1-D phase-slippage model explains the dissipative regime observed above the Ginzburg-Landau depairing critical current. On the other hand, when the coupling is weak, phase fluctuations below the Ginzburg-Landau transition and vortex depinning dominate the resistive behavior. An activated dissipation is observed even below the depairing critical current. Results obtained in this regime for critical temperature, magnetoresistance, or critical current versus temperature, and magnetic field are shown; their periodic oscillations are discussed in terms of depinning of vortices on the array. A simple periodic pinning potential for a vortex in a wire network is calculated, and compared with the case of pinning in Josephson junction arrays. It is shown that this model explains qualitatively the experimental results observed for small ξ/a

  16. Monte Carlo studies of diamagnetism and charge density wave order in the cuprate pseudogap regime

    Science.gov (United States)

    Hayward Sierens, Lauren; Achkar, Andrew; Hawthorn, David; Melko, Roger; Sachdev, Subir

    2015-03-01

    The pseudogap regime of the hole-doped cuprate superconductors is often characterized experimentally in terms of a substantial diamagnetic response and, from another point of view, in terms of strong charge density wave (CDW) order. We introduce a dimensionless ratio, R, that incorporates both diamagnetic susceptibility and the correlation length of CDW order, and therefore reconciles these two fundamental characteristics of the pseudogap. We perform Monte Carlo simulations on a classical model that considers angular fluctuations of a six-dimensional order parameter, and compare our Monte Carlo results for R with existing data from torque magnetometry and x-ray scattering experiments on YBa2Cu3O6+x. We achieve qualitative agreement, and also propose future experiments to further investigate the behaviour of this dimensionless ratio.

  17. Disorder and fluctuations in superconducting YBa2Cu3O6.9 films

    International Nuclear Information System (INIS)

    Gauzzi, A.

    1993-01-01

    We have developed the technique of ion-beam sputtering to grow thin (∼ 100 nm) superconducting YBa 2 Cu 3 O 6.9 (YBCO) films. We demonstrate that this technique is suitable for the in-situ deposition at low temperatures ( o C) of uniform films over large areas (≤30 cm 2 ). We found that preferential sputtering effects disappear if low-power ions-beams are used, thus enabling the control of the 1:2:3 composition by using a single stoichiometric target. We have found that the disorder in the crystal, introduced by too high or too low growth temperatures, affects strikingly both, the superconducting and the transport properties of the films. We report evidence that disorder on the atomic scale plays a role equivalent to oxygen doping. The similarity observed between the effects of crystal disorder in our films and the effects of oxygen depletion or Co-doping reported in the literature suggests that the disorder affects mainly the CuO chains. This implies that the local order of the chains controls not only the superconducting properties, as already established in the literature, but also the transport of the carriers in the normal state. Finally, we have investigated the local character of the superconducting state of YBCO by studying the paraconductivity in our films. We have found no indication of critical fluctuations at temperatures ≥5 mK above the zero-resistance critical temperature. Our analysis indicates that the spectrum of mean-field fluctuations is dominated by short-wavelength components and is affected by disorder. As a consequence, the temperature dependence of the critical exponents becomes complex and deviates from the universal predictions of conventional theories. We have explained quantitatively our experimental data and clarified the controversy existing in the literature by using a three-dimensional cut-off approach applied to the Lorentzian spectrum of the Ginzburg-Landau theory. (author) figs., tabs., refs

  18. Superconductivity and magnetic fluctuations developing in the vicinity of strong first-order magnetic transition in CrAs

    International Nuclear Information System (INIS)

    Kotegawa, H; Matsushima, K; Nakahara, S; Tou, H; Kaneyoshi, J; Nishiwaki, T; Matsuoka, E; Sugawara, H; Harima, H

    2017-01-01

    We report single crystal preparation, resistivity, and nuclear quadrupole resonance (NQR) measurements for new pressure-induced superconductor CrAs. In the first part, we present the difference between crystals made by different thermal sequences and methods, and show the sample dependence of superconductivity in CrAs. In the latter part, we show NQR data focusing the microscopic electronic state at the phase boundary between the helimagnetic and the paramagnetic phases. They suggest strongly that a quantum critical point is absent on the pressure-temperature phase diagram of CrAs, because of the strong first-order character of the magnetic transition; however, the spin fluctuations are observed in the paramagnetic phase. The close relationship between the spin fluctuations and superconductivity can be seen even in the vicinity of the first-order magnetic transition in CrAs. (paper)

  19. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Kapaev, V.V.; Belyavsky, V.I. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation); Kopaev, Yu.V. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation)], E-mail: kopaev@sci.lebedev.ru; Smirnov, M.Yu. [State Pedagogical University, Voronezh 394043 (Russian Federation)

    2007-09-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = ({pi}, {pi}). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response.

  20. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    International Nuclear Information System (INIS)

    Kapaev, V.V.; Belyavsky, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2007-01-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = (π, π). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response

  1. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  2. Nonlocal fluctuational electromagnetic response and neutron magnetic scattering near the superconducting transition temperature

    International Nuclear Information System (INIS)

    Barash, Yu.S.; Galaktionov, A.V.

    1992-01-01

    A general expression is found for superconducting fluctuation contribution to transverse permittivity c tr f (Ω, Q) of a standard massive isotopic metal near T c at Ω c and Qζ 0 0 is the coherence length at zero temperature, Q is the external electromagnetic field pulse), depending on frequency and wave vector. Differential cross section of magnetic scattering of neutrons near T c in the region of comparatively small angles is considered

  3. NMR study of spin fluctuations and superconductivity in LaFeAsO1-xHx

    Science.gov (United States)

    Fujiwara, Naoki; Sakurai, Ryosuke; Iimura, Soushi; Matsuishi, Satoru; Hosono, Hideo; Yamakawa, Yoichi; Kontani, Hiroshi

    2013-03-01

    We have performed NMR measurements in LaFeAsO1-xHx, an isomorphic compound of LaFeAsO1-xFx. LaFeAsO1-xHx is most recently known for having double superconducting (SC) domes on H doping. LaFeAsO1-xHx is an electron- doped system, and protons act as H-1 as well as F-1. The first SC dome is very similar between F and H doping, suggesting that H doping supplies the same amount of electrons as F doping. Interestingly, an excess amount of H up to x=0.5 can be replaced with O2-. In the H-overdoped regime (x > 0 . 2), LaFeAsO1-xHx undergoes the second superconducting state. We measured the relaxation rate of LaFeAsO1-xHx for x=0.2 and 0.4, and fond an anomalous electronic state; spin fluctuations measured from 1 /T1 T is enhanced with increasing the doping level from x = 0 . 2 to 0.4. The enhancement of spin fluctuations with increasing carrier doping is a new phenomenon that has not observed in LaFeAsO1-xFx in which the upper limit of the doping level is at most x = 0 . 2 . We will discuss the phenomenon in relation to superconductivity. Grant (KAKENHI 23340101) from the Ministry of Education, Sports and Science, Japan

  4. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    Science.gov (United States)

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  5. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  6. Effects of the layered structure of YBa2Cu3O7-δ on the superconducting fluctuations

    International Nuclear Information System (INIS)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs

  7. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry

    International Nuclear Information System (INIS)

    Izyumov, Yurii A

    1999-01-01

    The notion that electrons in high-T c cuprates pair via antiferromagnetic spin fluctuations is discussed and the symmetry of the superconducting order parameter is analyzed. Three approaches to the problem, one phenomenological (with an experimental dynamic magnetic susceptibility) and two microscopic (involving, respectively, the Hubbard model and the tJ-model) are considered and it is shown that in each case strong-coupling theory leads to a d-wave order parameter with zeros at the Fermi surface. The review then proceeds to consider experimental techniques in which the d-symmetry of the order parameter may manifest itself. These include low-temperature thermodynamic measurements, measurements of the penetration depth and the upper critical field, Josephson junction experiments to obtain the phase of the superconducting order parameter, and various spectroscopic methods. The experimental data suggest that the order parameter in cuprates is d x 2 -y 2 -wave. Ginzburg-Landau theory for a superconductor with a d-wave order parameter is outlined and both an isolated vortex and a vortex lattice are investigated. Finally, some theoretical aspects of the effects of nonmagnetic impurities on a d-wave superconductor are considered. (reviews of topical problems)

  8. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  9. Determining superconducting parameters from analysis of magnetization fluctuation for CaLaBaCu3O7-δ superconductor

    International Nuclear Information System (INIS)

    Parra Vargas, C.A.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    In this work, we report analysis of magnetization fluctuations for the CaLaBaCu 3 O 7- δ superconducting system. We describe a procedure for extracting the penetration depth λ(T) and the coherence length ξ parameters from the magnetization, as a function of the applied magnetic field. This procedure takes the vortex fluctuation into account. The data of the magnetization excess ΔM(T) are analyzed for different values of temperature in the interval from 65 to 73 K. For several magnetic fields we observed a crossover in the magnetization curves at the characteristic temperature value T *=72.2 K. We calculated the data of magnetization excess from the curves of magnetization as a function of the logarithm of the applied field. This procedure was performed for polycrystalline samples of CaLaBaCu 3 O 7- δ by using the proposition of Bulaevskii, Ledvij and Kogan. We notice that the values for these superconducting parameters are in agreement with reports for high-temperature superconductors

  10. Exact mapping of the dx2-y2 Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high Tc' superconductivity

    International Nuclear Information System (INIS)

    McDonald, Ross D; Harrison, Neil; Singleton, John

    2009-01-01

    We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d x 2 -y 2 Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ 0 . Strikingly, the relationship between ξ 0 and δ is valid for both La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x , suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T c ' superconductivity. (fast track communication)

  11. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  12. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  13. Superconductivity: 100th anniversary of its discovery and its future

    International Nuclear Information System (INIS)

    Kitazawa, Koichi

    2011-01-01

    The past and prospects of the superconducting technology are discussed as a systematic wide technology from the aspects of energy, transport and telecommunication. Superconductivity has unique characteristics, perpetual current, diamagnetism and Josephson effect. Since its discovery 100 years ago, it had taken nearly half a century to elucidate its mechanism and its application has still been restricted only to fields of extreme needs in the technical level. The major reason for the delay has apparently been the 'penalty of cooling', however, it is also due to the fact that a superconducting wire has to be a complex composite in a nanotechnology-processed structure. Also, owing to the discovery of high-temperature superconductors, it has recently become feasible to forecast a promising future of the superconducting technology in a long term. (author)

  14. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  15. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    Science.gov (United States)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-01-01

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the

  16. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  17. Modelling of hysteresis in thin superconducting screens for mixed-mu suspension systems

    International Nuclear Information System (INIS)

    Asher, G.M.; Williams, J.T.; Walters, C.R.; Joyce, H.; Paul, R.J.A.

    1982-01-01

    Mixed-mu levitation is the principle whereby iron is levitated in a magnetic field and stabilized by the proximity of diamagnetic superconducting screens. In a dynamic environment, the screens are subject to changing magnetic fields thus causing hysteresis losses in the superconducting material. This paper is concerned with the modeling of such hysteresis. A finite difference approximation to the current and field distributions is employed, the current distribution being made consistent with critical current values by iteration. Square and disc shaped screen samples are studied and hysteresis curves computed. It is shown that the method represents a fair approximation to the hysteresis behavior of thin superconducting screens. 8 refs

  18. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  19. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  20. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  1. Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode

    International Nuclear Information System (INIS)

    Mole, C.J.; Haller, H.E. III.

    1977-01-01

    Two parallel magnetic flux paths are provided in a dynamoelectric machine having a superconductive field winding. A first, or main, magnetic flux path includes at least one area of nonferromagnetic or diamagnetic material. A second, or shunt, magnetic flux path prevents the relatively low frequency ac flux present during starting or asynchronous operation of the machine, when used as an ac motor, from penetrating the superconductive winding

  2. Diamagnetic flux measurement in Aditya tokamak

    International Nuclear Information System (INIS)

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-01-01

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  3. Conductivity fluctuation and superconducting parameters of the YBa{sub 2}Cu{sub 3-} {sub x} (PO{sub 4}) {sub x} O{sub 7-} {sub {delta}} material

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Sarmiento, M.P. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Uribe Laverde, M.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Vera Lopez, E. [Grupo de Superficies, Electroquimica y Corrosion, UPTC, Tunja (Colombia); Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia)]. E-mail: jroar@unal.edu.co

    2007-09-01

    Synthesis of the YBa{sub 2}Cu{sub 3-} {sub x} (PO{sub 4}) {sub x} O{sub 7-} {sub {delta}} superconducting material by the standard solid-state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T {sub C}) when substitution of phosphate in the Cu sites is performed. A bulk T {sub C}=97 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the X-ray diffraction technique shows the crystalline appropriated distribution of PO{sub 4} into the CuO{sub 2} superconducting planes. In order to examine the effect of phosphates on the pairing mechanism close to T {sub C}, conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian-like fluctuations. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The Ginzburg number for this superconducting material is predicted and the critical magnetic fields, critical current density and the jump in the specific heat at the critical temperature are theoretically determined.

  4. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Superconductivity and fluctuations in Ba_1_–_pK_pFe_2As_2 and Ba(Fe_1_–_nCo_n)_2As_2

    International Nuclear Information System (INIS)

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Technical University of Munich, Garching

    2016-01-01

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe_2As_2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22), we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A_1_g and B_1_g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.

  6. Evaluation of the magnetic properties of cosmetic contact lenses with a superconducting quantum interference device.

    Science.gov (United States)

    Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu

    2014-01-01

    We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.

  7. Mössbauer spectroscopy study of magnetic fluctuations in superconducting RbGd2Fe4As4O2

    Science.gov (United States)

    Li, Y.; Wang, Z. C.; Cao, G. H.; Zhang, J. M.; Zhang, B.; Wang, T.; Pang, H.; Li, F. S.; Li, Z. W.

    2018-05-01

    57Fe Mössbauer spectra were measured at different temperatures between 5.9 K and 300 K on the recently discovered self-doped superconducting RbGd2Fe4As4O2 with Tc as high as 35 K. Singlet pattern was observed down to the lowest temperature measured in this work, indicating the absence of static magnetic order on the Fe site. The intermediate isomer shift in comparison with that of the samples RbFe2As2 and GdFeAsO confirms the self doping induced local electronic structure change. Surprisingly, we observe two magnetic fluctuation induced spectral broadenings below ∼ 15 K and ∼ 100 K which are believed to be originated from the transferred magnetic fluctuations of the Gd3+ moments and that of the magnetic fluctuations of the Fe atoms, respectively.

  8. Prospects for obtaining a superconducting filter to purify oxygen from argon

    International Nuclear Information System (INIS)

    Sawai, Yuichi; Ishizaki, Kozo; Yayashi, Shigeki; Jain, R.

    1993-01-01

    A possible superconducting filter, through which argon can pass and oxygen can not pass, is discussed theoretically. Oxygen and argon are paramagnetic and diamagnetic materials, respectively. The mixture of oxygen and argon can be separated in a magnetic field higher than 4 T 2 /m of BdB/dx, where B is the magnetic flux density and dB/dx is its gradient. Such a magnetic field can be obtained by a superconducting filter. Because magnetic flux does not pass through a superconducting body of the filter, and instead does along the penetrating pores, B in the penetrating pores and dB/dx on the surface of the filter are very high, which allows separation of argon from oxygen. 3 refs., 3 figs

  9. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  10. Distinctive behavior of superconducting fluctuations and pseudogap in nearly optimally doped single crystal of HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Grbic, M.S.; Barisic, N.; Dulcic, A.; Kupcic, I.; Li, Y.; Zhao, X.; Yu, G.; Dressel, M.; Greven, M.; Pozek, M.

    2010-01-01

    We have applied an unconventional microwave measurement approach to a nearly optimally doped HgBa 2 CuO 4+δ single crystal. The sample geometry assured the total lateral penetration of microwaves due to weak c-axis screening currents. With this configuration, one can achieve excellent sensitivity to small changes in conductivity. The data show that the pseudogap opens at T*=185(15)K, which is almost twice the superconducting critical temperature T c =94.3 K. In contrast, the superconducting fluctuation regime is clearly confined to a narrow temperature range T c ' ∼105(2)K, far below T*. This is confirmed by the magnetic field dependence of the microwave absorption. Hence, our results support the distinction between the physical processes of pseudogap and the superconducting ordering.

  11. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    International Nuclear Information System (INIS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-01-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  12. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  13. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  14. Peierls' Elucidation of Diamagnetism

    Indian Academy of Sciences (India)

    IAS Admin

    portion of the boundary electrons has however a large contribution to M because of the largeness of the magnitude of the position vector r. Bohr–van Leeuwen theorem which states that. Diamagnetism does not exist in Classical. Mechanics. It is through A that the magnetic field B enters into the discussion via the relation:.

  15. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    International Nuclear Information System (INIS)

    Rahmani, K; Zorkani, I; Jorio, A

    2011-01-01

    The binding energy and diamagnetic susceptibility χ dia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χ dia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy E b shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  16. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  17. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  18. A tangential CO{sub 2} laser collective scattering system for measuring short-scale turbulent fluctuations in the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.M., E-mail: gmcao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Y.D. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Q. [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, X.D.; Sun, P.J.; Wu, G.J.; Hu, L.Q. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • A tangential CO{sub 2} laser collective scattering system was first installed on EAST. • It can measure the short-scale fluctuations in different regions simultaneously. • It can study the broadband fluctuations, QC fluctuations, MHD phenomenon, etc. - Abstract: A tangential CO{sub 2} laser collective scattering system has been first installed on the Experimental Advanced Superconducting Tokamak (EAST) to measure short-scale turbulent fluctuations in EAST plasmas. The system can measure fluctuations with up to four distinct wavenumbers simultaneously ranging from 10 cm{sup −1} to 26 cm{sup −1}, and correspondingly k{sub ⊥}ρ{sub s}∼1.5−4.3. The system is designed based on the oblique propagation of the probe beam with respect to the magnetic field, and thus the enhanced spatial localization can be achieved by taking full advantage of turbulence anisotropy and magnetic field inhomogeneity. The simultaneous measurements of turbulent fluctuations in different regions can be taken by special optical setup. Initial measurements indicate rich short-scale turbulent dynamics in both core and outer regions of EAST plasmas. The system will be a powerful tool for investigating the features of short-scale turbulent fluctuations in EAST plasmas.

  19. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  20. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  1. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  2. Coexistence of charge density wave and superconductivity in Cu0.10TiSe2

    Science.gov (United States)

    Jat, K. S.; Nagpal, V.; Sagar, A. D.; Neha, P.; Patnaik, S.

    2018-04-01

    We report the synthesis and characterization of Cu intercalated TiSe2 superconductor. The resistivity variation with temperature indicates superconducting transition onset at 3.1K and resistivity drops down to zero at 2.1K. The magnetization measurement provides the diamagnetic transition at 3 K. The upper critical field Hc2, lower critical field Hc1, Ginzburg Landau coherence length (ξ) and penetration depth(λ) are estimated to be 0.93 T, 0.01T, 18.8 nm and 181.5 nm respectively. At 100K, CDW type feature is observed. The coexistence of CDW phase and superconductivity is summarized.

  3. Superconducting Fluctuations above T c and pair breaking parameters of two dimensional Niobium Nitride Films

    Science.gov (United States)

    Shinozaki, B.; Ezaki, S.; Odou, T.; Makise, K.; Asano, T.

    2018-03-01

    Transport properties have been investigated for the epitaxial superconducting NbN thin films. We analysed the excess conductance σ’ ≡ σ(T) - σN by the sum of the Aslamazov-Larkin (AL) and Maki-Thompson (MT) terms for thermal fluctuations above T c, where the σN ≡1/R sq N is the normal state sheet conductance. We have found that the theoretical expression σ’theo (T) = σ’AL (T) + σ’MT (T,δ) can be well fitted to σ’exp (T) with use of the suitable value of the pair breaking parameter δ in the MT term relating to the inelastic scattering rate 1/τin(T) as δ = πħ/8k B Tτin. The rate 1/τin(T) given by the sum of 1/τfluc(T), 1/τe-e(T) and 1/τe-ph (T) is determined from the analysis of the magneto-conductance Δσ = σ(H) – σ(0) by the sum of AL, MT and the localization terms, where the first, second and third terms correspond to the rate due to the superconducting fluctuation effect, electron-electron and electron-phonon interactions, respectively. The R sq N dependence of δ is expressed by δ = δ0 + αR sq N, where the first term δ0 due to 1/τe-ph (T) and the second term due to the sum of 1/τfluc(T) and 1/τe-e(T). Although we obtained a reasonable value of Debye temperature ΘD ≈630 K from the δ0, the magnitude of the α is about 5 times larger than the theoretical value.

  4. Pre-critical phenomena of two-flavor color superconductivity in heated quark matter. Diquark-pair fluctuations and non-Fermi liquid behavior

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Kunihiro, Teiji; Koide, Tomoi; Nemoto, Yukio

    2005-01-01

    We investigate the fluctuations of the diquark-pair field and their effects on observables above the critical temperature T c in two-flavor color superconductivity (CSC) at moderate density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode, which has a prominent strength even well above T c . We show that the collective mode is actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific heat and the quark spectrum for T above but close to T c . We find that the specific heat exhibits singular behavior because of the pair fluctuations, in accordance with the general theory of second-order phase transitions. The quarks display a typical non-Fermi liquid behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density of states of the quarks in the vicinity of the critical point. Some experimental implications of the precursory phenomena are also discussed. (author)

  5. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    Science.gov (United States)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  6. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Dodel, G; Holzhauer, E [Stuttgart Univ. (Germany). Inst. fuer Plasmaforschung; Niedermeyer, H; Endler, M; Gerhardt, J; Giannone, L.; Wagner, F; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The 119 [mu]m laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs.

  7. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1991-01-01

    The 119 μm laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs

  8. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  9. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  10. Tetracritical point and current circulations in superconducting state

    International Nuclear Information System (INIS)

    Belyavskij, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2005-01-01

    Phase diagram reflecting the key peculiar features of the standard diagram of the cuprate superconductors was studied in terms of the Ginzburg-Landau phenomenology near the tetracritical point resulting from the competition of superconducting and dielectric channels of pairing. Two-component parameter of order the relative phase of which is associated with antiferromagnetic dielectric ordering corresponds to the superconducting pairing at repulsion. In case of slight doping the dielectric order coexists with superconductivity below the temperature of superconducting phase transition and manifests itself as a slight pseudoslit above the mentioned temperature. A segment of pseudoslit region adjacent to the superconducting state corresponds to the matured fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and may be interpreted as a region of a strong pseudoslit. At increase of doping one observes a phase transition from the coexistence region and the orbital antiferromagnetism to the conventional superconducting state covering the region of matured fluctuations of the order parameter in the form of quasi-stationary states of the noncorrelated orbital circulation currents adjacent to the line of phase transition [ru

  11. Effect of spin fluctuations on the electronic structure in iron-based superconductors

    Science.gov (United States)

    Heimes, Andreas; Grein, Roland; Eschrig, Matthias

    2012-08-01

    Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.

  12. Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe

    Science.gov (United States)

    Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre

    2018-01-01

    In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.

  13. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  14. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  15. Possible nucleation of a 2D superconducting phase on WO3 single crystals surface doped with Na+

    International Nuclear Information System (INIS)

    Reich, S.; Tsabba, Y.

    1999-01-01

    WO 3 crystals with a surface composition of Na 0.05 WO 3 were grown. These crystals exhibit a sharp diamagnetic step in magnetization at 91 K, and a magnetic hysteresis below this temperature. As the temperature is lowered below 100 K in transport measurements, a sharp metal to insulator transition is observed, this is followed by a sharp decrease in the resistivity when the temperature is lowered to about 90 K. When the surface of the crystals was covered by gold the depth of the diamagnetic step had decreased considerably. These results indicate a possible nucleation of a superconducting phase on the surface of these crystals. This is a non cuprate system exhibiting a critical temperature in the HTS range. (orig.)

  16. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    International Nuclear Information System (INIS)

    Male, G; Lubin, T; Mezani, S; Leveque, J

    2011-01-01

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  17. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Male, G; Lubin, T; Mezani, S; Leveque, J, E-mail: gael.male@green.uhp-nancy.fr [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Universite Henri Poincare, Faculte des Sciences et Technologies BP 70239, 54506 Vandoeuvre les Nancy CEDEX (France)

    2011-03-15

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  18. Effects of the layered structure of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} on the superconducting fluctuations; Influence de la structure lamellaire sur les fluctuations supraconductrices dans YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs.

  19. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  20. Synthesis of high-temperature superconducting oxides and chemical alloying in Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Green, L.H.; Mckinnon, W.R.; Hull, G.W.

    1988-01-01

    Some methods for synthesis permitting to fabricate dense superconducting ceramics are considered. The Zole-Hell method is the most perspective one among them. Effect of oxygen content in a sample and copper substitution for nickel and zinc on structural, transition and superconducting properties of samples of the La-Sr-Cu-O(1) and Y-Ba-Cu-O(2) systems is studied. Copper substitution is established to suppress superconductivity in system 1 and to decrease T c in system 2, and this effect doesn't depend on the fact whether the substituting 3d-metal is magnetic (nickel) or diamagnetic (zinc). Detailed study of YBa 2 Cu 3 O 7-y properties as a function of oxygen content has shown that superconductivty in this composition can be suppressed as a result of oxygen removal and it can be reduced with its interoduction. The possibility to prepare nonalloyed La 2 CuO 4 in superconducting state as a result of plasma treatment comprises a scientific interest. 27 refs.; 5 figs.; 1 tab

  1. Fluctuations on the magnetic response of superconducting thin films of Nb and MgB2 - Percolation limit of vortex mobility

    International Nuclear Information System (INIS)

    Colauto, F.; Orgiani, P.; Xi, X.X.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; Patino, E.; Blamire, M.G.; Ortiz, W.A.

    2007-01-01

    Application of a magnetic field of sufficient intensity orthogonal to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist. The dendritic mode can be detected by AC-susceptibility measurements, since fingers penetrated by the magnetic field act as intergranular material. Measurements of the AC-susceptibility have the conventional shape for smaller values of magnitude and frequency of the excitation field. However, for frequencies in the vicinity of 1 kHz and AC-fields around 3 Oe and above, the curve deviates from its canonical behavior and fluctuates, the excursion becoming wider as the amplitude is increased. In this contribution we present results of a systematic study conducted to determine the threshold between smooth and fluctuating regimes of the magnetic response of the film, which is interpreted as the percolation limit of vortex mobility throughout the sample

  2. Magnetization fluctuation analysis and superconducting parameters of La0.5RE0.5BaCaCu3O7-δ(RE=Y, Sm, Gd, Dy, Ho, Yb) superconductor

    International Nuclear Information System (INIS)

    Parra Vargas, C.A.; Pimentel, J.L.; Pureur, P.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2009-01-01

    In this work we report the analysis of magnetization experimental data of the La 0.5 RE 0.5 BaCaCu 3 O 7-δ (RE=Y, Sm, Gd, Dy, Ho, Yb) superconducting system. The data are analyzed in terms of thermal fluctuations on the magnetization excess ΔM(T) for different values of temperature in each one of the samples. We describe a procedure for extracting the penetration depth λ ab (∼1571A) and the coherence length ξ ab (∼1.52A) parameters from the magnetization, as a function of the applied magnetic field. This procedure was performed for polycrystalline samples of La 0.5 RE 0.5 BaCaCu 3 O 7-δ by using the theory of Bulaevskii, Ledvij and Kogan, which analyzes the vortex fluctuation in superconducting materials within the Lawrence-Doniach framework. These data allowed to determine the characteristic temperature value T * (73, 58, 48, 57, 56, 71 K, for RE=Y, Sm, Gd, Dy, Ho, Yb, respectively) in the magnetization curves for several magnetic fields. We calculated the data of magnetization excess from the curves of magnetization as a function of logarithm of applied field. We notice that the values for these superconducting parameters are in agreement with the reports for high temperature superconductors. The obtained value of superconducting volumetric fraction is compared with that obtained through the measure of the Meissner effect.

  3. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    International Nuclear Information System (INIS)

    Kim, Keun Su

    2009-01-01

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field

  4. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  5. The reduction of low frequency fluctuations in RFP experiments

    International Nuclear Information System (INIS)

    Phillips, J.A.; Baker, D.A.; Gribble, R.F.

    1998-01-01

    The low frequency fluctuations seen in RFP experiments are found to be correlated with changes in the toroidal flux measured by diamagnetic loops surrounding the discharge. The correlation of the onset of impurity radiation and x-rays with the crash seen in experiments is caused by plasma bombarding the metal liner associated with this loss of flux. Efforts should be made to design improved stabilizing shells that will reduce the loss of flux and give improved RFP energy confinement times

  6. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Hajra, Rajkumar; Henri, Pierre; Vallières, Xavier; Moré, Jerome; Gilet, Nicolas; Wattieaux, Gaetan; Goetz, Charlotte; Richter, Ingo; Tsurutani, Bruce T.; Gunell, Herbert; Nilsson, Hans; Eriksson, Anders I.; Nemeth, Zoltan; Burch, James L.; Rubin, Martin

    2018-04-01

    The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of ˜2.8 (±1.9), skewness ˜0.43 (±0.36), mean duration of ˜2.7 (±0.9) min and relative density variation ΔN/N of ˜0.5 (±0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.

  7. Mechanism of Superconductivity in Quasi-Two-Dimensional Organic Conductor β-(BDA-TTP) Salts

    Science.gov (United States)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Ito, Hiroshi

    2008-09-01

    We investigate theoretically the superconductivity of two-dimensional organic conductors, β-(BDA-TTP)2SbF6 and β-(BDA-TTP)2AsF6, to understand the role of the spin and charge fluctuations. The transition temperature is estimated by applying random phase approximation to an extended Hubbard model wherein realistic transfer energies are estimated by extended Hückel calculation. We find a gapless superconducting state with a dxy-like symmetry, which is consistent with the experimental results obtained by specific heat and scanning tunneling microscope. In the present model with an effectively half-filled triangular lattice, spin fluctuation competes with charge fluctuation as a mechanism of pairing interaction since both fluctuations have the same characteristic momentum q=(π,0) for V being smaller than U. This is in contrast to a model with a quarter-filled square lattice, wherein both fluctuations contribute cooperatively to pairing interaction due to fluctuations having different characteristic momenta. The resultant difference in the superconductivity of these two materials is also discussed.

  8. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  9. UPt3, heavy fermions and superconductivity

    International Nuclear Information System (INIS)

    Visser, A. de.

    1986-01-01

    In this thesis an experimental study is presented of one of the heavy-fermion superconductors: UPt 3 (T c =0.5 K). The normal-state properties of this material are governed by pronounced spin-fluctuation effects. The unusual coexistence of spin-fluctuations and superconductivity is strongly suggestive for an unconventional type of superconductivity, mediated by spin-fluctuations instead of phonons, with the condensate formed out of odd-parity electron states. In the first chapter a general introduction is given to the field of the heavy-fermions. In the second chapter a theoretical background for the properties of UPt 3 is presented. Chapter 3 deals with the sample preparation and measuring techniques. In chapter 4 a series of experiments is presented on the normal-phase of UPt 3 , among which are studies of the specific heat, thermal expansion, sound velocity, magnetization, electrical resistivity, magnetoresistivity and magnetostriction. Also the influence of high-magnetic fields (35 T) and high-pressures (5 kbar) has been studied. The superconducting phase of UPt 3 has been discussed in chapter 5. In chapter 6 a series of pseudobinary U(Pt 1-x Pd x ) 3 compounds (x≤0.30) are studied. In the last chapter some final remarks and conclusions are presented. (Auth.)

  10. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  11. Fluctuations on the magnetic response of superconducting thin films of Nb and MgB{sub 2} - Percolation limit of vortex mobility

    Energy Technology Data Exchange (ETDEWEB)

    Colauto, F. [Depto. de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Orgiani, P.; Xi, X.X. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I. [Pohang University of Science and Technology, Department of Physics, Pohang (Korea, Republic of); Patino, E.; Blamire, M.G. [University of Cambridge, Department of Metallurgy and Materials Sciences, Cambridge (United Kingdom); Ortiz, W.A. [Depto. de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: wortiz@df.ufscar.br

    2007-09-01

    Application of a magnetic field of sufficient intensity orthogonal to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist. The dendritic mode can be detected by AC-susceptibility measurements, since fingers penetrated by the magnetic field act as intergranular material. Measurements of the AC-susceptibility have the conventional shape for smaller values of magnitude and frequency of the excitation field. However, for frequencies in the vicinity of 1 kHz and AC-fields around 3 Oe and above, the curve deviates from its canonical behavior and fluctuates, the excursion becoming wider as the amplitude is increased. In this contribution we present results of a systematic study conducted to determine the threshold between smooth and fluctuating regimes of the magnetic response of the film, which is interpreted as the percolation limit of vortex mobility throughout the sample.

  12. Apparent destruction of superconductivity in the disordered one-dimensional limit

    International Nuclear Information System (INIS)

    Graybeal, J.M.; Mankiewich, P.M.; Dynes, R.C.; Beasley, M.R.

    1987-01-01

    We present the results of a model-system study of the competition between superconductivity and disorder in narrow superconducting wires. As one moves from the two-dimensional regime toward the one-dimensional limit, large and systematic reductions in the superconducting transition temperature are obtained. The observed behavior extrapolates to the total destruction of superconductivity in the disordered one-dimensional limit. Our findings are in clear disagreement with a recent theoretical treatment. In addition, the superconducting fluctuations appear to be modified by disorder for the narrowest samples

  13. Ferromagnetic quantum critical fluctuations and anomalous coexistence of ferromagnetism and superconductivity in UCoGe revealed by Co-NMR and NQR studies

    International Nuclear Information System (INIS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-01-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at T Curie - 3 K and T S - 0.8 K, in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T 1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above T Curie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn 2 and YCo 2 . The onset SC transition is identified at T S - 0.7 K, below which 1/T 1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T 1 , which follows a T 3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T 1 showing a √T dependence below T S . From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe. (author)

  14. Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Hayden, S.M.; Aeppli, G.; Mook, H.A.

    1996-01-01

    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La1.86Sr0.14CuO4 over the energy range 15 less than or equal to (h) over bar omega less than or equal to 350 meV. The effect...... of Sr doping on the magnetic excitations is to cause a large broadening in the wave vector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale (h) over bar Gamma = 22 +/- 5 meV in La1.86Sr0.14CuO4....

  15. Impurity effects in superconducting UPt3

    International Nuclear Information System (INIS)

    Aronson, M.C.; Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M.; Smith, J.L.

    1991-01-01

    Superconducting UPt 3 is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at T c1 and T c2 in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt 3 . Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. T c1 is depressed by both dopants, but more effectively by Pd. |T c1 - T c2 | is essentially unaffected by Y doping, but increases dramatically with Pd doping

  16. Changes of superconducting interaction in interfaces

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-01-01

    The leakage of conduction electrons from metals into dielectric or semiconducting coatings yields changes in electron phonon coupling and hybridization with localized states in the coating. The changed electron-phonon coupling explains the observed strengthened superconducting interaction with some monolayer thick coating. The hybridization with localized states, i.e. resonance scattering, yields pair weakening and hence a monotonic depression of superconductivity with coating thickness in agreement with experiments. The latter effect explains quantitatively the Tsub(c) and Δ depression (Δ/kTsub(c) approximately equal to const) and a decrease in the Maki-Thompson-fluctuation term observed with thin superconducting films. (author)

  17. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  18. {sup 119}Sn-NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}: Evidence for multigap superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajibsarkarsinp@gmail.com [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Brückner, F.; Günther, M. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Wang, Kefeng; Petrovic, C. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Biswas, P.K.; Luetkens, H.; Morenzoni, E.; Amato, A. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Klauss, H-H. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2015-12-15

    We report bulk superconductivity (SC) in Ca{sub 3}Ir{sub 4}Sn{sub 13} by means of {sup 119}Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T{sub 1}), namely the Hebel–Slichter coherence peak just below the T{sub c}, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of {sup 119}Sn Knight shift below T{sub c} indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate {sup 119}(1/T{sub 1}) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  19. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  20. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  1. Crystal growth of YFe{sub 2}Ge{sub 2} and the dependence of its superconducting properties on sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiasheng; Semeniuk, Konstantin; Reiss, Pascal; Brown, Philip; Grosche, Malte [Cavendish Lab., Cambridge (United Kingdom); Feng, Zhuo [London Centre of Nanotechnology, UCL, London (United Kingdom); Lampronti, Giulio [Cambridge Univ., Dept. of Earth Sciences, Cambridge (United Kingdom)

    2016-07-01

    The d-electron system YFe{sub 2}Ge{sub 2} exhibits an unusually high Sommerfeld ratio of specific heat capacity of C/T ∝ 100 mJ/(molK{sup 2}), signaling strong electronic correlations. Evidence of superconductivity has been reported in polycrystals and in flux-grown single crystals with residual resistance ratios (RRR) of the order of 50, but these samples show no thermodynamic signatures of a bulk superconducting transition. We find that by combining (i) a prereaction of YFe{sub 2}, (ii) careful control of nominal composition, and (iii) subsequent annealing procedures, the polycrystalline YFe{sub 2}Ge{sub 2} samples grown using a radio-frequency (RF) induction furnace can reach RRR values ∝ 200 with resistive superconducting transitions temperatures of around 1.85 K. This new generation of sample displays clear heat capacity anomalies as well as nearly 100% diamagnetic screening, confirming the bulk nature of its superconductivity. We present details of the sample preparation and characterization and discuss the correlation between nominal composition and superconductivity.

  2. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  3. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  4. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  5. Mean-field approach to unconventional superconductivity

    International Nuclear Information System (INIS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2014-01-01

    Highlights: • A model Hamiltonian for unconventional superconductivity (SC) is proposed. • The pseudogap (PG) state is described in terms of pair fluctuations. • SC coherence is restored by a new pair–pair interaction, which counteracts fluctuations. • Given the temperature dependence of the parameters, the SC to PG transition is examined. • The theory fits the ‘peak–dip–hump’ features of cuprate and pnictide excitation spectra. - Abstract: We propose a model that connects the quasiparticle spectral function of high-T c superconductors to the condensation energy. Given the evidence for pair correlations above T c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair–pair interaction term that restores long-range superconducting (SC) coherence below T c . A mean-field solution then leads to a self-consistent gap equation containing the new pair–pair coupling. The corresponding spectral function A(k,E) reveals the characteristic peak–dip–hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed

  6. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  7. Double-valence-fluctuating molecules and superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Scalapino, D.J.

    1985-01-01

    We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature

  8. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  9. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    Science.gov (United States)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  10. Role of disorder in the multi-critical region of d-wave superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Yanase, Youichi; Ogata, Masao

    2007-01-01

    We investigate the disorder-induced microscopic inhomogeneity in the multi-critical region of d-wave superconductivity and antiferromagnetism on the basis of the microscopic t-t ' -U-V model. We find that a small amount of point disorder induces the nano-scale inhomogeneity of spin and superconducting fluctuations when the coherence length of superconductivity is remarkably short as in the under-doped cuprates. Then, the two fluctuations spatially segregate to avoid their competition. We show the remarkable electron-hole asymmetry in high-T c cuprates where the quite different spatial structure is expected in the electron-doped materials

  11. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  12. Investigation of superconducting properties of nanowires prepared by template synthesis

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowires is small enough to ensure a one-dimensional superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter...

  13. Heavy electron superconductivity: From 1K to 90K to ?

    International Nuclear Information System (INIS)

    Pethick, C.J.; Pines, D.

    1987-01-01

    This paper reviews the experimental results and physical arguments which led us to conclude that in heavy electron systems the physical mechanism responsible for superconductivity is an attractive interaction between the heavy electrons which results from the virtual exchange of antiferromagnetic f-electron moment fluctuations. In these systems, then, the superconductivity is of purely electronic origin; the phonon-induced interaction between electrons which leads to superconductivity in ordinary metals plays little or no role

  14. Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

    Science.gov (United States)

    Yanqing, HUANG; Tianyang, XIA; Bin, GUI

    2018-04-01

    The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.

  15. Stabilization of kinetic internal kink mode by ion diamagnetic effects

    International Nuclear Information System (INIS)

    Naitou, H.; Kuramoto, T.; Kobayashi, T.; Yagi, M.; Tokuda, S.; Matsumoto, T.

    2000-04-01

    Ion diamagnetic effects on the m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coordinates, GRM3F-CY. In the derivation of the gryo-reduced-MHD model including the ion diamagnetic effects, finite gyroradius effects of ions are added to the gyrokinetic Poisson equation (quasi-neutral condition) and the convection term of the conservation law of the ion density. It is found that the long wavelength approximation, ksub(perpendicular) ρ ti ti is the thermal ion gyroradius, fails to reproduce the correct dispersion relation; the formulation valid even for ksub(perpendicular) ρ ti >> 1 is necessary. The results of numerical calculation coincide with the theory for |ω *e |+|ω *i | 0 , where the growth rate reduces as the density gradient increases. Here ω *e and ω *i are electron and ion diamagnetic angular frequencies estimated at the rational surface of q=1 (q is a safety factor), respectively, and γ 0 is the growth rate for the uniform density. Very weak instability, however, is observed for |ω *e |+|ω *i | 0 , where the theory predicts the complete stabilization. This residual instability appears since the region with the density gradient is limited in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete. (author)

  16. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  17. Diamagnetism in spinel compound CuIr2S4

    International Nuclear Information System (INIS)

    Yagasaki, K.; Nakama, T.

    2007-01-01

    The diamagnetic susceptibility in CuIr 2 S 4 is independent of temperature up to just below metal-insulator transition temperature. If activation of electrons to higher levels occurs with breaking dimer pairs, the residual electrons at the dimer position and the activated electrons to the anti-bonding orbital make localized free spins giving a Langevin paramagnetism. Assuming no magnetic interaction between the localized free spins, the susceptibility is calculated using the energy gap obtained from the conductivity assumed to be a conventional semiconductor. The calculated results cannot explain the temperature-independent diamagnetism. The real energy gap is too large for thermal electron activation, however, conduction is induced thermally over several orders of magnitude within insulating phase. From the above results, we claimed new conduction mechanism named traveling dimer conduction: dimer shifts its position by electron hopping to neighbor position without electron activation over the energy gap

  18. Method of compensation spires for the detection of the diamagnetic effect in a Tokamak

    International Nuclear Information System (INIS)

    Colunga S, S.

    1990-09-01

    In this report the classical detection method of the diamagnetic effect by means of a rolled spire on the discharges chamber in the poloidal direction and the difficulties related with this are analyzed. An alternative method that increases considerably the detection sensibility of the diamagnetic effect and that for its simplicity it is quite attractive for its application to the Tokamak Novillo of the ININ is presented. (Author)

  19. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  20. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  1. Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach

    International Nuclear Information System (INIS)

    Rey, R I; Ramos-Álvarez, A; Carballeira, C; Mosqueira, J; Vidal, F; Salem-Sugui, S Jr.; Alvarenga, A D; Zhang, Rui; Luo, Huiqian

    2014-01-01

    The superconducting fluctuations well inside the normal state of Fe-based superconductors were experimentally studied through the in-plane paraconductivity in several high-quality, optimally doped BaFe 2−x Ni x As 2 crystals. These measurements were performed in magnetic fields with amplitudes up to 14 T, and different orientations relative to the c-axis of the crystals (θ=0 ∘ , 53 ∘ , and 90 ∘ ). The results allowed a stringent check of the applicability of a recently proposed Ginzburg–Landau approach for the fluctuating electrical conductivity of three-dimensional (3D) anisotropic materials in the presence of finite applied magnetic fields. (papers)

  2. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ome......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  3. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  4. Transition from diamagnetic to ferromagnetic state in laser ablated nitrogen doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Kajal Jindal

    2015-02-01

    Full Text Available Transition from room temperature diamagnetic to ferromagnetic state in N doped ZnO (ZnO:N films grown by pulsed laser deposition with tunable energy density has been identified. ZnO:N films deposited with moderate laser energy density of 2.5 J/cm2 are single phase and nearly defect free having N dopant substitution at O sites in ZnO lattice, exhibiting intrinsic ferromagnetism. When energy density reduces (<2.5 J/cm2, defects in ZnO:N film degrades ferromagnetism and exhibit diamagnetic phase when grown at energy density of 1.0 J/cm2. Growth kinetics, which in turn depends on laser energy density is playing important role in making transition from ferromagnetic to diamagnetic in ZnO:N films.

  5. Bifurcations and complete chaos for the diamagnetic Kepler problem

    Science.gov (United States)

    Hansen, Kai T.

    1995-03-01

    We describe the structure of bifurcations in the unbounded classical diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the nonwandering set is described by a complete trinary symbolic dynamics for scaled energies larger than ɛc=0.328 782. . ..

  6. Localized 5f electrons in superconducting PuCoIn5: consequences for superconductivity in PuCoGa5

    International Nuclear Information System (INIS)

    Bauer, E D; Altarawneh, M M; Tobash, P H; Gofryk, K; Ayala-Valenzuela, O E; Mitchell, J N; McDonald, R D; Mielke, C H; Ronning, F; Scott, B L; Thompson, J D; Griveau, J-C; Colineau, E; Eloirdi, R; Caciuffo, R; Janka, O; Kauzlarich, S M

    2012-01-01

    The physical properties of the first In analog of the PuMGa 5 (M = Co, Rh) family of superconductors, PuCoIn 5 , are reported. With its unit cell volume being 28% larger than that of PuCoGa 5 , the characteristic spin-fluctuation energy scale of PuCoIn 5 is three to four times smaller than that of PuCoGa 5 , which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa 5 . This raises the possibility that the high superconducting transition temperature T c = 18.5 K of PuCoGa 5 stems from the proximity to a valence instability, while the superconductivity at T c = 2.5 K of PuCoIn 5 is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point. (fast track communication)

  7. Fluctuations of order parameters in the high Tc superconductors

    International Nuclear Information System (INIS)

    Das, M.P.; Saif, A.G.

    1987-07-01

    Recently we have proposed a phenomenological approach in terms of two coexisting macroscopic order parameters corresponding to the superconducting and insulating states and have discussed the electrodynamical responses of the superconducting ceramics. In this paper we discuss the fluctuations of the order parameters both in the static and in the dynamical situations in the mean field approach and obtain results for the electrical conductivity which possesses anomalies as in granular materials. (author). 22 refs

  8. Bifurcations and Complete Chaos for the Diamagnetic Kepler Problem

    OpenAIRE

    Hansen, Kai T.

    1995-01-01

    We describe the structure of bifurcations in the unbounded classical Diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the non-wandering set is described by a complete trinary symbolic dynamics for scaled energies larger then $\\epsilon_c=0.328782\\ldots$.

  9. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  10. London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Talantsev, E.F.; Crump, W.P. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Storey, J.G.; Tallon, J.L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2017-03-15

    Recently, compressed H{sub 2}S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground-state London penetration depth, λ{sub 0} = 189 nm, and the superconducting energy gap, Δ{sub 0} = 27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, T{sub fluc} = 1470 K, which shows that, unlike the cuprates, T{sub c} of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three-dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed T{sub c}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  12. Optical fluctuation measurements of turbulence using a diagnostic beam on Phaedrus-T

    International Nuclear Information System (INIS)

    Evensen, H.; Brouchous, D.; Diebold, D.; Doczy, M.; Fonck, R.J.; Nolan, D.

    1992-01-01

    Plasma density turbulence has been measured with the beam emission spectroscopy (BES) diagnostic system, using a low-power neutral beam with He 0 and H 0 as beam species. In general, He 0 (588 nm) provided the best signal-to-noise ratio due to its lower edge plasma background interference. Simultaneous measurements of edge density fluctuations have been made with BES and Langmuir probes; the spectra are seen to be essentially identical, and the fluctuation amplitudes from both diagnostics are in close agreement. A poloidal coherence length of about 2--4 cm was observed. Radial propagation of modes was not seen, but a lab-frame poloidal phase velocity at r/a=0.77 of about 7x10 5 cm/s in the electron diamagnetic direction was observed, corresponding to m=8--75 kHz

  13. Nematic fluctuations and resonance in iron-based superconductors

    Science.gov (United States)

    Gallais, Yann

    The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is ubiquitous in many iron based superconductors (Fe SC), and has relevance for the cuprates as well. Here I will review recent electronic Raman scattering experiments which report the presence of critical nematic fluctuations in the charge channel in the tetragonal phase of several Fe SC systems. In electron doped Co-BaFe2As2 (Co-Ba122), these fluctuations extend over most of the superconducting dome. Their associated nematic susceptibility shows Curie-Weiss behavior, and its doping dependence suggests the presence of a nematic quantum critical point near optimal TC Similar nematic fluctuations are also observed in FeSe despite the absence of magnetic order, raising the question of the link between nematicity and magnetism in Fe SC. In FeSe I will further contrast the evolution of nematic fluctuations under isoelectronic S substitution and hydrostatic pressures up to 8 GPa, with only the former showing evidence for a nematic quantum critical point. In the superconducting state of Co-Ba122, I will show that a resonance emerges in the Raman spectra near the nematic quantum critical point. This nematic resonance is a clear fingerprint of the coupling between nematic fluctuations and Bogoliubov quasiparticles, and can be thought as the nematic counterpart of the spin resonance observed in neutron scattering experiments. Support from Agence Nationale de la Recherche via ANR Grant ''Pnictides'' is acknowledged.

  14. Spin and diamagnetism in linear and nonlinear optics

    International Nuclear Information System (INIS)

    Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje

    2004-01-01

    We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics

  15. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  16. Temperature dependence of the magnetic anisotropy of metallic Y-Ba-Cu-O single crystals in the normal phase

    International Nuclear Information System (INIS)

    Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.

    1990-01-01

    The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c

  17. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  18. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  19. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    Science.gov (United States)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  20. Structure, magnetic and superconducting properties of MoSr2HoCu2O8-δ

    International Nuclear Information System (INIS)

    Balchev, N.; Nenkov, K.; Mihova, G.; Kunev, B.; Pirov, J.; Dimitrov, D.A.

    2009-01-01

    Samples with nominal composition MoSr 2 HoCu 2 O 8-δ were synthesized and their magnetic and superconducting (SC) properties were investigated. The obtained samples are Mo-deficient. It was established that the magnetic order is of a long-range type. The coincidence of the experimental value of the Curie constant and the theoretical one of MoSr 2 HoCu 2 O 8-δ shows that the observed magnetic properties of the samples are determined by the highly dominating phase Mo-1212. The two-step resistive SC transition, together with the absence of both diamagnetism and a peak in the specific heat between the two critical temperatures may be associated with the presence of a granular superconductivity. The effect of the Mo-deficiency on the magnetic and SC properties of MoSr 2 HoCu 2 O 8-δ was discussed

  1. Observation of superconductivity in BaNb2S5

    Science.gov (United States)

    Smith, M. G.; Neumeier, J. J.

    2018-06-01

    Bulk superconductivity is reported in BaNb2S5 at the transition temperature Tc = 0.85(1) K. The electrical resistivity ρ versus T is metallic with ρ(2 K) = 42.4 μΩ cm. The magnetic susceptibility is paramagnetic, with temperature-independent contributions due to diamagnetism, Pauli paramagnetism, and Van Vleck paramagnetism; a Curie-Weiss contribution appears to be impurity related. Hall effect measurements show that the majority charge carriers are electrons with charge-carrier concentration n(3 K) = 2.40(2) × 1021 cm-3. Specific heat measurements reveal an electronic specific heat coefficient γ = 11.2(1) mJ/mol K2, a Debye temperature ΘD = 126.4(8) K, and an energy gap associated with the superconducting state of Eg = 0.184(4) meV. Measurements of ρ(T) in magnetic field provide the upper critical magnetic field of about 3055(74) Oe as T → 0 K, which was used to estimate the coherence length ξ = 6.21(15) nm. The results allow classification of BaNb2S5 as a Type II, BCS superconductor in the dirty limit.

  2. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators

    OpenAIRE

    Eichler, C.; Petta, J. R.

    2017-01-01

    We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device (SQUID) into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC-resonator. By employing sideband drive fields we e...

  3. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  4. Single-particle spectra and magnetic field effects within precursor superconductivity

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.; Perali, A.

    2004-01-01

    We study the single-particle spectra below the superconducting critical temperature from weak to strong coupling within a precursor superconductivity scenario. The spectral-weight function is obtained from a self-energy that includes pairing-fluctuations within a continuum model representing the hot spots of the Brillouin zone. The effects of strong magnetic fields on the pseudogap temperature are also discussed within the same scenario

  5. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  6. Magnetic fluctuations on TR{sub 3}Ba{sub 5}Cu{sub 8}O{sub δ} (TR=Ho, Y and Yb) superconducting system

    Energy Technology Data Exchange (ETDEWEB)

    Supelano, G.I., E-mail: ivan.supelano@uptc.edu.co [Grupo de Superficies Electroquímica y Corrosión, Universidad Pedagógica y Tecnológica de Colombia (Colombia); Sarmiento Santos, A. [Grupo de Superficies Electroquímica y Corrosión, Universidad Pedagógica y Tecnológica de Colombia (Colombia); Parra Vargas, C.A. [Grupo de Física de Materiales, Universidad Pedagógica y Tecnológica de Colombia (Colombia)

    2014-12-15

    In this work, we report the production of TR{sub 3}Ba{sub 5}Cu{sub 8}O{sub δ} (TR=Ho, Y and Yb) superconducting system using a usual solid state reaction method. The irreversibility line and the analysis of magnetization fluctuations for TR{sub 3}Ba{sub 5}Cu{sub 8}O{sub δ} (TR=Ho, Y and Yb) system were investigated. The curves of magnetization ZFC–FC were measured in magnetic fields of the 100–4000 Oe to obtain the values for T{sup ⁎} and T{sub C} temperatures. The penetration depth and the coherence length parameters as a function of the applied magnetic field were obtained. The data of the magnetization excess ΔM(T, H) was analyzed from the curves of magnetization as a function of logarithm of applied field for different values of temperature in the corresponding range. The Bulavskii, Ledvij and Kogan theory was employed for this purpose which considers fluctuations effects in the free energy and into the equilibrium magnetization.

  7. Modulated ECH power absorption measurements using a diamagnetic loop in the TCV tokamak

    International Nuclear Information System (INIS)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A.

    2001-10-01

    The additional power absorbed by the plasma can be determined from the time derivative of the total plasma energy, which can be estimated from the diamagnetic flux of the plasma using a Diamagnetic Loop (DML). The main difficulty in using diamagnetic measurements to estimate the kinetic energy is the compensation of the flux measurement sensitivity to poloidal magnetic fields, which is not always easy to adjust. A method based on the temporal variations of the diamagnetic flux of the plasma during Modulated Electron Cyclotron Heating (MECH) has been developed. Using MECH has the advantage that these poloidal fields are not significantly modulated and a good compensation of these fields is not necessary. However, a good compensation of the vessel poloidal image current is crucial to ensure a sufficiently large bandwidth. The application of this diagnostic to studies of the extraordinary mode (X-mode) absorption at the third electron cyclotron harmonic frequency (X3) has been performed on the TCV Tokamak in plasmas pre-heated by X-mode at the second harmonic (X2). A MECH frequency scan has allowed the determination of an optimum modulation frequency, situated at about 200- 250 Hz. Based on this diagnostic, full single-pass absorption of the injected X3 power was measured with the X2 pre-heating in co-current drive. This high absorption is more than a factor of 2 higher than the one predicted by the linear ray tracing code TORAY. Experimental evidence indicates that a large fraction of the X3 power is absorbed by electrons in an energetic tail created by the X2 pre-heating. (author)

  8. Modelling of diamagnetic stabilization of ideal MHD eigenmodes associated with the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.; Sharapov, S.; Mikhailovskii, A.; Kerner, W.

    2001-01-01

    A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω *i , on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-section. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues [γ] ≅ ω *i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω *i -spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for H-mode plasma with the ω *i -effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω *i - stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of JET optimised shear discharges, the stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive mode is studied. A strong radial variation of ω *i is found to significantly decrease the stabilizing ω *i - effect on the n=1 mode, in comparison with the case of constant ω *i estimated at the foot of the internal transport barrier. (author)

  9. Universal fluctuations in orbital diamagnetism

    Indian Academy of Sciences (India)

    P S Pal

    published online 31 January 2018. Abstract. Bohr–van ... friction and (c) particle moving in a medium with space-dependent temperature. For all the three cases, the average ..... A M J thanks Department of Science and Technology,. India, for ...

  10. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  11. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  12. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  13. Analysis of persistent current in the superconducting magnets on an EDS Maglev vehicle for high-speed passenger transport

    Energy Technology Data Exchange (ETDEWEB)

    Azukizawa, Teruo [R and D Center, Toshiba Corp. (Japan)

    1996-12-31

    In an electrodynamic suspension system using superconducting magnets, an air core system is employed to effectively use strong magnetic fields produced by the superconducting magnets. This paper proposes an analysis method for the fluctuating persistent current in an superconducting soil, considering electromagnetic effects of the conductive cryostat. (HW)

  14. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  15. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  16. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  17. Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction

    Science.gov (United States)

    Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp

    2018-04-01

    Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.

  18. Bond-length fluctuations in the copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)

    2003-02-26

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)

  19. Enhanced superconducting transition temperature in hyper-interlayer-expanded FeSe despite the suppressed electronic nematic order and spin fluctuations

    Science.gov (United States)

    Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis

    2015-09-01

    The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.

  20. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  1. Measurement of magnetic fluctuations at small spatial scales in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.

    1991-08-01

    This thesis is a presentation of the measurements of short-wavelength, high-frequency radial magnetic fluctuations performed on the Tokapole 2 tokamak at the University of Wisconsin-Madison. Theories of electron temperature gradient (η e ) driven turbulence predict the existence of increased magnetic fluctuation power at small spatial scales near the collisionless skin depth c/ω pe and over a wide range of frequencies near and below the electron diamagnetic drift frequency ω* ne . Small magnetic probes of sizes down to 1 m m have been constructed and used to resolve short poloidal and radial wavelength magnetic fluctuations. These probes have been used with larger probes to make comparisons of fluctuation spectra measured in various ranges of wavelength and over the range of frequencies from 10 kHz to 6 MHz in Tokapole 2 plasmas. A calculation of the short-wavelength, high-frequency response of an electrostatically shielded model B r probe has been performed to guide the interpretation of the power comparison measurements. Comparisons of magnetic fluctuation spectra at various positions within the plasma, and for discharges with edge safety factor 1, 2, and 3 are presented. The linear and nonlinear theories and numerical simulations of η e turbulence are reviewed and compared, where possible with the experimental parameters and results

  2. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  3. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  4. Orbital diamagnetism of a charged Brownian particle undergoing birth-death process

    International Nuclear Information System (INIS)

    Jayannawar, A.M.; Kumar, N.

    1980-06-01

    We consider the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. We obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem. (author)

  5. An introduction to superconductivity. The Meissner effect and the derivation of phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Habeney, Lucas

    2016-09-23

    The purpose of this work was to give the reader insight into the topic of conventional superconductors. It started out with defining the superconductive state itself as a state of ideal conductivity and ideal diamagnetism. An important phenomenon to keep in mind in this regard is the Meissner-Ochsenfeld effect. It then went on to attempt to understand those properties on a macroscopic level. This was achieved in the framework of the two major macroscopic theories, the London theory and the Ginzburg-Landau theory. While the London theory focused on the electrodynamic qualities of the superconductive state, the Ginzburg-Landau theory dealt with events close to the superconducting phase transition in a thermodynamic scope. The highlight of this section was the investigation of the Abrikosov lattice, the geometric disposition of the flux tubes in the intermediate Shubnikov phase. We closed with the BCS theory as the premier microscopic theory of superconductivity. Main subjects of this section were the concept of Cooper pairs and the calculation of various energy gap equations. We also looked at real properties of superconductors such as the specific heat to test our rather abstract calculations and came to outstanding agreements. The principles presented in this document should serve as a foundation to work on more advanced problems in superconductivity. Especially the large field of unconventional superconductivity is of huge interest in current research, as most of the high T{sub c} superconductors fall in that category. As unconventional superconductors can not be explained with BCS theory, the search for a uniform theory to describe them is still on-going. Unconventional superconductors include but are not limited to cuprates (T{sub c}

  6. Diamagnetic measurements on ISX-B: method and results

    International Nuclear Information System (INIS)

    Neilson, G.H.

    1983-10-01

    A diamagnetic loop is used on the ISX-B tokamak to measure the change in toroidal magnetic flux, sigma phi, caused by finite plasma current and perpendicular pressure. From this measurement, the perpendicular poloidal beta β/sub I perpendicular to/ is determined. The principal difficulty encountered is in identifying and making corrections for various noise components which appear in the measured flux. These result from coupling between the measuring loops and the toroidal and poloidal field windings, both directly and through currents induced in the vacuum vessel and coils themselves. An analysis of these couplings is made and techniques for correcting them developed. Results from the diamagnetic measurement, employing some of these correction techniques, are presented and compared with other data. The obtained values of β/sub I perpendicular to/ agree with those obtained from the equilibrium magnetic analysis (β/sub IΔ/) in ohmically heated plasmas, indicating no anisotropy. However, with 0.3 to 2.0 MW of tangential neutral beam injection, β/sub IΔ/ is consistently greater than β/sub I pependicular to/ and qualitatively consistent with the formation of an anisotropic ion velocity distribution and with toroidal rotation. Quantitatively, the difference between β/sub IΔ/ and β/sub I perpendicular to/ is more than can be accounted for on the basis of the usual classical fast ion calculations and spectroscopic rotation measurements

  7. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  8. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1991-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. Flux flow resistance in two dimensional Josephson junction arrays has been calculated, and related to correlations in vortex structure. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. We find that randomness destroys phase coherence, yet the randomness induced pinning reduces flux flow resistance at low temperatures. Vortex line fluctuations in high temperature superconductors have been studied using a three dimensional XY model. We have considered the melting of the vortex line lattice, and the entanglement and cutting of vortex lines in the vortex line liquid phase. Vortex line entangling and cutting appear to occur on the same length scales in the liquid phase. The vortex structure function has been calculated and from it, elastic properties of the vortex line liquid have been inferred. The two dimensional classical Coulomb gas, where charges map onto vortices in the superconducting system, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find evidence that these transitions do not have the critical behavior expected from standard symmetry analysis

  9. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  10. Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

    Science.gov (United States)

    Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.

    2018-05-01

    Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

  11. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution. (paper)

  12. Development of 70 MW class superconducting generator with quick-response excitation

    Science.gov (United States)

    Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo

    2002-03-01

    The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.

  13. Diamagnetic (cyclotron) resonance in semiconductors using strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sosniak, J

    1962-07-01

    Diamagnetic (cyclotron) resonance experiments have been carried out in the semiconductors indium-antimonide (InSb), the indium-arsenide (InAs). Pulsed magnetic fields up to 300,000 gauss and monochromatic infrared radiation of 9 to 13.5 microns wavelength were used to measure the effective mass of the conduction electrons in those materials. The samples were n-type single crystals, with a room temperature electron concentration of 1.9 x 10{sup 16} and 6 x 10{sup 16} per cm{sup 3} in InSb and InAs respectively. Both the InSb and InAs samples showed a strong dependence of the effective mass on the magnetic field. The results show that the conduction bands in those solids are highly non-parabolic. Measurements were also made of the resonance absorption coefficients, which were found to be considerably smaller than the values obtained from simple theory. The effect is explained by assuming that the magnetic field reduces the intrinsic electron density, and that the absorption coefficient depends on the shape of the conduction band. It is postulated as a consequence that the relaxation time of diamagnetic energy levels at high magnetic fields does not differ appreciably from the relaxation time used in the description of conduction processes. (author)

  14. Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake Along South Pacific Rise Few Hours Before the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Directory of Open Access Journals (Sweden)

    Keliang Zhang Jin Ma

    2014-01-01

    Full Text Available Gravity changes sometimes appear before a big earthquake. To determine the possible sources is important for recognizing the mechanism and further geodynamic studies. During the first two hours on March 11 before the Mw 9.0 Tohoku-Oki earthquake, the non-tidal gravity time series of superconducting gravimeters worldwide showed low-frequency (< 0.10 Hz fluctuations with amplitude of ~1 to 4 × 10-8 ms-2 lasting ~10 - 20 minutes. Through comparing global seismicity with the arrival times of seismic waves, we find that the fluctuations were induced by the Mw 5.7 earthquake that occurred at 0:14:54.68 at (53.27°S, 118.18°W along the eastern South Pacific Rise. Several body waves such as P, S are clearly recorded in the station with ~400 km distance to the hypocenter. The fluctuations are in response to the waves that propagate with a velocity of about 4 km s-1. Their amplitudes are proportional to the inverse of the epicentral distances even though the fluctuations of European sites were overlapped with waves associated with a smaller, i.e., Mw 2.6, event in Europe during this period. That is, the Mw 5.7 earthquake induced remarkable gravity fluctuations over long distances at stations all over the world. As such, the foreshocks with larger magnitudes occurred before the Mw 9.0 earthquake would have more significant influence on the gravity recordings and the seismic-wave induced component should be removed during the analysis of anomalies prior to a great earthquake in future studies.

  15. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  16. Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s±) or orbital (s++) fluctuation

    Science.gov (United States)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.

    2016-01-01

    In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.

  17. Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction

    OpenAIRE

    Marchetti, P. A.; Ye, F.; Su, Z. B.; Yu, L.

    2011-01-01

    Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction betwe...

  18. Charge Fluctuations in the NdO1-xFxBiS2 Superconductors

    Science.gov (United States)

    Athauda, Anushika; Mizuguchi, Yoshikazu; Nagao, Masanori; Neuefeind, Joerg; Louca, Despina

    2017-12-01

    The local atomic structure of superconducting NdO1-xFxBiS2 (x = 0.2 and 0.4) is investigated using neutron diffraction and the pair density function analysis technique. In the non-superconducting x = 0.2 composition, ferrodistortive displacements of the pyramidal sulfur ions break the tetragonal symmetry and a superlattice structure emerges with peaks appearing at h + k odd reflections superimposed on the even reflections of the P4/nmm symmetry. In the superconducting x = 0.4 composition, similar ferrodistortive displacements are observed but with different magnitudes coupled with in-plane Bi distortions which are indicative of charge fluctuations.

  19. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  20. Superconductivity: Is there a problem in transuranics?

    International Nuclear Information System (INIS)

    Colineau, Eric; Griveau, Jean-Christophe; Eloirdi, Rachel; Hen, Amir; Caciuffo, Roberto

    2014-01-01

    Superconductivity was first reported in 1942 for uranium metal (¡-U) and in 1958 for U compounds: UCo, U6Mn, U6Fe, and U6Co, with critical temperatures Tc, of 1.7, 2.3, 3.9, and 2.3K, respectively. A new class of U superconductors emerged in the early 1980’s with the discovery of U heavy fermion superconductors : UBe13 (Tc = 0.85K), UPt3 (Tc = 0.53K), URu2Si2 (Tc = 1.5K) , UPd2Al3 (Tc = 1.9K) … Furthermore, in most of these systems, the superconducting phases coexist with antiferromagnetic (AF) correlations which have characteristic temperatures, usually the Néel temperature TN, that are typically one order of magnitude greater than the corresponding superconducting critical temperatures Tc. Superconductivity was even shown to co-exist with ferromagnetism in e.g. UGe2 (Tc ï» 0.8K, TC ï» 30K at p ï» 1.2GPa) and URhGe (Tc = 0.25K, TC = 9.5K). Heavy fermion superconductors still remain a major challenge for condensed matter physics. The existence of heavy fermion superconductivity and its coexistence or proximity with magnetic order suggests that the conventional mechanism of phonon-mediated superconductivity is inappropriate and that alternative mechanisms, like spin fluctuations, should be considered for Cooper pairing

  1. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  2. Electronic structure, superconductivity, and spin fluctuations in the A15 compounds A3B: A = V, Nb; B = Ir,Pt,Au

    International Nuclear Information System (INIS)

    Jarlborg, T.; Junod, A.; Peter, M.

    1983-01-01

    The electronic structure of six A15 compounds V 3 Ir, V 3 Pt, V 3 Au, Nb 3 Ir, Nb 3 Pt, and Nb 3 Au has been determined by means of self-consistent semirelativistic linear muffin-tin orbital band calculations. Parameters related to superconductivity such as electron-phonon coupling, transition temperature, electronic specific heat, and magnetic exchange enhancement are derived from the electronic-structure results. Generally the results obtained agree well with experimental values, with the exception of Nb 3 Pt and V 3 Au. In the former compound the density of states (DOS) has a sharp increase at E/sub F/ making the exact DOS value uncertain. In V 3 Au the high calculated T/sub c/ and the Stoner factor indicate that spin fluctuations may be limiting the T/sub c/. .AE

  3. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Kapitán, J.; Pačes, Ondřej; Bouř, Petr

    2016-01-01

    Roč. 55, č. 10 (2016), s. 3504-3508 ISSN 1433-7851 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-00431S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : angular momentum theory * diamagnetic molecules * excited electronic states * magnetic field * Raman optical activity Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  4. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    Science.gov (United States)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  5. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    Science.gov (United States)

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Directory of Open Access Journals (Sweden)

    Andrey V. Chubukov

    2016-12-01

    Full Text Available Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s^{+-} superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s^{+-} superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe_{2}As_{2} and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  7. Photoemission perspective on pseudogap, superconducting fluctuations, and charge order in cuprates: a review of recent progress

    Science.gov (United States)

    Vishik, I. M.

    2018-06-01

    In the course of seeking the microscopic mechanism of superconductivity in cuprate high temperature superconductors, the pseudogap phase— the very abnormal ‘normal’ state on the hole-doped side— has proven to be as big of a quandary as superconductivity itself. Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for assessing the momentum-dependent phenomenology of the pseudogap, and recent technological developments have permitted a more detailed understanding. This report reviews recent progress in understanding the relationship between superconductivity and the pseudogap, the Fermi arc phenomena, and the relationship between charge order and pseudogap from the perspective of ARPES measurements.

  8. Manifestly non-Gaussian fluctuations in superconductor-normal metal tunnel nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti [Institut fuer Theorie der Statistischen Physik, RWTH Aachen University, Aachen (Germany); Low Temperature Laboratory, Aalto University, Espoo (Finland); Heikkilae, Tero [Low Temperature Laboratory, Aalto University, Espoo (Finland); Nazarov, Yuli [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2013-07-01

    Recently, temperature fluctuation statistics has been studied in non-interacting islands and overheated single-electron transistors. We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure, and is biased near the threshold voltage for quasiparticle tunneling, eV ∼ 2Δ. The fluctuations can be measured by monitoring the time-dependent electric current through the system, which makes the setup suitable for the realization of feedback schemes which allow to stabilize the temperature to the desired value.

  9. Theory of high-Tc superconducting cuprates based on experimental evidence

    International Nuclear Information System (INIS)

    Abrikosov, A. A.

    1999-01-01

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc

  10. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1993-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. The fluctuation of vortex lines in high temperature superconductors, in the presence of an external magnetic field, has been studied using a three dimensional XY model. We have continued earlier work and verified the existence of two distinct phase transitions in this model. As the vortex line lattice is heated, it melts first into a line liquid where superconductivity is destroyed for currents perpendicular to the applied magnetic field, but persists for currents parallel to the field. As heating continues, the thermal excitation of closed vortex line loops links all the lines together, leading to completely normal metal properties in all directions. Upon cooling of the vortex line liquid, we find that as the system width increases, one can get trapped into an entangled non-equilibrium state in which vortex line cuttings are frozen out on measurable nine scales. We have also continued simulations of the two dimensional Coulomb gas, as a model for vortex fluctuations in two dimensional arrays of Josephson junctions, and thin film superconductors. Our preliminary results support the accepted view of a Kosterlitz-Thouless melting of the vortex lattice, in the limit of a uniform continous film

  11. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  12. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    International Nuclear Information System (INIS)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-01-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg's equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  13. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    Science.gov (United States)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-10-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg’s equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  14. Superconductivity under uniaxial compression in beta-(BDA-TTP) salts

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T., E-mail: suzuki@rover.nuap.nagoya-u.ac.j [Department of Applied Physics and JST, TRIP, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Onari, S.; Ito, H.; Tanaka, Y. [Department of Applied Physics and JST, TRIP, Nagoya University, Chikusa, Nagoya 464-8603 (Japan)

    2009-10-15

    In order to clarify the mechanism of organic superconductor beta-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T{sub c} by solving the Eliashberg's equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T{sub c} in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  15. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  16. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  17. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    International Nuclear Information System (INIS)

    Fujiwara, Y; Tanimoto, Y

    2009-01-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 ± 0.005) x (calculated) - (1.22 ± 0.60) x 10 -6 in a unit of cm 3 mol -1 and good cost performance.

  18. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tanimoto, Y [Faculty of Pharmacy, Osaka Ohtani University, Nishikiorikita, Tondabayashi 584-8540 (Japan)], E-mail: fuji0710@sci.hiroshima-u.ac.jp

    2009-03-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 {+-} 0.005) x (calculated) - (1.22 {+-} 0.60) x 10{sup -6} in a unit of cm{sup 3} mol{sup -1} and good cost performance.

  19. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  20. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu [Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India); Kalpana, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu-624302 (India); Reuben, A. Merwyn Jasper D., E-mail: merwyn@gmail.com [Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India)

    2015-06-24

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  1. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Science.gov (United States)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2015-06-01

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  2. Evidence of superstoichiometric H/D LENR active sites and high-temperature superconductivity in a hydrogen-cycled Pd/PdO

    International Nuclear Information System (INIS)

    Lipson, A.G.; Castano, C.H.; Miley, G.H.; Lyakhov, B.F.; Tsivadze, A.Yu.; Mitin, A.V.

    2006-01-01

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed. (author)

  3. Evidence of Superstoichiometric H/d Lenr Active Sites and High-Temperature Superconductivity in a Hydrogen-Cycled Pd/PdO

    Science.gov (United States)

    Lipson, A. G.; Castano, C. H.; Miley, G. H.; Lyakhov, B. F.; Tsivadze, A. Yu.; Mitin, A. V.

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed.

  4. The interplay of superconducting quantum circuits and propagating microwave states

    International Nuclear Information System (INIS)

    Goetz, Jan

    2017-01-01

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n 2 + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  5. The interplay of superconducting quantum circuits and propagating microwave states

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan

    2017-06-26

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n{sup 2} + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  6. Structural feature controlling superconductivity in compressed BaFe2As2

    International Nuclear Information System (INIS)

    Yang, Wenge; Jia, Feng-Jiang; Tang, Ling-Yun; Tao, Qian; Xu, Zhu-An; Chen, Xiao-Jia

    2014-01-01

    Superconductivity can be induced with the application of pressure but it disappears eventually upon heavy compression in the iron-based parent compound BaFe 2 As 2 . Structural evolution with pressure is used to understand this behavior. By performing synchrotron X-ray powder diffraction measurements with diamond anvil cells up to 26.1 GPa, we find an anomalous behavior of the lattice parameter with a S shape along the a axis but a monotonic decrease in the c-axis lattice parameter with increasing pressure. The close relationship between the axial ratio c/a and the superconducting transition temperature T c is established for this parent compound. The c/a ratio is suggested to be a measure of the spin fluctuation strength. The reduction of T c with the further increase of pressure is a result of the pressure-driven weakness of the spin-fluctuation strength in this material

  7. Superconducting coherence in a vortex line liquid

    International Nuclear Information System (INIS)

    Chen, T.; Teitel, S.

    1995-01-01

    We carry out simulations of the anisotropic uniformly frustrated 3d XY model, as a model for vortex line fluctuations in high T c superconductors. We compute the phase diagram as a function of temperature and anisotropy, for a fixed applied magnetic field B. We find two distinct phase transitions. Upon heating, there is first a lower T c perpendicular where the vortex line lattice melts and super-conducting coherence perpendicular to the applied magnetic field vanishes. At a higher T cz , within the vortex line liquid, superconducting coherence parallel to the applied magnetic field vanishes. For finite anisotropy, both T c perpendicular and T cz lie well below the crossover from the vortex line liquid to the normal state

  8. Theory of diamagnetic signal in current-free stellarators

    International Nuclear Information System (INIS)

    Pustovitov, Vladimir D.

    2010-01-01

    The toroidal magnetic flux through the plasma column is calculated analytically for current-free stellarators of arbitrary geometry without assumptions on the plasma shape, aspect ratio, etc. This is done with accuracy sufficient for extracting the contribution due to the finite plasma pressure from this flux. The final result is a formula relating the measured diamagnetic signal with β, the ratio of the plasma pressure to the magnetic pressure. This formula is obtained assuming small β and the relative depth of the magnetic well. These are natural conditions for stellarators, therefore the final result can be recommended for magnetic diagnostics without practical limitations. (author)

  9. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  10. Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew Thomas

    Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of

  11. Mechanisms of conventional and high Tc superconductivity

    International Nuclear Information System (INIS)

    Kresin, V.L.; Morawitz, H.; Wolf, S.A.

    1993-01-01

    This book gives a careful and objective review of theories of superconductivity in traditional superconductors, organics, and high Tc cuprates. Of course, the authors do still present their own theories of cuprate superconductivity, but only in the final chapter after other possibilities have been discussed. The book should be especially useful for researchers entering the field of high Tc superconductivity. The reviews of photon mediated pairing and strong coupling theory are very welcome, since much of this material has not been reviewed since the classic 1969 volume edited by Parks. In particular the authors dispel the various myths that phonon mediated pairing leads to upper bounds on Tc. In addition to phonon mediated pairing the book discussed in detail pairing due to exchange of acoustic (demon) plasmons, excitons, or magnetic fluctuations. There have been so many diverse mechanisms based on strong correlation and large U Hubbard models that a book like this can only discuss a limited selection of the main contenders. In particular here the emphasis on Fermi liquid based models no doubt reflects the authors' own point of view. A whole chapter discusses the concepts of induced superconductivity, in the proximity effect, and its application to materials with several different electronic subsystems

  12. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  13. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco

    2014-01-01

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate

  14. Observation of ion scale fluctuations in the pedestal region during the edge-localized-mode cycle on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Kramer, G. J.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Smith, D. R.; McKee, G. J. [Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 (United States); Fonck, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Departments of Engineering Physics and Physics, University of Wisconsin, Madison, Wisconsin (United States)

    2013-01-15

    Characterization of the spatial structure of turbulence fluctuations during the edge localized mode cycle in the pedestal region is reported. Using the beam emission spectroscopy and the correlation reflectometry systems, measurements show spatial structure-k{sub Up-Tack }{rho}{sub i}{sup ped}-ranging from 0.2 to 0.7 propagating in the ion diamagnetic drift direction at the pedestal top. These propagating spatial scales are found to be anisotropic and consistent with ion-scale microturbulence of the type ion temperature gradient and/or kinetic ballooning modes.

  15. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  16. Ginsburg-Landau theory of two antagonistic order parameters: magnetism and superconductivity

    International Nuclear Information System (INIS)

    Suhl, H.

    1978-01-01

    An attempt is made to construct a Ginsburg-Landau theory of so-called magnetic superconductors. Two order parameters, the magnetization field and the gap function, are introduced in such a way as to inhibit each others growth. It is found that the non-local character of the superconducting order parameter must be taken into account in any evaluation of effects of the critical magnetic fluctuations. Some predictions are made within the limits of Ornstein-Zoernicke-like fluctuation theory and some comparison is made with available data. (Auth.)

  17. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  18. A common thread in unconventional superconductivity. The functional renormalization group in multi-band systems

    International Nuclear Information System (INIS)

    Platt, Christian

    2012-01-01

    The superconducting properties of complex materials like the recently discovered iron-pnictides or strontium-ruthenate are often governed by multi-orbital effects. In order to unravel the superconductivity of those materials, we develop a multi-orbital implementation of the functional renormalization group and study the pairing states of several characteristic material systems. Starting with the iron-pnictides, we find competing spin-fluctuation channels that become attractive if the superconducting gap changes sign between the nested portions of the Fermi surface. Depending on material details like doping or pnictogen height, these spin fluctuations then give rise to s ± -wave pairing with or without gap nodes and, in some cases, also change the symmetry to d-wave. Near the transition from nodal s ± -wave to d-wave pairing, we predict the occurrence of a time-reversal symmetry-broken (s+id)-pairing state which avoids gap nodes and is therefore energetically favored. We further study the electronic instabilities of doped graphene, another fascinating material which has recently become accessible and which can effectively be regarded as multi-orbital system. Here, the hexagonal lattice structure assures the degeneracy of two d-wave pairing channels, and the system then realizes a chiral (d+id)-pairing state in a wide doping range around van-Hove filling. In addition, we also find spin-triplet pairing as well as an exotic spin-density wave phase which both become leading if the long-ranged hopping or interaction parameters are slightly modified, for example, by choosing different substrate materials. Finally, we consider the superconducting state of strontium-ruthenate, a possible candidate for chiral spin-triplet pairing with fascinating properties like the existence of half-quantum vortices obeying non-Abelian statistics. Using a microscopic three orbital description including spin-orbit coupling, we demonstrate that ferromagnetic fluctuations are still

  19. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  20. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Heine, G.

    1999-05-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 b . The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single crystals is interpreted as the suppression of the fluctuation-conductivity enhancement including orbital and spin contributions, whereas the negative magnetoresistance arises from the reduction of the fluctuation-induced pseudogap in the single-electron density-of-states by the magnetic field. For higher temperatures a transition to the normal-state magnetoresistance occurs for the in-plane transport. In the less anisotropic YBa2CU307 b thin films the positive out-of-plane magnetoresistance near T, changes sign to a negative magnetoresistance at higher temperatures. This behavior is also consistent with predictions from the theory of thermodynamic order-parameter fluctuations. The agreement of the fluctuation theory with the experimental findings is excellent for samples from the over doped side of the phase diagram, but deteriorate with decreasing carrier concentration. This behavior is interpreted by the dominating d-wave symmetry of the superconducting order

  1. Persistent current analysis of superconducting coils in a linear synchronous motor for maglev passenger transport system. Fujoshiki tetsudoyo linear doki motor ni okeru teijisoku mode chodendo coil denryu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Azusawa, T [Toshiba Corp., Tokyo (Japan)

    1994-05-20

    The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.

  2. Effect of the superconducting transition on amplitude-dependent dislocation internal friction in metals

    International Nuclear Information System (INIS)

    Lomakin, V.V.; Pankrat'eva, G.L.; Roshchupkin, A.M.

    1983-01-01

    In terms of the Granato-Lucke model, an explanation of the amplitude-dependent internal friction change at the superconducting transition is proposed which takes into account the influence of the electronic viscosity on the fluctuation unpinning of dislocations from local obstacles

  3. Superconducting properties of clustered PbBi films

    International Nuclear Information System (INIS)

    Lobb, C.J.; Tinkham, M.; Klapwijk, T.M.; Smith, A.D.; Harvard Univ., Cambridge, MA

    1981-01-01

    Superconducting films with high resistance/square have been widely studied as a model of the Kosterlitz-Thouless transition. We show that the behavior of high R clean films near the thickness at which electrical conduction begins is dominated by a few paths across the film and thus should not be interpreted as a Kosterlitz-Thouless transition. Instead, this behavior is consistent with a simple percolation model for the connectivity fluctuations across the film. (orig.)

  4. Imaging orbitals and defects in superconducting FeSe/SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Jennifer [Harvard University, Cambridge, MA (United States); University of British Columbia, Vancouver (Canada); Huang, Dennis; Webb, Tatiana; Feng, Shiang; Kaxiras, Efthimios [Harvard University, Cambridge, MA (United States); Song, Can-Li [Harvard University, Cambridge, MA (United States); Tsinghua University, Beijing (China); Chang, Cui-Zu; Moodera, Jagadeesh [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2016-07-01

    Single-layer FeSe grown epitaxially on SrTiO{sub 3} has been shown to superconduct with T{sub c} as high as 100 K, more than a factor of 10 higher than bulk FeSe. This dramatic enhancement motivates intense efforts to understand the superconducting mechanism and to design and fabricate devices. Nematic order, breaking the 4-fold rotational symmetry of the crystal, has been proposed as an important factor in the superconducting phase diagram. Meanwhile, atomic defects, which may pin nematic fluctuations or otherwise perturb superconductivity, can provide important clues into the superconducting mechanism as well as practical routes to superconducting devices. Here we use scanning tunneling microscopy (STM) to search for orbital nematicity in single-layer FeSe/SrTiO{sub 3}, and to investigate atomic-scale defects which locally influence superconductivity. From quasiparticle interference (QPI) images, we disentangle scattering intensities from the orthogonal Fe 3d{sub xz} and 3d{sub yz} bands, and quantitatively exclude pinned nematic orbital order with domain size larger than δ r ∝ 20 nm. Furthermore, we identify a prevalent ''dumbbell''-shaped atomic-scale defect whose placement could be harnessed to define two-dimensional superconducting devices.

  5. Quantum fluctuations of a fullerene cage modulate its internal magnetic environment.

    Science.gov (United States)

    Kawatsu, Tsutomu; Tachikawa, Masanori

    2018-01-17

    To investigate the effect of quantum fluctuations on the magnetic environment inside a C 60 fullerene cage, we have calculated the nuclear magnetic shielding constant of protons in H 2 @C 60 and HD@C 60 systems by on-the-fly ab initio path integral simulation, including both thermal and nuclear quantum effects. The most dominant upfield from an isolated hydrogen molecule occurs due to the diamagnetic current of the C 60 cage, which is partly cancelled by the paramagnetic current, where the paramagnetic contribution is enlarged by the zero-point vibrational fluctuation of the C 60 carbon backbone structure via a widely distributed HOMO-LUMO gap. This quantum modulation mechanism of the nuclear magnetic shielding constant is newly proposed. Because this quantum effect is independent of the difference between H 2 and HD, the H 2 /HD isotope shift occurs in spite of the C 60 cage. The nuclear magnetic constants computed for H 2 @C 60 and HD@C 60 are 32.047 and 32.081 ppm, respectively, which are in reasonable agreement with the corresponding values of 32.19 and 32.23 ppm estimated from the experimental values of the chemical shifts.

  6. Possibility of persistent voltage observation in a system of asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Burlakov, A.A.; Gurtovoi, V.L.; Ilin, A.I.; Nikulov, A.V.; Tulin, V.A.

    2012-01-01

    The possibility of observing persistent voltage in superconducting rings of different arm widths is experimentally investigated. It was previously found that switching of the arms between superconducting and normal states by an AC current induces DC voltage oscillation in the magnetic field with a period corresponding to the flux quantum inside the ring. We used systems with a large number of asymmetric rings connected in series to investigate the possibility of observing this quantum phenomenon near the superconducting transition, where thermal fluctuations lead to switching of ring segments without an external influence and the persistent current is much smaller than in the superconducting state. -- Highlights: ► A possibility to observe the persistent voltage is investigated experimentally. ► The persistent voltage is a DC voltage observed at thermodynamic equilibrium. ► It oscillates in magnetic field like the persistent current in superconducting ring. ► The period of the oscillations corresponds to the flux quantum inside the ring. ► The quantum oscillations of the DC voltage were observed on asymmetric rings.

  7. Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation

    Science.gov (United States)

    Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi

    This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.

  8. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  9. Quantum suppression of superconductivity in nanowires

    International Nuclear Information System (INIS)

    Bezryadin, Alexey

    2008-01-01

    It is of fundamental importance to establish whether there is a limit to how thin a superconducting wire can be, while retaining its superconducting character-and if there is such limit, to understand what determines it. This issue may be of practical importance in defining the limit to miniaturization of superconducting electronic circuits. Recently, a new fabrication method, called molecular templating, was developed and used to answer such questions. In this approach, a suspended carbon nanotube is coated with a thin superconducting metal film, thus forming a superconducting nanowire. The wire obtained is automatically attached to the two leads formed by the sides of the trench. The usual material for such wires is the amorphous alloy of MoGe (Graybeal 1985 PhD Thesis Stanford University; Graybeal and Beasley 1984 Phys. Rev. B 29 4167; Yazdani and Kapitulnik 1995 Phys. Rev. Lett. 74 3037; Turneaure et al 2000 Phys. Rev. Lett. 84 987). Such wires typically exhibit a high degree of homogeneity and can be made very small: as thin as ∼5 nm in diameter and as short as ∼40 nm in length. The results of transport measurements on such homogeneous wires can be summarized as follows. Short wires, shorter than some empirical length, ∼200 nm for MoGe, exhibit a clear dichotomy. They show either a superconducting behavior, with the resistance controlled by thermal fluctuations, or a weakly insulating behavior, with the resistance controlled by the weak Coulomb blockade. Thus a quantum superconductor-insulator transition (SIT) is indicated. Longer wires exhibit a gradual crossover behavior, from almost perfectly superconducting to normal or weakly insulating behavior, as their diameter is reduced. Measurements of wires, which are made inhomogeneous (granular) on purpose, show that such wires, even if they are short in the sense stated above, do not show a clear dichotomy, which could be identified as an SIT (Bollinger et al 2004 Phys. Rev. B 69 180503(R)). Thus

  10. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  11. Imaging phase slip dynamics in micron-size superconducting rings

    Science.gov (United States)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  12. High-Tc superconductivity near the anion height instability in Fe-based superconductors: analysis of LaFeAsO(1-x)H(x).

    Science.gov (United States)

    Onari, Seiichiro; Yamakawa, Youichi; Kontani, Hiroshi

    2014-05-09

    The isostructural transition in the tetragonal phase with a sizable change in the anion height, is realized in heavily H-doped LaFeAsO and (La,P) codoped CaFe2As2. In these compounds, the superconductivity with higher Tc (40-50 K) is realized near the isostructural transition. To find the origin of the anion-height instability and the role in realizing the higher-Tc state, we develop the orbital-spin fluctuation theory by including the vertex correction. We analyze LaFeAsO(1-x)H(x) and find that the non-nematic orbital fluctuations, which induce the anion-height instability, are automatically obtained at x∼0.5, in addition to the conventional nematic orbital fluctuations at x∼0. The non-nematic orbital order triggers the isostructural transition, and its fluctuation would be a key ingredient to realize higher-Tc superconductivity of order 50 K.

  13. A containerless levitation setup for liquid processing in a superconducting magnet.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.

  14. Superconductive properties, interaction mechanisms, materials preparation and electronic transport in high-Tc superconductors

    International Nuclear Information System (INIS)

    Saemann-Ischenko, G.

    1993-01-01

    The final report is composed of eight chapters dealing with the following aspects: I. Mixed state, critical currents, anisotropy, intrinsic and extrinsic pinning. II. Microwave properties and far-infrared reflectivity of epitactic HTSC films. III. Hall effect at the states of normal conductivity and superconductivity, magnetoresistance, superconducting fluctuation phenomena. IV. Effects of the nuclear and the electronic energy loss. V. Scanning electron microscopy. VI. p- and n-doped high-Tc superconductors: Charge symmetry and magnetism. VII. Preparation methods. VIII. Electrochemical examinations of HTSC films and HTSC monocrystals at low temperatures. (orig./MM) [de

  15. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  16. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  17. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  18. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    International Nuclear Information System (INIS)

    Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V

    2015-01-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)

  19. Grain boundaries and defects in superconducting Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Ramesh, R.; Bagley, B.G.; Tarascon, J.M.; Green, S.M.; Rudee, M.L.; Luo, H.L.

    1990-01-01

    Defects and structural interfaces in superconducting Bi-Sr-Ca-Cu-O have been characterized by transmission electron microscopy. The superconducting phase exhibits frequent variations in the stacking sequence (polytypoids). Dislocations, observed inside the grains, either introduce or accommodate the shear in the a-b plane and the local composition fluctuations. In general, the grains exhibit a platelike morphology with the a-b plane as the grain boundary plane. Grain boundaries along the short edge are generally disordered, whereas those near the long edge generally have a thin layer of the lower T c polytypoid. Coherent intragranular boundaries are also observed

  20. Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence

    Science.gov (United States)

    Abrikosov, A. A.

    1999-12-10

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.

  1. Phenomenological approach to spin fluctuations in itinerant magnets and superconductors from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ortenzi, Luciano

    2013-10-17

    In this thesis I study the interplay between magnetism and superconductivity in itinerant magnets and superconductors. I do this by applying a semiphenomenological method to four representative compounds. In particular I use the discrepancies (whenever present) between density functional theory (DFT) calculations and the experiments in order to construct phenomenological models which explain the magnetic, superconducting and optical properties of four representative systems. I focus my attention on the superconducting and normal state properties of the recently discovered APt3P superconductors, on superconducting hole-doped CuBiSO, on the optical properties of LaFePO and finally on the ferromagnetic-paramagnetic transition of Ni3Al under pressure. At the end I present a new method which aims to describe the effect of spin fluctuations in itinerant magnets and superconductors that can be used to monitor the evolution of the electronic structure from non magnetic to magnetic in systems close to a quantum critical point.

  2. New magnetic coherence effect in superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Schröder, A.; Aeppli, G.

    1996-01-01

    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La2-xSrxCuO4. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response...

  3. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  4. Realization of Anisotropic Diamagnetic Kepler Problem in a Solid State Environment

    International Nuclear Information System (INIS)

    Chen Zhanghai; Zhou Weihang; Zhang Bo; Yu, C. H.; Zhu Jingbing; Lu Wei; Shen, S. C.

    2009-01-01

    The anisotropic diamagnetic Kepler problem (ADKP) is realized experimentally by the orbital electrons of a P donor in Si under magnetic fields. The interference of electron wave packets which leads to quasi-Landau resonances (QLR) were observed. Applying the closed-orbit theory to an anisotropic solid state environment, we have identified orbits responsible for the QLR manifesting the quantum chaotic behavior in Rydberg atoms. The excellent consistency between the measured spectra and theoretical calculation provides unambiguous evidence of quantum chaotic dynamics of electrons in the ADKP.

  5. Order parameter fluctuations and collective modes in superconductors

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1975-06-01

    Measurements of the frequency and wave vector dependence of the pair-field susceptibility and the dynamical structure factor of homogeneous, short mean free path aluminum films have been carried out. These measurements critically probe the dynamical nature of order parameter fluctuations in the vicinity of the superconducting phase transition. Two important results are found. The first is that at temperatures higher than the transition temperature of the aluminum film, the fluctuations of the order parameter can be described by a diffusive time-dependent generalization of the Ginzburg-Landau equation. Detailed comparison of the data to the results of theoretical calculations of Scalapino, and Shenoy and Lee is carried out. Except in the immediate vicinity of the transition, there is excellent agreement with the theories. A major discrepancy between theory and experiment does exist in the vicinity of the superconducting transition, in that the pair relaxation frequency falls well below the theoretical predictions. Possible explanations of this behavior are discussed. Below the transition temperature measurements of the structure factor (Fourier transform of the order parameter-order parameter correlation function) provide the first clear cut demonstration of the existence of a propagating, low frequency, order parameter collective mode which appears as a finite frequency peak in the structure factor. This mode has been identified with fluctuations in the phase of the order parameter and has a linear dispersion relation over the range in which it is observed. A detailed comparison to some of the theoretical explanations is made, with the conclusion that at this time, existing theories do not adequately explain the behavior of the mode over the range of temperature and magnetic field in which it is observed. (4 figures, 4 tables, 86 references) (U.S.)

  6. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  7. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  8. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...... can be combined with other new technologies such as HVDC light transmission using isolated gate bipolar transistors (IGBTs). The network needed in a system with a substantial wind power generation has to be very strong in order to handle energy fluctuations. Such a network will be possible...

  9. Development of a compact superconducting magnet with a GdBCO magnetic lens

    International Nuclear Information System (INIS)

    Zhang, Z Y; Matsumoto, S; Kiyoshi, T; Teranishi, R

    2013-01-01

    Concentration of a magnetic field has been achieved using a Gd–Ba–Cu–O (GdBCO) magnetic lens. A conduction-cooled compact high-field superconducting magnet with a GdBCO magnetic lens was developed. The magnet possessed a 10-mm room-temperature bore and consisted of two Nb–Ti solenoid coils and a GdBCO magnetic lens, which was installed at the center of the Nb–Ti coils in order to concentrate the background field generated by the Nb–Ti coils. The Nb–Ti coils and the GdBCO magnetic lens were cooled using a two-stage pulse-tube cryocooler. A concentrated magnetic field of 10.3 T was obtained at a background field of 5.6 T provided by the Nb–Ti coils. No degradation was found in the magnet during repeat excitation. The large field gradient generated by the GdBCO magnetic lens is expected to be used for the levitation of diamagnetic materials. (paper)

  10. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  11. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  12. Ginzburg-Landau theory and the superconducting transition in thin, amorphous bismuth films

    International Nuclear Information System (INIS)

    Van Vechten, D.

    1979-01-01

    The Aslamasov-Larkin (AL) theory can be derived from a classical treatment of the conductivity due to short-lived statistical fluctuations into the superconducting state if one truncates the Ginzburg-Landau free energy density expression to read F[psi] = α 0 vertical barpsi vertical bar 2 + c 0 vertical bar del psi vertical bar 2 , where psi is the superconducting order parameter. The next largest term in the GL free energy is (b/2) (vertical bar psi vertical bar 2 ) 2 and is conventionally interpreted as representing the energy associated with interactions between the fluctuations. My dissertation consists of the calculation of the effect of this term on the fluctuation conductivity in three different approximations and the comparison of my predictions to the data of R.E. Glover III and M.K. Chien on thin amorphous bismuth films. The first approximation calculates the contribution to the fluctuations' self energy of the ''tadpole'' diagrams. This approximation yields a 4 parameter equation. Its fits were particularly outstanding for the films deposited on quartz or roughened glass substrates and only for two smooth glass substrates were there non-isolated data points that were not fit at the lowest temperatures measured. (The equation runs into trouble for these films at approximately R(T)/R/sub o/ =.08.) The values of the theoretical equation's fitting parameters were determined by a least squares method and turns out to depend on film thickness in the manner predicted by the theory. The next calculation improves the self energy approximation by including all the ''ring'' diagrams

  13. Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1-xCox)2As2

    DEFF Research Database (Denmark)

    Larsen, Jacob; Uranga, B. Mencia; Stieber, G.

    2015-01-01

    We have studied the magnetic and superconducting properties of Ba(Fe1-xCox)2As2 as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist...... and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can...... slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments....

  14. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    International Nuclear Information System (INIS)

    Brooks, J.S.; Cothern, J.A.

    2001-01-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented

  15. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  16. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  17. Measurement of the dynamo effect in a plasma

    International Nuclear Information System (INIS)

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the α effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the α effect accounts for the dynamo current generation, even in the time dependence through a ''sawtooth'' cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ''electron diamagnetic dynamo'' is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor's conjecture

  18. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Directory of Open Access Journals (Sweden)

    J. A. Grzesik

    2012-03-01

    Full Text Available We revisit the problem of de Haas-van Alphen (dHvA diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP, and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined, series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their

  19. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  20. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  1. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  2. Effect of point disorder on superconducting properties of ultrathin epitaxial NbN films

    International Nuclear Information System (INIS)

    Jesudasan, John; Bagwe, Vivas; Mondal, Mintu; Chand, Madhavi; Kamlapure, Anand; Pai, S.P.; Raychaudhuri, Pratap; Mishra, Archana

    2009-01-01

    We synthesized homogeneously disordered epitaxial NbN films on MgO(100) substrates using reactive dc magnetron sputtering. The disorder of the films is characterized by the Loffe-Regel parameter k F I. The superconducting properties are studied through transport, ac-susceptibility measurements and electron tunneling. The superconducting transition temperature is studied as a function of thickness for films of different disorder. In the case of the less disordered film, there is a smooth decrease in T c with decreasing thickness but for the more disordered film, the T c shows a sharp decrease to zero at a threshold thickness. The superconducting energy gap is studied via planar tunnel junctions. It is found that for the less disordered films, the temperature dependence of the gap follows the BCS variation but for the more disordered ones, there is a significant deviation from the BCS curve, and the gap remains finite at T c indicating that the superconducting transition is either governed by phase fluctuations or a first order phase transition. (author)

  3. Diamagnetism of the B10H12L2 series compounds

    International Nuclear Information System (INIS)

    Volkov, V.V.; Ikorskij, V.N.; Dunaev, S.T.

    1988-01-01

    The method of static magnetic susceptibility is used to study diamagnetic susceptibilities of a number of B 10 H 12 L 2 (where L - nitrogen, sulfur, phosphorus-containing organic ligands) decaborane-derivatives and to draw the increment χ M -125 for the nido cluster (B 10 H 12 ) and boron atomic increment χ bar M -9.0 in this cluster. The absolute value χ B in (B 10 H 12 ) cluster is much higher than χ B for noncluster systems (2.7-7.6). This difference proves electron delocalization in (B 10 H 12 ) and the aromatic nature of this nido-cluster

  4. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  5. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  6. Connections between magnetism and superconductivity in UBe13 doped with thorium or boron

    International Nuclear Information System (INIS)

    Heffner, R.H.; Ott, H.R.; Schenck, A.; Mydosh, J.A.; MacLaughlin, D.E.

    1991-06-01

    Magnetism and superconductivity appear to be intimately connected in the heavy electron (HE) superconductors. For example, it has been conjectured but not proven that the exchange of antiferromagnetic spin fluctuations are responsible for pairing in HE superconductors. In this paper we review recent results in U 1-x Th x Be 13 , where specific heat, lower critical field and zero-field μSR measurements reveal another second-order phase transition to a state which possesses small-moment magnetic correlations for 0.019 ≤ x ≤ 0.043. We present a new phase diagram for (U,Th)Be 13 which indicates that the superconducting and magnetic order parameters are closely coupled. A discussion of the nature of the lower phase is presented, including the consideration of a possible magnetic superconducting state. When UBe 13 is doped with B (UBe 12.97 B 0.03 ) the Kondo temperature is decreased and the specific heat jump at the superconducting transition temperature is significantly enhanced. However, μSR measurements reveal no magnetic signature in UBe 12.97 B 0.03 , unlike the case for Th doping. The correlation between changes in the Kondo temperature and changes in the superconducting properties induced by B doping provide evidence for the importance of magnetic excitations in the superconducting pairing interaction in UBe 13

  7. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  8. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    International Nuclear Information System (INIS)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-01-01

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  9. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.S. E-mail: brooks@magnet.fsu.edu; Cothern, J.A

    2001-05-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented.

  10. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    Science.gov (United States)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  11. Nematic fluctuations, fermiology and the pairing potential in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Florian

    2015-08-18

    The thesis comprises a systematic study on the doping, temperature and momentum dependent electron dynamics in iron-based superconductors using inelastic light scattering. The observation of Bardasis-Schrieffer modes in the excitation spectrum of superconducting Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} is reported and the energy and symmetry dependence of the modes are analyzed. The analysis yields the identification of a strong subdominant component of the interaction potential V(k,k{sup '}). Strong nematic fluctuations are investigated in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The nature of the fluctuations and the origin of nematicity in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are identified.

  12. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  13. Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy

    Science.gov (United States)

    Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.

    2009-03-01

    We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.

  14. Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy

    International Nuclear Information System (INIS)

    Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.

    2009-01-01

    We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP) 2 SbF 6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF) 2 X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d x 2 -y 2 like superconducting pair is formed in this system as the case of κ-(BEDT-TTF) 2 X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet

  15. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  16. Superconductivity of individual grains and inter-grain boundaries for polycrystalline FeSr2YCu2O6+y

    International Nuclear Information System (INIS)

    Yamaguchi, K.; Hata, Y.; Mochiku, T.; Yasuoka, H.

    2013-01-01

    Polycrystalline FeSr 2 YCu 2 O 6+y was synthesized and its transport and magnetic properties were studied. Diamagnetism was observed below 60 K. Zero resistivity was observed below 38 K under zero magnetic field and below 10 K under 160 kOe. A two-step transition was observed in resistivity measurement due to the superconductivity in individual grains and across inter-grain boundaries. The critical current density in individual grains, J c intra , at 2 K under 1 kOe was deduced 3.4 × 10 5 A/cm 2 from the Bean model. In contrast, the critical current density in inter-grain boundaries, J c inter , at 2 K was 1.7 A/cm 2 in voltage–current measurement. The two-step transition seems to result from the large difference between J c intra and J c inter

  17. Electromagnetic interactions between the U-25 superconducting magnet and the U-25 B MHD flow train

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the Argonne National Laboratory (ANL) 5.0 Tesla MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25 B Facility at the High Temperature Institute (IVAN), Moscow, U.S.S.R. The voltage fluctuations are analyzed with special emphasis on magnet stability. Various other thermodynamic and electrical parameters of the U-25 B flow train have been recorded and statistical correlations between these signals and the signals observed at the magnet terminals are described

  18. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Almagri, A.F.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude b/B decreases from 1.5% to 0.8%, the electron temperature T e0 increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta β 0 increases from 6% to 9%, and the energy confinement time τ E increases from 1 ms to ∼5 ms in I φ = 340 kA plasmas with density n = 1 x 10 19 m -3 . Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the 'electron diamagnetic dynamo,' is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E r with a robust biased probe. 24 refs

  19. Full counting statistics of multiple Andreev reflections in incoherent diffusive superconducting junctions

    International Nuclear Information System (INIS)

    Samuelsson, P.

    2007-01-01

    We present a theory for the full distribution of current fluctuations in incoherent diffusive superconducting junctions, subjected to a voltage bias. This theory of full counting statistics of incoherent multiple Andreev reflections is valid for an arbitrary applied voltage. We present a detailed discussion of the properties of the first four cumulants as well as the low and high voltage regimes of the full counting statistics. (orig.)

  20. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  1. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  2. Quantum and wave dynamical chaos in superconducting microwave billiards.

    Science.gov (United States)

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  3. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe [Key Laboratory of Mechanics on Disaster and Environment in Western China Attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-07-15

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  4. G-factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots

    NARCIS (Netherlands)

    Bree, van J.; Silov, A.Yu.; Koenraad, P.M.; Flatté, M.E.; Pryor, C.E.

    2012-01-01

    The electron, hole, and exciton g factors and diamagnetic coefficients have been calculated using envelope-function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot symmetry axis. A clear connection is established between the electron g factor and

  5. Statistical Mechanics and Applications in Condensed Matter

    Science.gov (United States)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  6. Exploitation of a diamagnetic loop for modulated ECH power absorption measurements in TCV

    International Nuclear Information System (INIS)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A.

    2003-01-01

    For the evaluation of the performance of auxiliary heating methods and for the understanding of the transport properties of auxiliary heated plasmas, it is of fundamental importance to determine the fraction of the launched power that is actually transferred to the plasma, as well as where in the plasma the power is deposited. The diagnostic which is probably the best suited for the first goal is the Diamagnetic Loop (DML) providing a measurement of the diamagnetic flux of the plasma, which is directly related to the total plasma kinetic energy. TCV is equipped with a very versatile Electron Cyclotron Heating (ECH) system. It consists of six gyrotrons operating at the second harmonic, 82.7 GHz, and three gyrotrons at the third harmonic, 118 GHz. The nominal power for each 82.7 GHz gyrotron is 465 kW and for each 118 GHz gyrotron is 480 kW, resulting in a total of radio frequency power of 4.2 MW. In this paper we present the method that has been developed for determining the absorbed power in the ECH experiments in TCV, pointing out especially the results of the first third harmonic X-Mode (X3) ECH experiments, leaving the problem of the power deposition localisation to other reports. For the determination of the total plasma kinetic energy, the DML has also been used on other devices such as JET, ASDEX and TEXTOR, but only for this last case modulation experiments have been performed and analysed. Modulated ECH has been used to determine the ECH X2 and X3 power absorption from the measurement of the diamagnetic flux variations using the DML. Since only the modulation contribution is relevant to the analysis, the method does not require a perfect compensation of the diamagnetic flux measurement, although a good compensation of the vessel poloidal image current is crucial for ensuring a sufficiently large bandwidth to allow the use of high frequency modulation. The analysis of the behaviour of the amplitude and phase response in the modulation frequency scan has

  7. A mechanical of spin-triplet superconductivity in Hubbard model on triangular lattice: application to UNi sub 2 Al sub 3

    CERN Document Server

    Nisikawa, Y

    2002-01-01

    We discuss the possibility of spin-triplet superconductivity in a two-dimensional Hubbard model on a triangular lattice within the third-order perturbation theory. When we vary the symmetry in the dispersion of the bare energy band from D sub 2 to D sub 6 , spin-singlet superconductivity in the D sub 2 -symmetric system is suppressed and we obtain spin-triplet superconductivity in near the D sub 6 -symmetric system. In this case, it is found that the vertex terms, which are not included in the interaction mediated by the spin fluctuation, are essential for realizing the spin-triplet pairing. We point out the possibility that obtained results correspond to the difference between the superconductivity of UNi sub 2 Al sub 3 and that of UPd sub 2 Al sub 3. (author)

  8. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  9. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  10. Superconductivity in gallium-implanted silicon; Supraleitung in Gallium-implantiertem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Skrotzki, Richard

    2016-07-12

    The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc ∼ 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.

  11. Magnetic levitation

    OpenAIRE

    Štěpánek,B.; Paleček,M.

    2015-01-01

    The paper deals with magnetism and its influence on superconducting materials. We describe the discovery and development of superconductivity, superconducting levitation and its use in future technology - called. MAGLEV speed trains. We show the interaction of the magnetic field of a strong neodymium magnet and high-temperature superconductor, cooled with liquid nitrogen at about -200 ° C. Of superconductors at this temperature becomes perfect diamagnetic material. That is ejected from the ma...

  12. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  13. Mechanisms for Superconductivity in Cuprates compared with results from the Generalized MacMillan-Rowell Analysis of High Resolution Laser- ARPES

    Science.gov (United States)

    Varma, Chandra; Choi, Han-Yong; Zhang, Wentao; Zhou, Xingjiang

    2012-02-01

    The spectra of fluctuations and their coupling to fermions has been deduced from extensive high resolution laser ARPES in several BISCCO samples and quantitatively analyzed. We ask the question whether some of the theories for superconductivity in Cuprates are consistent or inconsistent with the frequency and the momentum dependence of the deductions. We find that any fluctuation spectra, for example that of Antiferromagnetic Fluctuations, whose frequency dependence depends significantly on momentum dependence are excluded. We consider the quantum-critical spectra of the loop-current order observed in under-doped cuprates and its coupling to fermions and find it consistent with the data.

  14. Study of magnetic fluctuations in superconducting cuprates with high critical temperature; Etude des fluctuations magnetiques dans les cuprates supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Sidis, Y

    1995-11-27

    Elastic and inelastic neutron scattering has been used to study the magnetic properties of YBa{sub 2} Cu{sub 3} O{sub 6+x} (YBCO) and of La{sub 2} CuO{sub 4} (LSCO), non-doped and doped with Zn or various amounts of oxygen. The influence of the variation of the composition on magnetic and superconducting properties has been measured. (C.B.) 182 refs.

  15. Superconductivity and spin excitations in orbitally ordered FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian M. [Niels Bohr Institute, University of Copenhagen (Denmark); Mukherjee, Shantanu [Niels Bohr Institute, University of Copenhagen (Denmark); Dept. of Physics, State University of New York at Binghamton, Binghamton, NY (United States); Hirschfeld, Peter J. [University of Florida, Gainesville, FL (United States)

    2016-07-01

    We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the d{sub xz}/d{sub yz} channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π,0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π,0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies.

  16. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  17. Superconducting coil and method of stress management in a superconducting coil

    Science.gov (United States)

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  18. Method of compensation spires for the detection of the diamagnetic effect in a Tokamak; Metodo de espiras de compensacion para la deteccion del efecto diamagnetico en un Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1990-09-15

    In this report the classical detection method of the diamagnetic effect by means of a rolled spire on the discharges chamber in the poloidal direction and the difficulties related with this are analyzed. An alternative method that increases considerably the detection sensibility of the diamagnetic effect and that for its simplicity it is quite attractive for its application to the Tokamak Novillo of the ININ is presented. (Author)

  19. Magnetic fluctuations and the superconducting transition in the heavy-fermion material UPd2Al3

    DEFF Research Database (Denmark)

    Petersen, T.; Mason, T.E.; Aeppli, G.

    1994-01-01

    Inelastic neutron scattering has been performed on single crystals of the heavy-fermion superconductor UPd2Al3. The antiferromagnetically ordered state is characterized by an acoustic spin wave mode with no gap. The low-frequency magnitude excitations are unaffected by the transition to a superco...... to a superconducting state despite coupling to the conduction electrons as evidenced by the significant damping....

  20. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  1. Evidence for superconducting effects on the measured resistivity well above T/sub c/ for a type-I bulk metal

    International Nuclear Information System (INIS)

    Sinvani, M.; Levy, B.; Greenfield, A.J.

    1979-01-01

    A superconducting contribution deltasigma (T) to the electrical conductivity sigma (T) has been observed at temperatures up to about twice the transition temperature T/sub c/ approx. = 1.17 K for bulk aluminum. The form of deltasigma (T) is found to be α[T/sub c//(T-T/sub c/)]/sup n/, with α independent of sigma (T), in agreement with the theory of superconducting fluctuations. However, significant differences from the theory are found, with α more than two orders of magnitude too large and n approx. = 3/4 rather than 1/2

  2. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  3. Doping dependence of Meissner effect in cuprate superconductors

    International Nuclear Information System (INIS)

    Feng Shiping; Huang Zheyu; Zhao Huaisong

    2010-01-01

    Within the t-t'-J model, the doping dependence of the Meissner effect in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. Following the linear response theory, it is shown that the electromagnetic response consists of two parts, the diamagnetic current and the paramagnetic current, which exactly cancels the diamagnetic term in the normal state, and then the Meissner effect is obtained for all the temperature T ≤ T c throughout the superconducting dome. By considering the two-dimensional geometry of cuprate superconductors within the specular reflection model, the main features of the doping and temperature dependence of the local magnetic field profile, the magnetic field penetration depth, and the superfluid density observed on cuprate superconductors are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependent superconducting transition temperature, the maximal superfluid density occurs around the critical doping δ ∼ 0.195, and then decreases in both lower doped and higher doped regimes.

  4. Self-consistent theory of normal-to-superconducting transition

    International Nuclear Information System (INIS)

    Radzihovsky, L.; Chicago Univ., IL

    1995-01-01

    I study the normal-to-superconducting (NS) transition within the Ginzburg-Landau (GL) model, taking into account the fluctuations in the m-component complex order parameter ψ α and the vector potential A in the arbitrary dimension d, for any m. I find that the transition is of second order and that the previous conclusion of the fluctuation-driven first-order transition is a possible artifact of the breakdown of the ε-expansion and the inaccuracy of the 1/m-expansion for physical values ε = 1, m 1. I compute the anomalous η(d, m) exponent at the NS transition, and find η(3, 1) ∼ -0.38. In the m → ∞ limit, η(d, m) becomes exact and agrees with the 1/m-expansion. Near d = 4 the theory is also in good agreement with the perturbative ε-expansion results for m > 183 and provides a sensible interpolation formula for arbitrary d and m. (orig.)

  5. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  6. The case for spin-fluctuation induced pairing in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Thomas U.

    2017-03-07

    The microscopic mechanism and the experimental identification of unconventional superconductivity is one of the most vexing problems of contemporary condensed matter physics. Raman spectroscopy provides a new avenue for this quest by accessing the hierarchy of superconducting pairing propensities. The doping-dependent study of competing pairing channels in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} for 0.22 ≤ x ≤ 0.70 is one of the main aspects of this thesis. The observations demonstrate the importance of spin fluctuations for Cooper pairing.

  7. Superconducting quantum interference device microscopy of fluxoids in superconducting rings and artificially layered systems

    International Nuclear Information System (INIS)

    Kirtley, J R; Tsuei, C C; Tafuri, F; Medaglia, P G; Orgiani, P; Balestrino, G

    2004-01-01

    The SQUID microscope has the advantages of excellent field sensitivity, small interaction between the sensor and the sample, and a linear, easily calibrated response. It has the disadvantages of modest spatial resolution and the requirement of a cooled sensor. In this paper we will present results from two applications of the SQUID microscope, chosen with these advantages and disadvantages in mind. First, we have found that the distribution of final fluxoid states of quenched superconducting rings can be accounted for by using a mechanism of the freeze-out of thermally activated fluxoids. This mechanism is complementary to one proposed by Kibble and Zurek in connection with tests of models of the generation of topological singularities in the early development of the universe, and which relies only on causality to produce a freeze-out of the order of parameter fluctuations. Second, we have studied Pearl vortices in [BaCuO x ] n /[CaCuO 2 ] m (CBCO) artificial superlattice structures, with as few as three superconducting CuO 2 layers. The Pearl penetration depths of vortices trapped in these films, which should be inversely proportional to the areal superfluid density, are very long (up to ∼1 mm), as expected. In both cases it would be difficult to image fluxoids that generate such weak magnetic fields using any other technique

  8. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  9. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  10. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  11. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  12. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  13. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    detected using a cryogenic amplifier and subsequent homodyne mixing at room temperature. In an array of MKIDs, all the resonators are coupled to a shared feedline and are tuned to slightly different frequencies. They can be read out simultaneously using a comb of frequencies generated and measured using digital techniques. This thesis documents an effort to demonstrate the basic operation of ˜ 256 pixel arrays of lumped-element MKIDs made from superconducting TiN x on silicon. The resonators are designed and simulated for optimum operation. Various properties of the resonators and arrays are measured and compared to theoretical expectations. A particularly exciting observation is the extremely high quality factors (˜ 3 x 107) of our TiNx resonators which is essential for ultra-high sensitivity. The arrays are tightly packed both in space and in frequency which is desirable for larger full-size arrays. However, this can cause a serious problem in terms of microwave crosstalk between neighboring pixels. We show that by properly designing the resonator geometry, crosstalk can be eliminated; this is supported by our measurement results. We also tackle the problem of excess frequency noise in MKIDs. Intrinsic noise in the form of an excess resonance frequency jitter exists in planar superconducting resonators that are made on dielectric substrates. We conclusively show that this noise is due to fluctuations of the resonator capacitance. In turn, the capacitance fluctuations are thought to be driven by two-level system (TLS) fluctuators in a thin layer on the surface of the device. With a modified resonator design we demonstrate with measurements that this noise can be substantially reduced. An optimized version of this resonator was designed for the multiwavelength submillimeter kinetic inductance camera (MUSIC) instrument for the Caltech Submillimeter Observatory.

  14. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    International Nuclear Information System (INIS)

    Perez-Mayoral, Elena; Negri, Viviana; Soler-Padros, Jordi; Cerdan, Sebastian; Ballesteros, Paloma

    2008-01-01

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T 1 and T 2 of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH e ) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH e , independent of water relaxivity, diffusion or exchange

  15. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  16. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  17. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  18. Superconducting spiral phase in the two-dimensional t-J model

    International Nuclear Information System (INIS)

    Sushkov, Oleg P.; Kotov, Valeri N.

    2004-01-01

    We analyze the t-t ' -t '' -J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping δ1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t ' =t '' =0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t ' and t '' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations ('order from disorder' effect). We show that at δ≅0.119 the spiral is commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d, ellipsis (horizontal)) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,±1) directions

  19. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  20. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Punugupati, Sandhyarani; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-04-04

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{sub 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.

  1. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  2. Development of an thin, internal superconducting polarisation magnet for the polarised target

    Energy Technology Data Exchange (ETDEWEB)

    Altfelde, Timo; Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Miebach, Roland; Reeve, Scott; Runkel, Stefan; Sommer, Marco; Streit, Benjamin [Physikalisches Institut, Bonn (Germany)

    2015-07-01

    In order to improve the figure of merit of double-polarisation experiments at CB-ELSA in Bonn, the Polarised Target is working on a new dilution refrigerator. For maximum polarisation of nucleons low temperatures and a high homogeneous magnetic field within the target area is needed. A thin, superconducting magnet is in development, which will create a continuous longitudinal magnetic field of 2.5 T and which will be used within the new refrigerator. The solenoidal geometry of this magnet uses two additional correction coils, placed at a well defined calculated position, for reaching the homogeneity criteria of 10{sup -4} needed for the dynamic nuclear polarisation process. Practically, the superconducting wires as well as the correction coils have to be placed with maximum precision: Small fluctuations of the distance between the current loops can diminish the requested homogeneity.

  3. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  4. Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Nori, Franco

    2009-01-01

    We study cooling and squeezing the fluctuations of a nanomechanical beam using quantum feedback control. In our model, the nanomechanical beam is coupled to a transmission line resonator via a superconducting quantum interference device. The leakage of the electromagnetic field from the transmission line resonator is measured using homodyne detection. This measured signal is then used to design a quantum feedback control signal to drive the electromagnetic field in the transmission line resonator. Although the control is imposed on the transmission line resonator, this quantum feedback control signal indirectly affects the thermal motion of the nanomechanical beam via the inductive beam-resonator coupling, making it possible to cool and squeeze the fluctuations of the beam, allowing it to approach the standard quantum limit.

  5. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  6. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  7. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix.

    Science.gov (United States)

    Vergnani, Luca; Barra, Anne-Laure; Neugebauer, Petr; Rodriguez-Douton, Maria Jesus; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Cornia, Andrea

    2012-03-12

    Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  9. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    Science.gov (United States)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  10. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  11. Anisotropic superconductivity in {beta}-(BDA-TTP){sub 2}SbF{sub 6}: STM spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, K. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)], E-mail: knmr@phys.sci.hokudai.ac.jp; Muraoka, R.; Matsunaga, N. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Ichimura, K. [Division of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Yamada, J. [Division of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)

    2009-03-01

    We have investigated the gap symmetry in the superconducting phase of {beta}-(BDA-TTP){sub 2}SbF{sub 6} with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to {kappa}-(BEDT-TTF){sub 2}X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and {pi}. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d{sub x{sup 2}-y{sup 2}} like superconducting pair is formed in this system as the case of {kappa}-(BEDT-TTF){sub 2}X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.

  12. Impurity states and the diamagnetic susceptibility of a donor in a GaAs/AlxGa1-xAs Triangular Quantum Well under hydrostatic pressure

    Science.gov (United States)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of Γ-X band crossover due to the application of hydrostatic pressure of a hydrogenic donor confined in a Triangular GaAs/Al1-xGaxAs Quantum Well (TQW) for x = 0.3 and the diamagnetic susceptibility (χdia) for such an impurity in 1s and some few low lying excited states have been investigated. The Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the diamagnetic susceptibility (χdia) of a hydrogenic donor abruptly increases at a particular pressure for 1s and 2p± states but a steady increase for 2s state as a function of applied pressure.

  13. {sup 119}Sn NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Rajib; Brueckner, Felix; Guenther, Marco; Klauss, Hans-Henning [IFP, TU Dresden (Germany); Petrovic, Cedomir; Wang, Kefeng [CMPMS, BNL, Upton, NY (United States); Luetkens, Hubertus; Biswas, Pabitra; Morenzoni, Elvezio; Amato, Alex [PSI, Villigen (Switzerland)

    2014-07-01

    Ca{sub 3}Ir{sub 4}Sn{sub 13} was found to exhibit superconducting transition with T{sub c} ∼ 7 K. It received considerable attention due to the possible coexistence of superconductivity and ferromagnetic spin fluctuation as well as the three-dimensional charge density wave (CDW) from the superlattice transition. While thermal, transport, and thermodynamic characterization of Ca{sub 3}Ir{sub 4}Sn{sub 13} single crystals suggest that it is a weakly correlated nodeless superconductor, recent μSR investigation reveals that the electron-phonon pairing interaction is in the strong-coupling limit. Here we present {sup 119}Sn NMR investigations on Ca{sub 3}Ir{sub 4}Sn{sub 13} polycrystalline samples and discuss the symmetry of the superconducting order parameter together with the normal state properties. Our preliminary results of spin-lattice relaxation rate (1/T{sub 1}) indicate that this is a BCS superconductor with weak-coupling limit.

  14. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  15. Magnetism and superconductivity in LaFeP{sub 1-x}As{sub x}O

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko; Sarkar, Rajib; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany); Luetkens, Hubertus [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Tajima, Setsuko [Department of Physics, Osaka University, Osaka (Japan)

    2016-07-01

    The LaFeP{sub 1-x}As{sub x}O series bridges the gap between two parent compounds, whose Fermi surfaces differ in dimensionality and position of hole pockets. The resulting phase diagram consists of a superconducting two-dome structure separated by a novel AFM2 magnetic phase. Electron doping by (O,F) substitution allows to investigate superconductivity in the full x-range. {sup 57}Fe Moessbauer spectroscopy successfully depicts the temperature dependence of the tiny 0.1 μ{sub B} magnetic moment in the AFM2 phase and its rigidity in applied field; with the help of a line width reference absorber. This uncommon approach makes Moessbauer measurements competitive to other local probe methods such as NMR or μSR. μSR measurements can prove the long range character of this novel AFM2 phase and show the continuous change from a nodal to a nodeless symmetry of the superconducting order parameter upon substitution of P by As. AFM spin fluctuations suggested by NMR before did not become evident in μSR decoupling experiments.

  16. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors.

    Science.gov (United States)

    Hong, Seung Hwan; Choi, Han-Yong

    2013-09-11

    We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.

  17. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  18. Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well

    Science.gov (United States)

    Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2017-05-01

    We have calculated the binding energy and the diamagnetic susceptibility(χdia) of the ground (1s) and few low lying excited states (2s and 2p±) in a GaAs/AlxGa1-xAs Triangular Quantum Well (TQW) for the Al composition of x = 0.3. Since the estimation of gives the carrier localization in nanostructured systems and also the calculation of (χdia) involves the , the same has also been estimated as a function of well width. The Schrodinger equation has been solved using variational technique involving Airy functions in the effective mass approximation. The results are presented and discussed.

  19. Experimental study on stabilizing range extension of diamagnetic levitation under modulated magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T C S; Wong, P L; Liu, K P, E-mail: 50578230@student.cityu.edu.h, E-mail: meplwong@cityu.edu.h, E-mail: mekpliu@cityu.edu.h [Manufacturing Engineering and Engineering Management Department, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2010-01-01

    The real energy-free levitation exists with the help of diamagnetic material. Its ultra-high sensitivity to force is particularly attractive to micro/nano force sensing. A key parameter: Levitation Stabilizing Local Range, LR (allowable moving range of the floater) is critical to the load and self-rotating performance. Besides, larger LR reduces the energy loss due to the eddy current and has greater application potential. Recently, an idea of extending the LR by a modulating coil array has been validated using numerical simulation. This paper takes the next move to carry out an experimental study on the shape effect of stacked coil arrays with different currents on LR.

  20. Flux-quantization effects in disordered normal metal rings and superconducting networks

    International Nuclear Information System (INIS)

    Li, Qiming.

    1989-01-01

    The effects of the magnetic flux on the properties of disordered normal metal rings and bond or site diluted two-dimensional superconducting networks are investigated theoretically, with an emphasis on the quantum coherence of the electrons and the localization nature in the disordered systems. The conductance of disordered metal rings in magnetic field is obtained via the Landauer's formula through calculations of the localization length L c . The important role of the ensemble averaging and the self-averaging to obtain the half-flux-quantum h/2e conductance oscillation is demonstrated unambiguously in both rings of a strictly one-dimensional geometry and rings with a finite width. The amplitude of the localization length oscillation is found to follow a universal relation for all the numerical data: Δ(L c /L) = α(L c /L) 2 . L is the radius of the ring. The expected universal conductance fluctuations are observed for L c /L ∼ 1. For L c > L, much larger oscillation amplitudes are obtained. In the case of two-dimensional site or bond percolation superconducting networks, the nature of the eigenstates and the effects on the superconducting-to-normal phase boundary is examined by finite-size transfer matrix calculations within the mean-field Ginzburg-Landau theory of second order phase transitions

  1. Phase composition and superconducting properties of (Pb sub 0 sub . sub 6 Sn sub y Cu sub 0 sub . sub 4 sub - sub y)Sr sub 2 (Y sub 1 sub - sub x Ca sub x)Cu sub 2 O sub z

    CERN Document Server

    Balchev, N; Kunev, B; Souleva, A; Tsacheva, T

    2001-01-01

    The effect of Sn-doping in (Pb sub 0 sub . sub 6 Sn sub y Cu sub 0 sub . sub 4 sub - sub y)Sr sub 2 (Y sub 1 sub - sub x Ca sub x)Cu sub 2 O sub z for 0 <= y <= 0.3 and 0 <= x <= 0.7 was investigated. It was established that a nearly pure 1212 phase could be obtained at 0 <= y <= 0.1 and 0 <= x <= 0.3. The obtained X-ray diffraction (XRD) patterns as well as the results of the inductively coupled plasma atomic emission spectrometry (ICP-AES) and energy-dispersive X-ray (EDX) analysis showed that the Sn-substitution was possible in the (Pb,Cu)-1212 phase. Superconductivity was observed at 0.4 <= x <= 0.7. The onset of the diamagnetic transitions varied from 10 to 30 K. The influence of the strong Pb deficiency on the superconducting properties of the samples was discussed. (authors)

  2. Quantum fluctuations in the competition among spin glass, antiferromagnetism and local pairing superconductivity

    International Nuclear Information System (INIS)

    Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.

    2007-01-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines

  3. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  4. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  5. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system

    Science.gov (United States)

    Shimokawa, Y.; Matsuura, Y.; Hirano, T.; Sakai, K.

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ṡ s.

  6. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  7. Effect of environment fluctuations on a Josephson current

    International Nuclear Information System (INIS)

    Galaktionov, A.V.

    2017-01-01

    Highlights: • Josephson current is influenced differently by environment fluctuations. • Two types of environment are studied: ohmic and resonant-mode one. • A crossover to a Josephson π-junction is possible for both of them. - Abstract: An influence of an electromagnetic environment on a Josephson current through a tunnel junction is studied with the aid of Ambegaokar-Eckern-Schön effective action. Two types of environment are investigated: one, characterized by a resonant mode, and an ohmic one. The crossover to a Josephson π-junction is possible for both of them. In addition the resonant-mode environment results in an increase of a Josephson current when the ratio of the doubled superconducting gap to the frequency of the mode is close to an integer number.

  8. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  9. The filled skutterudite PrOs4Sb12: superconductivity and correlations

    International Nuclear Information System (INIS)

    Measson, M.A.

    2005-12-01

    The filled skutterudite PrOs 4 Sb 12 is the first Pr-based heavy fermion superconductor. This thesis addresses several important open questions including the determination of the quasi-particle mass renormalisation, the nature and mechanism of superconductivity, and the intrinsic or extrinsic nature of the double superconducting transition seen in the specific heat. A fit of the specific heat with magnetic interactions between the ions Pr is proposed. We extract from it an electronic term of between 300-750 mJ/K 2 .mol(Pr). Analysis of the specific heat jump provides evidence that heavy carriers are involved in Cooper pairing and that superconductivity is strongly coupled. Extensive characterizations by specific heat, resistivity, susceptibility measurements show that a double transition appears in the best samples. Nevertheless we bring the first serious doubts on the intrinsic nature of the double transition, because we have found samples with a single sharp transition at Tc2 and because the ratio of the two specific heat jumps shows strong dispersion among the samples. Furthermore we have measured the superconducting phase diagrams with an A.C. specific heat technique under magnetic field and under pressure up to 4.2 GPa, and we show that the two transitions, Tc1 and Tc2, exhibit similar behaviours with magnetic field and pressure. We find a strong change in the pressure dependence of Tc's above 2 GPa which might be related to a change in the nature of the superconductivity under pressure (at least partially mediated by fluctuations and only by phonons at respectively low and high pressure) which may be linked to the increase of the crystal field gap of the Pr ions. Analysis of the upper critical field shows the presence of at least two superconducting bands and concludes to a singlet nature of the pairing. A strong distortion of the flux-line lattice, which is constant with temperature and field, is obtained by small angle neutron scattering measurement

  10. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  11. Electrostatic field in superconductors II: balance of forces

    Czech Academy of Sciences Publication Activity Database

    Lipavský, P.; Koláček, Jan

    2009-01-01

    Roč. 23, 20-21 (2009), 4488-4495 ISSN 0217-9792 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * London theory of diamagnetic currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.408, year: 2009

  12. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  13. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  14. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  15. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  16. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  17. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  18. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  19. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  20. Spin-fluctuation mediated superconductivity and magnetic order in the cuprate La1.88Sr0.12CuO4

    DEFF Research Database (Denmark)

    Rømer, Astrid Tranum

    , show a very rich electronic phase diagram. A common feature that characterizes both cuprates, heavy fermions, and iron pnictides is the proximity to magnetic order. Therefore, the idea of spin-uctuation mediated pairing is a popular paradigm proposed for unconventional superconductivity. A _ngerprint...... of the pairing mechanism is found in the superconducting gap symmetry. Therefore the study of gap symmetries constitutes one of the most important parts of resolving the superconducting puzzle. This thesis consists of a theoretical and an experimental part. In the theoretical part, we address spin...

  1. Effects of Hole-Doping on Superconducting Properties in MgCNi3 and its Relation to Magnetism

    International Nuclear Information System (INIS)

    Alzamora, M.; Sanchez, D. R.; Cindra, M.; Baggio-Saitovitch, E. M.

    2005-01-01

    Low temperature Moessbauer experiments were performed in Fe-doped and in C-deficiency MgCNi 3 . No magnetic moment was found for Fe in MgC(Ni 0.99 Fe 0.01 ) 3 sample and no magnetic hf field was observed at any temperature for all the samples. These results shown no evidence of magnetic fluctuation or magnetic ordering influencing the depress of superconductivity in hole-doped MgCNi 3 .

  2. Development of a thin, internal superconducting polarisation magnet for the polarised target

    Energy Technology Data Exchange (ETDEWEB)

    Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Reeve, Scott; Runkel, Stefan [Physikalisches Institut, Bonn Univ. (Germany)

    2016-07-01

    In order to improve the figure of merit of double-polarisation experiments at CB-ELSA in Bonn, the Polarised Target is working on a new dilution refrigerator. For maximum polarisation of nucleons low temperatures and a high homogeneous magnetic field within the target area is needed. A thin, superconducting magnet is in development, which will create a continuous longitudinal magnetic field of 2.5 T and which will be used within the new refrigerator. The solenoidal geometry of this magnet uses two additional correction coils, placed at a well defined calculated position, for reaching the homogeneity criteria of 10{sup -4} needed for the dynamic nuclear process. Practically, the superconducting wires as well as the correction coils have to be placed with maximum precision: Small fluctuations of the distance between the current loops can diminish the requested homogeneity. A second build prototype passes first tests and looks promising to fulfil the particular requirements.

  3. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  4. Spin dynamics in high-T{sub C} superconducting cuprates; Dynamique de spins dans les oxydes de cuivre supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, Ph

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa{sub 2}Cu{sub 3}O{sub 6+x} system.

  5. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  6. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  7. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    Science.gov (United States)

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  8. Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion.

    Science.gov (United States)

    Upadhyay, Apoorva; Singh, Saurabh Kumar; Das, Chinmoy; Mondol, Ranajit; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2014-08-18

    Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.

  9. Superconductivity and spin excitations in orbitally ordered FeSe

    Science.gov (United States)

    Kreisel, Andreas; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, B. M.

    We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the dxz /dyz channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π , 0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π , 0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies A.K. and B.M.A. acknowledge financial support from a Lundbeckfond fellowship (Grant No. A9318). P.J.H. was partially supported by the Department of Energy under Grant No. DE-FG02-05ER46236.

  10. Parametric dynamic analysis of a superconducting bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A; Hasar, U C; Cam, B Ates [Electrical and Electronics Engineering Department, Ataturk University, Erzurum (Turkey); Gundogdu, Oe, E-mail: acansiz@atauni.edu.t [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2009-03-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  11. Parametric dynamic analysis of a superconducting bearing system

    International Nuclear Information System (INIS)

    Cansiz, A; Hasar, U C; Cam, B Ates; Gundogdu, Oe

    2009-01-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  12. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  13. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  14. Interactions between superconductivity and quantum criticality in CeCoIn5, URhGe and UCoGe

    International Nuclear Information System (INIS)

    Howald, L.

    2011-01-01

    The subject of this thesis is the analyze of the superconducting upper critical field (Hc2) and the interaction between superconductivity and quantum critical points (QCP), for the compounds CeCoIn 5 , URhGe and UCoGe. In CeCoIn 5 , study by mean of resistivity of the Fermi liquid domain allows us to localize precisely the QCP at ambient pressure. This analyze rule out the previously suggested pinning of Hc2(0) at the QCP. In a second part, the evolution of Hc2 under pressure is analyzed. The superconducting dome is unconventional in this compound with two characteristic pressures: at 1.6 GPa, the superconducting transition temperature is maximum but it is at 0.4 GPa that physical properties (maximum of Hc2(0), maximum of the initial slope dHc2/dT, maximum of the specific heat jump DC/C,... ) suggest a QCP. We explain this antagonism with pair-breaking effects in the proximity of the QCP. With these two experiments, we suggest a new phase diagram for CeCoIn 5 . In a third part, measurements of thermal conductivity on URhGe and UCoGe are presented. We obtained the bulk superconducting phase transition and confirmed the unusual curvature of the slope dHc2/dT observed by resistivity. The temperatures and fields dependence of thermal conductivity allow us to identify a non-electronic contribution for heat transport down to the lowest temperature (50 mK) and probably associated with magnon or longitudinal fluctuations. We also identified two different domains in the superconducting region, These domains are compatible with a two bands model for superconductivity. Thermopower measurements on UCoGe reveal a strong anisotropy to current direction and several anomaly under field applied in the b direction. We suggest a Lifshitz transition to explain our observations in these two compounds. (author) [fr

  15. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  16. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. The intrinsic crossing point of the magnetization vs. temperature curves in superconducting cuprates in the high-magnetic-field limit

    International Nuclear Information System (INIS)

    Mosqueira, J.; Torron, C.; Veira, J.A.; Vidal, F.

    1998-01-01

    The crossing point of the magnetization vs. temperature curves that appears below T c in highly anisotropic superconducting cuprates was measured in different compounds, with a different number, N, of superconducting CuO 2 layers per periodicity length, s, and also with different values of s. By correcting the measurements from different extrinsic inhomogeneity effects through the Meissner fraction, it is demonstrated experimentally for the first time that in the high-magnetic-field limit the intrinsic crossing point may be explained at a quantitative level in terms of the Tesanovic and coworkers approach based on thermal fluctuations of quasi-2D vortices (pancakes), with an effective periodicity length equal to s, independently of N. (orig.)

  18. Linear arrangement of metallic and superconducting defects in a thin superconducting sample

    International Nuclear Information System (INIS)

    Barba-Ortega, J.; Sardella, Edson; Albino Aguiar, J.

    2013-01-01

    Highlights: • We study the influence of superconducting and metallic defects on the vortex configurations in a thin mesoscopic disk. • We found that the vortex–defect interaction leads to interesting vortex configurations. • The first vortex entry is always (never) found sitting on the metallic (superconducting) defect position. -- Abstract: The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex–defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position

  19. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  20. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  1. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  2. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  3. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  4. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  5. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Harada, A; Okazaki, Y [Kyoto Univ. (Japan). Dept. of Physics

    1984-11-11

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral ..lambda.. of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B ..-->.. 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression ..lambda...

  6. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    International Nuclear Information System (INIS)

    Hasegawa, H.; Harada, A.; Okazaki, Y.

    1984-01-01

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral Λ of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B → 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression Λ. (author)

  7. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  8. Superconductivity of the two-dimensional Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2001-01-01

    Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)

  9. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  10. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  11. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  12. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  13. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  15. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  16. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  17. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations; Etude de la transition resistive sur des composes supraconducteurs a haute temperature critique le role des fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, V

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that`s incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity.

  18. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  19. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.

    Science.gov (United States)

    Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C

    2014-06-13

    Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion. Copyright © 2014, American Association for the Advancement of Science.

  20. Doped spin ladders under magnetic field; Echelles de spins dopees sous champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G

    2007-07-15

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  1. Doped spin ladders under magnetic field

    International Nuclear Information System (INIS)

    Roux, G.

    2007-07-01

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  2. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.

    Science.gov (United States)

    Murray, James M; Tesanović, Zlatko

    2010-07-16

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.

  3. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  4. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  5. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  6. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  7. Green's dyadic approach of the self-stress on a dielectric-diamagnetic cylinder with non-uniform speed of light

    International Nuclear Information System (INIS)

    Cavero-Pelaez, I; Milton, K A

    2006-01-01

    We present a Green's dyadic formulation to calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing inside and outside. Although the result is in general divergent, special cases are meaningful. It is pointed out how the self-stress on a purely dielectric cylinder vanishes through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces

  8. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  9. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  10. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-11-30

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  11. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  12. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  13. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  14. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  15. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  16. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  17. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  18. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  19. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  20. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  1. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  2. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  3. The role of Ca substitution on the nature of the superconducting transition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, S.T.; Lopes, L.F.; Nunes, S.E.; Mendonca, A.P.A.; Lopes, R.F.; Vieira, V.N. [Universidade Federal de Pelotas, RS (Brazil). Inst. de Fisica e Matematica; Pureur, P.; Pimentel Junior, J.L.; Rosa, F.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica; Ferreira, L.M. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2012-07-01

    Full text: In this work we report the results of an experimental study about the superconducting transition of Ca- doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Temperature dependent in-plane resistivity measurements were carried out on Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals with Ca content x = 0, 0.01, 0.05, 0.10. The samples were studied under hydrostatic pressure conditions (P {<=}15 kbar) and applied magnetic fields (H {<=} 2500 Oe) with H parallel to the c-axis. From the analysis of the contribution of superconducting fluctuations to the electrical conductivity we identified a fluctuation regime described by the small exponent {lambda}{sub cr} = 0.20 in a narrow temperature range immediately above the critical temperature. The origin of this fluctuation regime is still unclear. A possibility is that it may be a precursor to a weakly first-order pairing transition. The evolution of this super-critical regime with pressure and magnetic field for our Ca-doped samples is distinct from results reported in the literature for pure and other divalent substituted YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Our results indicate that Ca doping favors the stabilization of the super-critical regime. (author)

  4. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  5. Specific heat of holmium and YNi2B2C. Criticalbehaviour and superconducting properties

    International Nuclear Information System (INIS)

    Bekkali, Abdelhakim

    2010-01-01

    Object of the thesis is the study of the specific heat of holmium and YNi 2 B 2 C in the temperature ranges from 50 to 200 KI respectively from 380 mK to 20 K in magnetic fields up to 9 T. In the present thesis the criticalbehaviour of YNi 2 B 2 C and properties of the superconducting state of tne non-magnetic rare-earth nickel borocarbide YNi 2 B 2 C are studied by means of a self-developed measurement apparatur of the specific heat using the quasi-adiabatic heating-pulse method as well as of holmium by means of the relaxation method. In this thesis reliable statements about the critical exponents on monocrystalline holmium could be made. The study on holmium proves that the critical behaviour of the specific heats cannot be described in the framework of the predictions of the chiral universality classes. By means of measurements of the specific heat in this thesis could be confirmed that YNi 2 B 2 C is a multiband superconductor. The positive curvature of the boundary line below T c in the phase diagram yields a first hint to the many-band character of YNI 2 B 2 C. In the zero-field the electronic specific heat in the superconducting state c es (T) can be not explained in the framework of the pure BCS theory. At low temperatures a residual contribution by normally conducting electrons could be detected, which hints to a not completely opened energy gap. A possible explanation would be that a band (or several bands) with low charge-carrier concentration not contribute to the superconductivity. This result agrees with de Haas-van Alphen measurements on isostructural superconducting LuNi 2 B 2 C monocrystals, which suggest the many-band character of the superconductivity as well as a vanishing energy gap in one band. The fluctuation behaviour of the specific heat of YNi 2 B 2 C in the neighbourhood of the superconducting-normally conducting transition agrees well with that of the 3D-XY model. [de

  6. Diamagnetism of 2D-fermions in the strong nonhomogeneous static magnetic field B = B(0,0,1/cosh2(x-x0/δ))

    International Nuclear Information System (INIS)

    Hudak, O.

    1991-09-01

    We study diamagnetism of a gas of fermions moving in a nonhomogeneous magnetic field B = B(0,0,1/cosh 2 (x-x 0 /δ)). The gas magnetization, the static magnetic susceptibility, the chemical potential and the gas compressibility are discussed and compared with the uniform field case. (author). 5 refs

  7. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  8. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies

    Directory of Open Access Journals (Sweden)

    Nicolas G. N. Constantino

    2018-06-01

    Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  9. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  10. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  11. Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.

    Science.gov (United States)

    Paglione, Johnpierre; Tanatar, M A; Reid, J-Ph; Shakeripour, H; Petrovic, C; Taillefer, Louis

    2016-07-01

    The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.

  12. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  13. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  14. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  15. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  16. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  17. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  18. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  19. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  20. Design of a low temperature translation balance for the measurement of paramagnetic and diamagnetic susceptibilities

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, G.S.

    1979-05-01

    A modified Foex and Forrer Translation Balance has been designed for measuring the paramagnetic and diamagnetic properties of materials over the temperature range 77-300/sup 0/K. The systems' temperature range can eventually be extended to 4.2/sup 0/K. The apparatus incorporates a vertical Dewar of Standard variety in addition to a horizontal Dewar for cooling the sample holder and adjacent horizontal supports. The design also allows for the placement of a thermocouple junction in direct contact with a sample. The balance sensitivity, defined as the change in displacement per unit applied force, is 0.0044 cm/dyne. The precision of the balance is +- .5% with an accuracy of 1.5%.

  1. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  2. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  3. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  4. {mu}SR studies of the interplay of magnetic spin stripe order with superconductivity in transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, Hans-Henning, E-mail: h.klauss@physik.tu-dresden.de [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2012-11-01

    In this work we review muon spin relaxation experiments on the layered La{sub 2-x}Sr{sub x}NiO{sub 4} nickelate as well as La{sub 2-x}Ba{sub x}CuO{sub 4} and La{sub 2-x}Sr{sub x}CuO{sub 4} cuprate systems to examine spin stripe order. In particular, the interplay of stripe order with superconductivity in Nd and Eu doped La{sub 2-x}Sr{sub x}CuO{sub 4} cuprates is discussed. Detailed studies of the electronic phase diagrams as well as the magnetic and superconducting order parameters for different rare-earth and Sr doping levels in La{sub 2-x-y}RE{sub y}Sr{sub x}CuO{sub 4} revealed the strong correlation of static spin stripe order with the structural distortion in the low temperature tetragonal (LTT) phase and the competition with the superconducting ground state. High magnetic field studies demonstrate the nearly degenerate ground state energy of the different electronic phases. Slow transverse fluctuations of the charge stripes are found in nickelates and cuprates at low temperatures.

  5. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  6. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  7. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  8. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  9. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  10. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  11. Process of producing superconducting bar magnets

    International Nuclear Information System (INIS)

    Wilson, M.A.

    1988-01-01

    A method of forming a magnet having an established magnetic field is described comprising; (1) establishing a magnetic field of the desired extent and shape; (2) providing a superconducting material of desired shape; (3) positioning the material of (2) in field (1) while at a temperature above the critical temperature of the superconducting material so as to apply a magnetic field on the superconducting material; (4) cooling the superconducting material while in magnetic field (1) to below the critical temperature of the superconducting material; (5) removing the superconducting material from the magnetic field while in the supercooled condition; and (6) maintaining the material at or below the critical temperature

  12. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  13. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  14. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  15. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-03-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  16. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2011-01-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  17. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  18. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  19. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  20. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...