WorldWideScience

Sample records for superconducting digital electronics

  1. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  2. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  3. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  4. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  5. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  6. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  7. Modern aspects of Josephson dynamics and superconductivity electronics

    CERN Document Server

    Askerzade, Iman; Cantürk, Mehmet

    2017-01-01

    In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.

  8. European roadmap on superconductive electronics - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Blamire, M.G. [University of Cambridge, Department of Materials Science, Pembroke St, Cambridge CB2 3QZ (United Kingdom); Buchholz, F.-Im. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Crete, D.-G. [Unite Mixte de Physique CNRS/THALES, 1 Avenue Augustin Fresnel, 91767 Palaiseau CEDEx (France); Cristiano, R. [Istituto di Cibernetica CNR, Via Campi Flegrei 34, 80078 Napoli (Italy); Febvre, P. [University of Savoie, IMEP-LAHC, CNRS UMR 5130, Campus scientifique, 73376 Le Bourget du Lac Cedex (France); Fritzsch, L. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Herr, A. [Chalmers University of Technology, Department of Microtechnology and Nanoscience - MC2, SE-412 96 Goeteborg (Sweden); Il' ichev, E. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Kohlmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Kunert, J., E-mail: juergen.kunert@ipht-jena.d [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Meyer, H.-G. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Niemeyer, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ortlepp, T. [Technische Universitaet Ilmenau, Theoretische Elektrotechnik, PF 10 05 65 D-98684 Ilmenau (Germany); Rogalla, H. [University of Twente, Fac. Science and Technology, P.O. Box 217, 7500 AE Enschede (Netherlands); Schurig, T. [Physikalisch-Technische Bundesanstalt (PTB), Berlin, Abbestr. 2-12, 10587 Berlin (Germany)

    2010-12-15

    Executive Summary: For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 {mu}W per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum {Phi}{sub 0}. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference

  9. European roadmap on superconductive electronics - status and perspectives

    Science.gov (United States)

    Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.

    2010-12-01

    Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst

  10. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    Science.gov (United States)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  11. SCENET roadmap for superconductor digital electronics

    NARCIS (Netherlands)

    Brake, ter H.J.M.; Buchholz, F.-Im.; Burnell, G.; Claeson, T.; Crete, D.; Febvre, P.; Gerritsma, G.J.; Hilgenkamp, H.; .........,; Rogalla, H.; .........,

    2006-01-01

    The roadmap gives an overview on status and future developments in Superconducting Digital Electronics (SDE). Key areas in SDE under focus are applications, circuit simulation and design, circuit fabrication, interfacing and testing, cooling and system aspects, and new devices and materials. Care wa

  12. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  13. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  14. Superconductor Digital Electronics: -- Current Status, Future Prospects

    Science.gov (United States)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  15. Practical digital electronics for technicians

    CERN Document Server

    Kimber, Will

    2013-01-01

    Practical Digital Electronics for Technicians covers topics on analog and digital signals, logic gates, combinational logic, and Karnaugh mapping. The book discusses the characteristics and types of logic families; sequential systems including latch, bistable circuits, counters and shift registers; Schmitt triggers and multivibrators; and MSI combinational logic systems. Display devices, including LED, LCD and dot matrix display; analog and digital conversion; and examples of and equipment for digital fault finding are also considered. The book concludes by providing answers to the questions

  16. Commercial Superconducting Electron Linac for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry Lee [Niowave, Inc., Lansing, MI (United States); Boulware, Charles H. [Niowave, Inc., Lansing, MI (United States); Hollister, Jerry L. [Niowave, Inc., Lansing, MI (United States); Jecks, Randall W. [Niowave, Inc., Lansing, MI (United States); Mamtimin, Mayir [Niowave, Inc., Lansing, MI (United States); Starovoitova, Valeriia [Niowave, Inc., Lansing, MI (United States)

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  17. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  18. PREFACE: The 11th International Superconductive Electronics Conference (ISEC 07)

    Science.gov (United States)

    Miller, Donald L.; Wellstood, Fred; Donaldson, Gordon

    2007-11-01

    The 11th International Superconductive Electronics Conference (ISEC 07) was held in June 2007 in Washington, DC, USA. This special issue is a compendium of selected papers based on the technology presented at that meeting. ISEC, held on a biennial basis, traditionally rotates from Japan to Europe to the United States. The single exception to this rotation has been the 2003 conference which was held in Australia. This conference brings together the world's experts in superconductive electronics in a forum which is conducive to interaction among the participants with maximal interchange between the various topics. The conference this year was truly an international event with participation from 13 countries over six continents. The quality of presentations was also high. The conference witnessed the continued maturation of both digital/mixed signal electronics and SQUID-based instrumentation along with a number of novel devices. Of particular note was the transition of superconducting quantum computing research from a novel abstract concept to a broad-based research activity. The organizing committee was able to gather an exemplary group of invited speakers to share their results and visions for future progress. These presentations spanned both the subtopics of superconductor electronics and the history of the field. As I reflect on the efforts which went into making this conference a success, I must express my appreciation to many individuals and organizations, in no particular order. I would like to thank Northrop Grumman for their support for my activities as chair of the conference, both in terms of making my time available and for direct financial considerations. Centennial Conferences, as the conference organizer, provided invaluable guidance and administrative support. I would also like to acknowledge the support of the IEEE Council on Superconductivity, in particular in the persons of Moises Levy and John Spargo. I would be remiss if I did not thank John

  19. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  20. A New Approach for Direct Observation of Superconducting Electrons

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ ASino-Japanese research team has succeeded in observing the superconducting electron directly by the photoemission spectroscopy with the highest yet resolution (360 μeV).Based on this, the researchers say,they will be able to solve problems regarding the exotic superconducting mechanism.

  1. Microscale Digital Vacuum Electronic Gates

    Science.gov (United States)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  2. High-T sub c superconductivity seeks a digital home

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, W.I. (IBM, T.J. Watson Research Group, Yorktown Heights, NY (US))

    1990-11-01

    The author discusses two of the three predictable (because they are obvious) digital applications of high-T{sub c} superconductivity: the use of Josephson technology at 77 K and the use of high-T{sub c} lines for interconnects. (The third is the use of SQUID magnetic sensors in storage). All of these applications offer potentially significant advantages at the component level. But these advantages have yet to be demonstrated. It will be some time before the applications can be developed to the point of offering system-level improvements at competitive costs.

  3. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  4. Digitized adiabatic quantum computing with a superconducting circuit

    Science.gov (United States)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  5. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    Science.gov (United States)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  6. High-Speed Superconductive Decimation Filter for Sigma-Delta Analog to Digital Converter

    Science.gov (United States)

    Wakamatsu, Tomu; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-07-01

    A superconducting decimation filter is required to convert high-speed output data from a superconducting sigma-delta analog to digital (A/D) modulator to low-speed data for data acquisition by room-temperature electronics. Because the operating frequency of the conventional superconducting decimation filter is lower than that of the maximum operation frequency of A/D modulator, the system performance of the superconducting A/D converter is limited by the decimation filter. We propose a decimation filter that can operate at the sampling frequency of the A/D modulator by hybridizing a shift-register-based and a counter-based decimation filters. The investigated decimation filter can be implemented with a practical circuit area. We designed and tested the investigated decimation filter. The simulation result indicates that the maximum operation frequency of the designed decimation filter is 39.8 GHz assuming the 2.5 kA/cm2 Nb fabrication process. We experimentally confirmed the low-speed operation of the designed decimation filter with the bias margin of 93.8%-110.8%.

  7. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  8. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  9. Digital control in power electronics

    CERN Document Server

    Buso, Simone

    2015-01-01

    This book presents the reader, whether an electrical engineering student in power electronics or a design engineer, a selection of power converter control problems and their basic digital solutions, based on the most widespread digital control techniques. The presentation is primarily focused on different applications of the same power converter topology, the half-bridge voltage source inverter, considered both in its single- and three-phase implementation. This is chosen as the test case because, besides being simple and well known, it allows the discussion of a significant spectrum of the mo

  10. Digital electronic engine control history

    Science.gov (United States)

    Putnam, T. W.

    1984-01-01

    Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.

  11. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  12. Local Electronic Structure and High Temperature Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V. J.; Kivelson, S. A.

    1999-02-08

    It is argued that a new mechanism and many-body theory of superconductivity are required for doped correlated insulators. Here they review the essential features of and the experimental support for such a theory, in which the physics is driven by the kinetic energy.

  13. Unconventional superconductivity in low density electron systems and conventional superconductivity in hydrogen metallic alloys

    Science.gov (United States)

    Kagan, M. Yu.

    2016-06-01

    In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn-Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive- U Hubbard model and Shubin-Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with T C of the order of 100 K) we should proceed to the t-J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with T C of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-phonon interaction. These mechanisms arise in the attractive- U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal-Eliashberg strong coupling theory or even Fermi-Bose mixture theory of Ranninger et al. and its generalizations.

  14. Electronic Structure of New Superconducting Perovskite MgCNi3

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Hua LI; Liangmo MEI

    2004-01-01

    The electronic structures of new superconducting perovskite MgCNis and related compounds MgCNi2T (T=Co, Fe,and Cu) have been studied using MS-Xα method. In MgCNi3, the main peak of density of states is located below the Fermi level and dominated by Ni d. From the results of total energy calculations, it was found that the number of Ni valence electron decreases faster for the Fe-doped case than that for the Co-doped case. The valence state of Ni changes from +1.43 in MgCNi2Co to +3.02 in MgCNi2Fe. It was confirmed that Co and Fe dopants in MgCNi3 behave as a source of d-band holes and the suppression of superconductivity occurs faster for the Fe-doped case than that for the Co-doped case. In order to explain the fact that Co and Fe dopants in MgCNi3 behave as a source of d-band holes rather than magnetic scattering centers that quench superconductivity, we have also investigated the effects of electron (Cu) doping on the superconductivity and found that both electron (Cu) doping and hole (Co, Fe)doping quench superconductivity exist. Comparing with the hole (Co) doping, there was no much difference between Cu and Co doping. This suggests that Co and Fe doping do not actas magnetic impurity.

  15. Flexible Microstrip Circuits for Superconducting Electronics

    Science.gov (United States)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  16. Covalent Electron Transfer Theory of Superconductivity

    Science.gov (United States)

    1992-06-19

    where n. and n, converge to establish the threshold density for the onset of superconductivity. 41 Comparison of ne(t) Inse (O) versus t for W = 0.5, 1...all temperatures according to ne(T) = n(7) - nt(T) , (58) where n() = n(Tc)[ I - nse(T) Inse (O)]. Thus, the fractional contribution of the threshold...approximately -1/2, thereby suggesting that Kerr- v,6t 2. For the transition metals with largely unpolarizable cores of closed p6 shells (i.e., noble gases

  17. Charge sensitivity of superconducting single-electron transistor

    Science.gov (United States)

    Korotkov, Alexander N.

    1996-10-01

    It is shown that the noise-limited charge sensitivity of a single-electron transistor using superconductors (of either SISIS- or NISIN-type) operating near the threshold of quasiparticle tunneling, can be considerably higher than that of a similar transistor made of normal metals or semiconductors. The reason is that the superconducting energy gap, in contrast to the Coulomb blockade, is not smeared by the finite temperature. We also discuss the increase of the maximum operation temperature due to superconductivity and the peaklike features on the I-V curve of SISIS structures.

  18. Electronic spin susceptibility of metallic superconductive nano-particles

    Institute of Scientific and Technical Information of China (English)

    Li Feng; Chen Zhi-Qian; Li Qing

    2006-01-01

    We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy levels are considered in the calculation of the electronic spin susceptibility of the ensemble numerically. The quantum effect, even-odd effect and other special effects existing in the metallic nano-particles are also studied in this article.

  19. Electron transport in a mesoscopic superconducting ferromagnetic hybrid conductor

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, M.; Hasselbach, K.; Courtois, H.; Pannetier, B. [Centre de Recherche sur les Tres Basses Temperatures, CNRS, 38 - Grenoble (France); Mailly, D. [Laboratoire de Photonique et de Nanostructures, 91 - Marcoussis (France)

    2003-01-01

    We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors. (authors)

  20. Digital signature of electronic dental records.

    Science.gov (United States)

    Maruo, Ivan Toshio; Maruo, Hiroshi

    2012-05-01

    The purpose of this article is to examine the feasibility of digital signature technology to guarantee the legal validation of electronic dental records. The possible uses of digital signature technology, the actual use of digital signature technology to authenticate electronic dental records, the authentication of each part of the electronic dental record, the general legal principles involved, how to digitally sign electronic dental record files, and the limitations of this method are discussed. It is possible to obtain electronic dental records that carry the same legal certainty as conventional, nonelectronic records. For this purpose, each part of the electronic dental records should be digitally signed by the author of the document. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Theory of parametrically amplified electron-phonon superconductivity

    Science.gov (United States)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  2. Theory of parametrically amplified electron-phonon superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  3. High-temperature superconductivity for avionic electronic warfare and radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.A. [Wright Lab., Wright-Patterson AFB, OH (United States). Avionics Directorate

    1994-12-31

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS. To make superconductivity practical for operational systems, however, technological obstacles need to be overcome. Compact cryogenically cooled subsystems with exceptional performance able to withstand rugged operational environments for long periods of time need to be developed.

  4. Development of superconducting bandpass delta-sigma analog-to-digital converter

    Science.gov (United States)

    Bulzacchelli, John F.; Lee, Hae-Seung; Misewich, James A.; Ketchen, Mark B.

    2004-10-01

    This paper recounts the development of a superconducting bandpass delta-sigma (ΔΣ) modulator for direct analog-to-digital conversion of radio frequency signals in the GHz range. The modulator design benefits from several advantages of superconducting electronics: high-Q resonators, fast Josephson comparators, naturally quantized single flux quantum pulses, and high circuit sensitivity. The measured center frequency (2.23 GHz), sampling rate (up to 45 GHz), dynamic range (greater than 57 dB over a 19.6 MHz bandwidth), and input sensitivity (-17.4 dBm full-scale) of the bandpass modulator are the highest reported to date in any technology. The SNR (49 dB over a 20.8 MHz bandwidth) is limited by the frequency resolution of the measurement but still exceeds the SNRs of semiconductor modulators with comparable center frequencies. The design of the modulator test chip and the high speed testing methodology are reviewed. Finally, the paper examines the prospects for improved performance with more advanced modulator architectures.

  5. Development of superconducting bandpass delta-sigma analog-to-digital converter

    Energy Technology Data Exchange (ETDEWEB)

    Bulzacchelli, John F.; Lee, Hae-Seung; Misewich, James A.; Ketchen, Mark

    2004-10-01

    This paper recounts the development of a superconducting bandpass delta-sigma ({delta}{sigma}) modulator for direct analog-to-digital conversion of radio frequency signals in the GHz range. The modulator design benefits from several advantages of superconducting electronics: high-Q resonators, fast Josephson comparators, naturally quantized single flux quantum pulses, and high circuit sensitivity. The measured center frequency (2.23 GHz), sampling rate (up to 45 GHz), dynamic range (greater than 57 dB over a 19.6 MHz bandwidth), and input sensitivity (-17.4 dBm full-scale) of the bandpass modulator are the highest reported to date in any technology. The SNR (49 dB over a 20.8 MHz bandwidth) is limited by the frequency resolution of the measurement but still exceeds the SNRs of semiconductor modulators with comparable center frequencies. The design of the modulator test chip and the high speed testing methodology are reviewed. Finally, the paper examines the prospects for improved performance with more advanced modulator architectures.

  6. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  7. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sui; CHEN Wan-Fang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He H is only a criterion for microscopic superfluidity of 4He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-To cuprates.

  8. Electronic coolers based on superconducting tunnel junctions: fundamentals and applications

    OpenAIRE

    2014-01-01

    International audience; Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic cooling in mesoscopic superconducting hybrid structures, the related limitations and applications. We review recent work performed in Grenoble on the effects of Andreev reflection, photonic heat transport, phonon cooling, as well as on an innovative fabrication te...

  9. Electronic thermal conductivity in a superconducting vortex state

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H. [Department of Physics, Okayama University, Tsushima, Okayama 700-8530 (Japan)], E-mail: adachi@itp.phys.ethz.ch; Miranovic, P. [Department of Physics, University of Montenegro, Podgorica 81000 (Montenegro); Ichioka, M.; Machida, K. [Department of Physics, Okayama University, Tsushima, Okayama 700-8530 (Japan)

    2007-10-01

    The longitudinal component of the electronic thermal conductivity {kappa}{sub xx} in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using {kappa}{sub xx}(B) as a probe of the pair potential symmetry.

  10. Electronic thermal conductivity in a superconducting vortex state

    Science.gov (United States)

    Adachi, H.; Miranovic, P.; Ichioka, M.; Machida, K.

    2007-10-01

    The longitudinal component of the electronic thermal conductivity κxx in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using κxx(B) as a probe of the pair potential symmetry.

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  12. Simulated Performance of the Wisconsin Superconducting Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Bosch, K.J. Kleman, R.A. Legg

    2012-07-01

    The Wisconsin superconducting electron gun is modeled with multiparticle tracking simulations using the ASTRA and GPT codes. To specify the construction of the emittance-compensation solenoid, we studied the dependence of the output bunch's emittance upon the solenoid's strength and field errors. We also evaluated the dependence of the output bunch's emittance upon the bunch's initial emittance and the size of the laser spot on the photocathode. The results suggest that a 200-pC bunch with an emittance of about one mm-mrad can be produced for a free-electron laser.

  13. Electron spin resonance detected by a superconducting qubit

    CERN Document Server

    Kubo, Y; Grezes, C; Umeda, T; Isoya, J; Sumiya, H; Yamamoto, T; Abe, H; Onoda, S; Ohshima, T; Jacques, V; Dréau, A; Roch, J -F; Auffeves, A; Vion, D; Esteve, D; Bertet, P

    2012-01-01

    A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of \\thicksim15\\,\\mu_{B} out of an ensemble of 10^{11} spins.

  14. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    Science.gov (United States)

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  15. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    Science.gov (United States)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  16. Reproducible Operating Margins on a 72800-Device Digital Superconducting Chip (Open Access)

    Science.gov (United States)

    2015-10-28

    Reproducible operating margins on a 72800- device digital superconducting chip Quentin P Herr, Joshua Osborne, Micah J A Stoutimore, Harold Hearne...super- conducting-quantum-interference- device circuits [6–8] and even more directly using magnetic imaging [9]. For larger, digital circuits, flux...design and test of reciprocal quantum logic shift-register yield vehicles consisting of up to 72 800 Josephson junction devices per die, the largest

  17. Construction and Test of a Novel Superconducting RF Electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, Joseph J. [University of Wisconsin-Madison

    2014-04-16

    The University of Wisconsin-Madison has completed installation of a superconducting electron gun. Its concept was optimized to be the source for a CW free electron laser facility with multiple megahertz repetition rate end stations. This VHF superconducting configuration holds the promise of the highest performance for CW injectors. Initial commissioning efforts show that the cavity can achieve gradients of 35 MV/m at the cathode position. With the cathode inserted CW operation has been achieved at 20 MV/m with good control of microphonics, negligible dark current, and Q0 > 3×109 at 4 K. Bunch charges of ~100 pC have been delivered, and first simple beam measurements made. These preliminary results are very encouraging for production of 100s pC bunches with millimeter-milliradian or smaller normalized emittances. Plans are in place to carry out more definitive studies to establish the full capabilities. However, since the grant was not renewed, the electron gun is currently mothballed, and without supplemental fund the opportunity for further work will be lost.

  18. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  19. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    Science.gov (United States)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  20. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  1. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    Science.gov (United States)

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  2. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    D M Gaitonde; P Modak; R S Rao; B K Godwal

    2003-01-01

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with experiment. We obtain the mass enhancement parameter by using our calculated, $D(E_F)$ and the experimental specific heat data. The $T_c$ is found to be 37 K. We use a parametrized description of the calculated band structure to obtain the = 0 K values of the London penetration depth and the superconducting coherence length. The penetration depth calculated by us is too small and the coherence length too large as compared to the experimentally determined values of these quantities. This indicates the limitations of a theory that relies only on electronic structure calculations in describing the superconducting state in this material and implies that impurity effects as well as mass renormalization effects need to be included.

  3. Anisotropic effect of appearing superconductivity on the electron transport in FeSe

    Science.gov (United States)

    Grigoriev, P. D.; Sinchenko, A. A.; Kesharpu, K. K.; Shakin, A.; Mogilyuk, T. I.; Orlov, A. P.; Frolov, A. V.; Lyubshin, D. S.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    2017-06-01

    A theoretical model has been proposed to describe the conductivity of a layered anisotropic normal metal containing small superconducting inclusions at an arbitrary eccentricity of spheroidal superconducting islands. The electron transport and magnetic properties of FeSe single crystals have been measured. The results indicate the existence of superconductivity at temperatures much higher than the critical superconducting transition temperature corresponding to vanishing electrical resistance. Within the proposed model, quantitative agreement has been achieved between the volume fraction of superconducting inclusions and its temperature dependence determined from the transport and magnetic measurements.

  4. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  5. Electronic heat current rectification in hybrid superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Fornieri, Antonio, E-mail: antonio.fornieri@sns.it; Giazotto, Francesco, E-mail: francesco.giazotto@sns.it [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Martínez-Pérez, María José [Physikalisches Institut - Experimentalphysik II Universität Tübingen, D-72076 Tübingen (Germany)

    2015-05-15

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  6. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, James W. (Aiken, SC)

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  7. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  8. Digital detectors for electron microscopy

    CERN Document Server

    Faruqi, A R

    2002-01-01

    Film has traditionally been used for recording images in transmission electron microscopes but there is an essential need for computer-interfaced electronic detectors. Cooled-CCD detectors, developed over the past few years, though not ideal, are increasingly used as the preferred detection system in a number of applications. We describe briefly the design of CCD-based detectors, along with their main properties, which have been used in electron crystallography. A newer detector design with a much bigger sensitive area, incorporating a 2x2 tiled array of CCDs with tapered fibre optics will overcome some of the limitations of existing CCD detectors. We also describe some preliminary results for 8 keV imaging, from (direct detection) silicon hybrid pixel detectors, which offer advantages over CCDs in terms of better spatial resolution, faster readout with minimal noise.

  9. Electronic Health Record Meets Digital Library

    Science.gov (United States)

    Humphreys, Betsy L.

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government envouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics. PMID:10984463

  10. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride

    National Research Council Canada - National Science Library

    Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei; Feng, Yanqing; Wei, Zhongxia; Zhou, Yonghui; Chi, Zhenhua; Pi, Li; Yen, Fei; Song, Fengqi; Wan, Xiangang; Yang, Zhaorong; Wang, Baigeng; Wang, Guanghou; Zhang, Yuheng

    2015-01-01

    ... T. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we boost the electronic properties by applying a high pressure, and introduce superconductivity successfully...

  11. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  12. Investigation of Properties of Motion of Superconductive Electrons in Superconductors by Nonlinear Quantum Mechanical Theory

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Pang

    2008-01-01

    The properties and rules of motion of superconductive electrons in steady and time-dependent non-equilibrium states of superconductors are studied by using the Ginzberg-Landau (GL) equations and nonlinear quantum theory. In the absence of external fields, the superconductive electrons move in the solitons with certain energy and velocity in a uniform system, The superconductive electron is still a soliton under action of an electromagnetic field, but its amplitude, phase and shape are changed. Thus we conclude that super- conductivity is a result of motion of soliton of superconductive electrons. Since soliton has the feature of motion for retaining its energy and form, thus a permanent current occurs in superconductor. From these solutions of GL equations under action of an electromagnetic field, we gain the structure of vortex lines-magnetic flux lines observed experimentally in type-II superconductors. In the time-dependent non- equilibrium states of superconductor, the motions of superconductive electrons exhibit still the soliton features, but the shape and amplitude have changed. In an invariant electric-field, it moves in a constant acceleration. In the medium with dissipation, the superconductive electron behaves still like a soliton, although its form, amplitude, and velocity are altered. Thus we have to convince that the superconductive electron is essentially a soliton in both non-equilibrium and equilibrium superconductors.

  13. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays – currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  14. Electronic artificial hand controlled by reconstructed digit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objecive: To treat the loss of part of the forearm with a multi-dimension-freedom electronic artificial hand,which is controlled by a reconstructed finger transplanted from the second toe to the forearm stump.Methods: The female patient was 19 years old, whose right hand and wrist were crushed into pieces by machine at work and her forearm was amputated at the level of 8 cm proximal to the wrist. The second toe of her left foot was transplanted to reconstruct the digit onto the stump of her forearm. Two months after the transplantation, the patient was transferred to the rehabilitation center for further rehabilitation training, which consisted of: training for adaptation to weight bearing, testing and training of sensibility to weight. testing and training for stability of the hand, and testing and training for the controlling function of the reconstructed digit. Results: The transplanted toe survived well. After rehabilitation the reconstructed digit functioned well. In testing the performance under control mandate, the accuracy rate of the electronic artificial hand was 100%.Conclusions: A 100% accuracy rate of the electronic artificial hand can be achieved by transplantation of the toe onto the stump of the forearm. It provides a useful pathway and an example for improvement of control accuracy of a multiple-freedom electronic artificial hand and reduction of false action.

  15. Emittance minimization at the ELBE superconducting electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, K.; Arnold, A.; Lu, P.; Murcek, P.; Teichert, J.; Vennekate, H.; Xiang, R.

    2014-07-01

    The transverse emittance is one of the most important quantities which characterize the quality of an electron source. For high quality experiments low beam emittance is required. By means of theoretical considerations and simulation calculations we have studied how the emittance of the Rossendorf superconducting radio-frequency photoelectron source (SRF gun) can be minimized. It turned out that neither a solenoid magnet nor the effect of space charge forces is needed to create a pronounced emittance minimum. The minimum appears by just adjusting the starting phase of the electron bunch with respect to the RF phase of the gun in a suitable way. Investigation of various correlations between the properties of the beam particles led to an explanation on how the minimum comes about. It is shown that the basic mechanism of minimization is the fact that the longitudinal properties of the particles (energy) are strongly influenced by the starting phase. Due to the coupling of the longitudinal and transverse degrees of freedom by the relativistic equation of motion the transverse degrees of freedom and thereby the emittance can be strongly influenced by the starting phase as well. The results obtained in this study will be applied to minimize the emittance in the commissioning phase of the SRF gun.

  16. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  17. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride.

    Science.gov (United States)

    Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei; Feng, Yanqing; Wei, Zhongxia; Zhou, Yonghui; Chi, Zhenhua; Pi, Li; Yen, Fei; Song, Fengqi; Wan, Xiangang; Yang, Zhaorong; Wang, Baigeng; Wang, Guanghou; Zhang, Yuheng

    2015-07-23

    Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 T. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we boost the electronic properties by applying a high pressure, and introduce superconductivity successfully. Superconductivity sharply appears at a pressure of 2.5 GPa, rapidly reaching a maximum critical temperature (Tc) of 7 K at around 16.8 GPa, followed by a monotonic decrease in Tc with increasing pressure, thereby exhibiting the typical dome-shaped superconducting phase. From theoretical calculations, we interpret the low-pressure region of the superconducting dome to an enrichment of the density of states at the Fermi level and attribute the high-pressure decrease in Tc to possible structural instability. Thus, tungsten ditelluride may provide a new platform for our understanding of superconductivity phenomena in transition metal dichalcogenides.

  18. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  19. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  20. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp [Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, AIST Central-3, 1-1, Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2014-10-15

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.

  1. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    Science.gov (United States)

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8–8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  2. Superconductivity on the border of itinerant electron ferromagnetism in UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, S.S.; Agarwal, P.; Ahilan, K.; Grosche, F.M.; Haselwimmer, R.K.W.; Steiner, M.J. E-mail: mjs57@cam.ac.uk; Pugh, E.; Walker, I.R.; Julian, S.R.; Monthoux, P.; Lonzarich, G.G.; Huxley, A.; Sheikin, I.; Braithweite, D.; Flouquet, J

    2001-05-01

    We report on the observation of a superconducting phase in the itinerant electron ferromagnet UGe{sub 2}. The superconductivity observed below 1 K and in a limited pressure range immediately below the critical pressure where ferromagnetism is abruptly suppressed, would seem to arise from the same electrons that produce band magnetism. This superconductivity is most naturally understood in terms of magnetic as opposed to lattice interactions and via a spin-triplet rather than a spin-singlet pairing normally associated with nearly anti-ferromagnetic metals.

  3. Co-existence of superconductivity and ferromagnetism in f-electron metals.

    Science.gov (United States)

    Huxley, Andrew

    2002-03-01

    In itinerant ferromagnets a strong spin polarisation might be expected to suppress any possibility of spin-singlet superconductivity. However spin triplet superconductivity may still occur if there is an appropriate pairing interaction and the material is sufficiently clean. The experimental evidence that a bulk superconducting state is indeed realised in two different f-electron ferromagnets will be reviewed, along with the special factors that might favour such a state. For UGe_2, samples that satisfy the clean limit condition are easily prepared. The superconducting transition temperature is however closely correlated with the proximity to a critical point for a magnetic transition within the ferromagnetic state, which is achieved only at high pressure. The same factors, perhaps related to Fermi surface nesting, which give rise to this complex magnetic behaviour, therefore appear to be implicated in the superconducting pairing. Superconductivity in ferromagnetic URhGe occurs at zero pressure, which has facilitated extensive magnetisation and heat-capacity studies. These confirm both the bulk nature of the two transitions and the co-existence of the two orders (ferromagnetism and superconductivity). Further, as expected for non s-wave pairing, it is found that only samples with a sufficiently low residual resistivity show superconductivity. In contrast to UGe_2, the magnetic state in URhGe behaves in accordance with the simplest version of the Moriya-Lonzarich theory. This, as well as the recent report that that the cubic itinerant ferromagnet ZrZn2 shows a low temperature transition, interpreted as an incomplete transition to superconductivity, suggest that superconductivity could occur more commonly in clean ferromagnets. The observed superconducting properties of UGe2 and URhGe appear to be consistent with a particular symmetry of the order parameter in these lower symmetry materials. Their lower symmetries also lead to several advantages relating to the

  4. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  5. Superconducting gap symmetry determined by the electron density

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Luis A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico)]. E-mail: lperez@fisica.unam.mx; Millan, J. Samuel [Facultad de Ingenieria, UNACAR, C.P. 24180, Cd. del Carmen, Campeche, Mexico. (Mexico); Wang Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, C.P. 04510, Mexico D.F. (Mexico)

    2006-05-01

    In this work, a comparative study of pairing and superconducting states in square lattices with s-, p- and d-symmetries is performed within the BCS formalism and a generalized Hubbard model, in which correlated-hopping interactions are considered in addition to the repulsive Coulomb interactions. The two-particle analysis reveals the importance of the van Hove singularity in the formation of pairs and then the two-particle states with different pairing symmetry have their maximum binding energies at the same hopping strength. This feature is confirmed by the superconducting critical temperature (T {sub c}) calculation at the low-density regime. However, a different picture is found for the high-density regime, i.e., the maxima of the s- and d-channel T {sub c} split from the expected value and no p-wave superconducting state is found. This study suggests that the three superconducting symmetries can be analyzed within a single framework.

  6. Electrostatic electron-doping yields superconductivity in LaOBiS2

    Science.gov (United States)

    Uesugi, Eri; Nishiyama, Saki; Goto, Hidenori; Ota, Hiromi; Kubozono, Yoshihiro

    2016-12-01

    Electrostatic carrier-doping is attracting serious attention as a meaningful technique for producing interesting electronic states in two-dimensional (2D) layered materials. Ionic-liquid gating can provide the critical carrier density required to induce the metal-insulator transition and superconductivity. However, the physical properties of only a few materials have been controlled by the electrostatic carrier-doping during the past decade. Here, we report an observation of superconductivity in a 2D layered material, LaOBiS2, achieved by the electrostatic electron-doping. The electron doping of LaOBiS2 induced metallic conductivity in the normally insulating LaOBiS2, ultimately led to superconductivity. The superconducting transition temperature, Tc, was 3.6 K, higher than the 2.7 K seen in LaO1-xFxBiS2 with an electron-doped BiS2 layer. A rapid drop in resistance (R) was observed at low temperature, which disappeared with the application of high magnetic fields, implying a superconducting state. This study reveals that electron-doping is an important technique for inducing superconductivity in 2D layered BiS2 materials.

  7. The secondary electron emission coefficient of the material for the superconducting cavity input coupler

    CERN Document Server

    Kijima, Y; Furuya, T; Michizono, S I; Mitsunobu, S; Noer, R J

    2002-01-01

    The secondary electron emission (SEE) coefficients have been measured, for materials used in the coupler for KEKB superconducting cavities, i.e. Copper, Stainless steel plated with Copper, Niobium and Ceramic. We show that the electron bombardment is effective in decreasing the SEE coefficient of the metal surfaces, and the TiN coating and window fabrication processes influence the secondary electron yield. (author)

  8. Digital signal processing in power electronics control circuits

    CERN Document Server

    Sozański, Krzysztof

    2017-01-01

    This book discusses problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. It includes Matlab examples for illustration of considered problems.

  9. Noise Behaviour of a THz Superconducting Hot-Electron Bolometer Mixer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; S. I. Svechnikov; Yu. B. Vachtomin; S. V. Antipov; B. M. Voronov; G. N. Gol'tsman; LI Ning; JIANG Ling; MIAO Wei; LIN Zheng-Hui; YAO Qi-Jun; SHI Sheng-Cai; CHEN Jian; WU Pei-Heng

    2007-01-01

    A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5-2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasioptical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.

  10. Development of a 4.5 K Pulse Tube Cryocooler for Superconducting Electronics

    Science.gov (United States)

    Nast, Ted; Olson, Jeff; Champagne, Patrick; Mix, Jack; Evtimov, Bobby; Roth, Eric; Collaco, Andre

    2008-03-01

    Lockheed Martin's (LM) Advanced Technology Center (ATC) has developed a four stage pulse tube cryocooler (stirling-type pulse tube system) to provide cooling at 4.5 K for superconducting digital electronics communications programs. These programs utilize superconducting niobium integrated circuits [1, 2]. A prior ATC 4 stage unit has provided cooling to 3.8 K. [3] The relatively high cooling loads for the present program led us to a new design which improves the 4.5 K power efficiency over prior systems. This design includes a unique pulse tube approach using both He-3 and He-4 working gas in two compression spaces. The compressor utilizes our standard moving magnet linear motor, clearance seal and flexure bearing system. The system is compact, lightweight and reliable and utilizes our aerospace cooler technology to provide unlimited lifetime. The unit is a proof of concept, but the construction is at an engineering model level. Follow on activities for improvements of performance and more compact packaging and future production for ground based communication systems is anticipated. This paper presents the experimental results at various cooling conditions. Primary results are shown for HYPRES cooling requirements and data is also included at lower cooling loads that may be required for future space missions. The system provides a maximum of 42 mW @ 4.5 K and a no load temperature of 3 K. The majority of this work was subcontracted by HYPRES and funded by the Army and Navy. A small part of this effort to obtain data at lower cooling loads (1-10 mW @ 4.5 K) was funded by LM internal funds.

  11. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  12. A hidden pseudogap under the 'dome' of superconductivity in electron-doped high-temperature superconductors.

    Science.gov (United States)

    Alff, L; Krockenberger, Y; Welter, B; Schonecke, M; Gross, R; Manske, D; Naito, M

    2003-04-17

    The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.

  13. Percolated Superconductivity and Electron-Electron Exchange Mechanism in Ba-La-Cu-O

    Science.gov (United States)

    Tao, Ruibao

    It is found that the oxygen vacancies at the Cu-O basal plane of oxide (La1-xBax)2CuO4-y (Balacuo) will break the bonds of Cu-O-Cu to make the hopping between those coppers disappear so that the electrical conduction in the Cu-O basal plane would become a bond percolation system consisting of an infinite cluster carrying the current with a great number of finite clusters hanging around. It is favorable to create some mechanism of electron-electron exchange so that the transition temperature Tc of superconductivity could be increased significantly. The comparison with Y1Ba2Cu3O9-y is also discussed briefly.

  14. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  15. Combined Digital Electronic Current and Voltage Transducer

    Institute of Scientific and Technical Information of China (English)

    段雄英; 邹积岩; 等

    2002-01-01

    A high-performance current and voltage measurement system has been developed in power system.The system is composed of two parts:one current measurement element and one voltage measurement element.A Rogowski coil and a capacitive voltage divider are used respectively for the line current and voltage measurements.Active electronic components are used to modulate signal,and power supply for these components is drawn from power line via an auxiliary current transformer,Measurement signal is transmitted y optical fibers,which is resistant to electromagnetic induction and noise,With careful design and the use of digital signal processing technology,the whole system can meet 0.5% accuracy for metering and provides large dynamic range coupled with good accuracy for protective relaying use.

  16. The Digital Electronic Subsystem of Marsis

    Science.gov (United States)

    Maltecca, L.; Pecora, M.; Scandelli, L.

    MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) is one of the Instrument of the ESA Mars Express mission, to be launched in June 2003 with a Soyuz/Fregate. Its primary objective is to map the distribution of water, both liquid and solid, in the upper portions of the crust of Mars. Secondary objectives are subsurface geologic probing, surface characterisation and ionosphere sounding. The MARSIS instrument is a low-frequency nadir-looking pulse limited radar sounder and altimeter with ground penetration capabilities, which uses synthetic aperture techniques and a secondary-receiving antenna to isolate subsurface reflections. Functionally and also from the responsibility point of view of each organisation involved in MARSIS, the instrument can be split into three subsystems: - Antenna: ANT - Radio Frequency Subsystem: RFS (TX+RX) - Digital Electronics Subsystem: DES MARSIS is an international co-operation between Italian Space Agency (ASI) and National Aeronautics and Space Administration (NASA). The experiment has an Italian Principal investigator (from Infocom Dept. of University of Rome "La Sapienza"), an U.S. Co-PI (from Jet Propulsion Laboratory), and Co-I~@~Ys from Italy, the U.S. and other countries. Italy is the lead for the experiment definition with the participation of the U.S.. In particular Alenia Spazio/Rome is the Prime Contractor of the industrial team and also supplier of part of the RF subsystem. Laben (a company of Finmeccanica) is the supplier of the Digital Electronic Subsystem (DES), including its basic and application SW, as subcontractor of ALS. The purpose of this paper is to describe the DES from HW and SW point of view, including the Test Equipment and the special simulator developed used for DES validation.

  17. Digital data acquisition system implementation at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Prokop, C. J.; Liddick, S. N.; Abromeit, B. L.; Chemey, A. T.; Larson, N. R.; Suchyta, S.; Tompkins, J. R.

    2014-03-01

    A Digital Data Acquisition System (DDAS) composed of 16-channel FPGA-programmable modules running 12-bit 100 Mega-Samples Per Second (MSPS) ADCs has been implemented on three different experimental arrays at the National Superconducting Cyclotron Laboratory (NSCL) encompassing charged particle spectroscopy, high and low energy-resolution photon detection, and neutron time-of-flight measurements. DDAS has increased the experimental capabilities of each array by providing energy and time measurements with nearly zero dead-time, low energy thresholds, and large dynamic range. The performance of the DDAS Analog-to-Digital Converters (ADC)s was characterized, and energy and time resolutions were compared with traditional analog systems. We have demonstrated a 14- to 15-bit peak-sensing equivalent resolution when applied to semiconductor detectors and 500 ps time resolution for LaBr3 detectors measuring coincident radiation with signal amplitudes of ≈13% of the input range of the ADC. Details regarding the operation of the system at NSCL including digital filtering, triggering, clock distribution, and event-building are discussed along with applications to selected detector systems.

  18. Digital data acquisition system implementation at the National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, C.J., E-mail: prokop@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Liddick, S.N., E-mail: liddick@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Abromeit, B.L., E-mail: abromeit@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Chemey, A.T., E-mail: chemeyal@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Larson, N.R., E-mail: larson@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Suchyta, S., E-mail: suchyta@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Tompkins, J.R., E-mail: tompkins@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2014-03-21

    A Digital Data Acquisition System (DDAS) composed of 16-channel FPGA-programmable modules running 12-bit 100 Mega-Samples Per Second (MSPS) ADCs has been implemented on three different experimental arrays at the National Superconducting Cyclotron Laboratory (NSCL) encompassing charged particle spectroscopy, high and low energy-resolution photon detection, and neutron time-of-flight measurements. DDAS has increased the experimental capabilities of each array by providing energy and time measurements with nearly zero dead-time, low energy thresholds, and large dynamic range. The performance of the DDAS Analog-to-Digital Converters (ADC)s was characterized, and energy and time resolutions were compared with traditional analog systems. We have demonstrated a 14- to 15-bit peak-sensing equivalent resolution when applied to semiconductor detectors and 500 ps time resolution for LaBr{sub 3} detectors measuring coincident radiation with signal amplitudes of ≈13% of the input range of the ADC. Details regarding the operation of the system at NSCL including digital filtering, triggering, clock distribution, and event-building are discussed along with applications to selected detector systems.

  19. Digital signal processing in power electronics control circuits

    CERN Document Server

    Sozanski, Krzysztof

    2013-01-01

    Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using

  20. Electronic spectrum of the high-temperature superconducting state

    Science.gov (United States)

    Hwu, Y.; Lozzi, L.; Marsi, M.; La Rosa, S.; Winokur, M.; Davis, P.; Onellion, M.; Berger, H.; Gozzo, F.; Levy, F.

    1991-10-01

    Improved experimental conditions permitted an increase in the signal-to-noise ratio of the photoemission spectra for the superconducting state of Bi2Ca2SrCu2O8, taken with high angular and energy resolution. This also revealed a pronounced minimum that separates the two basic features of the spectrum, the narrow quasi-particle excitation peak and the controversial broad band at lower kinetic energies. The minimum is approximately 3-Delta below the Fermi level.

  1. Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers

    CERN Document Server

    Shcherbatenko, M; Lobanov, Yu; Maslennikov, S N; Kaurova, N; Finkel, M; Voronov, B; Goltsman, G; Klapwijk, T M

    2016-01-01

    We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer (HEB-) mixers, using concepts of nonequilibrium superconductivity. Through this we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.

  2. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  3. Advanced measurement systems based on digital processing techniques for superconducting LHC magnets

    CERN Document Server

    Masi, Alessandro; Cennamo, Felice

    The Large Hadron Collider (LHC), a particle accelerator aimed at exploring deeper into matter than ever before, is currently being constructed at CERN. Beam optics of the LHC, requires stringent control of the field quality of about 8400 superconducting magnets, including 1232 main dipoles and 360 main quadrupoles to assure the correct machine operation. The measurement challenges are various: accuracy on the field strength measurement up to 50 ppm, harmonics in the ppm range, measurement equipment robustness, low measurement times to characterize fast field phenomena. New magnetic measurement systems, principally based on analog solutions, have been developed at CERN to achieve these goals. This work proposes the introduction of digital technologies to improve measurement performance of three systems, aimed at different measurement target and characterized by different accuracy levels. The high accuracy measurement systems, based on rotating coils, exhibit high performance in static magnetic field. With vary...

  4. Superconducting hot-electron nanobolometer with microwave bias and readout

    CERN Document Server

    Kuzmin, A A; Shitov, S V; Abramov, N N; Ermakov, A B; Arndt, M; Wuensch, S H; Ilin, K S; Ustinov, A V; Siegel, M

    2014-01-01

    We propose a new detection technique based on radio-frequency (RF) bias and readout of an antenna-coupled superconducting nanobolometer. This approach is suitable for Frequency-Division-Multiplexing (FDM) readout of large arrays using broadband low-noise RF amplifier. We call this new detector RFTES. This feasibility study was made on demonstrator devices which are made in all-Nb technology and operate at 4.2 K. The studied RFTES devices consist of an antenna-coupled superconducting nanobolometer made of ultrathin niobium films with transition temperature Tc = 5.2 K. The 0.65-THz antenna and nanobolometer are embedded as a load into a GHz-range coplanar niobium resonator (Tc = 8.9 K, Q = 4000). To heat the superconducting Nb nanobolometer close to the Tc, the RF power at resonator frequency f = 5.8 GHz is applied via a transmission line which is weakly coupled (-11 dB) to the loaded resonator. The THz-antenna of RFTES was placed in the focus of a sapphire immersion lens inside a He4-cryostat equipped with an ...

  5. Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications

    Science.gov (United States)

    Villegier, Jean-Claude; Degardin, Annick F.; Guillet, Bruno; Houze, Frederic; Kreisler, Alain J.; Chaubet, Michel

    2005-03-01

    Superconducting Hot Electron Bolometer (HEB) mixers are a competitive alternative to Schottky diode mixers or other conventional superconducting receiver technologies in the terahertz frequency range because of their ultrawide bandwidth (from millimeter waves to the visible), high conversion gain, and low intrinsic noise level, even at 77 K. A new technological process has been developed to realize HEB mixers based on high temperature superconducting materials, using 15 to 40 nm thick layers of YBa2Cu3O7-δ (YBCO), sputtered on MgO (100) substrates by hollow cathode magnetron sputtering. Critical temperature values of YBCO films were found in the 85 to 91 K range. Sub-micron HEB bridges (0.8 μm x 0.8 μm) were obtained by combining electronic and UV lithography followed by selective etching techniques. Realization of YBCO HEB coupling to planar integrated gold antennas was also considered.

  6. Emergence of superconductivity in the canonical heavy-electron metal YbRh₂Si₂.

    Science.gov (United States)

    Schuberth, Erwin; Tippmann, Marc; Steinke, Lucia; Lausberg, Stefan; Steppke, Alexander; Brando, Manuel; Krellner, Cornelius; Geibel, Christoph; Yu, Rong; Si, Qimiao; Steglich, Frank

    2016-01-29

    The smooth disappearance of antiferromagnetic order in strongly correlated metals commonly furnishes the development of unconventional superconductivity. The canonical heavy-electron compound YbRh2Si2 seems to represent an apparent exception from this quantum critical paradigm in that it is not a superconductor at temperature T ≥ 10 millikelvin (mK). Here we report magnetic and calorimetric measurements on YbRh2Si2, down to temperatures as low as T ≈ 1 mK. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK and of heavy-electron superconductivity almost concomitantly with this order. Our results demonstrate that superconductivity in the vicinity of quantum criticality is a general phenomenon.

  7. In situ epitaxial MgB2 thin films for superconducting electronics.

    Science.gov (United States)

    Zeng, Xianghui; Pogrebnyakov, Alexej V; Kotcharov, Armen; Jones, James E; Xi, X X; Lysczek, Eric M; Redwing, Joan M; Xu, Shengyong; Li, Qi; Lettieri, James; Schlom, Darrell G; Tian, Wei; Pan, Xiaoqing; Liu, Zi-Kui

    2002-09-01

    The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap of MgB2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.

  8. Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films.

    Science.gov (United States)

    Zhang, W H; Liu, X; Wen, C H P; Peng, R; Tan, S Y; Xie, B P; Zhang, T; Feng, D L

    2016-03-09

    Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

  9. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Science.gov (United States)

    di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; de Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  10. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  11. Spin and Time-Reversal Symmetries of Superconducting Electron Pairs Probed by the Muon Spin Rotation and Relaxation Technique

    Science.gov (United States)

    Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.

    2016-09-01

    Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.

  12. Study of decoherence in a system of superconducting flux-qubits interacting with an ensemble of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Ramírez, R. [IFLP, CONICET-Department of Mathematics, University of La Plata (Argentina)

    2017-03-15

    The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconducting flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.

  13. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    Science.gov (United States)

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

  14. Suppressed superconductivity in substrate-supported β 12 borophene by tensile strain and electron doping

    Science.gov (United States)

    Cheng, Cai; Sun, Jia-Tao; Liu, Hang; Fu, Hui-Xia; Zhang, Jin; Chen, Xiang-Rong; Meng, Sheng

    2017-06-01

    Planar borophene, the truly 2D monolayer boron, has been independently successfully grown on Ag(1 1 1) by two groups (2016 Nat. Chem. 8 563 and 2015 Science 350 1513), which has received widespreading attentions. The superconducting property has not been unambiguously observed, which is unexpected because light element boron should have strong electron-phonon coupling. To resolve this puzzle, we show that the superconducting transition temperature T c of β 12 borophene is effectively suppressed by the substrate-induced tensile strain and electron doping via first principles calculations. The biaxial tensile strain of 2% induced by Ag(1 1 1) significantly reduces T c from 14 K to 2.95 K electron doping of 0.1 e- per boron atom further shrinks T c to 0.09 K. We also predict that the superconducting transition temperature in β 12 can be enhanced to 22.82 K with proper compressive strain (-1%) and 18.97 K with hole doping (0.1 h+ per boron). Further studies indicate that the variation of T c is closely related to the density of states of σ bands near the Fermi surface. Our results help to explain the challenges to experimentally probe superconductivity in substrate-supported borophene.

  15. Electronic behavior of superconducting SmFeAsO0.75

    Science.gov (United States)

    Sun, Y.; Ding, Y.; Zheng, B. C.; Shi, Z. X.; Ren, Z. A.

    2011-04-01

    High-quality polycrystalline SmFeAsO0.75 was synthesized with a superconducting transition width less than 1 K, and the electronic behavior was systematically studied by transport and specific heat measurements. An obvious superconducting jump was witnessed, together with a very small normalized superconducting jump, ΔC/γnTc ˜ 0.2, which is much smaller than expected from the BCS theory. A strong temperature-dependent Hall coefficient was found and attributed to the partial gapping of the Fermi surface up to the temperature of 160 K, which was predicted and supported by the emergence of the pseudogap. The charge-carrier density as well as the effective mass were also obtained and discussed in detail.

  16. Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxypnictides.

    Science.gov (United States)

    Sanna, S; Carretta, P; Bonfà, P; Prando, G; Allodi, G; De Renzi, R; Shiroka, T; Lamura, G; Martinelli, A; Putti, M

    2011-11-25

    We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe(1-x)Ru(x)AsO(0.85)F(0.15) for 0.1≤x≲0.5. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and eventually disappear around a common critical threshold x(c)~0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x(c).

  17. Magnet tests and status of the superconducting electron cyclotron resonance source SERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Gammino, S.; Cafici, M.; Castro, M.; Chines, F.; Marletta, S. [INFN-Laboratorio Nazionale del Sud, Via S. Sofia 44, 95123 Catania (Italy); Alessandria, F. [INFN-LASA, Via F.lli Cervi 201, 20090 Segrate (Midway Islands) (Italy); Bourg, F.; Briand, P.; Melin, G.; Lagnier, R.; Seyfert, P. [CEA-Departement de Recherche Fondamentale sur la Matiere Condensee, Centre detudes Nucleaires de Grenoble, 38054 Grenoble Cedex 9 (France); Gaggero, G.; Losasso, M.; Penco, R. [ANSALDO-GIE, Via N. Lorenzi 8, 16152 Genova (Italy)

    1996-03-01

    At Laboratorio Nazionale del Sud a superconducting 14.5 GHz electron cyclotron resonance (ECR) source will be used as injector for the K-800 superconducting cyclotron. The original project of its magnetic system has been upgraded by taking into account the results of the high B mode operation of the 6.4 GHz SC-ECRIS at MSU-NSCL and now the mirror field may achieve 2.7 T, which is much higher than the confining field of any other ECR source. The magnet design will allow us to operate in a wide range of magnetic configurations making it easy to tune the source. The status of the project will be outlined and the preliminary results of the tests of the superconducting magnets will be described. A brief description of the tests to be carried out on the source during the first period of operation on the test bench in Grenoble follows. {copyright} {ital 1996 American Institute of Physics.}

  18. Space applications of superconducting microwave electronics at NASA Lewis Research Center

    Science.gov (United States)

    Leonard, R. F.; Bhasin, K. B.; Romanofsky, R. R.; Cubbage, C. D.; Chorey, C. Z.

    1993-01-01

    Since the discovery of high temperature superconductivity in 1987, NASA Lewis Research Center has been involved in efforts to demonstrate its advantages for applications involving microwave electronics in space, especially space communications. The program included thin film fabrication by means of laser ablation. Specific circuitry which was investigated includes microstrip ring resonators at 32 GHz, phase shifters which utilize a superconducting, optically activated switch, an 8x8 32 GHz superconducting microstrip antenna array, and an HTS-ring-resonator stabilized oscillator at 8 GHz. The latter two components are candidates for use in space experiments which are described in other papers. Experimental data on most of the circuits are presented as well as, in some cases, a comparison of their performance with an identical circuit utilizing gold or copper metallization.

  19. Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides.

    Science.gov (United States)

    Kang, Hye Jung; Dai, Pengcheng; Campbell, Branton J; Chupas, Peter J; Rosenkranz, Stephan; Lee, Peter L; Huang, Qingzhen; Li, Shiliang; Komiya, Seiki; Ando, Yoichi

    2007-03-01

    High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO(2) planes of their insulating parent compounds. Whereas hole doping quickly induces metallic behaviour and superconductivity in many cuprates, electron doping alone is insufficient in materials such as R(2)CuO(4) (R is Nd, Pr, La, Ce and so on), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO(2) planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.

  20. Free-electron laser operation with a superconducting radio-frequency photoinjector at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, J., E-mail: j.teichert@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Arnold, A.; Büttig, H.; Justus, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Kamps, T. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Lehnert, U. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Lu, P. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Michel, P.; Murcek, P. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rudolph, J. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schurig, R.; Seidel, W. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Vennekate, H. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Will, I. [Max-Born-Institut, Berlin, Max-Born-Str. 2a, 12489 Berlin (Germany); Xiang, R. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2014-04-11

    At the radiation source ELBE a superconducting radio-frequency photoinjector (SRF gun) was developed and put into operation. Since 2010 the gun has delivered beam into the ELBE linac. A new driver laser with 13 MHz pulse repetition rate allows now to operate the free-electron lasers (FELs) with the SRF gun. This paper reports on the first lasing experiment with the far-infrared FEL at ELBE, describes the hardware, the electron beam parameters and the measurement of the FEL infrared radiation output. - Highlights: • The superconducting RF gun produces beam with Cs{sub 2}Te photocathodes. • The SRF gun operates as an injector for the ELBE linear accelerator. • First lasing of an infrared free-electron laser with an SRF gun.

  1. Fault tolerant programmable digital attitude control electronics study

    Science.gov (United States)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  2. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    Science.gov (United States)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  3. Design of a High-bunch-charge 112-MHz Superconducting RF Photoemission Electron Source

    CERN Document Server

    Xin, T; Belomestnykh, Sergey A; Ben-Zvi, I; Boulware, C H; Grimm, T L; Hayes, T; Litvinenko, Vladimir N; Mernick, K; Narayan, G; Orfin, P; Pinayev, I; Rao, T; Severino, F; Skaritka, J; Smith, K; Than, R; Tuozzolo, J; Wang, E; Xiao, B; Xie, H; Zaltsman, A

    2016-01-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.

  4. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrere, D.; Rijllart, A.; Saban, R. [CERN, 1211 Geneva 23 (Switzerland)

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument{close_quote}s capabilities. {copyright} {ital 1996 American Institute of Physics.}

  5. Forward secure digital signature for electronic medical records.

    Science.gov (United States)

    Yu, Yao-Chang; Huang, To-Yeh; Hou, Ting-Wei

    2012-04-01

    The Technology Safeguard in Health Insurance Portability and Accountability Act (HIPAA) Title II has addressed a way to maintain the integrity and non-repudiation of Electronic Medical Record (EMR). One of the important cryptographic technologies is mentioned in the ACT is digital signature; however, the ordinary digital signature (e.g. DSA, RSA, GQ...) has an inherent weakness: if the key (certificate) is updated, than all signatures, even the ones generated before the update, are no longer trustworthy. Unfortunately, the current most frequently used digital signature schemes are categorized into the ordinary digital signature scheme; therefore, the objective of this paper is to analyze the shortcoming of using ordinary digital signatures in EMR and to propose a method to use forward secure digital signature to sign EMR to ensure that the past EMR signatures remain trustworthy while the key (certificate) is updated.

  6. Electronic structure and superconductivity of multi-layered organic charge transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Guterding, Daniel; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)

    2015-07-01

    We examine the electronic properties of polymorphs of (BEDT-TTF){sub 2}Ag(CF{sub 3}){sub 4}(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature T{sub c}=2.6 K exhibits a κ packing motif, two high T{sub c} phases are layered structures consisting of α{sup '} and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α{sup '} layer on the conducting κ layer. In the κ-α{sub 1}{sup '} dual-layered compound, we find that the stripes of high and low charge in the α{sup '} layer correspond to a stripe pattern of hopping parameters in the κ layer. Based on the different underlying Hamiltonians, we study the superconducting properties and try to explain the differences in T{sub c}.

  7. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  8. The superconducting phase and electronic excitations of (Rb,Cs) Fe 2 As 2

    Science.gov (United States)

    Kanter, J.; Shermadini, Z.; Khasanov, R.; Amato, A.; Bukowski, Z.; Batlogg, B.

    2011-03-01

    We present specific heat, transport and Muon-Spin Rotation (μ SR) results on (Rb,Cs) Fe 2 As 2 . RbFe 2 As 2 was only recently found to be superconducting below 2.6 K by Bukowski et al. Compared to the related BaFe 2 As 2 the electron density is lower and no magnetic order is observed. For the superconducting phase the superfluid density was calculated from μ SR data. The temperature dependence of the superfluid density and the magnetic penetration depth is well described by a multi-gap scenario. In addition the electronic contribution the specific heat was studied for different compositions and magnetic fields and reveals a high value for the Sommerfeld coefficient γ .

  9. Electronic structure and superconductivity of hcp-bcc binary systems based on titanium and rhenium

    Energy Technology Data Exchange (ETDEWEB)

    Prekul, A.F.; Volkenshtein, N.V.

    1978-12-01

    The similarity of hcp--bcc binary systems of transition metals of groups IV--V and VI--VII is shown on the basis of a joint analysis of the kinetic, superconducting, and structural properties. Under the assumption that there is a singularity (a pseudo-gap) in the electronic structure of hardened alloys, a model is proposed for the change in the critical temperature of superconductivity with alloy concentration. According to the model, the two peaks in the functions T/sub c/(x) are due to the partial dielectrization of the electron spectrum and do not belong to the equilibrium solid solutions based on the initial metals, as had earlier been assumed.

  10. Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator

    Science.gov (United States)

    Koerting, V.; Schmidt, T. L.; Doiron, C. B.; Trauzettel, B.; Bruder, C.

    2009-04-01

    We investigate a superconducting single-electron transistor capacitively coupled to a nanomechanical oscillator and focus on the double Josephson quasiparticle resonance. The existence of two coherent Cooper-pair tunneling events is shown to lead to pronounced back action effects. Measuring the current and the shot noise provides a direct way of gaining information on the state of the oscillator. In addition to an analytical discussion of the linear-response regime, we discuss and compare results of higher-order approximation schemes and a fully numerical solution. We find that cooling of the mechanical resonator is possible and that there are driven and bistable oscillator states at low couplings. Finally, we also discuss the frequency dependence of the charge noise and the current noise of the superconducting single electron transistor.

  11. Low-temperature transmission electron microscopy study of superconducting Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schierning, G.; Theissmann, R. [Faculty of Engineering and CeNIDE, University of Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg (Germany); Acet, M. [Experimentalphysik and CeNIDE, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Hoelzel, M. [Fachbereich Materialwissenschaften, Technical University of Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); FRM-II, Technical University of Munich, 85747 Garching (Germany); Gruendmayer, J.; Zweck, J. [Physics Faculty, University of Regensburg, 93047 Regensburg (Germany)

    2010-08-15

    By low-temperature transmission electron microscopy we have found nanodomains in a polycrystalline Nb{sub 3}Sn sample. We interpret that these nanodomains form due to a tetragonal distortion. Because twinning seems to be a prominent feature of the real structure of many high T{sub c} superconductors, possible interactions between a twinned structure and superconductivity are briefly discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Santhosh, M. [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India)

    2015-06-24

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  13. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Science.gov (United States)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.

    2015-06-01

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  14. Chemically gated electronic structure of a superconducting doped topological insulator system

    Science.gov (United States)

    Wray, L. A.; Xu, S.; Neupane, M.; Fedorov, A. V.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z.

    2013-07-01

    Angle resolved photoemission spectroscopy is used to observe changes in the electronic structure of bulk-doped topological insulator CuxBi2Se3 as additional copper atoms are deposited onto the cleaved crystal surface. Carrier density and surface-normal electrical field strength near the crystal surface are estimated to consider the effect of chemical surface gating on atypical superconducting properties associated with topological insulator order, such as the dynamics of theoretically predicted Majorana Fermion vortices.

  15. The electronic health record: a digital divide?

    Science.gov (United States)

    Glaser, John

    2007-10-01

    The gap between EHR adoption among larger providers versus adoption by smaller or rural providers has caused a "digital divide" that could threaten smaller providers' survival in the years ahead. Closing this gap will require the collective action of providers, payers, and government.

  16. Digital electronic engine control F-15 overview

    Science.gov (United States)

    Kock, B.

    1984-01-01

    A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.

  17. 21st Century Recruiting: Automated, Digital, Electronic.

    Science.gov (United States)

    Patterson, Valerie

    1997-01-01

    Examines ways in which technology is changing staffing office practices. Discusses features of the worldwide web, some of the potential problems in establishing a web site, and the importance of carefully planning a web site. Looks at digital resume warehouses and the increased power such warehouses offers recruiters. (RJM)

  18. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    Science.gov (United States)

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  19. F-15 digital electronic engine control system description

    Science.gov (United States)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  20. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  1. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count.

    Science.gov (United States)

    Parker, Dinah R; Smith, Matthew J P; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Baker, Peter J; Pratt, Francis L; Pitcher, Michael J; Blundell, Stephen J; Clarke, Simon J

    2010-02-05

    Using a combination of neutron, muon, and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. The electron count is the dominant factor, since Ni doping has double the effect of Co doping for the same doping level. We follow the structural, magnetic, and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.

  2. Kinetic Energy Driven Superconductivity in the Electron Doped Cobaltate NaxCoO2 · yH2O

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIANG Ying; FENG Shi-Ping; CHEN Wei-Yeu

    2005-01-01

    Within the charge-spin separation fermion-spin theory, we show that the mechanism of superconductivity in the electron doped cobaltate Nax CoO2. yH2 O is ascribed to its kinetic energy. The dressed fermions interact occurring directly through the kinetic energy by exchanging magnetic excitations. This interaction leads to a net attractive force between dressed fermions, then the electron Cooper pairs originating from the dressed fermion pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground state. The superconducting transition temperature is identical to the dressed fermion pair transition temperature, and is suppressed to a lower temperature due to the strong magnetic frustration. The optimal superconducting transition temperature occurs in the electron doping concentration δ≈ 0.29, and then decreases for both underdoped and overdoped regimes, in qualitative agreement with the experimental results.

  3. Superconducting Electronics Research at CSIRO Australia——20 Years after Discovery of HTS

    Institute of Scientific and Technical Information of China (English)

    Jia Du; Cathy P. Foley; Keith L. Leslie

    2008-01-01

    CSIRO has had a long-term research effort in superconductivity, in particular, since the discovery of HTS which promised big prospects. Significant progress has been made in research and development of HTS electronic devices and systems for practical applications such as mineral and exploration as well as some niche applications in emerging science and technology areas. This article presents an overview of the CSIRO research activities in HTS supercon- ducting electronics since 1987, outlining the HTS junction and device technology as well as various application systems developed by the group.

  4. Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer

    Science.gov (United States)

    Shi, X.; Han, Z.-Q.; Peng, X.-L.; Richard, P.; Qian, T.; Wu, X.-X.; Qiu, M.-W.; Wang, S. C.; Hu, J. P.; Sun, Y.-J.; Ding, H.

    2017-04-01

    The origin of enhanced superconductivity over 50 K in the recently discovered FeSe monolayer films grown on SrTiO3 (STO), as compared to 8 K in bulk FeSe, is intensely debated. As with the ferrochalcogenides AxFe2-ySe2 and potassium-doped FeSe, which also have a relatively high-superconducting critical temperature (Tc), the Fermi surface (FS) of the FeSe/STO monolayer films is free of hole-like FS, suggesting that a Lifshitz transition by which these hole FSs vanish may help increasing Tc. However, the fundamental reasons explaining this increase of Tc remain unclear. Here we report a 15 K jump of Tc accompanying a second Lifshitz transition characterized by the emergence of an electron pocket at the Brillouin zone centre, which is triggered by high-electron doping following in situ deposition of potassium on FeSe/STO monolayer films. Our results suggest that the pairing interactions are orbital dependent in generating enhanced superconductivity in FeSe.

  5. Integrated low power digital gyro control electronics

    Science.gov (United States)

    M'Closkey, Robert (Inventor); Challoner, A. Dorian (Inventor); Grayver, Eugene (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  6. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  7. Characterization of MgB2 Superconducting Hot Electron Bolometers

    Science.gov (United States)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  8. Localized electronic states and the superconducting gap in Bi 2Sr 2CaCu 2O 8+y

    Science.gov (United States)

    Quitmann, C.; Ma, Jian; Kelley, R. J.; Margaritondo, G.; Onellion, M.

    1994-12-01

    Angle-resolved photoemission data taken on some Bi 2Sr 2CaCu 2O 8+y single crystals exhibit the formation of a superconducting gap in the absence of a quasiparticle normal state band. We observe the opening of the superconducting gap in the same regions of the Brillouin zone for which it is observed for samples that do exhibit a quasiparticle normal state. The absence of a dispersing quasiparticle normal state indicates that the normal state electronic states in these samples are almost localized in real space. Our data suggest that two types of carriers can coexist, and contribute to forming a superconducting gap, in these materials.

  9. Optical data transmission at the superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment in the Superconducting Super Collider Detector is discussed.

  10. Study on the electronic structures of REBaCuO superconductors and their relation to superconductivity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Electronic structures of REBaCuO(RE=La, Pr, Nd, Sm, Gd, Dy, Ho and Er)systems were calculated by means of SCF-Xα -SW methods. Results show that there is an inner-orbit coupling for these oxide superconductor systems. The inner-orbit coupling was resulted from the interaction of two electronic orbits of RE 5p and O 2s, since they have similar energy state levels and relatively larger orbital electronic clouds. Compared with experimental facts, it is also found that the overlap in space between the two orbits has a similar tendency to Tc and the number of enrolling electrons has a close relation to Jc, therefore, the influence of inner-orbit coupling on superconductivity could not be overlooked.

  11. JAERI superconducting RF linac-based free-electron laser-facility

    CERN Document Server

    Minehara, E J; Nagai, R; Kikuzawa, N; Sugimoto, M; Hajima, R; Shizuma, T; Yamauchi, T; Nishimori, N

    2000-01-01

    Recently, the JAERI superconducting RF linac based FEL has been successfully lased to produce 0.36 kW of FEL light using a 100 kW electron beam in quasi-continuous wave operation. A 1 kW class laser is our present program goal, and will be achieved by improving the optical out coupling in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. Our next 5-year program goal is to produce a 100 kW-class FEL laser and multi-MW class electron beam in average, quasi-continuous wave operation. Conceptual and engineering design options needed for such a very high-power operation will be discussed to improve and to upgrade the existing facility.

  12. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor.

    Science.gov (United States)

    Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L; Miller, Tristan L; Affeldt, Gregory; Kurashima, Koshi; Jozwiak, Chris; Eisaki, Hiroshi; Adachi, Tadashi; Koike, Yoji; Lee, Dung-Hai; Lanzara, Alessandra

    2014-01-01

    Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.

  13. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    Science.gov (United States)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  14. Electronic Commerce, Digital Information, and the Firm.

    Science.gov (United States)

    Rosenbaum, Howard

    2000-01-01

    Discussion of the social context of electronic commerce (ecommerce) focuses on information imperatives, or rules that are critical for ecommerce firms. Concludes with a discussion of the organizational changes that can be expected to accompany the incorporation of these imperatives into the mission and core business processes of ecommerce firms.…

  15. Electronic Commerce, Digital Information, and the Firm.

    Science.gov (United States)

    Rosenbaum, Howard

    2000-01-01

    Discussion of the social context of electronic commerce (ecommerce) focuses on information imperatives, or rules that are critical for ecommerce firms. Concludes with a discussion of the organizational changes that can be expected to accompany the incorporation of these imperatives into the mission and core business processes of ecommerce firms.…

  16. KM3NeT Digital Optical Module electronics

    Science.gov (United States)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  17. KM3NeT Digital Optical Module electronics

    Directory of Open Access Journals (Sweden)

    Real Diego

    2016-01-01

    Full Text Available The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3” PMTs into a Low Voltage Digital Signal.

  18. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  19. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Science.gov (United States)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  20. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    Science.gov (United States)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  1. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    Science.gov (United States)

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  2. Superconductivity on the verge of electronic topological transition in Fe based superconductors

    Science.gov (United States)

    Ghosh, Haranath; Sen, Smritijit

    2017-04-01

    A comprehensive first principles study on the electronic topological transition in a number of 122 family of Fe based superconductors is presented. Doping as well as temperature driven Lifshitz transitions are predicted from ab-initio simulations in a variety of Fe based superconductors that are consistent with experimental findings. In all the studied compounds the Lifshitz transitions are consistently found to take place at a doping concentration just around where superconductivity is known to acquire the highest Tc and magnetism disappears. This indicates the intriguing heed to the inter-relationship between superconductivity and Lifshitz transition in Fe-based 122 materials. Systematically, the Lifshitz transition occurs (above certain threshold doping) in some of the electronic Fermi surfaces for hole doped 122 compounds, whereas in hole Fermi surfaces for electron as well as iso-electronic doped 122 compounds. Temperature driven Lifshitz transition is found to occur in the iso-electronic Ru-doped BaFe2As2 compounds. A systematic study of Fermi surface area e.g., variations of (i) areas of each individual Fermi surfaces, (ii) sum total areas of all the electron Fermi Surfaces, (iii) sum total areas of all the hole Fermi Surfaces, (iv) sum total areas of all the five Fermi Surfaces, (v) difference of all hole and all electron Fermi surface areas as a function of doping is a rare wealth of information that can be verified by the de Haas-van Alphen and allied effects (i.e. , Shubnikov-de Haas effect) are presented. Fermi surface area are found to carry sensitivity of topological modifications more acutely than the band structures and can be used as a better experimental tool to identify ETT/LT.

  3. Using PBL to Deliver Course in Digital Electronics

    Science.gov (United States)

    Mantri, Archana; Dutt, Sunil; Gupta, J. P; Chitkara, Madhu

    2009-01-01

    Problem Based Learning (PBL) has proven to be a highly successful pedagogical model in many educational fields, although it is comparatively uncommon in technical education. It goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to an undergraduate Digital Electronics course in the…

  4. First Demonstration of Electron Beam Generation and Characterization with an All Superconducting Radio-frequency (SRF) Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T; Barday, R; Jankowiak, A; Knobloch, J; Kugeler, O; Matveenko, A N; Neumann, A; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Volkov, V; Weinberg, G

    2011-09-01

    In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.

  5. Appearance of Spatial-Temporal Noise in Super-conducting Junction and Its Effect on Transport of Electron Pairs

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2007-01-01

    Transport of electron pairs in super-conducting junction with spatial-temporal noise is investigated.We show that the spatial-temporal noise can produce the current of the electron pairs,which stems from a symmetry breaking of the system induced by the correlation of the spatial-temporal noise with the phase difference.It is found that there is a positive current for the electron pairs,exhibiting a peak with increasing the values of some parameters of the noises.The results provide a theoretical foundation for the further investigation of the super-conducting junction.

  6. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.

    Science.gov (United States)

    Hofherr, Matthias; Wetzstein, Olaf; Engert, Sonja; Ortlepp, Thomas; Berg, Benjamin; Ilin, Konstantin; Henrich, Dagmar; Stolz, Ronny; Toepfer, Hannes; Meyer, Hans-Georg; Siegel, Michael

    2012-12-17

    We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels.

  7. Superconductivity without dependence on valence electron density in Zn doped YBCO systems

    Institute of Scientific and Technical Information of China (English)

    Li Ping-Lin; Wang Yong-Yong; Tian Yong-Tao; Wang Jing; Niu Xiao-Li; Wang Jun-Xi; Wang Dan-Dan; Wang Xiao-Xia

    2008-01-01

    This paper reports that the YBa2Cu3-xZnxO7-δ(x=0-0.4)samples are researched by means of x-ray diffraction,calculations of binding energy,the positron experiments and variations of oxygen content.The results of simulated calculations,positron experiments and variations of oxygen content support the existence of cluster effect.Moreover,it is concluded that the cluster effect is an important factor on suppression of high-Tc cuprate superconductivity and the Tc does not depend on the density of valence electron directly.

  8. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  9. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  10. Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)

    2015-07-01

    Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.

  11. Vibrational excitation induced by electron beam and cosmic rays in normal and superconductive aluminum bars

    CERN Document Server

    Bassan, M; Cavallari, G; Coccia, E; D'Antonio, S; Fafone, V; Foggetta, L G; Ligi, C; Marini, A; Mazzitelli, G; Modestino, G; Pizzella, G; Quintieri, L; Ronga, F; Valente, P; Vinko, S M

    2011-01-01

    We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement explains the anomalous large signals due to cosmic rays previously detected in the NAUTILUS gravitational wave detector.

  12. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  13. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa3

    Science.gov (United States)

    Parvin, F.; Hossain, M. A.; Ali, M. S.; Islam, A. K. M. A.

    2015-01-01

    The rare occurrence of type-I superconductivity in binary system ScGa3 has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ~13 eV and thus ScGa3 can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa3 are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0-1000 K and 0-40 GPa, respectively. The calculated electron-phonon coupling constant λ=0.52 yields Tc=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg-Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  14. Electronics basic, analog, and digital with PSpice

    CERN Document Server

    Sabah, Nassir H

    2009-01-01

    Preface Foreword: Brief History and Impact of Electronics Convention for Symbols Basic Diode Circuits Overview Learning Objectives Ideal and Practical Diodes Ideal Diode Ideal Si pn Junction Diode Practical Diodes Incremental Diode Resistance Basic Analysis of Diode Circuits Piecewise Linear Approximation Bias Point Small-Signal Model Rectifier Circuits Half-Wave Rectifier Full-Wave Rectifier Smoothing of Output Capacitor-Input Filter Approximate Analysis of Capacitor-Input Filter Zener Voltage Regulator Voltage-Current Characteristic Analysis of Zener Regulator Load regulation and Line Regula

  15. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  16. Superconductivity and electron-phonon coupling in doped MgB{sub 2} and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, V.; Rosner, H. [MPI CPfS Dresden (Germany); Koepernik, K. [MPI CPfS Dresden (Germany); IFW Dresden (Germany)

    2007-07-01

    Recently, substitutions on the Mg site in MgB{sub 2}, e.g., Mg{sub 1-x}Sc{sub x}B{sub 2}, Mg{sub 1-x}(AlLi){sub x}B{sub 2} were investigated intensively. For achievable doping levels, Mg{sub 1-x}Sc{sub x}B{sub 2} shows only very small structural changes but clear changes in the electronic structure, whereas AlLi doping affects the lattice parameters but has almost no influence on the electronic structure. Our theoretical approach comprises different approximations in the framework of band structure calculations: the rigid band and virtual crystal method as well as supercell calculations and coherent potential approximation. We show that the latter two lead to consistent results with respect to lattice expansion and electronic properties. We show that lattice effects are of minor importance. Concluding that the B 2p {sigma} states remain the most relevant subsystem with regard to superconductivity, we calculated the electron phonon coupling constant {lambda} and the critical temperature T{sub c}. In contrast, for ZrB{sub 2} as a typical representative of transition metal diborides TB{sub 2} we find the sp{sup 2}(B)-d(T) hybridization to be crucial. Comparing calculated and measured angle dependent dHvA-data we show that: (i) LDA provides an excellent description of the electronic structure of TB{sub 2}. (ii) The electron phonon coupling is too small to expect superconductivity above a few mK for the stoichiometric compounds. (orig.)

  17. Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Kondo, T.; Fernandes, R.M.; Palczewski, Ari D.; Mun, Eun Deok; Ni, Ni; Thaler, Alexander N.; Bostwick, Aaron; Rotenberg, Eli; Schmalian, Jorg; Bud-ko, Sergey L.; Canfield, Paul C.; and Kaminski, A.

    2010-05-02

    The iron arsenic high-temperature superconductors exhibit particularly rich phase diagrams. In the AE(Fe{sub 1-x}T{sub x}){sub 2}As{sub 2} family (known as '122', with AE being Ca, Sr or Ba and T being a transition metal), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material splits and is suppressed by carrier doping. A superconducting region appears as likely in the orthorhombic/antiferromagnetic (AFM) state as in the tetragonal/paramagnetic state. An important question then is what determines the critical doping at which superconductivity emerges, as the AFM order is fully suppressed only close to optimal doping. Here we report evidence from angle-resolved photoemission spectroscopy that marked changes in the Fermi surface coincide with the onset of superconductivity in electron-doped Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the petal-like hole pockets at the Fermi level. These hole pockets vanish - that is, undergo a Lifshitz transition - as the cobalt concentration is increased sufficiently to support superconductivity. Superconductivity and magnetism are competing states in this system: when petal-like hole pockets are present, superconductivity is fully suppressed, whereas in their absence the two states can coexist.

  18. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  19. First-principles study of the electronic structure of iron-selenium: Implications for electron-phonon superconductivity

    Science.gov (United States)

    Koufos, Alexander P.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.

    2014-01-01

    We have performed density functional theory calculations using the linearized augmented plane wave method (LAPW) with the local density approximation (LDA) functional to study the electronic structure of the iron-based superconductor iron-selenium (FeSe). In our study, we have performed a comprehensive set of calculations involving structural, atomic, and spin configurations. All calculations were executed using the tetragonal lead-oxide or P4/nmm structure, with various volumes, c /a ratios, and internal parameters. Furthermore, we investigated the spin polarization using the LDA functional to assess ferromagnetism in this material. The paramagnetic LDA calculations find the equilibrium configuration of FeSe in the P4/nmm structure to have a volume of 472.5 a.u.3 with a c /a ratio of 1.50 and internal parameter of 0.255, with the ferromagnetic having comparable results to the paramagnetic case. In addition, we calculated total energies for FeSe using a pseudopotential method, and found comparable results to the LAPW calculations. Superconductivity calculations were done using the Gaspari-Gyorffy and the McMillan formalisms and found substantial electron-phonon coupling. Under pressure, our calculations show that the superconductivity critical temperature continues to rise, but underestimates the measured values.

  20. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    Directory of Open Access Journals (Sweden)

    Ge Yang

    2016-03-01

    Full Text Available The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be ≈1  MHz per electron, indicating the feasibility of achieving single electron strong coupling.

  1. Can electron multipacting explain the pressure rise in a cold bore superconducting undulator?

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2010-07-01

    Full Text Available Preliminary studies performed with the cold bore superconducting undulator installed in the ANKA (Angstrom source Karlsruhe storage ring suggest that the beam heat load is mainly due to the electron wall bombardment. Electron bombardment can both heat the cold vacuum chamber and induce an increase in the pressure because of gas desorption. In this contribution we compare the measurements of the pressure in a cold bore performed in the electron storage ring ANKA with the predictions obtained using the equations of gas dynamic balance in a cold vacuum chamber exposed to synchrotron radiation and electron bombardment. The balance results from two competing effects: the photon and electron stimulated desorption of the gas contained in the surface layer of the chamber wall and of the gas cryosorbed, and the cryopumping by the cold surface. We show that photodesorption alone cannot explain the experimental results and that electron multipacting is needed to reproduce the observed pressure rise. Electron bombardment can at the same time explain the observed beam heat load.

  2. Pinning effects on hot-electron vortex flow instability in superconducting films

    Science.gov (United States)

    Shklovskij, Valerij A.

    2017-07-01

    The hot-electron vortex flow instability in superconducting films in magnetic field B at substrate temperature T0 ≪ Tc is theoretically considered in the presence of pinning. The magnetic field dependences of the instability critical parameters (electric field E*, current density j*, resistivity ρ*, power density P* and vortex velocity v*) are derived for a cosine and a saw-tooth washboard pinning potential and compared with the results obtained earlier by M. Kunchur [Phys. Rev. Lett. 89 (2002) 137005] in absence of pinning. It is shown that the B-behavior of E*, j* and ρ* is monotonic, whereas the B-dependence of v* is quite different, namely dv*/dB may change its sign twice, as sometimes observed in experiments. The simplest heat balance equation for electrons in low-Tc superconducting films is considered within the framework of the two-fluid model. A theoretical analysis reveals that the instability critical temperature T* ≈ 5Tc/6 at T0 < T*/2 with T* being independent of B.

  3. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, F. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Hossain, M.A. [Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902 (Bangladesh); Ali, M.S. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.bd [International Islamic University Chittagong, 154/A College Road, Chittagong 4203 (Bangladesh)

    2015-01-15

    The rare occurrence of type-I superconductivity in binary system ScGa{sub 3} has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ∼13 eV and thus ScGa{sub 3} can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa{sub 3} are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0–1000 K and 0–40 GPa, respectively. The calculated electron–phonon coupling constant λ=0.52 yields T{sub c}=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg–Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  4. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Science.gov (United States)

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements... limited exclusion order against certain electronic digital media devices and components thereof...

  5. 78 FR 6130 - Certain Electronic Digital Media Devices and Components Thereof: Commission Determination To...

    Science.gov (United States)

    2013-01-29

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Digital Media Devices and Components Thereof: Commission Determination To... certain electronic digital media devices and components thereof by reason of infringement of...

  6. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  7. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Helge; Schnelle, Walter; Nicklas, Michael; Leithe-Jasper, Andreas [MPI CPfS Dresden (Germany); Weikert, Franziska [Los Alamos National Laboratory, New Mexico (United States); HLD Dresden Rossendorf (Germany); Wosnitza, Joachim [HLD Dresden Rossendorf (Germany)

    2013-07-01

    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A{sub 1-x}K{sub x}Fe{sub 2-y}T{sub y}As{sub 2} (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  8. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  9. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Science.gov (United States)

    Reece, Charles E.

    2016-12-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  10. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions

    Science.gov (United States)

    Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F.

    2016-12-01

    The EPW (Electron-Phonon coupling using Wannier functions) software is a Fortran90 code that uses density-functional perturbation theory and maximally localized Wannier functions for computing electron-phonon couplings and related properties in solids accurately and efficiently. The EPW v4 program can be used to compute electron and phonon self-energies, linewidths, electron-phonon scattering rates, electron-phonon coupling strengths, transport spectral functions, electronic velocities, resistivity, anisotropic superconducting gaps and spectral functions within the Migdal-Eliashberg theory. The code now supports spin-orbit coupling, time-reversal symmetry in non-centrosymmetric crystals, polar materials, and k and q-point parallelization. Considerable effort was dedicated to optimization and parallelization, achieving almost a ten times speedup with respect to previous releases. A computer test farm was implemented to ensure stability and portability of the code on the most popular compilers and architectures. Since April 2016, version 4 of the EPW code is fully integrated in and distributed with the Quantum ESPRESSO package, and can be downloaded through QE-forge at http://qe-forge.org/gf/project/q-e.

  11. BAO Plate Archive Project: Digitization, Electronic Database and Research Programmes

    Science.gov (United States)

    Mickaelian, A. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Farmanyan, S. V.; Gigoyan, K. S.; Gyulzadyan, M. V.; Khachatryan, K. G.; Knyazyan, A. V.; Kostandyan, G. R.; Mikayelyan, G. A.; Nikoghosyan, E. H.; Paronyan, G. M.; Vardanyan, A. V.

    2016-06-01

    The most important part of the astronomical observational heritage are astronomical plate archives created on the basis of numerous observations at many observatories. Byurakan Astrophysical Observatory (BAO) plate archive consists of 37,000 photographic plates and films, obtained at 2.6m telescope, 1m and 0.5m Schmidt type and other smaller telescopes during 1947-1991. In 2002-2005, the famous Markarian Survey (also called First Byurakan Survey, FBS) 1874 plates were digitized and the Digitized FBS (DFBS) was created. New science projects have been conducted based on these low-dispersion spectroscopic material. A large project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage was started in 2015. A Science Program Board is created to evaluate the observing material, to investigate new possibilities and to propose new projects based on the combined usage of these observations together with other world databases. The Executing Team consists of 11 astronomers and 2 computer scientists and will use 2 EPSON Perfection V750 Pro scanners for the digitization, as well as Armenian Virtual Observatory (ArVO) database will be used to accommodate all new data. The project will run during 3 years in 2015-2017 and the final result will be an electronic database and online interactive sky map to be used for further research projects, mainly including high proper motion stars, variable objects and Solar System bodies.

  12. 76 FR 47610 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of...

    Science.gov (United States)

    2011-08-05

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of... of certain electronic digital media devices and components thereof by reason of infringement of... electronic digital media devices and components thereof ] that infringe one or more of claims 1, 3-6, and...

  13. Multiband superconductivity in the correlated electron filled skutterudite system Pr1-xCexPt4Ge12

    Science.gov (United States)

    Singh, Y. P.; Adhikari, R. B.; Zhang, S.; Huang, K.; Yazici, D.; Jeon, I.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2016-10-01

    Studies of superconductivity in multiband correlated electronic systems have become one of the central topics in condensed-matter and materials physics. In this paper, we present the results of thermodynamic measurements on the superconducting filled skutterudite system Pr1 -xCexPt4Ge12 (0 ≤x ≤0.2 ) to investigate how substitution of Ce at Pr sites affects superconductivity. We find that an increase in Ce concentration leads to a suppression of the superconducting transition temperature from Tc˜7.9 K for x =0 to Tc˜0.6 K for x =0.14 . Our analysis of the specific-heat data for x ≤0.07 reveals that superconductivity must develop in at least two bands: the superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the other. Both the nodal and nodeless gaps decrease, with the nodal gap being suppressed more strongly upon Ce substitution. Ultimately, the higher-Ce-concentration samples (x >0.07 ) display a nodeless gap only.

  14. Digital electronic engine control fault detection and accommodation flight evaluation

    Science.gov (United States)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  15. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  16. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  17. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    Science.gov (United States)

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  18. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  19. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  20. ANALYSIS OF DIGITAL SIGNATURE RULE IN THE ELECTRONIC COMMERCE LAW OF INDONESIA

    OpenAIRE

    Irna Nurhayati

    2015-01-01

    The Indonesian legislature has enacted the Information and Electronic Transaction Bill (the Bill) in 2003, in which digital signature as a technology specific electronic (e) commerce has been promoted. The promotion of digital signature is still problematic, since there is an uncertainty whether Indonesia can develop well a required viable technology of digital signature. Moreover, there is a gap between the actual use of digital signature and the projections of future utilization of digital ...

  1. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  2. On-focal-plane superconducting signal processing for low- and intermediate-temperature operation

    Science.gov (United States)

    Smetana, Daryl L.; Carson, John C.

    1991-11-01

    The marriage of superconducting electronics with Z-plane FPA readout structures offer the potential for high speed, low power parallel digital processing on-focal plane. This paper reports on some early research into this marriage of two technologies conducted by Irvine Sensors Corporation (ISC) and TRW. Progress is reviewed for both low and high temperature superconducting technologies.

  3. Anisotropy of superconducting MgB2 as seen in electron spin resonance and magnetization data.

    Science.gov (United States)

    Simon, F; Jánossy, A; Fehér, T; Murányi, F; Garaj, S; Forró, L; Petrovic, C; Bud'ko, S L; Lapertot, G; Kogan, V G; Canfield, P C

    2001-07-23

    We observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is chi(s) = 2.0 x 10(-5) emu/mole in the temperature range of 450 to 600 K. The spin relaxation rate has an anomalous temperature dependence. The CESR measured below T(c) at several frequencies suggests that MgB2 is a strongly anisotropic superconductor with the upper critical field, H(c2), ranging between 2 and 16 T. The high-field reversible magnetization data of a randomly oriented powder sample are well described assuming that MgB2 is an anisotropic superconductor with H(ab)(c2)/H(c)(c2) approximately 6-9.

  4. Strain and High Temperature Superconductivity: Unexpected Results from Direct Electronic Structure Measurements in Thin Films

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloetta, D.; Mitrovic, S.; Onellion, M.; Xi, X.; Margaritondo, G.; Pavuna, D.

    2003-07-01

    Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La2-xSrxCuO4-δ thin films. In strained films we measure a band that crosses the Fermi level (EF) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near EF, the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.

  5. Electron Spin Resonance at the Level of 1 04 Spins Using Low Impedance Superconducting Resonators

    Science.gov (United States)

    Eichler, C.; Sigillito, A. J.; Lyon, S. A.; Petta, J. R.

    2017-01-01

    We report on electron spin resonance measurements of phosphorus donors localized in a 200 μ m2 area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design, we are able to detect around 2 ×1 04 spins with a signal-to-noise ratio of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1-10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Because of the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

  6. Appropriate microwave frequency selection for biasing superconducting hot electron bolometers as terahertz direct detectors

    Science.gov (United States)

    Jiang, S. L.; Li, X. F.; Jia, X. Q.; Kang, L.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2017-04-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) and biased by a simple microwave (MW) source have been studied. The frequency and power of the MW are selected by measuring the MW responses of the current–voltage (I–V) curves and resistance–temperature (R–T) curves of the NbN HEBs. The non-uniform absorption theory is used to explain the current jumps in the I–V curves and the resistance jumps in the R–T curves. Compared to the thermal biasing, the MW biasing method can improve the sensitivity, make the readout system much easier and consumes less liquid helium, which is important for long lasting experiments. The noise equivalent power (NEP) of 1.6 pW Hz‑1/2 and the response time of 86 ps are obtained for the detectors working at 4.2 K and 0.65 THz.

  7. Antenna-Coupled Superconducting Tunnel Junctions with Single-Electron Transistor Readout for Detection of Sub-mm Radiation

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  8. Fabrication and test of digital output interface devices for gas turbine electronic controls

    Science.gov (United States)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  9. Universal increase in the superconducting critical temperature of two-dimensional semiconductors at low doping by the electron-electron interaction.

    Science.gov (United States)

    Calandra, Matteo; Zoccante, Paolo; Mauri, Francesco

    2015-02-20

    In two-dimensional multivalley semiconductors, at low doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. By performing first-principles calculations beyond density functional theory, we prove that this effect accounts for the unconventional doping dependence of the superconducting transition temperature (T(c)) and of the magnetic susceptibility measured in Li(x)ZrNCI. Finally, we discuss what are the conditions for a maximal T(c) enhancement in weakly doped two-dimensional semiconductors.

  10. Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist

    Science.gov (United States)

    Charaev, I.; Silbernagel, T.; Bachowsky, B.; Kuzmin, A.; Doerner, S.; Ilin, K.; Semenov, A.; Roditchev, D.; Vodolazov, D. Yu.; Siegel, M.

    2017-08-01

    We performed comparative experimental investigation of superconducting NbN nanowires which were prepared by means of positive- and negative electron-beam lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist. We show that nanowires with a thickness 4.9 nm and widths less than 100 nm demonstrate at 4.2 K higher critical temperature and higher density of critical and retrapping currents when they are prepared by negative lithography. Also the ratio of the experimental critical current to the depairing critical current is larger for nanowires prepared by negative lithography. We associate the observed enhancement of superconducting properties with the difference in the degree of damage that nanowire edges sustain in the lithographic process. A whole range of advantages which is offered by the negative lithography with positive PMMA resist ensures high potential of this technology for improving the performance metrics of superconducting nanowire singe-photon detectors.

  11. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  12. 78 FR 49764 - Certain Electronic Digital Media Devices and Components Thereof; Commission's Final Determination...

    Science.gov (United States)

    2013-08-15

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Commission's Final Determination...'') (collectively, ``Samsung''), from importing certain electronic digital media devices that infringe one or more... digital media devices and components thereof by reason of infringement of certain claims of the '949,...

  13. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  14. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, Sebastian

    2015-02-15

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  15. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  16. Analysis of the proximity function in electron-beam lithography on high-? superconducting thin-films

    Science.gov (United States)

    Gueorguiev, Y. M.; Vutova, K. G.; Mladenov, G. M.

    1996-07-01

    In this paper we approximate by the combination of double Gaussian and exponential functions the radial distributions of the absorbed electron energy density in a 125 nm PMMA resist layer on 0953-2048/9/7/009/img2 thin-film/substrate targets obtained by means of Monte Carlo simulation for a zero-width 0953-2048/9/7/009/img3-function and the following variables (i) the substrate material (0953-2048/9/7/009/img4 and MgO), (ii) the electron beam energy 0953-2048/9/7/009/img5 (25, 50 and 75 keV) and (iii) the 0953-2048/9/7/009/img2 film thickness d (0, 100, 200 and 300 nm). The values of the parameters of the analytical function are calculated using an original Monte Carlo technique. These values are presented in the form of 3D diagrams which show their dependences on beam energy and on high-temperature superconducting film thickness and can also be used for approximate determination of the parameters at different initial conditions.

  17. Electronic properties and superconductivity of rapidly quenched Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chevrier, J.; Pavuna, D.; Cyrot-Lackmann, F.

    1987-12-15

    We present detailed studies of electronic properties of Al-Si alloys prepared in a nonequilibrium state by means of rapid solidification. The quenched alloys exhibit an enhanced superconducting transition temperature up to 6.2 K in an Al--Si 30 at. % alloy as well as an increased thermal slope of resistivity. Using differential scanning calorimetry, a large enthalpy variation (..delta..H = 4.1 kJ/mole for Al--Si 30 at. %) has been measured during the irreversible transition from the non- equilibrium state to the equilibrium one. This is mainly attributed to the energy difference between the metallic state of silicon atoms trapped in fcc aluminum matrix during quenching and the usual covalent state of silicon precipitates in an equilibrium state. This large energy difference is presented as the origin of a lattice instability which softens the phonon spectrum and gives rise to a stronger electron-phonon coupling. This appears to be a characteristic property of nonequilibrium Al-Si solid solutions, which is associated with the metallic state of silicon atoms. An interpretation of the T/sub c/ enhancement is proposed for both Al-Si and Al-Ge alloys based on the phonon softening in these nonequilibrium crystalline alloys.

  18. In-situ electron paramagnetic resonance studies of paramagnetic point defects in superconducting microwave resonators

    Science.gov (United States)

    Zhang, Shengke; Kopas, Cameron; Wagner, Brian; Queen, Daniel; Newman, N.

    2016-09-01

    The physical nature and concentration of paramagnetic point defects in the dielectrics of superconducting planar microwave resonators have been determined using in-situ electron paramagnetic resonance spectroscopy. To perform this work, the quality factor of parallel plate and stripline resonators was measured as a function of the magnitude of a magnetic-field applied parallel to the electrode surfaces. YBa2Cu3O7-δ thin film electrodes proved to be a preferred choice over Nb and MgB2 because they are readily available and have a small surface resistance (Rs) up to high temperatures (˜77 K) and magnetic fields (i.e., dielectric, Co2+-doped Ba(Zn1/3Nb2/3)O3, are shown to have losses dominated by d-electron spin-excitations in exchange-coupled Co2+ point-defect clusters, even in the absence of an applied magnetic field. A significant enhanced microwave loss in stripline and parallel plate resonators is found to correlate with the presence of paramagnetic Mn2+ dopants in Ba(Zn1/3Ta2/3)O3 ceramics and dangling bond states in amorphous Si thin films, although the identification of the dominant loss mechanism(s) in these dielectrics requires further investigation.

  19. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    CERN Document Server

    Wainberg, O; Platino, M; Sanchez, F; Suarez, F; Lucero, A; Videla, M; Wundheiler, B; Melo, D; Hampel, M; Etchegoyen, A

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  20. Electronic system for digital acquisition of rotational panoramic radiographs

    Energy Technology Data Exchange (ETDEWEB)

    McDavid, W.D.; Dove, S.B.; Welander, U.; Tronje, G. (Department of Dental Diagnostic Science, University of Texas Health Science Center, San Antonio (USA))

    1991-04-01

    A prototype system for digital panoramic imaging of the maxillofacial complex has been developed. In this system x-ray film is replaced by an electronic sensor that delivers the image information to a computer for storage in digital format. The images, which are similar to conventional panoramic radiographs, are displayed on a high-resolution video monitor and may be stored on optical disk for future use. Hard-copy output is also available. The present prototype system has been installed on an Orthopantomograph model OP10 panoramic x-ray machine is programmed for operation with this machine, but in principle the system can be installed on any such device. The system may be incorporated into the design of future panoramic x-ray systems or may be used to retrofit panoramic x-ray systems now using photographic film to record the radiographic image. Greater sensitivity of electronic sensors should make possible a reduction of x-ray dose to the patient, compared with film-based systems.

  1. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    CERN Document Server

    Bender, Amy N; de Haan, Tijmen; Dobbs, Matt A; Gilbert, Adam J; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M; Smith, Ken; Wilson, Andrew

    2014-01-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This ...

  2. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Science.gov (United States)

    2012-08-22

    ... COMMISSION Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in... Digital Computer Software and Complex Electronics used in Safety Systems of Nuclear Power Plants.'' The DG... National Standards Institute and Institute of Electrical and Electronics Engineers (ANSI/IEEE) Standard...

  3. Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Been; Cho, Su Hyun; Kim, Chang Young [Center for Correlated Electron Systems, Institute for Basic Science, Seoul (Korea, Republic of); Song, Dong Joon [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Park, Seung Ryong [Dept. of Physics, Research Institute of Basic Sciences, Incheon National University, Incheon (Korea, Republic of)

    2016-06-15

    Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate Pr0.9La1.0Ce0.1CuO4 on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

  4. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  5. Electronic Warfare M-on-N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis

    Science.gov (United States)

    2017-04-12

    E. Jarvis Electronic Warfare M-on- N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis Advanced Techniques Branch Tactical...12-04-2017 NRL Memorandum Report Electronic Warfare M-on- N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis Donald E...ELECTRONIC WARFARE M-ON- N DIGITAL SIMULATION LOGGING REQUIREMENTS AND HDF5: A PRELIMINARY ANALYSIS 1. INTRODUCTION HDF5 technology [Folk] has been

  6. ANALYSIS OF DIGITAL SIGNATURE RULE IN THE ELECTRONIC COMMERCE LAW OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Irna Nurhayati

    2015-02-01

    Full Text Available The Indonesian legislature has enacted the Information and Electronic Transaction Bill (the Bill in 2003, in which digital signature as a technology specific electronic (e commerce has been promoted. The promotion of digital signature is still problematic, since there is an uncertainty whether Indonesia can develop well a required viable technology of digital signature. Moreover, there is a gap between the actual use of digital signature and the projections of future utilization of digital signature by interested parties on e-commerce. This paper will discuss the reason of the Indonesian legislature promotes digital signature. It will then analyse the gap between the actual use of digital signature and the projections of future utilization of digital signature by interested parties on e-commerce. This paper will finally argue whether the promotion of digital signature of the Bill is useful for the growth of e-commerce in Indonesia.

  7. NbN superconducting nanonetwork fabricated using porous silicon templates and high-resolution electron beam lithography.

    Science.gov (United States)

    Salvato, Matteo; Baghdadi, Reza; Cirillo, Carla; Prischepa, Serghej L; Dolgiy, Alexey; Bondarenko, Vitaly; Lombardi, Floriana; Attanasio, Carmine

    2017-08-07

    Superconducting NbN nanonetworks with a very small number of interconnected nanowires, with diameter of the order of 4 nm, are fabricated combining a bottom-up (use of porous silicon nanotemplates) with a top-down technique (high-resolution electron beam lithography). The method is easy to control and allows to fabricate, on a robust support, devices with electrical properties close to a one-dimensional superconductor that can be fruitfully used for novel applications. © 2017 IOP Publishing Ltd.

  8. Feasibility study for an industrial superconducting table-top electron accelerator; Machbarkeitstudie fuer einen industriellen supraleitenden Table Top Elektronenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Buettig, H.; Enghardt, W.; Gabriel, F.; Janssen, D.; Michel, P.; Pobell, F.; Prade, H.; Schneider, C.; Kudryavtsev, A.; Haberstroh, C.; Sandner, W.; Will, I.

    2004-07-01

    A concept of a table-top accelerator, consisting of a superconducting resonator and subsequent 6 standard TESLA cells working with a frequency of 1.3 GHz, is presented. Then electron gun is based on a photocathode. Especially described are the photocathode part, the laser system, the cryostat module, the RF system, the beam extraction, and the cryogenic facility. Finally the efficiency and the costs are considered, (HSI)

  9. Superconducting thin films of BiSrCaCuO made by sequential electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Anderson, A.C.; Tsauer, B.Y.; Strauss, A.J.

    1989-03-01

    Superconducting thin films of Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been made by sequential electron-beam evaporation of multiple layers of Bi and Cu metals and (Sr,Ca)F/sub 2/ on MgO substrates. The films were annealed at high temperature, first in wet O/sub 2/ and then in dry O/sub 2/, and cooled to room temperature in dry O/sub 2/. The resulting films which are -- 1 ..mu..m thick, have transition temperatures of -- 85 K. X-ray diffraction shows that the films are preferentially oriented with their c-axis perpendicular to the MgO substrate. The authors' best film has a zero-resistance temperature of 90 K and critical current densities of 8 x 10/sup 4/ A/cm/sup 2/ at 77 K and 2.5 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  10. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  11. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    Science.gov (United States)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  12. Phase Diagram and Electronic Properties of High-Tc Superconducting Oxides

    Science.gov (United States)

    Pavuna, Davor

    We firstly briefly summarize some of the most relevant recent results and open questions across rather complex electronic phase diagram of cuprates. We continue with a discussion of results on thin superconducting oxide films grown by laser ablation. Systematic studies show that BSCCO-phases and LSCO-214 exhibit conductor-like Fermi edge, whereas materials containing "chains" (like YBCO-123) are prone to very rapid surface degradation, most likely related to critical oxygen loss at the outermost layers. Recently, direct ARPES dispersion measurements on in-situ grown, strained 10UC thin LSCO-214 films (Tc = 44 K) have shown the band crossing of Fermi level well before the Brillouin zone boundary. This is in contrast to the flat band observed in unstrained single crystals — and to the band flattening predicted by band calculations for in-plane compressive strain. In spite of density of states reduction near the Fermi level, the critical temperature increases in strained films with respect to unstrained crystals; this poses further challenge to HTSC theory.

  13. Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y., E-mail: higurasi@riken.jp; Ohnishi, J.; Ozeki, K.; Kidera, M.; Nakagawa, T. [RIKEN, 2-1 Hirosawa, Wako, Saitama (Japan)

    2014-02-15

    Over the past two years, we have tried to improve the performance of the RIKEN superconducting electron cyclotron resonance ion source using several methods. For the production of U vapor, we chose the sputtering method because it is possible to install a large amount of material inside the plasma chamber and thus achieve long-term operation without a break, although it is assumed that the beam intensity is weaker than in the oven technique. We also used an aluminum chamber instead of a stainless steel one. Using these methods, we successfully produced ∼180 eμA of U{sup 35+} and ∼230 eμA of U{sup 33+} at the injected radio frequency (RF) power of ∼4 kW (28 GHz). Very recently, to further increase the beam intensity of U{sup 35+}, we have started to develop a high temperature oven and have successfully produced a highly charged U ion beam. In this contribution, we report on the beam intensity of highly charged U ions as a function of various parameters (RF power and sputtering voltage) and discuss the effects of these parameters on the beam stability in detail.

  14. High efficiency digital cooler electronics for aerospace applications

    Science.gov (United States)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  15. Digital waterway construction based on inland electronic navigation chart

    Science.gov (United States)

    Wang, Xue; Pan, Junfeng; Zhu, Weiwei

    2015-12-01

    With advantages of large capacity, long distance, low energy consumption, low cost, less land occupation and light pollution, inland waterway transportation becomes one of the most important constituents of the comprehensive transportation system and comprehensive water resources utilization in China. As one of "three elements" of navigation, waterway is the important basis for the development of water transportation and plays a key supporting role in shipping economic. The paper discuss how to realize the informatization and digitization of waterway management based on constructing an integrated system of standard inland electronic navigation chart production, waterway maintenance, navigation mark remote sensing and control, ship dynamic management, and water level remote sensing and report, which can also be the foundation of the intelligent waterway construction. Digital waterway construction is an information project and also has a practical meaning for waterway. It can not only meet the growing high assurance and security requirements for waterway, but also play a significant advantage in improving transport efficiency, reducing costs, promoting energy conservation and so on. This study lays a solid foundation on realizing intelligent waterway and building a smooth, efficient, safe, green modern inland waterway system, and must be considered as an unavoidable problem for the coordinated development between "low carbon" transportation and social economic.

  16. Elimination of bubbles and improvement of the superconducting properties in MgB2 films annealed using electron beam

    Science.gov (United States)

    Xu, Zhuang; Kong, Xiangdong; Han, Li; Pang, Hua; Wu, Yue; Gao, Zhaoshun; Li, Xiaona

    2017-03-01

    MgB2 superconducting films can be readily obtained using the electron-beam annealing method. However, many bubbles existing in the film severely damage the surface morphology, which is known as the deleterious current-limiting mechanism. Based on morphology images and energy-dispersive spectroscopy spectra, we found that, during the annealing process, solid Mg-rich layers evaporate to form Mg vapour in the precursor film, resulting in bubbles in the film. By reducing the cycle thickness of the precursor film, we obtained MgB2 films with better properties. The root-mean-square surface roughness was 2.7 nm over a 10 × 10 μm area for a 100 nm-thick film, and the critical current density at 20 K was increased to 3.8 × 106 A cm‑2. These MgB2 films are suitable for fabricating MgB2 superconducting devices.

  17. Electronic structure of a superconducting topological insulator Sr-doped Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Q.; Chen, W. J.; Zhu, Fengfeng; Yao, Meng-Yu [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, H.; Li, Z. J.; Wang, M.; Gao, Bo F., E-mail: bo-f-gao@mail.sim.ac.cn [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Guan, D. D.; Liu, Canhua; Qian, Dong, E-mail: dqian@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Gao, C. L. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Department of Physics, Fudan University, Shanghai 200433 (China)

    2015-10-26

    Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (Sr{sub x}Bi{sub 2}Se{sub 3}) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi{sub 2}Se{sub 3}, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor.

  18. Status of the Development of Superconducting Undulators for Storage Rings and Free Electron Lasers at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyushenkov, Y.; Doose, C.; Fuerst, J.; Harkay, K.; Hasse, Q.; Kasa, M.; Shiroyanagi, Y.; Skiadopoulos, D.; Trakhtenberg, E.; Gluskin, E.; Emma, P.

    2017-06-01

    Development of superconducting undulator (SCU) technology continues at the Advanced Photon Source (APS). The experience of building and successful operating the first short-length, 16-mm period length superconducting undulator SCU0 paved the way for a 1-m long, 18-mm period device— SCU18-1— which has been in operation since May 2015. The APS SCU team has also built and tested a 1.5-m long, 21-mm period length undulator as a part of the LCLS SCU R&D program, aimed at demonstration of SCU technology availability for free electron lasers. This undulator successfully achieved all the requirements including a phase error of 5° RMS. Our team has recently completed one more 1-m long, 18-mm period length undulator— SCU18-2— that is replacing the SCU0. We are also working on a helical SCU for the APS. The status of these projects will be presented.

  19. 78 FR 33110 - Certain Electronic Digital Media Devices and Components Thereof; Determination To Review a Remand...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Certain Electronic Digital Media Devices and Components Thereof; Determination To Review a Remand... the sale within the United States after importation of certain electronic digital media devices and..., including in the JP published unexamined application HII-288766 (``Kawano'') and the YP-T7J portable...

  20. Development of 1.5 THz waveguide NbTiN superconducting hot electron bolometer mixers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ling [College of Information Science and Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu (China); Shiba, Shoichi; Shiino, Tatsuya; Shimbo, Ken; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Irimajiri, Yoshihisa [National Institute of Information and Communications Technology (Japan); Ananthasubramanian, P G [Raman Research Institute, Bangalore (India); Maezawa, Hiroyuki, E-mail: lingjiang616@hotmail.co [Solar-Terrestrial Environment Laboratory, Nagoya University (Japan)

    2010-04-15

    We present a characterization of a 1.5 THz waveguide niobium titanium nitride (NbTiN) superconducting hot electron bolometer (HEB) mixer which can be pumped by a commercial solid state tunable local oscillator (LO) source. The NbTiN HEB mixer is made from a 12 nm thick NbTiN thin film deposited on a quartz substrate at room temperature. A gold electrode is formed in situ on the NbTiN thin film without breaking vacuum to ensure good contact. The uncorrected DSB receiver noise temperature is measured to be 1700 K at 1.5 THz, whereas the mixer noise temperature is derived to be 1000 K after corrections for losses of the input optics and the intermediate frequency (IF) amplifier chain. The required LO power absorbed in the HEB mixer is evaluated to be 340 nW by using an isothermal technique. The IF gain bandwidth is supposed to be about 1.3 GHz or higher. The present results show that good performance can be obtained at 1.5 THz even with a relatively thick NbTiN film (12 nm), as in the case of 0.8 THz. In order to investigate the cooling mechanism of our HEB mixers, we have conducted performance measurements for a few HEB mixers with different microbridge sizes both at 1.5 and 0.8 THz. The noise performance of the NbTiN HEB mixers is found to depend on the length of the NbTiN microbridge. The shorter the microbridge is, the lower the receiver noise temperature is. This may imply a contribution of the diffusion cooling in addition to the phonon cooling.

  1. Structural, electronic, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Puvaneswari, S. [Department of Physics, E.M.G. Yadava Women' s College, Madurai, Tamilnadu 625 014 (India); Rajeswarapalanichamy, R., E-mail: rrpcaspd2003@gmail.com [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India); Sudha Priyanga, G. [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India)

    2015-02-01

    The structural stability, electronic structure, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd) are investigated in tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3) and hexagonal (P6/mmm) phases using first principles calculations. The calculated lattice parameters are in good agreement with other theoretical results. Among the considered structures, RhN{sub 2} and PdN{sub 2} are found to be most stable in tetragonal structure, whereas RuN{sub 2} is stable in fluorite structure. A sequence of structural phase transition is predicted under high pressure in these metal nitrides. The electronic structure reveals that these nitrides are metallic. These metal nitrides are found to be covalent, ionic and metallic in the stable phase. The observations show that these metal nitrides are mechanically stable at ambient condition. The superconducting transition temperatures for RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are found to be 1.65 K, 5.01 K and 8.7 K respectively. - Highlights: • Electronic, structural and elastic properties of RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are studied. • A pressure induced structural phase transition is predicted. • Electronic structure reveals that these materials exhibit metallic behavior. • High bulk modulus indicates that RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are superhard materials. • Superconducting temperature values are reported.

  2. Empirical understanding of superconducting critical temperature based on valence electron parameters

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Yukio, E-mail: ymak@kuchem.kyoto-u.ac.jp; Yoshimura, Kazuyoshi

    2014-04-15

    Highlights: • Concave triangle-like relation is shown between T{sub c}/N(atom) and electronegativity. • Maximum T{sub c} (or T{sub c}/N(atom)) is obtained at around the threshold electronegativity. • T{sub c} value can be empirically estimated by the linear equation of N(ν)r(eff){sup 3}. • Enhancement of sp{sup 2}d{sup 2}-hybridization is the important factor to attain higher T{sub c} value. - Abstract: It is tried to empirically understand the superconducting critical temperature T{sub c} of various materials (24 elements, 286 A{sub n}B (n = 1, 2, 3) compounds, 34 Fe- and 49 Cu-based compounds) by the effective pseudopotential radius, r(eff), and the effective orbital electronegativity, χ(eff)(=[N(v)/r(eff)]{sup 1/2}). By giving the sets of values of r(eff) and the number of effective electron, N(v), for 65 elements under the assumption that both the hybridization state and N(v) can be assigned to 65 elements in advance by considering their electronic characters, the T{sub c}/N(atom)–χ(eff) and T{sub c}–N(v)r(eff){sup 3} relations are examined, where N(atom) is the number of atom in compounds. It is found that a convex triangle-like relation is obtained between T{sub c}/N(atom) and χ(eff) and the maximum of T{sub c}/N(atom) is observed at around the threshold χ(eff) corresponding to metal–semiconductor transition. The cuprates and Fe-compounds with the χ(eff) closer to the threshold value show the higher T{sub c} value. Applying the linear relation between T{sub c} and N(v)r(eff){sup 3} empirically obtained for the elements to the compounds, it is indicated that about two-thirds of A{sub n}B compounds as well as the Fe- and Cu-based compounds are well placed along the linear relation. These results allow us to estimate the T{sub c} value in compound materials empirically based on the effective pseudopotential radius determined by the assumed hybridization.

  3. The Preparation and Properties of Niobium Superconducting Structures Prepared by Electron Beam Evaporation in Uhv

    Science.gov (United States)

    Goodchild, Martin S.

    Available from UMI in association with The British Library. This work has achieved the development of a fabrication method for the realisation of superconductor-insulator -superconductor (SIS) junctions based on niobium thin films with an artificial barrier layer. Such devices are likely to have advantages over lead alloy devices because of the enhanced mechanical and chemical stability. A principal objective was to attempt to exploit the offset mask technology developed by Dolan that has been successfully employed by Davies et.al. in the realisation of lead alloy SIS junction heterodyne mixers. In order to transfer this technology to niobium based devices it is essential that an evaporation method is used to allow shadow formation beneath the offset mask. As a result of the chemical reactivity and the low vapour pressure of niobium, a UHV system has been developed which incorporates an electrostatically focussed electron beam evaporation source. This is capable of providing deposition rates of close to 10A/sec. with a source to substrate distance of 120mm. During deposition the system pressure is below 5 times 10 ^{-9} mbar. These process parameters have been recorded, for a number of depositions, on a specially built data acquisition system controlled by a BBC microcomputer. Such recording allows detailed comparison of conditions which helps in the understanding of differences between the superconducting behaviour of various films. A further extremely important aspect of these real time measurements is that it helps to ensure optimum settings of the focus conditions of the electron beam source. The results of the depositions are extremely encouraging with critical temperatures of between 9.1 and 9.3K being achieved. These results compare well with expected values for bulk niobium. An all-metal offset mask technology has been developed to replace the photo-resist technique pioneered by Dolan. This new method is needed because the photo-resist is not compatible

  4. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  5. Mapping Dimensionality and Directionality of Electronic Behavior in CeCoIn5: the Superconducting State

    Science.gov (United States)

    Feldman, Benjamin E.; Gyenis, Andras; Randeria, Mallika T.; Peterson, Gabriel A.; Aynajian, Pegor; Bauer, Eric D.; Yazdani, Ali

    Unconventional superconductors often exhibit anisotropic physical properties that arise from the directional dependence of their order parameters. A prime example is CeCoIn5, a heavy fermion d-wave superconductor with a rich low-temperature phase diagram consisting of competing and coexisting magnetic and superconducting orders. Here we present dilution refrigerator scanning tunneling microscopy of CeCoIn5 cleaved perpendicular to its basal plane. We study superconductivity on the (100) surface, whose normal vector points along the antinode of the superconducting energy gap. The gap magnitude is similar to that observed in the basal plane, with a key difference: it does not exhibit any suppression near step edges. Application of a magnetic field along the [100] direction leads to the formation of anisotropic vortices, and the vortex lattice undergoes a transition at high field before the superconducting state gives way to a pseudogap phase. Our measurements illustrate the directional dependence of the superconducting properties in CeCoIn5, and more generally, demonstrate the utility of imaging d-wave superconductors along their nodal and antinodal directions.

  6. High-field superconductivity at an electronic topological transition in URhGe

    Science.gov (United States)

    Yelland, E. A.; Barraclough, J. M.; Wang, W.; Kamenev, K. V.; Huxley, A. D.

    2011-11-01

    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30T. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.

  7. CONFERENCE SUMMARY: Summary and comment on superconducting analogue electronics research, including materials and fabrication, as presented at ISEC 07

    Science.gov (United States)

    Foley, C. P.

    2007-11-01

    The main theme at ISEC 2007 for superconducting materials, fabrication and analogue electronics was the description of incremental developments, including a few new directions that indicate breakthroughs in this area of research. The work on applications focused on their cost-benefit analysis (in order to improve their appeal), the development of simpler systems, making more of the data collected, improving packaging and being responsive to the power handling requirements for commercial systems. All papers presenting this level of research highlighted the importance of obtaining all the necessary details in order to investigate analogue devices and the effectiveness and commercial viability of their systems. This stage of development is important if we are to achieve the transition of superconducting electronics from the laboratory to commercial use. There were some exciting disruptive breakthroughs reported. These were in the areas of nano-SQUIDs, rotating gradiometers, superconducting scanning tunnelling microscopy (Hayashi et al) and the potential of superconducting photonics using optical interfaces with superconducting vortex flow transistors, for example. The materials research in low (LTS), high (HTS) and medium (MTS) critical temperature superconductors was reported. In LTS, nitrides emerged as important materials for use as new tunnel barriers, either insulating or semiconducting. Papers on BaN, NbN, TaN, GaN and Nb-Si superconducting materials were also presented. The MTS material of MgB2 is still under development (Zhao et al). There were also new research groups from South Africa and Turkey attending the conference. The fabrication research presented covered the areas of critical current Ic spread, which is still an issue in reducing the reproducibility of Josephson junctions, a 150 mm process for Nb/Al-AlOx/Nb and methods to improve barrier layers using both new materials and smooth surfaces at thin film interfaces (Du et al). New methods to make sub

  8. The impact of electronic word-of-mouth in the distribution of digital goods

    OpenAIRE

    2011-01-01

    The rapid proliferation of social media networks has presented a platform of opportunities for the distribution of digital products and related applications. This is commonly known as word-of-mouth or viral marketing and intuitively fits the requirements of digital goods in that consumption, authentication and opinions are communal. In this short paper, we point out the efficacy of the phenomenon of electronic word-of-mouth (eWoM) in digital markets. More specifically, we use a model that enc...

  9. Electronic Correlations, Jahn-Teller Distortions and Mott Transition to Superconductivity in Alkali-C60 Compounds

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available The discovery in 1991 of high temperature superconductivity (SC in A3C60 compounds, where A is an alkali ion, has been rapidly ascribed to a BCS mechanism, in which the pairing is mediated by on ball optical phonon modes. While this has lead to consider that electronic correlations were not important in these compounds, further studies of various AnC60 with n=1, 2, 4 allowed to evidence that their electronic properties cannot be explained by a simple progressive band filling of the C60 six-fold degenerate t1u molecular level. This could only be ascribed to the simultaneous influence of electron correlations and Jahn-Teller Distortions (JTD of the C60 ball, which energetically favour evenly charged C60 molecules. This is underlined by the recent discovery of two expanded fulleride Cs3C60 isomeric phases which are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to study the magnetic properties of the Mott phases and to evidence clear deviations from BCS expectations near the Mott transition. So, although SC involves an electron-phonon mechanism, the incidence of electron correlations has an importance on the electronic properties, as had been anticipated from DMFT calculations.

  10. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    Science.gov (United States)

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  11. Analysis and design of digital output interface devices for gas turbine electronic controls

    Science.gov (United States)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  12. Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates

    OpenAIRE

    Mourachkine, A.

    1998-01-01

    The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.

  13. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  14. Powering the Digital: From Energy Ecologies to Electronic Environmentalism

    OpenAIRE

    Gabrys, Jennifer

    2014-01-01

    Electronics and all that they plug into are energy intensive. Energy is another form of waste, like electronic waste that contributes to the material footprint of electronic technologies. This chapter examines the particular ways in which electronics use energy, from manufacture to powering devices to running cloud servers. While electronics consume energy, they are also used to manage energy consumption with the hope of achieving greater sustainability. By developing the concept of “electron...

  15. A semantic approach for digital long-term preservation of electronic health documents.

    Science.gov (United States)

    Kiefer, Stephan; Schäfer, Michael; Rauch, Jochen

    2012-01-01

    Long-term preservation of electronic patient health information is a key issue for life-long electronic health records, however, it is poorly implemented in healthcare institutions and little attention is given to problems like obsolescence of formats and EHR applications or changing regulations, which jeopardize reusability of information after decades of preservation. We present in this paper an ontology driven approach to digital preservation and related metadata management which seems to be superior to conventional concepts of the digital library world.

  16. Electronic Journals in the Digital Environment:Issues and Future Trends

    Institute of Scientific and Technical Information of China (English)

    Jian Wang; Arthur Hendricks

    2004-01-01

    Building and managing electronic journal collections in the digital environment poses many challenges for librarians, as electronic journals exist in a complex and constantly changing state involving different digital formats, new pricing structures, and various access routes. This paper reviews critical issues that North American libraries face in managing electronic journals, including a brief history, the selection criteria, consortia purchasing, licensing, operational costs, providing access, user support, usage statistics,canceling print subscriptions, and electronic journal archives. Future trends discussed include open access e-journals, and the continuing development of e-journal collections and best practices in managing this essential constituent of academic library collections.

  17. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Science.gov (United States)

    Manolopoulos, K.; Belias, A.; Markou, C.; Rapidis, P.; Kappos, E.

    2016-04-01

    GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  18. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  19. Electronic publishing: the movement from print to digital publication.

    Science.gov (United States)

    Ludwick, R; Glazer, G

    2000-01-01

    This article provides an overview of electronic publishing, describes how information increasingly is being exchanged within the scientific community, and discusses the scholarly qualifications of electronic venues. The following content is included: a.definition of electronic publishing; b.uses and types of electronic publishing; c.uses of electronic journals in nursing and health care; d.advantages and disadvantages of electronic journals; e.advantages and disadvantages of print journals; and f.the authors' projections for the future. Hotlinks to a variety of Internet resources on electronic resources are integrated throughout the article.

  20. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  1. Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array

    CERN Document Server

    Barrientos, D; Bazzacco, D; Bortolato, D; Cocconi, P; Gadea, A; González, V; Gulmini, M; Isocrate, R; Mengoni, D; Pullia, A; Recchia, F; Rosso, D; Sanchis, E; Toniolo, N; Ur, C A; Valiente-Dobón, J J

    2014-01-01

    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.

  2. Dual function seal: visualized digital signature for electronic medical record systems.

    Science.gov (United States)

    Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang

    2012-10-01

    Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.

  3. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.

    Science.gov (United States)

    He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2013-07-01

    The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

  4. Superconductivity and metallic behavior in Pb{sub x}C{sub y}O{sub δ} structures prepared by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Winhold, M., E-mail: winhold@Physik.uni-frankfurt.de; Weirich, P. M.; Schwalb, C. H.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-10-20

    Focused electron beam induced deposition as a direct-write approach possesses great potential to meet the demands for superconducting nanostructure fabrication especially regarding its 3D patterning capabilities combined with the high resolution in the nanometer regime. So far, however, it was not possible to fabricate superconducting structures with this technique. In this work, we present a lead-based superconductor prepared by focused electron beam induced deposition by dissociation of the precursor tetraethyllead. The as-grown structures exhibit metallic behavior and a minimum resistivity in the normal state of ρ = 16 μΩcm at T = 9 K followed by a superconducting transition at T{sub c} = 7.2 K.

  5. Size effect of strong-coupled superconducting In{sub 2}Bi nanoparticles: An investigation of short-range electron phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Yu; Gandhi, Ashish Chhaganlal; Wu, Sheng Yun, E-mail: sywu@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2015-05-07

    We report the influence of the nanosized effect on the superconducting properties of bimetallic In{sub 2}Bi nanoparticles. In this study, the temperature- and applied magnetic field-dependence of the magnetization were utilized to investigate the electron-phonon coupling effect while controlling particle sizes 〈d〉 from 21(2) to 42(5) nm. As the particle size decreases, the electron-phonon constant λ{sub EP} decreases rapidly, signaling the short-range electron-phonon coupling effect which acts to confine the electrons within a smaller volume, thereby giving rise to a higher superconducting transition temperature T{sub C}. An enhanced superconducting transition was observed from the temperature dependence of magnetization, revealing a main diamagnetic Meissner state below T{sub C} ∼ 5.72(5) K for 〈d〉 = 31(1) nm In{sub 2}Bi nanoparticles. The variation of the T{sub C} is very sensitive to the particle size, which might be due to crystallinity and size uniformity of the samples. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the In{sub 2}Bi system.

  6. Analog versus digital: extrapolating from electronics to neurobiology.

    Science.gov (United States)

    Sarpeshkar, R

    1998-10-01

    We review the pros and cons of analog and digital computation. We propose that computation that is most efficient in its use of resources is neither analog computation nor digital computation but, rather, a mixture of the two forms. For maximum efficiency, the information and information-processing resources of the hybrid form must be distributed over many wires, with an optimal signal-to-noise ratio per wire. Our results suggest that it is likely that the brain computes in a hybrid fashion and that an underappreciated and important reason for the efficiency of the human brain, which consumes only 12 W, is the hybrid and distributed nature of its architecture.

  7. Superconductivity and its mechanism in an ab initio model for electron-doped LaFeAsO.

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2014-12-22

    Two families of high-temperature superconductors whose critical temperatures are higher than 50 K are known. One are the copper oxides and the other are the iron-based superconductors. Comparisons of mechanisms between these two in terms of common ground as well as distinctions will greatly help in searching for higher T(c) superconductors. However, studies on mechanisms for the iron family based on first principles calculations are few. Here we first show that superconductivity emerges in the state-of-the-art numerical calculations for an ab initio multi-orbital model of an electron-doped iron-based superconductor LaFeAsO, in accordance with experimental observations. Then the mechanism of the superconductivity is identified as enhanced uniform density fluctuations by one-to-one correspondence with the instability towards inhomogeneity driven by first-order antiferromagnetic and nematic transitions. Despite many differences, certain common features with the copper oxides are also discovered in terms of the underlying orbital-selective Mottness found in the iron family.

  8. Preparation of superconducting Bi-Sr-Ca-Cu-O thin films by sequential electron beam evaporation and oxygen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Tsaur, B.; Anderson, A.C.; Strauss, A.J.

    1989-01-30

    Superconducting films with nominal composition Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been prepared on <100> MgO substrates by sequential electron beam evaporation of Cu, Bi, and Sr/sub 2/3/ Ca/sub 1/3/ F/sub 2/, followed by annealing in flowing wet, then dry, O/sub 2/. X-ray diffraction data show that the films contain the two Bi-Sr-Ca-Cu-O phases that have been identified in the literature as a superconducting phase with capprox.31 A and a semiconducting phase with capprox.24 A. Both phases are strongly textured with the c axis perpendicular to the substrate. For the best film, which was annealed at 870 /sup 0/C for 30 min, zero resistance was observed at 90 K, and the critical current density increased from 0.8 x 10/sup 5/ A/cm/sup 2/ at 77 K to 2.3 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  9. Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    CERN Document Server

    Gao, Yongfeng; Wang, Fang; Feng, Liwen; Zhuang, Dehao; Lin, Lin; Zhu, Feng; Hao, Jiankui; Quan, Shengwen; Liu, Kexin

    2016-01-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.

  10. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5.

    Science.gov (United States)

    Van Dyke, John S; Massee, Freek; Allan, Milan P; Davis, J C Séamus; Petrovic, Cedomir; Morr, Dirk K

    2014-08-12

    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ek(α,β) with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism.

  11. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  12. 76 FR 58841 - Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...

    Science.gov (United States)

    2011-09-22

    ... FR 12994-5 (Mar. 9, 2011). The complaints allege violations of section 337 of the Tariff Act of 1930... COMMISSION Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...; and 5,923,711, and of certain electronic devices having a Blu-Ray disc player and components...

  13. Application of superconducting technologies as chemical/biological agent electronic eyes

    Science.gov (United States)

    Savoy, Steven M.; Eames, Sara J.; Jurbergs, David C.; Zhao, Jianai; McDevitt, John T.; Sobel, Annette L.

    1997-01-01

    High temperature superconductors provide enhanced sensitivity capabilities as chemical/biological agent detectors. State-of-the-art advances in ruggedizing superconducting platforms make them much more robust for field applications. In addition, microminiaturization and advances in refrigeration have enabled the systems engineering of portable, durable, survivable, low power requirement devices. This presentation describes a prototype system employing YBCO (yttrium barium copper oxide) superconducting quantum interference devices (SQUIDS) with specific biolayer detection dye coatings. These devices may be deployed as specific stand-off detectors, or potentially reconfigured as point sensors. A library of pattern recognition algorithms provides the reference template for the system. The human-system interface will provide a 'yes/no' agent confirmation for the environment being queried, and associated confidence value. This prototype detection system has great potential for deployment in support of hostage rescue/rapid response teams, DMAT, and urban search and rescue. The preparation and characterization of a new generation of optical sensors fabricated from high-temperature superconductor (HTSC) thin films is reported herein. These new hybrid devices are fashioned using HTSC thin films which are coated with organic dye overlayers. These systems are shown to respond selectively to those wavelengths which are absorbed strongly by the molecular dye. Methods for fabricating the superconductor element and depositing the dye layer are discussed. Moreover, resistivity versus temperature measurements before and after dye deposition are utilized to characterize these hybrid structures. The unique optical response properties of these hybrid sensors are also detailed.

  14. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Han, X.; Liu, X.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Hu, L. Q.; Gao, X. [Institution of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  15. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  16. Research on Digital Output Verification Technology of Electronic DC Current Transformer

    Science.gov (United States)

    Chen, Yuanjie; Wang, Bin; Hu, Haoliang; Xiong, Qianzhu; Yang, Chunyan

    2017-05-01

    Aiming at the error of calibration system when conducting field calibration by electronic DC current transformer’s digital calibration system, an electronic DC current transformer’s digital calibration system based on protocol conversion is proposed and researched. Data frames outputted from merging unit are collected and converted by the system, the digital synchronization is realized by using the synchronous clock device to trigger the second pulse, and it is verified by the virtual instrument design software. The field calibration is conducted to some converter station digital dc current transformer under the rated current of 500A by using the calibration system. By calibrating and analyzing errors, the error is less than 0.075% when tested current is more than 40% of the rated current. According the standard in literature[1], performance of the calibration system is perfect, measured results perfectly meet the requirements of design, and the calibration system has great practical application value.

  17. Digital-forensics based pattern recognition for discovering identities in electronic evidence

    OpenAIRE

    Henseler, Hans; Hofsté, Jop; Keulen, van, H.

    2013-01-01

    With the pervasiveness of computers and mobile devices, digital forensics becomes more important in law enforcement. Detectives increasingly depend on the scarce support of digital specialists which impedes efficiency of criminal investigations. This paper proposes and algorithm to extract, merge and rank identities that are encountered in the electronic evidence during processing. Two experiments are described demonstrating that our approach can assist with the identification of frequently o...

  18. Restructuring the electronic medical record to incorporate full digital signature capability.

    Science.gov (United States)

    Zuckerman, A E

    2001-01-01

    The security of Electronic Medical Records can be enhanced by the addition of digital signatures that guarantee data integrity, authenticate the signer, and establish non-repudiation through the use of public key encryption. The task is complicated by the contribution of multiple providers to an encounter and the entry of data at multiple points in time Dividing encounters into an episode of care and redesigning the data model of the EMR will facilitate full signature capabilities. Generation of digital signatures is best accomplished using microprocessors on smart cards that control visibility of the private keys and assist in user authentication. The Java Programming Language including cryptography extensions and a smart card API is a useful tool for adding digital signature to an EMR. Inter-operability of signatures and continuity of signature will require attention to standards and preservation of cryptography and authentication certificate archives. Digital signatures will need to accommodate changes in data storage formats when information is transported between EMR systems using XML or other transaction standards because the original signatures will not validate if the data storage format changes. The costs of adding digital signature to EMR mandates serious examination of the business case for digital signature within an EMR as compared with transactions such as electronic prescriptions. At present, there is no regulatory requirement for digital signature of an EMR.

  19. A digital energy control system for the LEAR electron cooler

    CERN Document Server

    Caspers, Fritz; Molinari, G; Ramos, U

    1993-01-01

    A feedback control system has been developed to correct any energy errors that may occur when operating the electron cooler on LEAR. Drifts and, above all, the space charge effects are the main sources of error. Error cancellation must be compatible with the pulsed mode of operation of the electron cooler so that the beam must be stabilized at the right energy before the end of the corresponding flat top is reached.

  20. Development of the HIDEC inlet integration mode. [Highly Integrated Digital Electronic Control

    Science.gov (United States)

    Chisholm, J. D.; Nobbs, S. G.; Stewart, J. F.

    1990-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) development program conducted at NASA-Ames/Dryden will use an F-15 test aircraft for flight demonstration. An account is presently given of the HIDEC Inlet Integration mode's design concept, control law, and test aircraft implementation, with a view to its performance benefits. The enhancement of performance is a function of the use of Digital Electronic Engine Control corrected engine airflow computations to improve the scheduling of inlet ramp positions in real time; excess thrust can thereby be increased by 13 percent at Mach 2.3 and 40,000 ft. Aircraft supportability is also improved through the obviation of inlet controllers.

  1. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    Science.gov (United States)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  2. Destruction of Neel order and appearance of superconductivity in electron-doped cuprates by oxygen annealing process

    OpenAIRE

    Li, Shiliang; Chi, Songxue; Zhao, Jun; Wen, H.-H.; Stone, M. B.; Lynn, J. W.; Dai, Pengcheng

    2008-01-01

    We use thermodynamic and neutron scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr$_{0.88}$LaCe$_{0.12}$CuO$_{4-\\delta}$. Although the transition temperature $T_c$ measured by susceptibility and superconducting coherence length increase smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific heat anomaly at $T_c$ and the presence of a neutron magnetic resonance, only appears abrupt...

  3. A nanoCryotron comparator can connect single-flux quantum circuits to conventional electronics

    CERN Document Server

    Zhao, Qing-Yuan; Dane, Andrew E; Berggren, Karl K; Ortlepp, Thomas

    2016-01-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realiz...

  4. Asymmetric bilayer graphene nanoribbon MOSFETs for analog and digital electronics

    Science.gov (United States)

    Dinarvand, A.; Ahmadi, V.; Darvish, Gh.

    2016-05-01

    In this paper, a new structure was proposed for bilayer graphene nanoribbon field-effect transistor (BGNFET) mainly to enhance the electrical characteristics in analog and digital applications. The proposed device uses two metallic gates on the top and bottom of a bilayer graphene nanoribbon, which is surrounded by SiO2 and connected to heavily doped source/drain contacts. Electrical properties of the proposed device were explored using fully self-consistent solution of Poisson and Schrödinger equations based on the nonequilibrium Green's function (NEGF) formalism. Significant improvements in the electrical behavior was seen in the simulation results for gates asymmetrically biased. The comparison with graphene nanoribbon FET showed that the proposed structure benefited from higher intrinsic voltage gain and cut-off frequency and improved switching characteristics such as delay and Ion/Ioff ratio.

  5. Digital holography with electron wave: measuring into the nanoworld

    Science.gov (United States)

    Mendoza Santoyo, Fernando; Voelkl, Edgar

    2016-04-01

    Dennis Gabor invented Holography in 1949. His main concern at the time was centered on the spherical aberration correction in the recently created electron microscopes, especially after O. Scherzer had shown mathematically that round electron optical lenses always have a positive spherical aberration coefficient and the mechanical requirements for minimizing the spherical aberration were too high to allow for atomic resolution. At the time the lack of coherent electron sources meant that in-line holography was developed using quasi-coherent light sources. As such Holography did not produce scientific good enough results to be considered a must use tool. In 1956, G. Moellenstedt invented a device called a wire-biprism that allowed the object and reference beams to be combined in an off-axis configuration. The invention of the laser at the end of the 1950s gave a great leap to Holography since this light source was highly coherent and hence led to the invention of Holographic Interferometry during the first lustrum of the 1960s. This new discipline in the Optics field has successfully evolved to become a trusted tool in a wide variety of areas. Coherent electron sources were made available only by the late 1970s, a fact that gave an outstanding impulse to electron holography so that today nanomaterials and structures belonging to a wide variety of subjects can be characterized in regards to their physical and mechanical parameters. This invited paper will present and discuss electron holography's state of the art applications to study the shape of nanoparticles and bacteria, and the qualitative and quantitative study of magnetic and electric fields produced by novel nano-structures.

  6. Electronic health record meets digital library: a new environment for achieving an old goal.

    Science.gov (United States)

    Humphreys, B L

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government encouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics.

  7. Electron Tunneling Studies of MOLYBDENUM(1-X) Rhenium(x): Enhancement of Superconductivity by a Resonance Mode.

    Science.gov (United States)

    Shum, Danny Pak-Chum

    It is well-known that a heavy impurity atom in a lattice of light atoms induces a lower frequency in-band resonance mode in the vibrational spectrum. The exact effect of such a mode on the lat- tice spectrum has not previously been reported and effects of such modes on superconductivity have not previously been described. Sputtered thin films of bcc Mo(,1-x)Re(,x), 0.2 0. (delta) increases with (lamda)(,R), the Re contribution to the electron-phonon coupling con- stant (lamda). The dependences of the anomalous softening and width of the resonance mode on (lamda)(,R) fit the Yu-Anderson theory of local pho- non screening by a Fermi gas of electrons treated as Tomonago. bosons. These results explain the low N(0), high T(,c) behavior of Mo(,.6)Re(,.4). *DOE Report IS-T-1246. This work was performed under contract No. W-7405-Eng-82 with the U.S. Department of Energy.

  8. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  9. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Directory of Open Access Journals (Sweden)

    Manolopoulos K.

    2016-01-01

    Full Text Available GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  10. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  11. 21 CFR 1305.03 - Distributions requiring a Form 222 or a digitally signed electronic order.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Distributions requiring a Form 222 or a digitally signed electronic order. 1305.03 Section 1305.03 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION... laboratory or its agent approved by DEA. (d) Delivery from a central fill pharmacy, as defined in § 1300.01(b...

  12. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Vohra, Y. K.; Yang, H. -Y.; McDonnell, E. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Jeffries, J. R.

    2017-01-01

    Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.

  13. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  14. Factors affecting the superconductivity in the process of depositing Nd1.85Ce0.15CuO4-δ by the pulsed electron deposition technique

    Institute of Scientific and Technical Information of China (English)

    GUO; YanFeng

    2007-01-01

    On SrTiO3 single crystal substrate, by using the pulsed electron deposition technique, the high-quality electron doped Nd1.85Ce0.15CuO4-δsuperconducting film was successfully fabricated. After careful study on the R-T curves of the obtained samples deposited with different substrate temperatures, thicknesses, annealing methods and pulse frequencies, the effects of them on the superconductivity of the films were found, and the reasons were also analyzed. Additionally, by using the same model of the pulsed laser deposition technique, the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.  ……

  15. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  16. Digital stacks, how to store and manage your electronic digital stacks

    NARCIS (Netherlands)

    Boheemen, van P.J.C.

    2009-01-01

    Libraries have always been known for their skills in describing, archiving and storing books and journals. Now we see that libraries have to deal with local copies of electronic publications. Describing them the way they have described paper publications can be done in the same way. Storing them on

  17. Digital stacks, how to store and manage your electronic digital stacks

    NARCIS (Netherlands)

    Boheemen, van P.J.C.

    2009-01-01

    Libraries have always been known for their skills in describing, archiving and storing books and journals. Now we see that libraries have to deal with local copies of electronic publications. Describing them the way they have described paper publications can be done in the same way. Storing them on

  18. Electron-phonon coupling in superconducting β-PdBi{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Institute of Engineering and Technology, Raebareli-229001 (India); Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics, Feroze Gandhi College, Raebareli-229001 (India)

    2015-06-24

    We have studied the electronic, transport and vibrational properties of low temperature superconductor β-PdBi{sub 2}. The band manifold clearly demonstrates the 2D-layered structure with multiple gaps. The intersection of bands at E{sub F} in the Γ-P, Γ-N directions gives rise to complicated Fermi surface topology, which contains quite complicated multiple connected sheets, as well as hole and electron-like pockets. From the low temperature specific heat, we have estimated the electron-phonon coupling constant λ{sub el-ph} which has a very high value of 3.66. The vibrational properties clearly illustrates that the strong coupling makes the lattice unstable. The calculated properties confirm that β-PdBi{sub 2} is an intermediate coupling superconductor.

  19. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  20. Electronic inhomogeneities in the superconducting phase of CaFe1.96Ni0.04As2 single crystals

    Science.gov (United States)

    Dutta, Anirban; Kumar, Neeraj; Thamizhavel, A.; Gupta, Anjan K.

    2015-02-01

    Superconductivity in CaFe2-xNixAs2 emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and the AFM phase overlaps with superconducting (SC) phase for a small range of x-values. We present scanning tunneling microscopy and spectroscopy study of an underdoped CaFe2-xNixAs2 single crystal in the vicinity of the boundary of the two phases. Both resistivity and magnetic susceptibility measurements show a superconducting TC of 15 K and from later we deduce a superconducting fraction of 1.2%. Topographic images show reasonably flat surface with signatures of atomic resolution. Spectra between 120 K and 20 K are spatially homogeneous and show signatures of spin density wave (SDW) gap. Below TC, spectra show significant spatial inhomogeneity with a depression in density of states in±5 meV energy range. Inhomogeneity reduces significantly as the temperature goes above TC and disappears completely far above TC. These observations are discussed in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the SC dome boundary on the underdoped side of the phase diagram.

  1. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  2. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  3. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  4. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  5. 1976 Navy Study on Superconductive Electronics, August 2-13, 1976, Naval Postgraduate School, Monterey, California

    Science.gov (United States)

    1976-01-01

    the projected performance of SCE radiometers is more than an order of magnitude greater than conventional technology. -127- 16. MICROWAVE ...GHz and 4-bit resolution in the near term, and significantly greater resolution in the next decade. Microwave /Millimeter Wave Electronics ~ SCE...variety of applications from magnetic anomaly detection and geothermal prospecting to biomedical research. The full potential of SCE systems in this

  6. Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure

    Science.gov (United States)

    Naito, Michio; Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki

    2016-04-01

    The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-Tc superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-Tc superconductivity would develop upon doping holes or electrons in a Mott-Hubbard insulator ("doped Mott-insulator scenario"). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd2CuO4 (T') structure and the revised electronic phase diagram in T' cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T' cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO2 planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T' cuprates is required, which is also included in this review.

  7. Digital pulse processing and optimization of the front-end electronics for nuclear instrumentation.

    Science.gov (United States)

    Bobin, C; Bouchard, J; Thiam, C; Ménesguen, Y

    2014-05-01

    This article describes an algorithm developed for the digital processing of signals provided by a high-efficiency well-type NaI(Tl) detector used to apply the 4πγ technique. In order to achieve a low-energy threshold, a new front-end electronics has been specifically designed to optimize the coupling to an analog-to-digital converter (14 bit, 125 MHz) connected to a digital development kit produced by Altera(®). The digital pulse processing is based on an IIR (Infinite Impulse Response) approximation of the Gaussian filter (and its derivatives) that can be applied to the real-time processing of digitized signals. Based on measurements obtained with the photon emissions generated by an (241)Am source, the energy threshold is estimated to be equal to ~2 keV corresponding to the physical threshold of the NaI(Tl) detector. An algorithm developed for a Silicon Drift Detector used for low-energy x-ray spectrometry is also described. In that case, the digital pulse processing is specifically designed for signals provided by a reset-type preamplifier ((55)Fe source).

  8. The impact of electronic word-of-mouth in the distribution of digital goods

    Directory of Open Access Journals (Sweden)

    Ravi S. Sharma

    2011-06-01

    Full Text Available The rapid proliferation of social media networks has presented a platform of opportunities for the distribution of digital products and related applications. This is commonly known as word-of-mouth or viral marketing and intuitively fits the requirements of digital goods in that consumption, authentication and opinions are communal. In this short paper, we point out the efficacy of the phenomenon of electronic word-of-mouth (eWoM in digital markets. More specifically, we use a model that encapsulates our understanding of how eWoM impacts economic and social activities that influence co-consumption. An empirical study of a typical example of digital products – music albums – was conducted to test the fundamental premises of our framework and derive qualitative findings. Drawing on the results, we attempt to refine a prescriptive framework for eWoM in general. This is part of an on-going study of the distribution channels for digital media and how they may be effectively designed. Given the proliferation of the Internet and the complementary nature of social networks, we believe that context sensitive eWoM is a key aspect of digital distribution.

  9. Internet Politics and Digital Divide Issues: The Rising of a New Electronic Aristocrats and Electronic Meticians

    Directory of Open Access Journals (Sweden)

    Athanasios I. Bozinis

    2007-01-01

    Full Text Available The use of Information and Communication Technologies (ICT from the beginning of 1990 until today has brought important changes on function and structure of both public sector and governments. Within the framework of application and use of e-democracy, new technologies enhance the citizens’ democratic participation in public affairs, by using e-voting, e-ballot, while by using e-mail, citizens can develop and consolidate the digital Ancient Agora by exchanging their views with each other or with the elected representatives. Information systems and Internet is today a powerful tool for governments and citizens aiming at the collective decision-making and the reduction of democracy shortcoming. This paper conclude that the access impossibility of citizens to digital democracy services, in the form of digital divide, can be easily compared with the right of vote in Ancient Athens, a right that only privileged citizens had.

  10. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    Science.gov (United States)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  11. Flight testing the digital electronic engine control in the F-15 airplane

    Science.gov (United States)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  12. Digitization

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    Processes of digitization have for years represented a major trend in the developments of modern society but have only recently been related to processes of mediatization. The purpose of this article is to look into the relation between the concepts of mediatization and digitization and to clarify...... what a concept of digital media might add to the understanding of processes of mediatization and what the concept of mediatization might add to the understanding of digital media. It is argued that digital media open an array of new trajectories in human communication, trajectories which were...... not anticipated in previous conceptualizations of media and mediatization. If digital media are to be included, the concept of mediatization has to be revised and new parameters are to be built into the concept of media. At the same time it is argued that the concept of mediatization still provides a variety...

  13. Superconductivity in the two-dimensional electron gas induced by high-energy optical phonon mode and large polarization of the SrTiO3 substrate

    Science.gov (United States)

    Rosenstein, Baruch; Shapiro, B. Ya.; Shapiro, I.; Li, Dingping

    2016-07-01

    Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100 ) surface and on the interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems solving the gap equation for Tc for arbitrary Fermi energy ɛF, electron-phonon coupling λ , and the phonon frequency Ω , and direct (random-phase approximation) electron-electron repulsion strength α . The focus is on the intermediate region between the adiabatic, ɛF>>Ω , and the nonadiabatic, ɛF<<Ω , regimes. The high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ˜0.5 , and huge dielectric constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.

  14. Electronic, thermal, and superconducting properties of metal nitrides (MN) and metal carbides (MC) (M=V, Nb, Ta) compounds by first principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Subhashree, G.; Sankar, S.; Krithiga, R. [Anna Univ., Chennai, Tamil Nadu (India). Condensed Matter Lab.

    2015-07-01

    Structural, electronic, and superconducting properties of carbides and nitrides of vanadium (V), niobium (Nb), and tantalum (Ta) (group V transition elements) have been studied by computing their electronic band structure characteristics. The electronic band structure calculations have been carried out based on the density functional theory (DFT) within the local density approximation (LDA) by using the tight binding linear muffin tin orbital method. The NaCl-type cubic structures of MN and MC (M=V, Nb, Ta) compounds have been confirmed from the electronic total energy minimum of these compounds. The ground state properties, such as equilibrium lattice constant (a{sub 0}), bulk modulus (B), and Wigner-Seitz radius (S{sub 0}) are determined and compared with available data. The electronic density of states reveals the metallic nature of the chosen materials. The electronic specific heat coefficient, Debye temperature, and superconducting transition temperature obtained from the band structure results are found to agree well with the earlier reported literature.

  15. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    Science.gov (United States)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  16. Documentary Realism, Sampling Theory and Peircean Semiotics: electronic audiovisual signs (analog or digital as indexes of reality

    Directory of Open Access Journals (Sweden)

    Hélio Godoy

    2007-07-01

    Full Text Available This paper addresses Documentary Realism, focusing on thephysical phenomena of transduction that take place in analog and digital audiovisual systems, herein analyzed in the light of the Sampling Theory, within the framework of Shannon and Weaver’s Information Theory. Transduction is a process by which one type of energy is transformed into another, or by which information is transcodified. Within the scope of Documentary Realism, it cannotbe claimed that electronic audiovisual signs, because of their technical digital features lead to a rupture with reality. Rather, the digital documentary, based on electronic digital cinematography, is still an index of reality.

  17. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    Energy Technology Data Exchange (ETDEWEB)

    Das, Tanmoy [Los Alamos National Laboratory; Balatsky, Alexander V. [Los Alamos National Laboratory; Zhang, Chenglin [University of Tennessee, Knoxville, Tennessee; Li, Haifeng [Institut fur Festkorperforschung, Julich, Germany; Su, Yiki [The University of Tennessee, Knoxville, Tennessee; Nethertom, Tucker [The University of Tennessee, Knoxville, Tennessee; Redding, Caleb [The University of Tennessee, Knoxville, Tennessee; Carr, Scott [The University of Tennessee, Knoxville, Tennessee; Schneidewind, Astrid [Forschungsneutronenquelle Heinz, Garching, Germany; Faulhaber, Enrico [Gemeinsame Forschergruppe HZB, Berlin, Germany; Li, Shiliang [Institute of Physics, Chinese Academy of Sciences, Beijing, China; Yao, Daoxin [Sun Yat-Sen University, Guangzhou, China; Bruckel, Thomas [Institut fur Festkorperforschung, Julich, Germany; Dai, Pengchen [Institute of Physics, Chinese Academy of Sciences, Beijing, China; Sobolev, Oleg [Forschungsneutronenquelle Heinz, Garching, Germany

    2012-06-05

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  18. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  19. Electron tunneling into superconducting indium and lead films containing the magnetic impurity manganese

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Juine-Kai [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics

    1980-01-01

    Tunneling measurements of quench-condensed In-Mn and Pb-Mn alloy films were made. The results were compared with Shiba's theory of superconductors containing magnetic impurities. The localized excited impurity states predicted by Shiba's theory were observed in both alloys. In addition to s-wave scattering, it was necessary to include p- and d-wave scattering of the conduction electrons in the theory in order to explain the experimental data. Partial agreement between the theory and the experimental data was obtained using phase shifts from band calculations by A.B. Kunz. The results on In-Mn also agree with thermal conductivity data.

  20. Thermodynamic Properties of κ-(BEDT-TTF2X Salts: Electron Correlations and Superconductivity

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakazawa

    2012-06-01

    Full Text Available Heat capacity measurements of κ-(BEDT-TTF2X (BEDT-TTF: Bis(ethylendithio tetrathiafulvalene, X: counteranions which are classified as two-dimensional (2D dimer-Mott system are reported. At first, we explain structural and electronic features originated from rigid dimerization in donor arrangement in 2D layers. The antiferromagnetic Mott insulating phase located at low-pressure region in the phase diagram shows vanishing γ electronic heat capacity coefficient in the heat capacity, which claims opening of a charge-gap in this insulating state. Then, a systematic change of the γ around the Mott boundary region is reported in relation to the glass freezing of ethylene dynamics. The thermodynamic parameters determined by ∆Cp/γTc of 10 K class superconductors, κ-(BEDT-TTF2Cu(NCS2 and κ-(BEDT-TTF2Cu[N(CN2]Br demonstrate that a rather large gap with a strong coupling character appears around the Fermi-surface. On the other hand, the low temperature heat capacity clearly shows a picture of nodal-gap structure due to an anisotropic pairing. The comparison with lower Tc compounds in the κ-type structure is also performed so as to discuss overall features of the κ-type superconductors. The heat capacity measurements of hole-doped systems containing mercury in the counteranions show an anomalous enhancement of γ, which is consistent with the T1−1 of NMR experiments etc. The results of heat capacity measurements under high pressures are also reported.

  1. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  2. Digitally Controlled Integrated Electronic Ballast with Dimming and Power Factor Correction Features

    Directory of Open Access Journals (Sweden)

    C. Aguilar-Castillo

    2010-12-01

    Full Text Available This paper presents a digitally controlled integrated electronic ballast with dimming and power factor correctionfeatures. The control circuit is based on a low-cost PIC16C71 microcontroller where the different strategies for energysaving have been implemented. The ballast is operating in closed loop achieving tight lamp current regulation througha digital Proportional-Integral algorithm. The integrated power stage is based on a frequency-controlled single-switchboost rectifier plus a half-bridge series resonant parallel loaded inverter sharing one power switch. The single-switchboost rectifier works in discontinuous inductor current mode with automatic power factor correction. Detailed analysisof the power stages and experimental results using 42-watt electronic ballast are presented.

  3. Trust building electronic services as a crucial self-regulation feature of Digital Business Ecosystems

    Directory of Open Access Journals (Sweden)

    Radoslav Delina

    2012-04-01

    Full Text Available In the field of digital business ecosystem, the self-regulation feature plays crucial role. ICT supports biological and sociological phenomena through efficient electronic services. One of the main roles is building and enhancing efficient relationships between actors within the ecosystem. Problem of interaction between commercial subjects depends on expected benefits. These expectations are predictors of successful result from realized transaction with potential partner. And this predictor is based on trust and trustworthiness. The paper presents trust as crucial factor for cooperation and discusses specifics of several trust building mechanisms to increase the level of trust in e-cooperation within digital business ecosystems. Based on results provided by questionnaire survey in Slovak business environment, the paper discusses the relationship between the level of respondents´ electronic business experience and their preferences for the portfolio of trust building mechanisms.

  4. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  5. Augmentor transient capability of an F100 engine equipped with a digital electronic engine control

    Science.gov (United States)

    Burcham, F. W., Jr.; Pai, G. D.

    1984-01-01

    An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.

  6. Deep sub electron noise readout in CCD systems using digital filtering techniques

    CERN Document Server

    Cancelo, Gustavo; Moroni, Guillermo Fernandez; Treptow, Ken; Zmuda, Ted; Diehl, Tom

    2011-01-01

    Scientific CCDs designed in thick high resistivity silicon (Si) are excellent detectors for astronomy, high energy and nuclear physics, and instrumentation. Many applications can benefit from CCDs ultra low noise readout systems. The present work shows how sub electron noise CCD images can be achieved using digital signal processing techniques. These techniques allow readout bandwidths of up to 10 K pixels per second and keep the full CCD spatial resolution and signal dynamic range.

  7. Electronic medical archives: a different approach to applying re-signing mechanisms to digital signatures.

    Science.gov (United States)

    Chen, Tzer-Long; Lin, Frank Y S

    2011-08-01

    Electronic medical records can be defined as a digital format of the traditionally paper-based anamneses, which contains the history of a patient such as his somewhat illness, current health problems, and his chronic treatments. An electronic anamnesis is meant to make the patient's health information more conveniently accessible and transferable between different medical institutions and also easier to be kept quite a long time. Because of such transferability and accessibility of electronic anamneses, we can use less resource than before on storing the patients' medical information. This also means that medical care providers could save more funds on record-keeping and access a patient's medical background directly since shown on the computer screen more quickly and easily. Overall, the service quality has seemingly improved greatly. However, the usage of electronic anamneses involves in some concerned issues such as its related law declaration, and the security of the patient's confidential information. Because of these concerns, a secure medical networking scheme is taking into consideration. Nowadays, the administrators at the medical institutions are facing more challenges on monitoring computers and network systems, because of dramatic advances in this field. For instance, a trusted third party is authorized to access some medical records for a certain period of time. In regard to the security purpose, all the electronic medical records are embedded with both of the public-key infrastructure (PKI) cryptography and the digital signature technique so as to ensure the records well-protected. Since the signatures will be invalid due to the revocation or time expiration, the security of records under this premise would turn into vulnerable. Hence, we propose a re-signing scheme, whose purpose is to make a going-expired digital signature been resigned in time, in keeping with the premise of not conflicting with the laws, morals, and privacy while maintaining the

  8. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  9. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

    Directory of Open Access Journals (Sweden)

    Michael B. Sherman

    2015-05-01

    Full Text Available A unique biological safety level (BSL-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2 decontamination cycles.

  10. Electronic properties of high-temperature superconducting thin films grown by pulsed laser deposition

    Science.gov (United States)

    Abrecht, M.; Ariosa, Daniel; Cloetta, D.; Margaritondo, Giorgio; Pavuna, Davor

    2002-11-01

    We use a pulsed laser deposition (PLD) setup to grow ultra-thin films of high temperature superconductors (HTSC) and transfer them in-situ into a photoemission chamber. Photoemission measurements on such films allow us to study non-cleavable materials, but can also give insights into aspects never measured before, like the influence of strain on the low energy electronic structure. Systematic studies of many different materials grown as films showed that Bi2Sr2CaCu2O8+x, Bi2Sr2Cu1O6+x, Bi2Sr2Ca2Cu3O10+x and La2-xSrxCuO4 films exhibit a conductor-like Fermi edge, but materials containing chains (such as YBa2Cu3O7-x) are prone to very rapid surface degradation, possibly related to critical oxygen loss at the surface. Among HTSC materials, La2-xSrxCuO4 is extremely interesting because of its rather simple structure and the fact that its critical temperature Tc can be enhanced by epitaxial strain. Here we present our first high resolution angular resolved photoemission spectroscopy (ARPES) results on 8 unit-cell thin La2-xSrxCuO4 films on SrLaAlO4 [001] substrates. Due to the lattice mismatch, such films are compressed in the copper oxygen planes and expanded in the c-axis direction. Results show a surprisingly modified Fermi surface compared to the one of non-strained samples.

  11. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    Science.gov (United States)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  12. Clinical Simulation and Workflow by use of two Clinical Information Systems, the Electronic Health Record and Digital Dictation

    DEFF Research Database (Denmark)

    Schou Jensen, Iben; Koldby, Sven

    2013-01-01

    digital dictation and the EHR (electronic health record) were simulated in realistic and controlled clinical environments. Useful information dealing with workflow and patient safety were obtained. The clinical simulation demonstrated that the EHR locks during use of the integration of digital dictation...

  13. Sayısal İmza ve Elektronik Belge Yönetimi / Digital Signature and Electronic Document Management

    Directory of Open Access Journals (Sweden)

    Kemal Ermiş

    2006-04-01

    Full Text Available Classical communication methods, which have been used extensively in many areas of daily life and amongst especially in business life, started to be used in electronic settings, and at various advanced forms, like digital signature. Digital signature, which aimed primarily at contributing security of communication, was investigated as a specific example of the effects of technological developments on document management

  14. Comparison between image quality in electronic zoom and geometric magnification in digital mammography.

    Science.gov (United States)

    Alkhalifah, K H; Brindhaban, A; Asbeutah, A M

    2016-10-06

    Magnification mammography is performed to enhance the visibility of small structures at the expense of relatively high radiation dose as a complementary examination to standard mammography. The introduction of post-processing capabilities and the widespread use of digital mammography has promoted some controversy in the last decade on whether similar visibility can be achieved using electronic zoom. The aim of this study is to compare the visibility of small structures in images obtained by the two techniques stated above for different exposure conditions. Images of a Fluke Biomedical Model 18-220 Mammography Accreditation Phantom were obtained using standard techniques and geometric magnification, using a digital mammography unit, with different exposure factors. Three different target/filter combinations (Mo/Mo,Mo/Rh,Rh/Rh), variable kVp (26-32), and automatic exposure control were used. Images obtained using standard technique were electronically zoomed and compared to the corresponding magnification mammograms. Comparisons were based on the visibility of structures evaluated by five senior technologist with extensive experience in mammography. Statistical analysis was performed using non-parametric tests. Visibility of structures was not affected by the kV used for a given target/filter combination for both techniques (p > 0.065). Target/filter combination of Mo/Mo provided better visibility of micro-calcification and fibers (p geometric magnification technique and Mo/Rh in the digital zoom technique. No significant differences were observed in the visibility of simulated breast masses. The overall image score was significantly higher (p geometric magnification over the digital zoom for Mo/Mo & Rh/Rh combinations. Although sufficient image quality was maintained in electronically zoomed images, geometric magnification provided better overall visualization of structures in the phantom.

  15. Physics of electrons in solids: Volume 1 - Solid state physics, band structure, superconductivity and magnetism; Volume 2 - Solid state physics, exercises and problems with keys; Physique des electrons dans les solides: Tome 1, structure de bandes, supraconductivite et magnetisme. Physique des electrons dans les solides: Tome 2, recueil d'exercices et de problemes

    Energy Technology Data Exchange (ETDEWEB)

    Alloul, H. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides

    2007-07-01

    The diversity of the macroscopic properties of solids like magnetism or superconductivity stems from the quantum states of electrons. Today only the experimental approach reveals the spectacular effects of these properties but basic concepts of quantum mechanics and of statistical physics are necessary to give an account of the link between the microscopic scale and the macroscopic world. The simple approach involving independent electrons gives a description of the electronic structure as energy bands that explains the existence of metals, isolators and semi-conductors. Magnetism and superconductivity can be understood only by taking into account the existence of correlations between the electrons in the solids. The first tome presents the formalism of quantum mechanics applied to the system formed by nuclei and the electrons in solids. Different issues like electronic structures in solids, electron transport, the microscopic origin of superconductivity, the magnetism of isolators, the dynamics of spin and magnetic resonance are explained. The second volume can be divided into 2 parts, the first part giving the keys of the questions arisen in the first volume while the second part propose a series of problems (with keys). These problems illustrate the topics presented in the first volume and deal with issues like optical properties of solids, electron bands, Peierls transition, phonons in solids, isolator-metal transition, cyclotron resonance, superconductivity of NbSe{sub 2}, electronic properties of La{sub 2}CuO{sub 4}, or the magnetism of thin films. (A.C.)

  16. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  17. Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure.

    Science.gov (United States)

    Medvedev, S; McQueen, T M; Troyan, I A; Palasyuk, T; Eremets, M I; Cava, R J; Naghavi, S; Casper, F; Ksenofontov, V; Wortmann, G; Felser, C

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T(C) superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T(C) values up to 55 K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of beta-Fe(1.01)Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as T(C) rises, owing to a collapse of the separation between the Fe(2)Se(2) layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe(1.01)Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  18. The electronic structure of Nb3Al/Nb3Sn, a new test case for flat/steep band model of superconductivity

    Institute of Scientific and Technical Information of China (English)

    Yanlong Ding; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly flat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the ‘‘Flat/steep’’ band model than to the van-Hove singularity scenario. The flat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.

  19. Electronic and magnetic phase diagram of [Beta]Fe[subscript1.01]Se with superconductivity at 36.7 K under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.; McQueen, T.M.; Troyan, I.A.; Palasyuk, T.; Eremets, M.I.; Cava, R.J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; Felser, C.; (Paderborn); (MXPL-M); (Mainz); (Princeton)

    2010-09-17

    The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T{sub C} superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T{sub C} values up to 55 K. Recently, superconductivity has been reported in FeSe, which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of {beta}-Fe{sub 1.01}Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as T{sub C} rises, owing to a collapse of the separation between the Fe{sub 2}Se{sub 2} layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe{sub 1.01}Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behavior.

  20. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7K under pressure

    Science.gov (United States)

    Medvedev, S.; McQueen, T. M.; Troyan, I. A.; Palasyuk, T.; Eremets, M. I.; Cava, R. J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; Felser, C.

    2009-08-01

    The discovery of new high-temperature superconductors based on FeAs has led to a new `gold rush' in high-TC superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach TC values up to 55K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of β-Fe1.01Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7K under an applied pressure of 8.9GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as TC rises, owing to a collapse of the separation between the Fe2Se2 layers. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressures (starting around 7GPa and completed at 38GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

  1. 76 FR 32373 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Science.gov (United States)

    2011-06-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components Thereof; Notice of Institution of Investigation AGENCY: U.S. International Trade Commission....

  2. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  3. An accurate system for onsite calibration of electronic transformers with digital output

    Science.gov (United States)

    Zhi, Zhang; Li, Hong-Bin

    2012-06-01

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  4. Key-Insulated Undetachable Digital Signature Scheme and Solution for Secure Mobile Agents in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Yang Shi

    2016-01-01

    Full Text Available Considering the security of both the customers’ hosts and the eShops’ servers, we introduce the idea of a key-insulated undetachable digital signature, enabling mobile agents to generate undetachable digital signatures on remote hosts with the key-insulated property of the original signer’s signing key. From the theoretical perspective, we provide the formal definition and security notion of a key-insulated undetachable digital signature. From the practical perspective, we propose a concrete scheme to secure mobile agents in electronic commerce. The scheme is mainly focused on protecting the signing key from leakage and preventing the misuse of the signature algorithm on malicious servers. Agents do not carry the signing key when they generate digital signatures on behalf of the original signer, so the key is protected on remote servers. Furthermore, if a hacker gains the signing key of the original signer, the hacker is still unable to forge a signature for any time period other than the key being accessed. In addition, the encrypted function is combined with the original signer’s requirement to prevent the misuse of signing algorithm. The scheme is constructed on gap Diffie–Hellman groups with provable security, and the performance testing indicates that the scheme is efficient.

  5. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community.

  6. The Transducer Function: An Introduction to a Theoretical Typology in Electronic Literature and Digital Art

    Directory of Open Access Journals (Sweden)

    Álvaro Seiça

    2012-12-01

    Full Text Available In this essay I introduce the notion of transducer function in the fields of electronic literature and digital art. Firstly, I survey the transduction concept throughout its history in such domains as physics, genetics, microbiology, biochemistry, physiology, psychology, philosophy, logic and computer science. Secondly, I discuss the relevance of a transduction theory versus the advantage of a transducer function. I migrate the transduction concept into the fields of electronic literature and digital art, showcasing the contexts of application, and several transfer processes and functions. Finally, I apply the transducer function as a theoretical typology and a recognizable system, highlighting some artworks by R. Luke DuBois, André Sier and Scott Rettberg that can be read within this framework. Thus, it means taking into account a set of transfer and conversion processes: information, patterns and data among mechanisms, technologies, themes, creative and theoretical guidelines. In this sense, I develop a critical framework that operates as a method for analyzing and comprehend further digital artworks.

  7. Automating Quality Metrics in the Era of Electronic Medical Records: Digital Signatures for Ventilator Bundle Compliance.

    Science.gov (United States)

    Lan, Haitao; Thongprayoon, Charat; Ahmed, Adil; Herasevich, Vitaly; Sampathkumar, Priya; Gajic, Ognjen; O'Horo, John C

    2015-01-01

    Ventilator-associated events (VAEs) are associated with increased risk of poor outcomes, including death. Bundle practices including thromboembolism prophylaxis, stress ulcer prophylaxis, oral care, and daily sedation breaks and spontaneous breathing trials aim to reduce rates of VAEs and are endorsed as quality metrics in the intensive care units. We sought to create electronic search algorithms (digital signatures) to evaluate compliance with ventilator bundle components as the first step in a larger project evaluating the ventilator bundle effect on VAE. We developed digital signatures of bundle compliance using a retrospective cohort of 542 ICU patients from 2010 for derivation and validation and testing of signature accuracy from a cohort of random 100 patients from 2012. Accuracy was evaluated against manual chart review. Overall, digital signatures performed well, with median sensitivity of 100% (range, 94.4%-100%) and median specificity of 100% (range, 100%-99.8%). Automated ascertainment from electronic medical records accurately assesses ventilator bundle compliance and can be used for quality reporting and research in VAE.

  8. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  9. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    Science.gov (United States)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  10. Using digital electronic design flow to create a Genetic Design Automation tool.

    Science.gov (United States)

    Gendrault, Y; Madec, M; Wlotzko, V; Andraud, M; Lallement, C; Haiech, J

    2012-01-01

    Synthetic bio-systems become increasingly more complex and their development is lengthy and expensive. In the same way, in microelectronics, the design process of very complex circuits has benefited from many years of experience. It is now partly automated through Electronic Design Automation tools. Both areas present analogies that can be used to create a Genetic Design Automation tool inspired from EDA tools used in digital electronics. This tool would allow moving away from a totally manual design of bio-systems to assisted conception. This ambitious project is presented in this paper, with a deep focus on the tool that automatically generates models of bio-systems directly usable in electronic simulators.

  11. Digital Preservation.

    Science.gov (United States)

    Yakel, Elizabeth

    2001-01-01

    Reviews research on digital preservation issues, including born-digital and digitally recreated documents. Discusses electronic records research; metadata and other standards; electronic mail; Web-based documents; moving images media; selection of materials for digitization, including primary sources; administrative issues; media stability…

  12. Peltier cooling for the superconducting electronics. Final report; Peltier-Kuehlung fuer die Supraleitungs-Elektronik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Straehle, J.; Huebener, R.P. [Tuebingen Univ. (Germany). Lehrstuhl fuer Experimentalphysik 2; Kemmler-Sack, S.; Rath, S. [Tuebingen Univ. (Germany). Inst. fuer Anorganische Chemie

    1999-12-01

    The project has concentrated on the semiconductor systems Bi{sub 0,52}Sb{sub 1,48}Te{sub 3} doped with Se, Pb and Te (p-doping) and Bi{sub 2}Te{sub 3-y}Se{sub y} (n-doping), which at present represent the dominating class of materials for Peltier-cooling. It was the main goal of our experiments to find out if the thermo-electric figure of merit between 150 and 300 K can be considerably improved by means of powder metallurgical preparation techniques. During the variation of the preparation parameters more than 300 samples were fabricated and measured regarding their relevant transport properties. Based on these results we have constructed a 7-stage-cascade, which produced at the cold end a temperature of 136 K with a temperature of 285 K on the warm side. These results indicate that there is a realistic chance to reach the transition temperature T{sub c}=134 K of the cuprate superconductor HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+}{delta} by Peltier-cooling alone. In our project we have also shown that a single Peltier-cooling stage can find an important application in the superconducting power-electronics (current lead, fault current limiter). Peltier-cooling with ac-current is also subject of a patent application. (orig.) [German] Die in der Peltier-Kuehltechnik vorrangig benutzten Halbleiter Bi{sub 0.52}Sb{sub 1.48}Te{sub 3} mit Se, Pb, oder Te-Dotierung (p-Halbleiter) sowie Bi{sub 2}Te{sub 3-y}Se{sub y} (n-Halbleiter) wurden als Ausgangsmaterialien verwendet, um herauszufinden, ob sich durch neue pulvermetallurgische Praeparationsverfahren der thermoelektrische Guetefaktor im Temperaturbereich zwischen 150 und 300 K deutlich verbessern laesst. Bei der Variation der Praeparationsparameter wurden mehr als 300 Proben hergestellt und im Hinblick auf ihre relevanten Transporteigenschaften vermessen. Auf diesen Ergebnissen aufbauend, wurde eine 7-stufige Kaskade konstruiert, die bei einer Warmseitentemperatur von 285 K auf der letzten Stufe den Temperaturwert von 136 K

  13. Localized electronic states and photoemission superconducting condensate in Bi 2Sr 2CaCu 2O 8+x

    Science.gov (United States)

    Ma, Jian; Quitmann, C.; Kelley, R. J.; Margaritondo, G.; Onellion, M.

    1995-04-01

    We present the first detailed angle-resolved photoemission evidence that there are two types of carriers that contribute to the photoe-mission superconducting condensate in Bi 2Sr 2CaCu 2O 8+x. Our data indicate that both itinerant and somewhat localized normal state carriers can contribute to the formation of Cooper pairs.

  14. Superconducting Electronic Film Structures.

    Science.gov (United States)

    1988-01-24

    Research Society Extended Abstracts, Japanese Journal of Applied Physics (Pccecd-*: f LT-18) "d Applied PLslac Lett~ar. A summary of all the work on...77K in vacuum. Very high gap voltages were observed corresponding to 2A/kBTc - 11. The results were published in the Japanese Journal of Applied Physics (Proceedings

  15. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  16. Digital contract approach for consistent and predictable multimedia information delivery in electronic commerce

    Science.gov (United States)

    Konana, Prabhudev; Gupta, Alok; Whinston, Andrew B.

    1997-01-01

    A pure 'technological' solution to network quality problems is incomplete since any benefits from new technologies are offset by the demand from exponentially growing electronic commerce ad data-intensive applications. SInce an economic paradigm is implicit in electronic commerce, we propose a 'market-system' approach to improve quality of service. Quality of service for digital products takes on a different meaning since users view quality of service differently and value information differently. We propose a framework for electronic commerce that is based on an economic paradigm and mass-customization, and works as a wide-area distributed management system. In our framework, surrogate-servers act as intermediaries between information provides and end- users, and arrange for consistent and predictable information delivery through 'digital contracts.' These contracts are negotiated and priced based on economic principles. Surrogate servers pre-fetched, through replication, information from many different servers and consolidate based on demand expectations. In order to recognize users' requirements and process requests accordingly, real-time databases are central to our framework. We also propose that multimedia information be separated into slowly changing and rapidly changing data streams to improve response time requirements. Surrogate- servers perform the tasks of integration of these data streams that is transparent to end-users.

  17. Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems

    Science.gov (United States)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed.

  18. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  19. Study of superconducting and non-superconducting (Cu, Cr)-1212 compounds by high-resolution TEM and electron energy loss spectroscopy

    CERN Document Server

    Anan, Y; Kurami, H; Hatano, J; Tsutsumi, S; Kimoto, K; Matsui, Y

    2001-01-01

    Structure of YSr/sub 2-x/Ba/sub x/Cu/sub 2.8/Cr/sub 0.2/O/sub y/ (x =0-1.5) superconductors are examined by electron diffraction, HRTEM and electron energy loss spectroscopy (EELS). YSr/sub 2/Cu/sub 2.8/Cr /sub 0.2/O/sub y/ (x=0) shows incommensurate superstructure with 3.67a/sub 0/ due to lattice strain and mixed intergrowth of -(Cr-Cu- Cu-Cu-Cr)- and -(Cr-Cu-Cu-Cr)- sequences. In the h 0 l electron diffraction pattern the wavevector [~0.27, 0, 1/2] due to the incommensurate superstructure disappear in the crystal with high Ba contain (x>or=1.0). This suggests that structural distortion decreases with Ba substitution. At the same time, Cr-L3, L2 edge of EELS spectra shifts toward the low-energy side with increase of Ba content. (13 refs).

  20. 76 FR 54496 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Science.gov (United States)

    2011-09-01

    ... Lincolnshire, Illinois. 76 FR. 32373-74. The complaint alleges violations of section 337 of the Tariff Act of... COMMISSION In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components..., and the sale within the United States after importation of certain electronic devices having a...

  1. 电子商务中的安全数字签名技术%Technologies for Securig Digital Signature in Electronic Commerce

    Institute of Scientific and Technical Information of China (English)

    刘东苏; 周津慧

    2002-01-01

    The security requirement in electronic commerce and the way to realize digital signature are introduced. A scheme of securing digital signature is discussed. Finally, the article analyzes the security problem of this scheme.

  2. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  3. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  4. Flexible Digital Control & Driving Electronics For Cryo-Coolers Application To Sentinel-3 SLSTR

    Science.gov (United States)

    Chico, J. C.; Caballero, G.; Gonzalez, D.; Fernandez, A.; Romero, V.; Bataller, E.

    2011-10-01

    The digital control as well as the power electronic implemented in the "Cryo-Cooler Driver Electronics" CDE units have evolved along these last years to new concepts allowing an easier management of the Cryo- coolers in flight programs, at the same time that the performances have been improved. A good example of this evolution in the CDE equipments is the one developed by Astrium Crisa for the Stirling Cooler of Astrium UK of the Sea & Land Surface Temperature Radiometer (SLSTR) instrument, which will be boarded in Sentinel-3. A new concept of CDE has been developed not only to satisfy the specific requirements of the SLSTR Stirling Cooler, but also to get a very modular and scalable architecture that can be adapted easily to different configurations of coolers. This paper describes the SLSTR CDE architecture, showing the problems found during the development of the unit as well as the latest performances achieved during the testing of the EM.

  5. Carbon Nanotube-Based Digital Vacuum Electronics and Miniature Instrumentation for Space Exploration

    Science.gov (United States)

    Manohara, H.; Toda, R.; Lin, R. H.; Liao, A.; Mojarradi, M.

    2010-01-01

    JPL has developed high performance cold cathodes using arrays of carbon nanotube bundles that produce > 15 A/sq cm at applied fields of 5 to 8 V/micron without any beam focusing. They have exhibited robust operation in poor vacuums of 10(exp -6) to 10(exp -4) Torr- a typically achievable range inside hermetically sealed microcavities. Using these CNT cathodes JPL has developed miniature X-ray tubes capable of delivering sufficient photon flux at acceleration voltages of electronics potentially for Venus in situ missions and defense applications. These digital vacuum electronic devices are inherently high-temperature tolerant and radiation insensitive. Device design, fabrication and DC switching operation at temperatures up to 700 C are presented in this paper.

  6. Measurements and analysis of Hall effect of a two dimensional electron gas in the close proximity of a superconducting YBa2Cu3O(7 - x) film

    Science.gov (United States)

    Tseng, M. Z.; Jiang, W. N.; Hu, E. L.

    1994-09-01

    A direct integration of YBa2Cu3O(7 - x) and a two dimensional electron gas Hall probe was made possible through the use of a MgO buffer layer. We demonstrate the use of this structure for the measurements of the magnetization hysteresis of a superconducting YBa2Cu3O(7 - x) thin film, and we make an estimate of the sensitivity and resolution that can be achieved with this probe structure. The close proximity of the YBa2Cu3O(7 - x) to the two dimensional electron gas (approximately 1700 A) allows sensitive measurements of interactions between the two; more importantly, closer superconductor-semiconductor spacing can be achieved without severe compromise of the component material quality.

  7. Extraction Of Electronic Evidence From VoIP: Identification & Analysis Of Digital Speech

    Directory of Open Access Journals (Sweden)

    David Irwin

    2012-09-01

    Full Text Available The Voice over Internet Protocol (VoIP is increasing in popularity as a cost effective and efficient means of making telephone calls via the Internet. However, VoIP may also be an attractive method of communication to criminals as their true identity may be hidden and voice and video communications are encrypted as they are deployed across the Internet. This produces in a new set of challenges for forensic analysts compared with traditional wire-tapping of the Public Switched Telephone Network (PSTN infrastructure, which is not applicable to VoIP. Therefore, other methods of recovering electronic evidence from VoIP are required.  This research investigates the analysis and recovery of digitised human, which persists in computer memory after a VoIP call.This paper proposes a proof of concept how remnants of digitised human speech from a VoIP call may be identified within a forensic memory capture based on how the human voice is detected via a microphone and encoded to a digital format using the sound card of your personal computer. This digital format is unencrypted whist processed in Random Access Memory (RAM before it is passed to the VoIP application for encryption and  transmission over the Internet. Similarly, an incoming encrypted VoIP call is decrypted by the VoIP application and passes through RAM unencrypted in order to be played via the speaker output.A series of controlled tests were undertaken whereby RAM captures were analysed for remnants of digital speech after a VoIP audio call with known conversation. The identification and analysis of digital speech from RAM attempts to construct an automatic process for the identification and subsequent reconstruction of the audio content of a VoIP call.

  8. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  9. Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    Science.gov (United States)

    Deasy, Joseph O.

    2000-07-01

    The Monte Carlo (MC) method has long been viewed as the ultimate dose distribution computational technique. The inherent stochastic dose fluctuations (i.e. noise), however, have several important disadvantages: noise will affect estimates of all the relevant dosimetric and radiobiological indices, and noise will degrade the resulting dose contour visualizations. We suggest the use of a post-processing denoising step to reduce statistical fluctuations and also improve dose contour visualization. We report the results of applying four different two-dimensional digital smoothing filters to two-dimensional dose images. The Integrated Tiger Series MC code was used to generate 10 MeV electron beam dose distributions at various depths in two different phantoms. The observed qualitative effects of filtering include: (a) the suppression of voxel-to-voxel (high-frequency) noise and (b) the resulting contour plots are visually more comprehensible. Drawbacks include, in some cases, slight blurring of penumbra near the surface and slight blurring of other very sharp real dosimetric features. Of the four digital filters considered here, one, a filter based on a local least-squares principle, appears to suppress noise with negligible degradation of real dosimetric features. We conclude that denoising of electron beam MC dose distributions is feasible and will yield improved dosimetric reliability and improved visualization of dose distributions.

  10. Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, Joseph O. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 So. Kingshighway Blvd, St Louis, MO 63110 (United States). E-mail: deasy at radonc.wustl.edu

    2000-07-01

    The Monte Carlo (MC) method has long been viewed as the ultimate dose distribution computational technique. The inherent stochastic dose fluctuations (i.e. noise), however, have several important disadvantages: noise will affect estimates of all the relevant dosimetric and radiobiological indices, and noise will degrade the resulting dose contour visualizations. We suggest the use of a post-processing denoising step to reduce statistical fluctuations and also improve dose contour visualization. We report the results of applying four different two-dimensional digital smoothing filters to two-dimensional dose images. The Integrated Tiger Series MC code was used to generate 10 MeV electron beam dose distributions at various depths in two different phantoms. The observed qualitative effects of filtering include: (a) the suppression of voxel-to-voxel (high-frequency) noise and (b) the resulting contour plots are visually more comprehensible. Drawbacks include, in some cases, slight blurring of penumbra near the surface and slight blurring of other very sharp real dosimetric features. Of the four digital filters considered here, one, a filter based on a local least-squares principle, appears to suppress noise with negligible degradation of real dosimetric features. We conclude that denoising of electron beam MC dose distributions is feasible and will yield improved dosimetric reliability and improved visualization of dose distributions. (author)

  11. Probing electronic phase transitions with phonons via inelastic neutron scattering: superconductivity in borocarbides, charge and magnetic order in manganites

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.

    2007-11-02

    The present thesis concentrates on the signatures of strong electron-phonon coupling in phonon properties measured by inelastic neutron scattering. The inelastic neutron scattering experiments were performed on the triple-axis spectrometers 1T and DAS PUMA at the research reactors in Saclay (France) and Munich (Germany), respectively. The work is subdivided into two separate chapters: In the first part, we report measurements of the lattice dynamical properties, i.e. phonon frequency, linewidth and intensity, of the conventional, i.e. phonon-mediated, superconductor YNi{sub 2}B{sub 2}C of the rare-earth-borocarbide family. The detailed check of theoretical predictions for these properties, which were calculated in the theory group of our institute, was one major goal of this work. We measured phonons in the normal state, i.e. T>T{sub c}, for several high symmetry directions up to 70 meV. We were able to extract the full temperature dependence of the superconducting energy gap 2{delta}(T) from our phonon scans with such accuracy that even deviations from the weak coupling BCS behaviour could be clearly observed. By measuring phonons at different wave vectors we demonstrated that phonons are sensitive to the gap anisotropy under the precondition, that different phonons get their coupling strength from different parts of the Fermi surface. In the second part, we investigated the properties of Mn-O bond-stretching phonons in the bilayer manganite La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}. At the doping level x=0.38 this compound has an ferromagnetic groundstate and exhibits the so-called colossal magnetoresistance effect in the vicinity of the Curie temperature T{sub C}. The atomic displacement patterns of the investigated phonons closely resemble possible Jahn-Teller distortions of the MnO{sub 6} octahedra, which are introduced in this compound by the Jahn-Teller active Mn{sup 3+} ions. We observed strong renormalizations of the phonon frequencies and clear peaks of

  12. Surface electronic structure and evidence of plain s -wave superconductivity in (L i0.8F e0.2)OHFeSe

    Science.gov (United States)

    Yan, Y. J.; Zhang, W. H.; Ren, M. Q.; Liu, X.; Lu, X. F.; Wang, N. Z.; Niu, X. H.; Fan, Q.; Miao, J.; Tao, R.; Xie, B. P.; Chen, X. H.; Zhang, T.; Feng, D. L.

    2016-10-01

    (L i0.8F e0.2)OHFeSe is a newly discovered intercalated iron-selenide superconductor with a Tc above 40 K, which is much higher than the Tc of bulk FeSe (8 K). Here we report a systematic study of (L i0.8F e0.2)OHFeSe by low temperature scanning tunneling microscopy (STM). We observed two kinds of surface terminations, namely FeSe and (L i0.8F e0.2)OH surfaces. On the FeSe surface, the superconducting state is fully gapped with double coherence peaks, and a vortex core state with split peaks near EF is observed. Through quasiparticle interference (QPI) measurements, we clearly observed intra- and interpocket scatterings in between the electron pockets at the M point, as well as some evidence of scattering that connects Γ and M points. Upon applying the magnetic field, the QPI intensity of all the scattering channels are found to behave similarly. Furthermore, we studied impurity effects on the superconductivity by investigating intentionally introduced impurities and intrinsic defects. We observed that magnetic impurities such as Cr adatoms can induce in-gap states and suppress superconductivity. However, nonmagnetic impurities such as Zn adatoms do not induce visible in-gap states. Meanwhile, we show that Zn adatoms can induce in-gap states in thick FeSe films, which is believed to have an s±-wave pairing symmetry. Our experimental results suggest it is likely that (L i0.8F e0.2)OHFeSe is a plain s -wave superconductor, whose order parameter has the same sign on all Fermi surface sections.

  13. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  14. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

    Science.gov (United States)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.

    2017-10-01

    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  15. Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi 3, ZnCNi 3 and CdCNi 3 from first principles

    Science.gov (United States)

    Shein, I. R.; Bannikov, V. V.; Ivanovskii, A. L.

    2008-01-01

    First principle total energy calculations using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential were performed to investigate the systematic trends for structural, elastic and electronic properties of the family of superconducting anti-perovskites MCNi 3 depending from the type of M cations (M are Mg, Zn and Cd). In result the optimized lattice parameters, independent elastic constants ( C11, C12 and C44), bulk modulus B, compressibility β, shear modulus G and tetragonal shear modulus G‧ are evaluated. Further, for the first time the numerical estimates of a set of elastic parameters (bulk and shear modulus, Young’s modulus Y, Poisson’s ratio ( ν), Lamé’s coefficients ( μ, λ)) of the polycrystalline superconducting MCNi 3 ceramics (in framework of the Voigt-Reuss-Hill approximation) were performed. Besides, the band structures, densities of states (DOS), total and site-projected l-decomposed DOS at the Fermi level, the shapes of the Fermi surfaces, the Sommerfeld’s coefficients and the molar Pauli paramagnetic susceptibility for these anti-perovskites were obtained and analyzed in comparison with the available theoretical and experimental data.

  16. Hybridization and suppression of the superconductivity in CeFeAsO1-y. Pressure and temperature dependences of the electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Hitoshi [Inst. of Physical and Chemical Research (RIKEN), Wako (Japan); Jarrige, Ignace [Japan Atomic Energy Agency (JAEA), Hyogo (Japan); Ikeda-Ohno, Atsushi [Japan Atomic Energy Agency (JAEA), Hyogo (Japan); Tsutsui, Satoshi [Japan Synchrotron Radiation Research Inst., Hyogo (Japan); Lin, Jung-Fu [Univ. of Texas, Austin, TX (United States); Takeshita, Nao [National Inst. of Advanced Industrial Science adn Technology (AIST), Ibaraki (Japan); Transformative Research-Project on Iron Pnictides (TRIP), Tokyo (Japan); Miyazawa, Kiichi [National Inst. of Advanced Industrial Science adn Technology (AIST), Ibaraki (Japan); Transformative Research-Project on Iron Pnictides (TRIP), Tokyo (Japan); Tokyo Univ. of Science, Chiba (Japan); Iyo, Akira [National Inst. of Advanced Industrial Science adn Technology (AIST), Ibaraki (Japan); Transformative Research-Project on Iron Pnictides (TRIP), Tokyo (Japan); Tokyo Univ. of Science, Chiba (Japan); Kito, Hijiri [National Inst. of Advanced Industrial Science adn Technology (AIST), Ibaraki (Japan); Transformative Research-Project on Iron Pnictides (TRIP), Tokyo (Japan); Eisaki, Hiroshi [National Inst. of Advanced Industrial Science adn Technology (AIST), Ibaraki (Japan); Transformative Research-Project on Iron Pnictides (TRIP), Tokyo (Japan); Hiraoka, Nozomu [National Synchrotron Radiation Research Center, Hsinchu (Taiwan); Ishii, Hirofumi [National Synchrotron Radiation Research Center, Hsinchu (Taiwan); Tsuei, Ku-Ding [National Synchrotron Radiation Research Center, Hsinchu (Taiwan)

    2010-09-23

    Pressure and temperature dependence of the electronic structure of superconducting (SC) CeFeAsO1-y and non-SC CeFeAsO1-y have been investigated using two complementary hard x-ray spectroscopic probes at the Ce L3 edge, partial fluorescence yield x-ray absorption spectroscopy and resonant x-ray emission spectroscopy. With increasing pressure, the ratio between the intensity of the peak related to the f0 (Ce4+ ) state and that of the f1 (Ce3+ ) state, I(f0)/I(f1 ), is found to increase continuously for both compounds, indicating a continuous increase in the Ce valence. The valence of non-SC CeFeAsO1-y is found to be slightly higher than that of SC CeFeAsO1-y in the entire pressure and temperature ranges of this study. The valence of CeFeAsO1-y around 6 GPa, where the superconductivity breaks down, is estimated to be ~3.0 , but no change in the valence is observed upon cooling. The dependence of the interatomic distances on the concentration of oxygen vacancies is studied via extended absorption fine structure spectroscopy.

  17. Electronic working length determination in primary teeth by ProPex and Digital Signal Processing.

    Science.gov (United States)

    Nelson-Filho, Paulo; Lucisano, Marcela Pacífico; Leonardo, Mário Roberto; da Silva, Raquel Assed Bezerra; da Silva, Léa Assed Bezerra

    2010-12-01

    The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.

  18. Digital video analysis of health professionals' interactions with an electronic whiteboard

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus; Kushniruk, Andre

    2013-01-01

    As hospital departments continue to introduce electronic whiteboards in real clinical settings a range of human factor issues have emerged and it has become clear that there is a need for improved methods for designing and testing these systems. In this study, we employed a longitudinal and natur......As hospital departments continue to introduce electronic whiteboards in real clinical settings a range of human factor issues have emerged and it has become clear that there is a need for improved methods for designing and testing these systems. In this study, we employed a longitudinal...... and naturalistic method in the usability evaluation of an electronic whiteboard system. The goal of the evaluation was to explore the extent to which usability issues experienced by users change as they gain more experience with the system. In addition, the paper explores the use of a new approach to collection...... and analysis of continuous digital video recordings of naturalistic "live" user interactions. The method developed and employed in the study included recording the users' interactions with system during actual use using screen-capturing software and analyzing these recordings for usability issues...

  19. Using Digital Crumbs from an Electronic Health Record to Identify, Study and Improve Health Care Teams

    Science.gov (United States)

    Gray, James E; Feldman, Henry; Reti, Shane; Markson, Larry; Lu, Xiaoning; Davis, Roger B.; Safran, Charles A

    2011-01-01

    We have developed a novel approach, the Digital Crumb Investigator, for using data collected as a byproduct of Electonic Health Record (EHR) use to help define care teams and care processes. We are developing tools and methods to utilize these routinely collected data to visualize and quantify care networks across acute care and ambulatory settings We have chosen a clinical care domain where clinicians use EHRs in their offices, on the maternity wards and in the neonatal intensive care units as a test paradigm for this technology. The tools and methods we deliver should readily translate to other health care settings that collect behind-the-scenes electronic metadata such as audit trails. We believe that by applying the methods of social networking to define clinical relationships around a patient’s care we will enable new areas of research into the usage of EHRs to promote patient safety and other improvements in care. PMID:22195103

  20. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  1. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  2. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    Science.gov (United States)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  3. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    Science.gov (United States)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  4. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  5. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  6. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  7. 数字电子技术分析及其应用%Analysis and Application of Digital Electronic Technology

    Institute of Scientific and Technical Information of China (English)

    左平

    2015-01-01

    Under the background of the rapid development of modern science and technology, digital electronic technology has been well developed, it has become the development trend of the electronic technology, application and demand in the market continues to expand, the importance of the increasingly prominent. The general situation of digital electronic technology is studied and analyzed, and the application of digital electronic technology is discussed, in order to give full play to the value of digital electronic technology, and promote its smooth development.%在当今科学技术快速发展的背景下,数字化电子技术得到了较好的发展,其已成为电子技术的发展趋势,在市场中的应用与需求不断扩大,重要性逐渐凸显。对数字电子技术的概况进行了研究和分析,并探讨了数字电子技术的应用,以便充分发挥数字电子技术的应用价值,促进其顺利发展。

  8. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, Yu. V., E-mail: piskunov@imp.uran.ru; Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  9. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  10. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  11. Evaluation of patient-centered electronic health record to overcome digital divide.

    Science.gov (United States)

    Kim, E; Mayani, A; Modi, S; Kim, Y; Soh, C

    2005-01-01

    Advances and wide acceptance of information and communication technology (ICT) have made development and implementation of web-based electronic personal health records (PHRs) more feasible than ever before, and previous studies have demonstrated some of its potential and promises. However, this type of ICT-dependent approach inherits its own vulnerabilities of exposing the society to "digital divide", commonly described as the gap that exists among individuals and communities with regards to the 'haves' and 'have-nots' of information and modern communications technologies. To address these concerns and improve healthcare outcomes, we have developed and customized a web-based patient-centered electronic PHR, named the Personal Health Information Management System (PHIMS), and evaluated the system at the Everett Housing Authority, which provides housings for low-income families and elderly or disabled populations. A preliminary study demonstrates that 92% of the participating residents are satisfied with the PHIMS system in general. Some of the residents found PHIMS records very useful for their clinic visits.

  12. Carbon Nanotube-Based Digital Vacuum Electronics and Miniature Instrumentation for Space Exploration

    Science.gov (United States)

    Manohara, H.; Toda, R.; Lin, R. H.; Liao, A.; Mojarradi, M.

    2010-01-01

    JPL has developed high performance cold cathodes using arrays of carbon nanotube bundles that produce > 15 A/sq cm at applied fields of 5 to 8 V/micron without any beam focusing. They have exhibited robust operation in poor vacuums of 10(exp -6) to 10(exp -4) Torr- a typically achievable range inside hermetically sealed microcavities. Using these CNT cathodes JPL has developed miniature X-ray tubes capable of delivering sufficient photon flux at acceleration voltages of <20kV to perform definitive mineralogy on planetary surfaces; mass ionizers that offer two orders of magnitude power savings, and S/N ratio better by a factor of five over conventional ionizers. JPL has also developed a new class of programmable logic gates using CNT vacuum electronics potentially for Venus in situ missions and defense applications. These digital vacuum electronic devices are inherently high-temperature tolerant and radiation insensitive. Device design, fabrication and DC switching operation at temperatures up to 700 C are presented in this paper.

  13. Carbon Nanotube-Based Digital Vacuum Electronics and Miniature Instrumentation for Space Exploration

    Science.gov (United States)

    Manohara, H.; Toda, R.; Lin, R. H.; Liao, A.; Mojarradi, M.

    2010-01-01

    JPL has developed high performance cold cathodes using arrays of carbon nanotube bundles that produce > 15 A/sq cm at applied fields of 5 to 8 V/micron without any beam focusing. They have exhibited robust operation in poor vacuums of 10(exp -6) to 10(exp -4) Torr- a typically achievable range inside hermetically sealed microcavities. Using these CNT cathodes JPL has developed miniature X-ray tubes capable of delivering sufficient photon flux at acceleration voltages of <20kV to perform definitive mineralogy on planetary surfaces; mass ionizers that offer two orders of magnitude power savings, and S/N ratio better by a factor of five over conventional ionizers. JPL has also developed a new class of programmable logic gates using CNT vacuum electronics potentially for Venus in situ missions and defense applications. These digital vacuum electronic devices are inherently high-temperature tolerant and radiation insensitive. Device design, fabrication and DC switching operation at temperatures up to 700 C are presented in this paper.

  14. Area efficient digital logic NOT gate using single electron box (SEB

    Directory of Open Access Journals (Sweden)

    Bahrepour Davoud

    2017-01-01

    Full Text Available The continuing scaling down of complementary metal oxide semiconductor (CMOS has led researchers to build new devices with nano dimensions, whose behavior will be interpreted based on quantum mechanics. Single-electron devices (SEDs are promising candidates for future VLSI applications, due to their ultra small dimensions and lower power consumption. In most SED based digital logic designs, a single gate is introduced and its performance discussed. While in the SED based circuits the fan out of designed gate circuit should be considered and measured. In the other words, cascaded SED based designs must work properly so that the next stage(s should be driven by the previous stage. In this paper, previously NOT gate based on single electron box (SEB which is an important structure in SED technology, is reviewed in order to obtain correct operation in series connections. The correct operation of the NOT gate is investigated in a buffer circuit which uses two connected NOT gate in series. Then, for achieving better performance the designed buffer circuit is improved by the use of scaling process.

  15. Issues in the Development of an All-Digital Public Health Library in Michigan: The Michigan Community Health Electronic Library

    Science.gov (United States)

    Brenneise, Harvey R.

    2005-01-01

    The Michigan Community Health Electronic Library (MCHEL) serves the public health and other community health workers in Michigan. It is committed to desktop delivery of the best health information to its primary clientele, with as much as possible in digital full-text form. It collaborates with other libraries in the state to make this possible.…

  16. Issues in the Development of an All-Digital Public Health Library in Michigan: The Michigan Community Health Electronic Library

    Science.gov (United States)

    Brenneise, Harvey R.

    2005-01-01

    The Michigan Community Health Electronic Library (MCHEL) serves the public health and other community health workers in Michigan. It is committed to desktop delivery of the best health information to its primary clientele, with as much as possible in digital full-text form. It collaborates with other libraries in the state to make this possible.…

  17. A versatile DSP, FPGA structure optimized for rapid prototyping and digital real-time simulation of power electronic and electrical drive systems

    OpenAIRE

    Karipidis, Claus-Ulrich

    2001-01-01

    A Versatile DSP/ FPGA Structure optimized for Rapid Prototyping and Digital Real-Time Simulation of Power Electronic and Electrical Drive Systems This thesis is devoted to the development of a powerful digital computer equipped with flexible interfaces. It is designed to suit Rapid Prototyping and digital real-time simulation methods of power electronic and electrical drive (PE&ED) systems. This universal hardware basis unites the possibilities (benefit) to implement control equipment and com...

  18. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  19. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  20. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  1. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  2. Comprehensive studies for the crystal structures and electronic properties of the superconducting system Fe1 + δSe1 - xTex with \\delta \\simeq 0.037 and x \\simeq 0.55

    Science.gov (United States)

    Onoda, Masashige; Kawasaki, Yasuna; Tsubokawa, Masashi; Koyano, Tamotsu

    2010-12-01

    Structural aspects and electronic properties for the Fe1 + δSe1 - xTex system with 0.04 125Te. The crystal structures with an excess Fe site are refined precisely with obvious constraints. For the superconducting composition, the transport properties are explained in terms of the two-band model, where an electron carrier band gives a linear-in-T resistivity and another hole band leads to nearly temperature-independent behaviour. The magnetic susceptibility and the Knight shift are explained with the idea that the electron correlation is enhanced with increasing x and it is reduced with annealing. The spin-lattice relaxation rates for the normal state that show the apparent Korringa relation may also be understood in this framework. These evidences suggest that the superconductivity may emerge in a regime where the correlation is relatively weak in this system.

  3. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    Energy Technology Data Exchange (ETDEWEB)

    W. Hennig

    2006-09-11

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would further allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80

  4. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trenikhina, Y., E-mail: yuliatr@fnal.gov [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Romanenko, A., E-mail: aroman@fnal.gov [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Kwon, J.; Zuo, J.-M. [Materials Science and Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States); Zasadzinski, J. F. [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  5. Investigation of a nozzle instability on an F100 engine equipped with a digital electronic engine control

    Science.gov (United States)

    Burcham, F. W., Jr.; Zeller, J. R.

    1984-01-01

    An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.

  6. Effect of Electron Irradiation on Superconductivity in Single Crystals of Ba(Fe_{1−x}Ru_{x}_{2}As_{2} (x=0.24

    Directory of Open Access Journals (Sweden)

    R. Prozorov

    2014-11-01

    Full Text Available A single crystal of isovalently substituted Ba(Fe_{1−x}Ru_{x}_{2}As_{2} (x=0.24 is sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×10^{19} e^{−}/cm^{2}. The electrical resistivity is measured in situ at T=22  K during the irradiation and ex situ as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature T_{c} decreases and the residual resistivity ρ_{0} increases. We find that electron irradiation leads to the fastest suppression of T_{c} compared to other types of artificially introduced disorder, probably due to the strong short-range potential of the pointlike irradiation defects. A more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed T_{c} versus ρ_{0} is fully compatible with s_{±} pairing, in contrast to earlier claims that this model leads to a too rapid suppression of T_{c} with scattering.

  7. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  8. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  9. Performing continuous quality improvement for a digital health sciences library through an electronic mail analysis.

    Science.gov (United States)

    D'Alessandro, D M; Qian, F; D'Alessandro, M P; Ostrem, S F; Choi, T A; Erkonen, W E; Galvin, J R

    1998-01-01

    BACKGROUND: The goal of this prospective, cross-sectional study was to determine the user demographics of a digital health sciences library (DHSL), motives for use, the nature of users information requests, and success rate in finding answers. METHODS: The content of 500 consecutive electronic mail messages (e-mails) submitted to a DHSL were analyzed using a predetermined coding scheme. Data were entered into a database and frequency analysis was performed. RESULTS: The number of information requests from the 500 e-mail messages was 751. The largest sender category was patients and laypersons followed by students, then physicians. Motivations for use were primarily medical advice (42.8%) and patient care (13.8%). E-mail subject areas were mainly medical (61.8%) and technical (20.6%). Answers to information requests were found 54.3% of the time and senders felt the DHSL was valuable (97.8%). CONCLUSIONS: A DHSL is a valuable medical resource. DHSLs must serve the broad information needs of patients and laypersons in addition to health care providers. Developers and managers of DHSLs can use this information to guide future development of DHSL information content and services, as has been done at The University of Iowa. PMID:9803305

  10. 4. MESOSCOPIC SUPERCONDUCTIVITY: Proximity Action theory of superconductive nanostructures

    Science.gov (United States)

    Skvortsov, M. A.; Larkin, A. I.; Feigel'man, M. V.

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.

  11. Digital histologic images: practical pointers for successful electronic submission to biomedical journals.

    Science.gov (United States)

    Gruber, H E; Hanley, E N; Sun, Y

    2009-12-01

    The advent of digital imaging and online submission of manuscripts has created new challenges for authors using histological images. Digital images are used routinely in today's histology research lab and authors must prepare illustrations that meet standards for resolution, color modes, image size, and digital file types for successful online submission to biomedical journals. Because authors may not be familiar with these requirements, our objective here is to present practical guidelines and information for successful image submission online. Ethical issues related to digital imaging and other current topics also are discussed with reference to available online resources.

  12. Possible role of bonding angle and orbital mixing in iron pnictide superconductivity: Comparative electronic structure studies of LiFeAs and Sr2VO3FeAs

    Science.gov (United States)

    Kim, Y. K.; Koh, Y. Y.; Kyung, W. S.; Han, G. R.; Lee, B.; Kim, Kee Hoon; Ok, J. M.; Kim, Jun Sung; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Mo, S.-K.; Kim, C.

    2015-07-01

    A well-known universal feature among iron pnictide superconductors is the correlation between the As-Fe-As bonding angle and the superconducting transition temperature. However, the origin of such a correlation has not been clearly understood despite its potential importance in understanding the mechanism of superconductivity. Here, we present comparative electronic structure studies of LiFeAs and Sr2VO3FeAs , two representative systems without any dopant that can show bonding angle dependence of the electronic structure. Captured distinct features of the higher Tc compound Sr2VO3FeAs such as an unusual kz modulation and anomalous polarization dependence suggest that the difference between the two systems is in the interorbital coupling strength. This could be the essential element of the bonding angle dependence that allows an enhanced pairing instability and Tc.

  13. Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph.

    Science.gov (United States)

    Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin

    2017-05-01

    In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg4Zn7, an unknown phase (Precipitate phase in nickel-base superalloy) and Ba4Ti13O30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles.

  14. Digital pulse processing and electronic noise analysis for improving energy resolutions in planar TlBr detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Tsutomu, E-mail: tada.t@cyric.tohoku.ac.j [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Hitomi, Keitaro [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanaka, Tomonobu [Divisions of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama, Kasumi-cho, Taihakuku, Sendai, Miyagi 982-8577 (Japan); Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-1 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-05-11

    Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.

  15. Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe2As2

    Science.gov (United States)

    Civardi, E.; Moroni, M.; Babij, M.; Bukowski, Z.; Carretta, P.

    2016-11-01

    75As, 87Rb, and 85Rb nuclear quadrupole resonance (NQR) and 87Rb nuclear magnetic resonance measurements in a RbFe2As2 iron-based superconductor are presented. We observe a marked broadening of the 75As NQR spectrum below T0≃140 K which is associated with the onset of a charge order in the FeAs planes. Below T0 we observe a power-law decrease in the 75As nuclear spin-lattice relaxation rate down to T*≃20 K . Below T* the nuclei start to probe different dynamics owing to the different local electronic configurations induced by the charge order. A fraction of the nuclei probes spin dynamics associated with electrons approaching a localization while another fraction probes activated dynamics possibly associated with a pseudogap. These different trends are discussed in light of an orbital selective behavior expected for the electronic correlations.

  16. Early British Printing Meets the Electronic Age: A Large-Scale Digitization Case Study.

    Science.gov (United States)

    McLean, Austin J.

    2001-01-01

    Describes the development of production requirements and technical specifications for a microfilm-to-digital conversion project that digitized early English books printed between 1475-1700. Discusses the Internet interface used for access; MARC records; indexing; partnerships with libraries and universities; scanning; database design; and quality…

  17. Digital-forensics based pattern recognition for discovering identities in electronic evidence

    NARCIS (Netherlands)

    Henseler, Hans; Hofsté, Jop; Keulen, van Maurice

    2013-01-01

    With the pervasiveness of computers and mobile devices, digital forensics becomes more important in law enforcement. Detectives increasingly depend on the scarce support of digital specialists which impedes efficiency of criminal investigations. This paper proposes and algorithm to extract, merge an

  18. The effects of interstitial oxygen on superconducting electronic phases in strontium and oxygen co-doped La1.937Sr0.063CuO4+δ

    Institute of Scientific and Technical Information of China (English)

    Shen Cai-xia; Shen Xiao-Li; Lu Wei; Dong Xiao-Li; Li Zheng-Cai; Xiong Ji-Wu; Zhou Fang

    2008-01-01

    Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaClO solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc≈40K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.

  19. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  20. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  1. Upper critical field, pressure-dependent superconductivity and electronic anisotropy of Sm4Fe2As2Te(1-x)O(4-y)F(y).

    Science.gov (United States)

    Pisoni, A; Katrych, S; Szirmai, P; Náfrádi, B; Gaál, R; Karpinski, J; Forró, L

    2016-03-23

    We present a detailed study of the electrical transport properties of a recently discovered iron-based superconductor: Sm4Fe2As2Te0.72O2.8F1.2. We followed the temperature dependence of the upper critical field by resistivity measurement of single crystals in magnetic fields up to 16 T, oriented along the two main crystallographic directions. This material exhibits a zero-temperature upper critical field of 90 T and 65 T parallel and perpendicular to the Fe2As2 planes, respectively. An unprecedented superconducting magnetic anisotropy γH=H(c2)(ab)/H(c2)(c) ~ 14 is observed near Tc, and it decreases at lower temperatures as expected in multiband superconductors. Direct measurement of the electronic anisotropy was performed on microfabricated samples, showing a value of ρ(c)/ρ(ab)(300K) ~ 5 that rises up to 19 near Tc . Finally, we have studied the pressure and temperature dependence of the in-plane resistivity. The critical temperature decreases linearly upon application of hydrostatic pressure (up to 2 GPa) similarly to overdoped cuprate superconductors. The resistivity shows saturation at high temperatures, suggesting that the material approaches the Mott-Ioffe-Regel limit for metallic conduction. Indeed, we have successfully modelled the resistivity in the normal state with a parallel resistor model that is widely accepted for this state. All the measured quantities suggest strong pressure dependence of the density of states.

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  3. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  4. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  5. Superconductivity and crystal and electronic structures in hydrogenated and disordered Nb3Ge and Nb3Sn layers with A15 structure

    Science.gov (United States)

    Nölscher, C.; Saemann-Ischenko, G.

    1985-08-01

    Superconducting and transport properties of Nb3Ge and Nb3Sn layers have been varied over a wide range by hydrogenation, ion irradiation, and annealing. After hydrogenation, both compounds remain in the A15 structure and no effects of hydride precipitations at low temperatures could be observed. At high ion-irradiation doses Nb3Ge becomes amorphous, but Nb3Sn remains in the A15 structure, although Tc behaves similarly. The long-range order parameter SA and the mean displacement amplitude u2>1/2 were determined for Nb3Sn with x-ray diffraction. Distinct differences between the irradiation- and annealing-induced correlations of Tc versus Sa, Tc versus u2>, and Tc versus lattice parameter were observed. This indicates the influence of topological short-range order. The correlations of Tc versus residual resistivity and Tc versus the temperature derivative of the upper critical field at Tc are distinctly different for hydrogenated and irradiated Nb3Sn and Nb3Ge, but the derived correlations of Tc versus the coefficient of the electronic specific heat are very similar. The results are interpreted by a dominant influence of the Γ12 band on high Tc. The measurements of the Hall constant RH indicate a filling of steep electronic bands as a result of hydrogenation. Irradiation has a similar influence as thermal-induced disorder on RH. A maximum in the temperature dependence of RH indicates a martensitic transformation of Nb3Sn at 50-55 K, which is unchanged in slightly hydrogenated samples with higher Tc but vanishes in irradiated samples.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Hofstadter's Butterfly and Phase Transition of Checkerboard Superconducting Network in a Magnetic Field

    Science.gov (United States)

    Hou, Jing-Min; Tian, Li-Jim

    2010-03-01

    We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes-Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum.

  7. Superconducting Tunnel Junction Refrigerators for Sub-Kelvin Cooling of Electrons, Phonons, and Arbitrary, User-Supplied Payloads

    Science.gov (United States)

    Lowell, Peter Joseph

    Modern science often requires measurements at sub-Kelvin temperatures. Temperatures of 300 mK can be reached by using liquid 3He, but reaching lower temperatures requires the use of adiabatic demagnetization and dilution refrigerators which are complex, large, and costly. Normal-metalInsulatorSuperconductor (NIS) tunnel junctions provide an alternative refrigeration method that is simple to use, compact, and provides continuous cooling power that has the potential to expand the accessibility of these sub-Kelvin temperatures. When properly biased, the electron system in the normal metal of an NIS junction is cooled since the hottest electrons preferentially tunnel from the normal metal to the superconductor, transferring heat in the process. When the normal metal is extended onto a thermally isolated membrane, the cold electrons cool the phonons in the membrane through electron-phonon coupling. In previous work, NIS junctions have been used to cool detectors and bulk objects that were integrated with the membrane, but could not be considered a general-purpose refrigerator since they could not cool arbitrary objects. The goal of this work has been to demonstrate a general-purpose NIS refrigerator to which a user can attach arbitrary bulk objects. First, we discuss NIS refrigeration and then develop a model to predict phonon cooling. We fabricated and tested NIS refrigerators capable of cooling bulk objects and used the model to explain the results. The devices were able to cool phonons from 300 mK to 154 mK with 100 pW of cooling power at 200 mK. With these devices, we were able to cool a 2 cm3 piece of copper from 290 mK to 256 mK with 700 pW of cooling power at 290 mK. This demonstration marks the emergence of NIS refrigerators as a true, general-purpose refrigerator since users can attach arbitrary objects. Measurements of Andreev reflections in the devices and next-generation refrigerators that cool electrons from 100 mK to below 50 mK are also presented.

  8. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  9. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  10. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  11. Electronic structure of the superconducting layered ternary nitrides CaTaN2 and CaNbN2

    Science.gov (United States)

    Oliva, Josep M.; Weht, Ruben; Ordejón, Pablo; Canadell, Enric

    2000-07-01

    The electronic structure of the layered ternary nitrides CaMN2 (M= Ta, Nb) has been studied and the results are compared with those for the related LiMoN2 phase. It is shown that the former are two-dimensional metals, with a Fermi surface very similar to that of the 1T-TaX2 (X= S, Se) dichalcogenides, whereas the latter is a three-dimensional metal. The three phases show strong covalent bonding within the layers but ionic bonding with the alkali atom sheets.

  12. Electronic theses and dissertations management in Brazil: about digital libraries of theses and dissertations and institutional repositories

    Directory of Open Access Journals (Sweden)

    Fernando César Lima Leite

    2015-12-01

    Full Text Available Introduction: This paper presents analysis on the management of electronic theses and dissertations in the Brazilian context. The dilemmas of digital library of theses and dissertations and institutional repositories coexistence and its implications are discussed and possible paths to be considered by actors, in the institutional and national level. Objective: Present and analyze implications of the digital library of theses and dissertations and institutional repositories coexistence as management systems and, moreover, propose and discuss alternatives faced by actors responsible for its management at the institutional and national levels. Methodology: Data on the status of theses and dissertations management systems were obtained by IBICT. The analysis allowed to group the Brazilian institutions in three major categories that represent the current state of management of theses and dissertations in Brazil. Results: The settings were obtained from three major scenarios and their institutional and national implications for the management of theses and dissertations. Of these settings were listed alternative solutions to the problems identified. Conclusions: Among the findings stand out: the continuity of the IBICT’s Brazilian Digital Library of Theses and Dissertations (BDTD does not necessarily imply the continuity of the digital library of theses and dissertations; Investment in institutional repositories does not mean the end of BDTD; Part of Brazilian universities and research institutions do not enjoy conditions that allow them to effectively maintain the two systems.

  13. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    Science.gov (United States)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  14. Business strategy: Obstacles to the consolidation of Digital TV in Brazil and its impact on electronics supply chain from the stakeholder theory view

    OpenAIRE

    Roberto Bazanini; Hewdy Lobo Ribeiro; Homero Leoni Bazanini

    2014-01-01

    With the introduction of digital TV in Brazil on December 2, 2007, the managers of the electronics industry, of course, waiting for impacts in the supply chain due to the promise of strong eating of the market. According with exploratory research, qualitative and in-depth interview with the executives of the electronics industry, the research objectivist diagnose the obstacles to consolidation of digital TV in Brazil and its possible strategic changes with the emergence of a new scenario resu...

  15. Proximity Action theory of superconductive nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, M A; Larkin, A I; Feigel' man, M V [L D Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, 117940 Moscow (Russian Federation)

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance. (4. mesoscopic superconductivity)

  16. Normal state electronic structure and the superconducting energy gap in HTSC's as determined from photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (USA)); Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C. (Ames Lab., IA (USA)); Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H.; Campuzano, J.C. (Argonne National Lab., IL (USA))

    1989-01-01

    Photoemission spectroscopy has been utilized to determine the electronic structure of high-T{sub c} materials. The observation of dispersive bands at E{sub F} suggests a Fermi surface similar to that obtained from a band calculation. The results apparently are not inconsistent with the notion of a correlated Fermi liquid consisting of hybridized p-d bands. However, it is becoming more and more difficult to distinguish between Fermi liquid behavior in the new high-T{sub c} superconductors and behavior expected on the basis of the novel new non-Fermi liquid theories. The differences are now predicted to be on an energy scale smaller than our experimental resolution. We point out that, while deviations from simple band theory certainly do exist in the form of core and valence band satellites, band narrowing, and rapid photoemission peak broadening away from E{sub F}, there are sufficient agreements with the overall DOS that it should be considered a good starting point for the electronic structure. For example, the calculated Fermi surface for both the 123 and 2212 structures is reasonably well reproduced experimentally and the bands at E{sub F} consist of p-d hybridized orbitals just as predicted by local density functional theory. Our spectra clearly show that a BCS-like DOS is obtained at the Fermi energy as a gap opens up below T{sub c}. This is just one more indication that the old conventional models should be considered more seriously. 18 refs., 6 figs.

  17. Gap distributions and spatial variation of electronic states in superconducting and pseudogap states of Bi{sub 2}Sr{sub 2}Ca{sub 2}CuO{sub 8+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, K.K.; Pasupathy, A.; Pushp, A. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Ono, S.; Ando, Y. [Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511 (Japan); Yazdani, A. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)], E-mail: yazdani@princeton.edu

    2007-09-01

    High-resolution scanning tunneling microscopy has been used to study the tunneling density of states in lightly underdoped samples of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}Ca{sub 2}CuO{sub 8+{delta}} in both the superconducting and pseudogap states. We demonstrate that the tunneling gaps observed in these two states have identical spatial distributions and correlation lengths. This observation suggests that the two gaps, and hence the two phenomena, cannot have a competing origin. In addition, we present measurements that show that in contrast to the superconducting state, in which low energy quasi-particles are homogenous in real space, the states near the Fermi level are spatially inhomogeneous in the pseudogap state. The variation of the low-energy electronic states is spatially correlated with local changes in the pseudogap.

  18. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  19. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, AC

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  20. Difference in electron- and gamma-irradiation effects on output characteristic of color CMOS digital image sensors

    Institute of Scientific and Technical Information of China (English)

    MENG Xiangti; KANG Aiguo; ZHANG Ximin; LI Jihong; HUANG Qiang; LI Fengmei; LIU Xiaoguang; ZHOU Hongyu

    2004-01-01

    Changes of the average brightness and non-uniformity of dark output images, and quality of pictures captured under natural lighting for the color CMOS digital image sensors irradiated at different electron doses have been studied in comparison to those from the γ-irradiated sensors. For the electron-irradiated sensors, the non-uniformity increases obviously and a small bright region on the dark image appears at the dose of 0.4 kGy. The average brightness increases at 0.4 kGy, increases sharply at 0.5 kGy. The picture is very blurry only at 0.6 kGy, showing the sensor undergoes severe performance degradation. Electron radiation damage is much more severe than γ radiation damage for the CMOS image sensors. A possible explanation is presented in this paper.

  1. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  2. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Ke, M.

    2011-10-13

    A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of the chemical processing that the fine-grain gun cavity underwent along with the

  3. EBIT装置零蒸发低温超导磁体系统的研制%Development of the superconducting magnet system with zero evaporation for Electron Beam Ion Trap ( EBIT )

    Institute of Scientific and Technical Information of China (English)

    张敏; 付云清; 陈文革; 王福堂; 陈治友; 何鹏; 朱加伍; 黄鹏程; 王超; 路迪

    2011-01-01

    Development of the superconducting magnet system with zero evaporation for Electron Beam Ion Trap (EBIT) was almost completed. The superconducting magnet of EBIT was arranged by a pair of split coils up and down, and the peak of magnetic field strength of superconducting magnet was up to 4.5 T, the uniformity was better than 2×10 in the range of ± 10mm on the central axis of magnet, and the time decaying ratio of magnet was better than 1 ×10-4 in 8h with closed - loop current. In order to reduce the consumption of liquid helium, the cryogenic system included two cooling - shields cooled by two stage G - M refrigerator. At present, the performance test results show the superconducting magnet of EBIT can meet that user's basic demands.%介绍了EBIT( Electron Beam Ion Trap,电子束离子阱)装置零蒸发低温超导磁体系统的研制过程与超导磁体的性能测试结果.该系统中超导磁体由一对上下布置的分离线圈组成,中心最大磁场强度可达4.5T,在中心轴线上±10mm内磁场均匀度优于2×10-4,磁场衰减系数在8h小于1×10-4;同时其低温杜瓦系统采用双冷屏结构,并通过二级G-M制冷机冷却冷屏来降低液氦的蒸发量.超导磁体的性能测试结果表明满足用户基本要求.

  4. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  5. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Hoener, Markus

    2015-07-01

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  6. Integrated circuits in digital electronics (2nd revised and enlarged edition)

    Science.gov (United States)

    Barna, Arpad; Porat, Dan I.

    This book provides a link between elementary logic design theory and its practical applications. New information on Schottky TTL, ECL, and CMOS is given, along with a study of number systems and a detailed description of the design of sequential logic with emphasis on counters and shift registers and a discussion of arithmetic circuits. A chapter on latches and flip-flops emphasizes the differences between these two storage elements. A summary of coding, code conversion, and error detection and correction is given along with descriptions of digital-to-analog and analog-to-digital converters. Up-to-date treatment of LSI and VLSI circuits is given, including static and dynamic circuits, RASMs, ROMs, PLSAs, associative memories, and gate arrays. There is also a unified presentation of practical considerations in digital equipment design.

  7. Implementation of RSA 2048-bit and AES 256-bit with Digital Signature for Secure Electronic Health Record Application

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Sadikin

    2016-10-01

    Full Text Available This research addresses the implementation of encryption and digital signature technique for electronic health record to prevent cybercrime such as robbery, modification and unauthorised access. In this research, RSA 2048-bit algorithm, AES 256-bit and SHA 256 will be implemented in Java programming language. Secure Electronic Health Record Information (SEHR application design is intended to combine given services, such as confidentiality, integrity, authentication, and nonrepudiation. Cryptography is used to ensure the file records and electronic documents for detailed information on the medical past, present and future forecasts that have been given only to the intended patients. The document will be encrypted using an encryption algorithm based on NIST Standard. In the application, there are two schemes, namely the protection and verification scheme. This research uses black-box testing and whitebox testing to test the software input, output, and code without testing the process and design that occurs in the system.We demonstrated the implementation of cryptography in SEHR. The implementation of encryption and digital signature in this research can prevent archive thievery.

  8. Effects of TiO{sub 2} addition and electron irradiation on superconducting and mechanical properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi-2212) superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Abdullah, Mohamad Hafizi Pandak [Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Titanium Oxide (TiO{sub 2}) compounds having very high melting point with lower heat capacity, is an excellent candidate for reinforcement of brittle materials such as superconductor ceramics. In addition to high melting point, the TiO{sub 2} is also capable of establishing flux pinning centers in bismuth-based superconductors such as the Bi-2212. To further enhance the flux pinning properties, irradiation is one of the techniques that can be used to re-create the required point defects. In this study, the effects of TiO{sub 2} addition and electron irradiation on Bi-2212 superconductor were studied. TiO{sub 2} added Bi-2212 superconductor samples with 5%, 10% and 15% weight percentage addition respectively, were prepared using the conventional solid-state reaction method. The samples were irradiated with electron beam with radiation dose of 100 KGray. Characterization was performed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The transition temperature (T{sub c}) and the critical current density (J{sub c}) of the samples were also measured. The XRD patterns for all the samples show well-defined peaks all of which could be indexed on the basis of a Bi-2212 phase structure. In addition, the XRD patterns indicate that electron irradiation did not change the structure of Bi-2212 superconducting phase. Results of SEM micrographs show disorientation in the texture of the microstructure for samples that are subjected to electron irradiation. The grains are seen to align randomly with higher degree of orientation. With regard to TiO{sub 2} additions, only small TiO{sub 2} addition sustained the superconducting properties upon irradiation. Addition of more than 5% weight percentage of TiO{sub 2} degrades the superconducting properties of the irradiated samples. Formation of weak-links may result in higher grain boundaries orientation within the superconducting grains and thus deteriorates the inter-grains connectivity and resulted in lower T{sub c

  9. Performance of a Downconverter Test-electronics with MTCA-based Digitizers for Beam Position Monitoring in 3.9 GHz Accelerating Cavities

    CERN Document Server

    Wamsat, T; Lorbeer, B; Zhang, P

    2012-01-01

    Beam-excited higher order modes (HOM) in 3.9GHz accelerating cavities are planned to be used for beam position monitoring at the European XFEL. The selected HOMs are located around 5440MHz, with a bandwidth of 100MHz and 9060MHz, with a bandwidth of 50MHz. A downconverter electronics, built for tests at FLASH, converts the HOMs to an intermediate frequency of 70MHz. The MTCA (Micro Telecommunications Computing Architecture) standard will be used for the XFEL. Thus it is important to have a performance study of the downconverter test-electronics using the MTCA digitizer card SIS8300. In the digitizer the IF frequency of 70MHz is undersampled with a clock frequency of 108MS/s. The paper presents the performance of the digitizer together with the test-electronics. A comparison with a 216MS/s VME (Versa Module Eurocard) digitizer is made.

  10. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  11. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  12. Gossamer high-temperature bulk superconductivity in FeSe

    Science.gov (United States)

    Sinchenko, A. A.; Grigoriev, P. D.; Orlov, A. P.; Frolov, A. V.; Shakin, A.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    2017-04-01

    Using the anisotropic electron transport and susceptibility measurements we demonstrate the appearance of inhomogeneous gossamer superconductivity in FeSe single crystals at ambient pressure and at temperature five times higher than its zero resistance Tc. We also find and quantitatively describe a general property: If inhomogeneous superconductivity in a anisotropic conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically with maximal effect along the least conducting axis. This gives a simple tool to study inhomogeneous superconductivity in various anisotropic compounds, which helps to investigate the onset of high-temperature superconductivity.

  13. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  14. Superconductivity in compensated and uncompensated semiconductors.

    Science.gov (United States)

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  15. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  16. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  17. Digitally enabled patients, professionals and providers: making the case for an electronic health record in mental health services

    Science.gov (United States)

    Richardson, Jonathan; McDonald, Joe

    2016-01-01

    The move to a digital health service may improve some components of health systems: information, communication and documentation of care. This article gives a brief definition and history of what is meant by an electronic health record (EHR). There is some evidence of benefits in a number of areas, including legibility, accuracy and the secondary use of information, but there is a need for further research, which may need to use different methodologies to analyse the impact an EHR has on patients, professionals and providers. PMID:27752348

  18. Superconductivity: The persistence of pairs

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  19. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  20. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...

  1. New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim

    Directory of Open Access Journals (Sweden)

    Andrew Katumba

    2010-11-01

    Full Text Available Over the years, conventional Laboratories in African Universities have been hampered by inadequate resources in terms of the required hardware, space and skilled personnel to administer them. This paper describes a multi-dimensional approach to experimentation, developed by the Makerere University iLabs Project Team, hereafter referred to as iLABS@MAK. The two dimensional approach involves both Virtual Labs and Online Laboratories designed to address laboratory deficiencies in Digital Electronics, encompassing five courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programs. A digital Online Laboratory, the Makerere University Digital iLab (MDEi supporting experiments in the fields of combinational logic circuits and asynchronous sequential logic circuits has been developed. The laboratory utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II™ platform, the Laboratory Virtual Instrument Engineering Workbench (LabVIEW graphical programming environment and NI Multisim. Typical experiment setups supported by the MDEi are presented

  2. Clinical simulation and workflow by use of two clinical information systems, the electronic health record and digital dictation.

    Science.gov (United States)

    Koldby, Sven; Schou Jensen, Iben

    2013-01-01

    Clinical information systems do not always support clinician workflows. An increasing number of unintended clinical incidents might be related to implementation of clinical information systems and to a new registration praxis of unintended clinical incidents. Evidence of performing clinical simulations before implementation of new clinical information systems provides the basis for use of this method. The intention has been to evaluate patient safety issues, functionality, workflow, and usefulness of a new solution before implementation in the hospitals. Use of a solution which integrates digital dictation and the EHR (electronic health record) were simulated in realistic and controlled clinical environments. Useful information dealing with workflow and patient safety were obtained. The clinical simulation demonstrated that the EHR locks during use of the integration of digital dictation, thus making it impossible to use the EHR or connected applications during digital dictation. The results of the simulations showed that the tested and evaluated solution does not support the clinical workflow. Conducting the simulations enabled us to improve the solution before implementation, but further development is necessary before implementation of the solution.

  3. Digital in-line holography with femtosecond VUV radiation provided by the free-electron laser FLASH.

    Science.gov (United States)

    Rosenhahn, Axel; Staier, Florian; Nisius, Thomas; Schäfer, David; Barth, Ruth; Christophis, Christof; Stadler, Lorenz-M; Streit-Nierobisch, Simone; Gutt, Christian; Mancuso, Adrian; Schropp, Andreas; Gulden, Johannes; Reime, Bernd; Feldhaus, Josef; Weckert, Edgar; Pfau, Bastian; Günther, Christian M; Könnecke, René; Eisebitt, Stefan; Martins, Michael; Faatz, Bart; Guerassimova, Natalia; Honkavaara, Katja; Treusch, Rolf; Saldin, Evgueni; Schreiber, Siegfried; Schneidmiller, Evgeny A; Yurkov, Mikhail V; Vartanyants, Ivan; Grübel, Gerhard; Grunze, Michael; Wilhein, Thomas

    2009-05-11

    Femtosecond vacuum ultraviolet (VUV) radiation provided by the free-electron laser FLASH was used for digital in-line holographic microscopy and applied to image particles, diatoms and critical point dried fibroblast cells. To realize the classical in-line Gabor geometry, a 1 microm pinhole was used as spatial filter to generate a divergent light cone with excellent pointing stability. At a fundamental wavelength of 8 nm test objects such as particles and diatoms were imaged at a spatial resolution of 620 nm. In order to demonstrate the applicability to biologically relevant systems, critical point dried rat embryonic fibroblast cells were for the first time imaged with free-electron laser radiation.

  4. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Milic, A. [Atlas Liquid Argon Calorimeter Group, CERN, Geneva (Switzerland)

    2015-07-01

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above

  6. Digital Forensics

    OpenAIRE

    Ψευτέλης, Αθανάσιος Δημήτρης

    2013-01-01

    A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society Since the 1980s, computers have had increasing roles in all aspects of human life—including an involvement in criminal acts. This development has led to the rise of digital forensics, the uncovering and examination of evidence located on all things electronic with digital storage, including computers, cell phones, and networks. Digital forensics researchers and practitione...

  7. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K.; Dey, B.; /Hawaii U. /UC, Riverside; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; /SLAC; Roberts, D.; /Maryland U.; Ruckman, L.; /Hawaii U.; Shtol, D.; /Novosibirsk, IYF; Varner, G.S.; /Hawaii U.; Va' vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  8. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  9. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  10. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  11. Superconductivity in Ca-doped graphene laminates.

    Science.gov (United States)

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  12. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  13. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  14. The insulating-to-superconducting transition in europium high-temperature superconducting ceramics

    CERN Document Server

    Rosenbaum, R

    1997-01-01

    Experiment resistivity data on high-temperature superconducting ceramics of fully oxygenated EuBa sub 2 Cu sub 3 sub - sub x Co sub x O sub y show that the insulating-to-superconducting transitions take place at liquid-helium temperature, provided that the cobalt fraction x exceeds 0.3. The resistivity follows a simple power-law dependence rho propor to T sup - sup 1 sup / sup 2 , attributed to electron-electron interactions. A model based upon intrinsic Josephson tunnelling junctions is suggested to explain the transition from insulating to superconducting states. (author)

  15. An Analysis of Electronic Media to Prepare Children for Safe and Ethical Practices in Digital Environments

    Science.gov (United States)

    Berson, Ilene R.; Berson, Michael J.; Desai, Shreya; Falls, Donald; Fenaughty, John

    2008-01-01

    A range of electronic resources, including video-based instruction, are used to promote cybersafety to young people at school. This evaluation analyzed seven distinct programs that use electronic media in Internet safety initiatives in schools. The findings highlight emerging evidence on successful approaches to engage children in assessing risky…

  16. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  17. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  18. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2015-01-01

    The high luminosities of $L > 10^{34} cm^{-2} s^{-1}$ at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-1 trigger processors. New trigger readout electronics have been designed for this purpose, which wil...

  19. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2015-01-01

    The high luminosities of $\\mathcal{L} > 10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The Front End (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. The FE electronics were qualified for radiation levels corresponding to 10 years of LHC operations. The high luminosity running of the LHC (HL-LHC), with instantaneous luminosities of $5 \\times 10^{34} \\mathrm{cm}^ {-2} \\mathrm{s}^{-1}$ and an integrated luminosity of $3000 \\ \\mathrm{fb}^{-1}$ will exceed these d...

  20. Superconductivity in LiFeAs probed with quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhixiang; Nag, Pranab Kumar; Baumann, Danny; Kappenberger, Rhea [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    In spite of many theoretical and experimental efforts on studying the superconductivity of iron-based high temperature superconductors, the puzzle about LiFeAs's superconducting mechanism and pairing symmetry are still not clear. Here we want to present our low temperature scanning tunneling microscopy results on probing the superconductivity of LiFeAs. By taking conductance spectroscopic maps for both the superconducting state and normal state, we identify the scatterings due to the electron and hole bands close to the Fermi level. We observe a strong indication that the superconducting behavior in the hole bands are important for the formation of superconductivity in LiFeAs. Our results may also shine light on understanding the superconductivity in other iron pnictide superconductors.

  1. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  2. 13th European Conference on Applied Superconductivity

    CERN Document Server

    2017-01-01

    EUCAS is a worldwide forum for scientists and engineers, and provides an ideal platform to share knowledge and the most recent advances in all areas of applied superconductivity: from large-scale applications to miniature electronics devices, with a traditional focus on advanced materials and conductors. The broad scope is at the same time a challenge and an opportunity to foster novel, inter-disciplinary approaches and promote cross-fertilization among the various fields of applied superconductivity.

  3. Modeling and the analysis of control logic for a digital PWM controller based on a nano electronic single electron transistor

    Directory of Open Access Journals (Sweden)

    Rathnakannan Kailasam

    2008-01-01

    Full Text Available This paper describes the modelling and the analysis of control logic for a Nano-Device- based PWM controller. A comprehensive simple SPICE schematic model for Single Electron transistor has been proposed. The operation of basic Single Electron Transistor logic gates and SET flip flops were successfully designed and their performances analyzed. The proposed design for realizing the logic gates and flip-flops is used in constructing the PWM controller utilized for switching the buck converter circuit. The output of the converter circuit is compared with reference voltage, and when the error voltage and the reference are matched the latch is reset so as to generate the PWM signal. Due to the simplicity and accuracy of the compact model, the simulation time and speed are much faster, which makes it potentially applicable in large-scale circuit simulation. This study confirms that the SET-based PWM controller is small in size, consumes ultra low power and operates at high speeds without compromising any performance. In addition these devices are capable of measuring charges of extremely high sensitivity.

  4. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    Science.gov (United States)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  5. ERRATUM: Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    Science.gov (United States)

    Deasy, Joseph O.

    2000-08-01

    A printed error has been discovered on pages 1771 and 1772 of the above paper. Figures 4 and 5 should have been the other way around (the captions were correct as printed). For the correct version see the electronic journal.

  6. Superconductive Signal-Processing Circuits

    Science.gov (United States)

    1994-08-01

    September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...wideband analog-to-digital to a useful binary representation. In order to achieve an N-bit converter reported earlier [1]. The original design has been...rises, the SQUID Parameter Original Modified switches to the voltage state, and the output goes high. Ic(J1) 337 367 I tA S gaicGate: The comparator

  7. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  8. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    Science.gov (United States)

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.

  9. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  10. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  11. Emulation of complex open quantum systems using superconducting qubits

    Science.gov (United States)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  12. Search for Extremely Metal-poor Galaxies in the Sloan Digital Sky Survey (II): high electron temperature objects

    CERN Document Server

    Almeida, J Sanchez; Morales-Luis, A B; Munoz-Tunon, C; Garcia-Benito, R; Nuza, S E; Kitaura, F S

    2016-01-01

    Extremely metal-poor (XMP) galaxies are defined to have gas-phase metallicity smaller than a tenth of the solar value (12 + log[O/H] < 7.69). They are uncommon, chemically and possibly dynamically primitive, with physical conditions characteristic of earlier phases of the Universe. We search for new XMPs in the Sloan Digital Sky Survey (SDSS) in a work that complements Paper I. This time high electron temperature objects are selected; since metals are a main coolant of the gas, metal- poor objects contain high-temperature gas. Using the algorithm k-means, we classify 788677 spectra to select 1281 galaxies having particularly intense [OIII]4363 with respect to [OIII]5007, which is a proxy for high electron temperature. The metallicity of these candidates was computed using a hybrid technique consistent with the direct method, rendering 196 XMPs. A less restrictive noise constraint provides a larger set with 332 candidates. Both lists are provided in electronic format. The selected XMP sample have mean stell...

  13. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xicgang; HE Ke; WANG Lili; MA Xucun

    2011-01-01

    @@ Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, followed by phase coherent condensation.Since the discovery by K.Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest.One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  14. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xiegang; HE Ke; WANG Lili; MA Xucun; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun

    2011-01-01

    Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, tbllowed by phase coherent condensation, Since the discovery by K. Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest. One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  15. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  16. High-speed single photon counting read out electronics for a digital detection system for clinical synchrotron radiation mammography

    Science.gov (United States)

    Bergamaschi, A.; Arfelli, F.; Dreossi, D.; Longo, R.; Olivo, A.; Pani, S.; Rigon, L.; Vallazza, E.; Venanzi, C.; Castelli, E.

    2004-02-01

    The SYRMEP beam line is currently in the upgrading phase for mammographic examinations on patients at Elettra in Trieste. At the same time, a digital detection system, suitable for in -vivo breast imaging, is under development; it consists of a silicon laminar detector array operating in single photon counting mode. The duration of a clinical examination should not exceed a few seconds. Fast read out electronics is therefore necessary with the aim of avoiding losses in image contrast in presence of high counting rates. A custom ASIC working with 100% efficiency for rates up to 100 kHz per pixel has been designed and tested, and other solutions based on commercially available ASICs are currently under test. Several detector prototypes have been assembled, and images of mammographic test objects have been acquired. Image quality, efficiency and contrast losses have been evaluated in all cases as a function of the counting rate.

  17. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim, E-mail: Joakim.karlsson@sp.se [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Sjögren, Torsten [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Snis, Anders [Arcam AB, Krokslätts fabriker 27 A, SE-431 37, Mölndal (Sweden); Engqvist, Håkan [Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lausmaa, Jukka [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden)

    2014-11-17

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM{sup ®}) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level.

  18. Patient empowerment by the means of citizen-managed Electronic Health Records: web 2.0 health digital identity scenarios.

    Science.gov (United States)

    Falcão-Reis, Filipa; Correia, Manuel E

    2010-01-01

    With the advent of more sophisticated and comprehensive healthcare information systems, system builders are becoming more interested in patient interaction and what he can do to help to improve his own health care. Information systems play nowadays a crucial and fundamental role in hospital work-flows, thus providing great opportunities to introduce and improve upon "patient empowerment" processes for the personalization and management of Electronic Health Records (EHRs). In this paper, we present a patient's privacy generic control mechanisms scenarios based on the Extended OpenID (eOID), a user centric digital identity provider previously developed by our group, which leverages a secured OpenID 2.0 infrastructure with the recently released Portuguese Citizen Card (CC) for secure authentication in a distributed health information environment. eOID also takes advantage of Oauth assertion based mechanisms to implement patient controlled secure qualified role based access to his EHR, by third parties.

  19. Electronic Scholarly Journals: A Review of Technical Issues in Digital Environment

    Directory of Open Access Journals (Sweden)

    Golnessa Galyani Moghaddam

    2006-12-01

    Full Text Available Scholarly journals are known as the most important medium for scholarly communication since long time back. As technology transforms the flow of information and idea everywhere, it changes the nature of scholarly communications and publishing of scholarly journals as well. The electronic scholarly publishing rapidly produced an expectation, among researchers of the availability of articles at their desktop, rather than the previous scenario of visiting the library to read a print journal issue. There are lots of technological improvements in electronic journals publishing. The present paper looks at some of technical issues in electronic publishing such as DOI, DOI-X, CrossRef, Citation/Reference Linking, OpenURL, SFX and MetaLib which are being used in the World Wide Web.

  20. Advances in superconductivity; Proceedings of the First International Symposium on Superconductivity (ISS '88), Nagoya, Japan, Aug. 28-31, 1988

    Science.gov (United States)

    Kitazawa, Koichi; Ishiguro, Takehiko

    Papers on superconductivity and superconductor applications are presented, covering topics such as electric power systems, magnetic energy storage, fusion power, magnetic resonance imaging, transportation, Josephson digital and analog devices with niobium junctions, Josephson parametric amplifiers, and organic superconductors. Topics related to oxide superconductors include superconductor mechanisms, crystal chemistry, electronic structure, phase diagrams, crystal growth, processing, microstructure, tapes and thick films, wires, and coils. Other topics include coherence length, magnetic properties, critical current, irradiation effect, thin film processing, chemical reactions and superconductor/substrate interaction, tunneling and tunneling junction, Bi- and Tl-based cuprate superconductors, the 110 K phase of Bi-Sr-Ca-Cu-O fabrication and microstructure, research policies, and trends in technology.