WorldWideScience

Sample records for superconducting design principles

  1. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  2. Design principles for prototype and production magnetic measurements of superconducting magnets

    International Nuclear Information System (INIS)

    Brown, B.C.

    1989-02-01

    The magnetic field strength and shape for SSC superconducting magnets will determine critical properties of the accelerator systems. This paper will enumerate the relations between magnetic field properties and magnet material selection and assembly techniques. Magnitudes of various field errors will be explored along with operating parameters which can affect them. Magnetic field quality requirements will be compared to available measuring techniques and the relation between magnetic field measurements and other quality control efforts will be discussed. This will provide a framework for designing a complete magnet measurement plan for the SSC project. 17 refs., 1 fig., 5 tabs

  3. Design principles for handmade electrical insulation of superconducting joints in W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, K., E-mail: kerstin.rummel@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); John, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Sulek, Z. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Radzikowskiego 152 (Poland)

    2013-10-15

    Highlights: ► In W-7X there are several types of handmade electrical insulation. ► In general insulation based on impregnated glass tapes and special G10 pieces. ► A proper overlapping of glass tapes turned out to be mandatory. ► Detailed qualification and training helps to minimize the failure rate. ► Visual inspection and Paschen tests after every insulation steps are important. -- Abstract: The superconducting magnet system of the Wendelstein 7-X (W7-X) experiment consists of 50 non-planar and 20 planar coils, 121 bus bars and 14 current leads. The connection between bus bars, coils and current leads will be provided by 198 joints. The joints have to be insulated manually during the assembly of the machine in constraint positions and a tight environment. In general the insulation is based on glass tapes impregnated with epoxy resin and special G10 insulating pieces embedded in the glass tape insulation. In critical areas Kapton{sup ®}-foils are embedded in the insulation. All types of insulation were qualified at mock-ups in a 1:1 model of the expected environment in W7-X. The qualification programme comprises thermal cycling between room temperature and 77 K and high voltage tests under air, under vacuum and under reduced pressure (Paschen test). The paper describes the main principles used for different types of handmade Paschen-tight insulations in W7-X and the visual and electrical tests during and after assembly.

  4. Mechanical design and protection of superconducting magnets

    CERN Document Server

    Asner, Alfred M

    1978-01-01

    The principles of the mechanical design of superconducting magnets of concentric configuration, with iron low-temperature and room- temperature screening, are outlined. Measures for protection of such magnets against quench forces, are considered. (4 refs).

  5. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  6. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  7. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  8. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  9. Magnetic Design of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this paper we discuss the main principles of magnetic design for superconducting magnets (dipoles and quadrupoles) for particle accelerators. We give approximated equations that govern the relation between the field/gradient, the current density, the type of superconductor (Nb−Ti or Nb3Sn), the thickness of the coil, and the fraction of stabilizer. We also state the main principle controlling the field quality optimization, and discuss the role of iron. A few examples are given to show the application of the equations and their validity limits.

  10. Basic principles of RF superconductivity and superconducting cavities

    OpenAIRE

    Schmüser, P

    2006-01-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application of superconductors in radio frequency cavities for particle acceleration. For a cylindrical resonator (“pill box cavity”) the electromagnetic field in the cavity and important parameters such as resonance frequency, quality factor and shunt impedance are calculated analytically. The design and performance of practical cavities is shortly addressed.

  11. Design and AC loss analysis of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Majoros, M [Department of Materials Science and Engineering, Ohio State University (United States); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2006-11-15

    This paper gives a conceptual design of a superconducting synchronous motor consisting of both high-temperature superconducting rotating field winding and armature winding. The AC losses of the armature winding of the motor have been investigated experimentally and numerically, by considering the self-field of the superconducting coils and the rotating magnetic field exposed on the armature winding. The recent developments of YBCO-coated conductors present the possibility of achieving a wholly superconducting machine of significantly smaller size and weight than a conventional machine. Both the rotating field winding and the armature winding are composed of YBCO high-temperature superconducting (HTS) coils. A low AC loss armature winding design has been developed for this superconducting synchronous motor. The performance of the machine was investigated by modelling with the finite-element method. The machine's torque is calculated from first principles by considering the angle between the field and the armature main flux lines.

  12. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  13. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    Science.gov (United States)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  14. Superconducting endcap toroid design report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  16. RFID design principles

    CERN Document Server

    Lehpamer, Harvey

    2012-01-01

    This revised edition of the Artech House bestseller, RFID Design Principles, serves as an up-to-date and comprehensive introduction to the subject. The second edition features numerous updates and brand new and expanded material on emerging topics such as the medical applications of RFID and new ethical challenges in the field. This practical book offers you a detailed understanding of RFID design essentials, key applications, and important management issues. The book explores the role of RFID technology in supply chain management, intelligent building design, transportation systems, military

  17. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  18. Design Topics for Superconducting RF Cavities and Ancillaries

    International Nuclear Information System (INIS)

    Padamsee, H

    2014-01-01

    RF superconductivity has become a major subfield of accelerator science. There has been an explosion in the number of accelerator applications and in the number of laboratories engaged. The first lecture at this meeting of the CAS presented a review of fundamental design principles to develop cavity geometries to accelerate velocity-of-light particles (β = v/c ~ 1), moving on to the corresponding design principles for medium-velocity (medium-β) and low-velocity (low-β) structures. The lecture included mechanical design topics. The second lecture dealt with input couplers, higher-order mode extraction couplers with absorbers, and tuners of both the slow and fast varieties

  19. Design Topics for Superconducting RF Cavities and Ancillaries

    Energy Technology Data Exchange (ETDEWEB)

    Padamsee, H [Cornell University, CLASSE (United States)

    2014-07-01

    RF superconductivity has become a major subfield of accelerator science. There has been an explosion in the number of accelerator applications and in the number of laboratories engaged. The first lecture at this meeting of the CAS presented a review of fundamental design principles to develop cavity geometries to accelerate velocity-of-light particles (β = v/c ~ 1), moving on to the corresponding design principles for medium-velocity (medium-β) and low-velocity (low-β) structures. The lecture included mechanical design topics. The second lecture dealt with input couplers, higher-order mode extraction couplers with absorbers, and tuners of both the slow and fast varieties.

  20. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  1. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  2. Design of a superconducting wiggler system

    International Nuclear Information System (INIS)

    Shen, S.S.; Miller, J.R.; Heim, J.R.; Slack, D.S.

    1988-01-01

    We present a wiggler system based on currently available superconducting technology. The system is designed to provide maximum central field of 4.4 tesla with a specified period length of 160 mm and a gap of 40 mm, while meeting the field quality requirements along all axes. Also included are preliminary cost estimates and a survey of world-wide RandD efforts on superconducting wiggler systems. 12 refs., 6 figs., 3 tabs

  3. Principles of Protocol Design

    DEFF Research Database (Denmark)

    Sharp, Robin

    This is a new and updated edition of a book first published in 1994. The book introduces the reader to the principles used in the construction of a large range of modern data communication protocols, as used in distributed computer systems of all kinds. The approach taken is rather a formal one...

  4. Principles and Criteria for Design

    DEFF Research Database (Denmark)

    Beghin, D.; Cervetto, D.; Hansen, Peter Friis

    1997-01-01

    The mandate of ISSC Committee IV.1 on principles and Criteria for Design is to report on the following:The ongoing concern for quantification of general economic and safety criteria for marine structures and for the development of appropriate principles for rational life cycle design using...

  5. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  6. Logical database design principles

    CERN Document Server

    Garmany, John; Clark, Terry

    2005-01-01

    INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint

  7. Designing of superconducting magnet for clinical MRI

    International Nuclear Information System (INIS)

    Kar, Soumen; Choudhury, A.; Sharma, R.G.; Datta, T.S.

    2015-01-01

    Superconducting technology of Magnetic Resonance Imaging (MRI) scanner is closely guarded technology as it has huge commercial application for clinical diagnostics. This is a rapidly evolving technology which requires innovative design of magnetic and cryogenic system. A project on the indigenous development of 1.5 T (B_0) MRI scanner has been initiated by SAMEER, Mumbai funded by DeitY, Gov. of India. IUAC is the collaborating institute for designing and developing the superconducting magnets and the cryostat for 1.5 T MRI scanner. The superconducting magnet is heart of the present day MRI system. The performance of the magnet has the highest impact on the overall image quality of the scanner. The stringent requirement of the spatial homogeneity (few parts per million within 50 cm diametrical spherical volume), the temporal stability (0.1 ppm/hr.) of the superconducting magnet and the safety standard (5 G in 5 m x 3 m ellipsoidal space) makes the designing of the superconducting magnet more complex. MRI consists of set of main coils and shielding coils. The large ratio between the diameter and the winding length of each coil makes the B_p_e_a_k/B_0 ratio much higher, which makes complexity in selecting the load line of the magnet. Superconducting magnets will be made of NbTi wire-in-channel (WIC) conductor with high copper to superconducting (NbTi) ratio. Multi-coil configuration on multi-bobbin architecture is though is cost effective but poses complexity in the mechanical integration to achieve desired homogeneity. Some of the major sources of inhomogeneities, in a multi-bobbin configuration, are the imperfect axial positioning and angular shift. We have simulated several factors which causes the homogeneity in six (main) coils configuration for a 1.5 T MRI magnet. Differential thermal shrinkage between the bobbin and superconducting winding is also a major source of inhomogeneity in a MRI magnet. This paper briefly present the different designing aspects of the

  8. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  9. Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle

    Science.gov (United States)

    Clavier, Odile Helene

    The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate

  10. Design of superconducting corrector magnets for LHC

    International Nuclear Information System (INIS)

    Baynham, D.E.; Coombs, R.C.; Ijspeert, A.; Perin, R.

    1994-01-01

    The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to reach main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented

  11. Design of superconducting corrector magnets for LHC

    Science.gov (United States)

    Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.

    1994-07-01

    The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.

  12. Superconducting magnet systems in EPR designs

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1976-10-01

    Tokamak experiments have reached a stage where large scale application of superconductors can be envisaged for machines becoming operational within the next decade. Existing designs for future devices already indicate some of the tasks and problems associated with large superconducting magnet systems. Using this information the coming magnet system requirements are summarized, some design considerations given and in conclusion a brief survey describes already existing Tokamak magnet development programs. (orig.) [de

  13. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  14. Structuring Principles for the Designer

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    1998-01-01

    This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...

  15. Fundamental Principles of Alarm Design

    DEFF Research Database (Denmark)

    Us, Tolga; Jensen, Niels; Lind, Morten

    2011-01-01

    Traditionally alarms are designed on the basis of empirical guidelines rather than on a sound scientific framework rooted in a theoretical foundation for process and control system design. This paper proposes scientific principles and a methodology for design of alarms based on a functional...... be applied to any engineering system which can be modeled by MFM. The methodology provides a set of alarms which can facilitate event interpretation and operator support for abnormal situation management. The proposed design methodology provides the information content of the alarms, but does not deal...

  16. Principles of modern digital design

    CERN Document Server

    Lala, Parag K

    2007-01-01

    A major objective of this book is to fill the gap between traditional logic design principles and logic design/optimization techniques used in practice. Over the last two decades several techniques for computer-aided design and optimization of logic circuits have been developed. However, underlying theories of these techniques are inadequately covered or not covered at all in undergraduate text books. This book covers not only the ""classical"" material found in current text books but also selected materials that modern logic designers need to be familiar with.

  17. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kennedy, W L; Sagalovsky, L [Argonne National Lab., IL (United States)

    1992-11-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs.

  18. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed

  19. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs

  20. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  1. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  2. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  3. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  4. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    Science.gov (United States)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  5. Design considerations for superconducting magnets as a maglev pad

    International Nuclear Information System (INIS)

    Ichikawa, H.; Ogiwara, H.

    1974-01-01

    The design and construction of a thin superconducting magnet for a magnetically suspended high-speed train are explained. The superconducting magnet, which is to be used in a null-flux maglev train system, is called a 'wing-type' superconducting magnet because of its geometry. The wing-type superconducting magnet is about 1.5m long and weighs about 500kg, but its heat loss is within 1W, which is very small compared with that of conventional superconducting magnets. (author)

  6. Communications receivers principles and design

    CERN Document Server

    Rohde, Ulrich L; Zahnd, Hans

    2017-01-01

    This thoroughly updated guide offers comprehensive explanations of the science behind today’s radio receivers along with practical guidance on designing, constructing, and maintaining real-world communications systems. You will explore system planning, antennas and antenna coupling, amplifiers and gain control, filters, mixers, demodulation, digital communication, and the latest software defined radio (SDR) technology. Written by a team of telecommunication experts, Communications Receivers: Principles and Design, Fourth Edition, features technical illustrations, schematic diagrams, and detailed examples. Coverage includes: • Basic radio considerations • Radio receiver characteristics • Receiver system planning • Receiver implementation considerations • RF and baseband techniques for Software-Defined Radios • Transceiver SDR considerations • Antennas and antenna coupling • Mixers • Frequency sources and control • Ancillary receiver circuits • Performance measurement

  7. Design principles for precision mechanisms

    CERN Document Server

    Soemers, Herman

    2011-01-01

    The successful design of mechanisms for products, tools and equipment relies on excellent concepts and properly designed details. Both are covered in this book. Many of the examples presented have been realised in practice and properly evaluated, giving the reader/designer a high level of confidence. Every example comes with the considerations underlying the application and the limitations of the particular idea. This book is based on the work started in the 1960s by W. van der Hoek at Philips in Eindhoven, the Netherlands, and subsequently continued by M.P. Koster, culminating in the Dutch-language book “Constructieprincipes” [Design principles for accurate movement and positioning]. The core of their design approach has been preserved, while theory and examples were updated and the English language was adopted to reach a broad audience within the Netherlands as well as abroad. Herman (H.M.J.R.) Soemers is associated with the University of Twente, Enschede, the Netherlands. He also works as a technolog...

  8. Alternative designs of a superconducting synchronous generator: the Southampton approach

    OpenAIRE

    Goddard, K.F.; Lukasik, B.; Sykulski, J.K.

    2008-01-01

    The paper describes various designs undertaken at the University of Southampton for building both cored and coreless superconducting synchronous generators using high temperature superconducting (HTS) tapes. An overview of electromagnetic and mechanical design issues is presented and scalability is considered. Results are included for the full (original) size machine and extended to a double size unit.

  9. Design of a large superconducting spectrometer magnet

    International Nuclear Information System (INIS)

    Shintomi, T.; Makida, Y.; Mito, T.; Yamanoi, Y.; Hashimito, O.; Nagae, T.

    1989-04-01

    The superconducting spectrometer magnet for nuclear physics experiments has been under construction by Institute for Nuclear Study, University of Tokyo with collaboration from KEK. The magnet has a sector type coil. The magnetic field is 3 T with the magnet gap of 50 cm and the stored energy is 11.8 MJ. The easy operation and maintenance are taken into consideration in addition to usual design concept. Three dimensional magnetic field calculation and the stress analysis have been performed. The code 'QUENCH' was applied to decide the operation current and to check the safety of the coil. As a result, the current of 500 A was selected. The heat leaks were checked and estimated less than 2 W at 4 K. A small refrigerator is to be used for thermal insulations at 80 and 20 K. (author)

  10. Design and control of a superconducting permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Jiang, Y; Pei, R; Hong, Z; Song, J; Fang, F; Coombs, T A

    2007-01-01

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding

  11. Design and control of a superconducting permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Pei, R [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Song, J [Huazhong University of Science of Technology, Wuhan 430074 (China); Fang, F [Huazhong University of Science of Technology, Wuhan 430074 (China); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-07-15

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding.

  12. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  13. Reliability of large superconducting magnets through design

    International Nuclear Information System (INIS)

    Henning, C.D.

    1980-01-01

    As superconducting magnet systems grow larger and become the central component of major systems involving fusion, magnetohydrodynamics, and high-energy physics, their reliability must be commensurate with the enormous capital investment in the projects. Although the magnet may represent only 15% of the cost of a large system such as the Mirror Fusion Test Facility, its failure would be catastrophic to the entire investment. Effective quality control during construction is one method of ensuring success. However, if the design is unforgiving, even an inordinate amount of effort expended on quality control may be inadequate. Creative design is the most effective way of ensuring magnet reliability and providing a reasonable limit on the amount of quality control needed. For example, by subjecting the last drawing operation is superconductor manufacture to a stress larger than the magnet design stress, a 100% proof test is achieved; cabled conductors offer mechanical redundancy, as do some methods of conductor joining; ground-plane insulation should be multilayered to prevent arcs, and interturn and interlayer insulation spaced to be compatible with the self-extinguishing of arcs during quench voltages; electrical leads should be thermally protected; and guard vacuum spaces can be incorporated to control helium leaks. Many reliable design options are known to magnet designers. These options need to be documented and organized to produce a design guide. Eventually, standard procedures, safety factors, and design codes can lead to reliability in magnets comparable to that obtained in pressure vessels and other structures. Wihout such reliability, large-scale applications in major systems employing magnetic fusion energy, magnetohydrodynamics, or high-energy physics would present unacceptable economic risks

  14. Visual Design Principles: An Empirical Study of Design Lore

    Science.gov (United States)

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  15. Design principles for riboswitch function.

    Directory of Open Access Journals (Sweden)

    Chase L Beisel

    2009-04-01

    Full Text Available Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence-function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands.

  16. Mechanical Design and Fabrication Studies for SPL Superconducting RF Cavities

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Capatina, O; Renaglia, T; Tardy, T; Valverde Alonso, N; Weingarten, W

    2011-01-01

    CERN’s R&D programme on the Superconducting Proton Linac’s (SPL) superconducting radio frequency (SRF) elliptical cavities made from niobium sheets explores new mechanical design and consequently new fabrication methods, where several opportunities for improved optimization were identified. A stainless steel helium vessel is under design rather than a titanium helium vessel using an integrated brazed transition between Nb and the SS helium vessel. Different design and fabrication aspects were proposed and the results are discussed hereafter.

  17. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  18. Principles and applications of superconducting quantum interference devices

    CERN Document Server

    1992-01-01

    Principles and applications of SQUIDs serves as a textbook and a multi-author collection of critical reviews. Providing both basic aspects and recent progress in SQUIDs technology, it offers a realistic and stimulating picture of the state of the art. It can also contribute to a further development of the field for commercial applications.

  19. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  20. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  1. Design Principles of Open Innovation Concept – Universal Design Viewpoint

    OpenAIRE

    Mustaquim, Moyen; Nyström, Tobias

    2013-01-01

    The concept of open innovation is becoming an increasingly popular topic of interest and seems to promise a lot in organizational development. However, to date there are no certain design principles that can be followed by organizations on how to use open innovation successfully. In this paper seven design principles of open innovation concept have been proposed. The derived principles are the outcome which is based on the principles of universal design. The open innovation design, based on t...

  2. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the

  3. Practical considerations in the design and operation of superconducting structures

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1975-01-01

    During the past few years, considerable experience has been gained in the operation of prototype superconducting accelerators under beam line conditions. As a result of this experience, important aspects of structure design and important questions related to the long term operation of superconducting structures have been brought into sharper focus. For applications where low power loss and high duty factor, or exceptional beam quality and stable operation, are essential properties, and where modest energy gradients can be tolerated, superconducting structures are distinctly superior to conventional room temperature structures. (auth)

  4. Design of a superconducting accelerator for positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Oshima, Nagayasu; Kuroda, Ryunosuke; Suzuki, Ryoichi; Kinomura, Atsushi; Ohdaira, Toshiyuki; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2008-01-01

    A design of a superconducting accelerator for a positron beam with energy of ∼1 MeV for positron annihilation spectroscopy is proposed. The total system can be extremely small with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. Moreover, operation duty cycle of the superconducting cavity is ∼100%. The required RF power to drive the system is only ∼10 W, therefore a large-size klystron is not necessary. The designed system including a slow positron source is small (∼2 m 3 ) enough to be used in a general laboratory. (author)

  5. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  6. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  7. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic...

  8. Principles for enabling deep secondary design

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Hansen, Magnus Rotvit Perlt

    2017-01-01

    design by analyzing two cases where secondary designers fundamentally change functionality, content and technology complexity level. The first case redesigns a decision model for agile development in an insurance company; the second creates a contingency model for choosing project management tools...... and techniques in a hospital. Our analysis of the two cases leads to the identification of four principles of design implementation that primary designers can apply to enable secondary design and four corresponding design implementation principles that secondary designers themselves need to apply....

  9. Justifying Design Decisions with Theory-based Design Principles

    OpenAIRE

    Schermann, Michael;Gehlert, Andreas;Pohl, Klaus;Krcmar, Helmut

    2014-01-01

    Although the role of theories in design research is recognized, we show that little attention has been paid on how to use theories when designing new artifacts. We introduce design principles as a new methodological approach to address this problem. Design principles extend the notion of design rationales that document how a design decision emerged. We extend the concept of design rationales by using theoretical hypotheses to support or object to design decisions. At the example of developing...

  10. Design principles for a large RFP experiment

    International Nuclear Information System (INIS)

    Phillpott, J.; Rostagni, G.; Di Marco, J.

    1981-01-01

    An RFP experiment (RFX) has been designed by an International Design Team, by groups of collaborating physicists and engineers working in their home laboratories. This international collaborative project has been brought to an advanced stage of system and component design by the co-operation of three design teams under the co-ordination of a Design Manager, based at Culham Laboratory. The paper summaries the important design principles for an RFP device, based on the outcome of this collaborative design project

  11. Game Design Principles based on Human Error

    Directory of Open Access Journals (Sweden)

    Guilherme Zaffari

    2016-03-01

    Full Text Available This paper displays the result of the authors’ research regarding to the incorporation of Human Error, through design principles, to video game design. In a general way, designers must consider Human Error factors throughout video game interface development; however, when related to its core design, adaptations are in need, since challenge is an important factor for fun and under the perspective of Human Error, challenge can be considered as a flaw in the system. The research utilized Human Error classifications, data triangulation via predictive human error analysis, and the expanded flow theory to allow the design of a set of principles in order to match the design of playful challenges with the principles of Human Error. From the results, it was possible to conclude that the application of Human Error in game design has a positive effect on player experience, allowing it to interact only with errors associated with the intended aesthetics of the game.

  12. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  13. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  14. Symbiotic architecture: Redefinition of recycling design principles

    OpenAIRE

    Milan Šijaković; Ana Perić

    2018-01-01

    The study seeks to examine the possibility of implementing the biological concept of symbiosis into the field of architecture for redefining the design principles of architectural recycling. Through an in-depth analysis of the biological concept of symbiosis (i.e., a close and often long-term interaction between two or more different biological species and the criteria that govern the differentiation between symbiotic associations), three redefined design principles of recycling—commensalism,...

  15. Team learning center design principles

    Energy Technology Data Exchange (ETDEWEB)

    Daily, B.; Loveland, J.; Whatley, A. [New Mexico State Univ., Las Cruces, NM (United States)] [and others

    1995-06-01

    This is a preliminary report of a multi-year collaboration of the authors addressing the subject: Can a facility be designed for team learning and would it improve the efficiency and effectiveness of team interactions? Team learning in this context is a broad definition that covers all activities where small to large groups of people come together to work, to learn, and to share through team activities. Multimedia, networking, such as World Wide Web and other tools, are greatly enhancing the capability of individual learning. This paper addresses the application of technology and design to facilitate group or team learning. Many organizational meetings need tens of people to come together to do work as a large group and then divide into smaller subgroups of five to ten to work and then to return and report and interact with the larger group. Current facilities were not, in general, designed for this type of meeting. Problems with current facilities are defined and a preliminary design solution to many of the identified problems is presented.

  16. Teaching geometrical principles to design students

    NARCIS (Netherlands)

    Feijs, L.M.G.; Bartneck, C.

    2009-01-01

    We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of

  17. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  18. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  19. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  20. Magnetic design of a FFAG superconducting magnet

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Nakamoto, T.; Sasaki, K.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Orikasa, T.

    2005-01-01

    A superconducting magnet for a Fixed Field Alternating Gradient (FFAG) accelerator has been proposed. The required magnetic field is static and proportional to the k-th power of the orbit radius where k is the geometrical field index of the accelerator. In 2D, the required magnetic field can be generated with the optimized cross section of the coil. The cross section of the coils is a left-right asymmetry to simplify the cross section and ellipse to downsize the magnet. Local and integral 3D fields along the beam trajectory are evaluated with using new type of 3D coil configuration

  1. General Principles for Brain Design

    Science.gov (United States)

    Josephson, Brian D.

    2006-06-01

    The task of understanding how the brain works has met with only limited success since important design concepts are not as yet incorporated in the analysis. Relevant concepts can be uncovered by studying the powerful methodologies that have evolved in the context of computer programming, raising the question of how the concepts involved there can be realised in neural hardware. Insights can be gained in regard to such issues through the study of the role played by models and representation. These insights lead on to an appreciation of the mechanisms underlying subtle capacities such as those concerned with the use of language. A precise, essentially mathematical account of such capacities is in prospect for the future.

  2. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  3. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  4. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  5. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  6. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  7. Design Principles for Augmented Reality Learning

    Science.gov (United States)

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  8. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  9. Vacuum design for a superconducting mini-collider

    International Nuclear Information System (INIS)

    Barletta, W.A.; Monteiro, S.

    1991-01-01

    The phi factory (Superconducting Mini-Collider or SMC) proposed for construction at UCLA is a single storage ring with circulating currents of 2 A each of electrons and positrons. The small circumference exacerbates the difficulties of handling the gas load due to photodesorption from the chamber walls. The authors analyze the vacuum system for the phi factory to specify design choices

  10. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  11. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  12. First-Principles Study of Superconductivity in Ultra- thin Pb Films

    Science.gov (United States)

    Noffsinger, Jesse; Cohen, Marvin L.

    2010-03-01

    Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)

  13. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  14. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  16. Structural design of superconducting magnets for the large coil program

    International Nuclear Information System (INIS)

    Gray, W.H.; Long, C.J.; Stoddart, W.C.T.

    1979-09-01

    The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented

  17. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  18. Design Principles for Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2000-01-01

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.

  19. RFID Malware: Design Principles and Examples

    NARCIS (Netherlands)

    Rieback, M.R.; Simpson, P.N.D.; Crispo, B.; Tanenbaum, A.S.

    2006-01-01

    This paper explores the concept of malware for Radio Frequency Identification (RFID) systems - including RFID exploits, RFID worms, and RFID viruses. We present RFID malware design principles together with concrete examples; the highlight is a fully illustrated example of a self-replicating RFID

  20. Devising Principles of Design for Numeracy Tasks

    Science.gov (United States)

    Geiger, Vince; Forgasz, Helen; Goos, Merrilyn; Bennison, Anne

    2014-01-01

    Numeracy is a fundamental component of the Australian National Curriculum as a General Capability identified in each F-10 subject. In this paper, we consider the principles of design necessary for the development of numeracy tasks specific to subjects other than mathematics--in this case, the subject of English. We explore the nature of potential…

  1. Teaching geometrical principles to design students

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    2009-12-01

    Full Text Available We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of employing 2D drawing tools, such as Adobe Illustrator, the students define their tessellation in mathematical formulas, using the Mathematica software. This procedure enables them to understand the mathematical principles on which graphical tools, such as Illustrator are built upon. But we do not stop at a digital representation of their tessellation design we continue to cut their tessellations in Perspex. It moves the abstract concepts of math into the real world, so that the students can experience them directly, which provides a tremendous reward to the students.

  2. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  3. Design study of the KIRAMS-430 superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-01-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the "1"2C"6"+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  4. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Wook; Kang, Joonsun, E-mail: genuinei@kirams.re.kr; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the {sup 12}C{sup 6+} ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  5. Superconducting Magnets for ECRIS-Design Aspects and Industrial Production%用于ECR离子源的超导磁体——设计与制造

    Institute of Scientific and Technical Information of China (English)

    A.Hobl; B.Fischer; C.Radermacher; D.Krischel; M.Jordan; M.M.Reumers

    2007-01-01

    Superconducting magnets are widely used in ECR ion sources.The intensity and form of the magnetic field plays an important role in the way towards higher performance sources.During the development steps,the design principles and geometries had to be adapted to reach higher fields using state-of-the-art technologies and design tools.Production,assembly,and tests of these superconducting magnets are presented and a short outlook on possible future developments is given.

  6. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  7. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  8. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  9. Toward superconducting critical current by design

    OpenAIRE

    Sadovskyy, I. A.; Jia, Y.; Leroux, M.; Kwon, J.; Hu, H.; Fang, L.; Chaparro, C.; Zhu, S.; Welp, U.; Zuo, J. -M.; Zhang, Y.; Nakasaki, R.; Selvamanickam, V.; Crabtree, G. W.; Koshelev, A. E.

    2015-01-01

    We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using...

  10. Design of CR superconducting dipole magnet in German FAIR project

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Weiyue; Wu Songtao; Xu Houchang; Liu Changle

    2008-01-01

    The engineering design of CR (collector ring) superconducting magnet of German FAIR (facility for antiproton and ion research) project is introduced. 3-D model is formed by CATIA, and the magnetic filed of 1/4 magnet is analyzed with ANSYS. Then the displacement and stress of the coil case, liquid helium (LHe) case, especially, the maximal displacement and stress when quenching happens are calculated based on the analysis of magnetic field. These results are necessary for manufacturing the formal magnet. (authors)

  11. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-10-15

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  12. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    International Nuclear Information System (INIS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-01-01

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy

  13. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  14. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  15. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  16. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  17. Macro-environmental policy: Principles and design

    International Nuclear Information System (INIS)

    Huppes, G.

    1993-01-01

    The central theme of this book is how macro-environmental policy can be developed, which does not prescribe or suggest specific technologies and products bu realizes the environmental quality desired by changing the general context. The publication is composed of four main parts. The framework for analysis and the normative principles for policy design and evaluation, the first two parts, form the analytic core. The framework for analysis gives a classification of instruments in terms of permutations of a limited number of defining elements. The normative principles guide choices in instrument design and, as the flexible response strategy, guide their application in specific policies. Detailing two main new instruments (the standard method for life cycle analysis and the substance deposit, and applying the instrument strategy as developed to the cases make up the next two parts

  18. Universal Instructional Design Principles for Moodle

    Directory of Open Access Journals (Sweden)

    Tanya Elias

    2010-05-01

    Full Text Available The paper identifies a set of universal instructional design (UID principles appropriate to distance education (DE and tailored to the needs of instructional designers and instructors teaching online. These principles are then used to assess the accessibility level of a sample online course and the availability of options in its LMS platform (Moodle to increase course accessibility. Numerous accessibility-sensitive plug-in modules are found to be available to Moodle users, though relatively few features were included in the sample course analysed. This may be because they have not been made available to instructors at the institutional level. The paper offers a series of recommendations to improve the accessibility of online DE to learners with diverse abilities, disabilities, and needs.

  19. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  20. Design and application possibilities of superconducting radio-frequency quadrupoles

    International Nuclear Information System (INIS)

    Schempp, A.; Deitinghoff, H.

    1990-01-01

    In recent experiments, cw surface electric fields in excess of 100 MV/m have been obtained in a superconducting rf quadrupole (SCRFQ) device. In this paper we explore some design and application possibilities of SCRFQs which have been opened by these results. For example, SCRFQs may be able to accelerate higher cw currents than is now possible. Also, highly-modulated SCRFQs could be designed to provide compact, high-longitudinal-gradient devices. Some conceptual designs and applications will be discussed. 15 refs., 2 figs

  1. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  2. Design Principles for E-Government Architectures

    Science.gov (United States)

    Sandoz, Alain

    The paper introduces a holistic approach for architecting systems which must sustain the entire e-government activity of a public authority. Four principles directly impact the architecture: Legality, Responsibility, Transparency, and Symmetry leading to coherent representations of the architecture for the client, the designer and the builder. The approach enables to deploy multipartite, distributed public services, including legal delegation of roles and outsourcing of non mandatory tasks through PPP.

  3. Cryostat design case studies, principles and engineering

    CERN Document Server

    2016-01-01

    This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are ...

  4. Toward Superconducting Critical Current by Design.

    Science.gov (United States)

    Sadovskyy, Ivan A; Jia, Ying; Leroux, Maxime; Kwon, Jihwan; Hu, Hefei; Fang, Lei; Chaparro, Carlos; Zhu, Shaofei; Welp, Ulrich; Zuo, Jian-Min; Zhang, Yifei; Nakasaki, Ryusuke; Selvamanickam, Venkat; Crabtree, George W; Koshelev, Alexei E; Glatz, Andreas; Kwok, Wai-Kwong

    2016-06-01

    A new critical-current-by-design paradigm is presented. It aims at predicting the optimal defect landscape in superconductors for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To this end, critical current measurements on commercial high-temperature superconductors are combined with large-scale time-dependent Ginzburg-Landau simulations of vortex dynamics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design prospect of remountable high-temperature superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  6. Magnetic design of a 14 mm period prototype superconducting undulator

    Energy Technology Data Exchange (ETDEWEB)

    Gehlot, Mona, E-mail: mona_gehlot@yahoo.com [Insertion Device Development Laboratory, School of Physics, Devi Ahilya University, Indore 452001, MP (India); Mishra, G. [Insertion Device Development Laboratory, School of Physics, Devi Ahilya University, Indore 452001, MP (India); Institute of Engineering, UNAM (Mexico); Soleil, Paris (France); Trillaud, Frederic [Institute of Engineering, UNAM (Mexico); Sharma, Geetanjali [Soleil, Paris (France)

    2017-02-21

    In this paper we report the design of a 14 mm period prototype superconducting undulator that is under fabrication at Insertion Device Development Laboratory (IDDL) at Devi Ahilya Vishwavidyalaya, Indore, India. The field computations are made in RADIA and results are presented in an analytical form for computation of the on axis field and the field on the surface of the coil. On the basis of the findings, a best fit is presented for the model to calculate the field dependence on the gap and the current density. The fit is compared with Moser-Rossmanith formula proposed earlier to predict the magnetic flux density of a superconducting undulator. The field mapping is used to calculate the field integrals and its dependence on gap and current densities as well.

  7. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Science.gov (United States)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  8. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  9. Y-12 Sustainable Design Principles for Building Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  10. Design and manufacture of a large superconducting homopolar motor (and status of superconducting a.c. generator)

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1983-01-01

    This paper describes the design and manufacture of a large superconducting motor which, in the present time of financial restraints, is continuing at least to the point of having a completed cryostat with its superconducting winding operating with a dedicated helium refrigeration plant. Comments are also made on the superconducting a.c. generator project, although a final decision on the rating of a prototype and the approval of the funding has not yet been made, the selected rating is expected to be between 200 MW and 600 MW

  11. Superconducting radio frequency cavities: design, development and results

    International Nuclear Information System (INIS)

    Prakash, P.N.; Mistri, K.K.; Sonti, S.S.K.; Sacharias, J.; Raiand, A.; Kanjilal, D.

    2013-01-01

    In recent years, the development of superconducting niobium cavities has evoked a lot of interest among the accelerator physics community of India. Many laboratories are planning to develop superconducting niobium cavities for new accelerators and applications. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of niobium resonators for over a decade. During this period, several quarter wave resonators have been successfully built, tested and installed in the superconducting linac at IUAC. A new niobium low beta resonator for the High Current Injector (HCI) project has been designed, prototyped and tested. In addition to the in-house projects, IUAC is nearing completion of two niobium single spoke resonators (SSR1) for Fermi Lab, USA. Under the Indian Institutions and Fermi Lab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology, Indore and Inter-University Accelerator Centre have jointly developed TESLA-type 1.3 GHz single cell cavities which have achieved very high accelerating gradients. Buoyed by the success of this work, a 5-cell 1.3 GHz cavity with simple end tubes has been successfully built. This cavity is presently at Fermi Lab for 2 K tests. Recently, a 650 MHz, β=0.9 single cell cavity has also been successfully completed and is ready for cold tests. There are plans to develop a 650 MHz, β=0.6 single cell cavity in collaboration with VECC, Kolkata. This paper presents the status of the niobium cavities developed at Inter-University Accelerator Centre. (author)

  12. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  13. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.......For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation...

  14. Construction principles and design rules in the case of circular design

    NARCIS (Netherlands)

    Romme, A.G.L.; Endenburg, G.

    2006-01-01

    This paper proposes science-based organization design that uses construction principles and design rules to guide practitioner-academic projects. Organization science implies construction principles for creating and implementing designs. These principles serve to construct design rules that are

  15. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  16. Two Eyes, 3D: Stereoscopic Design Principles

    Science.gov (United States)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  17. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  18. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  19. Design issues for cryogenic cooling of short period superconducting undulators

    International Nuclear Information System (INIS)

    Green, M.A.; Dietderich, D.R.; Marks, S.; Prestemon, S.O.; Schlueter, R.D.

    2003-01-01

    Superconducting insertion devices, which produce periodic magnetic fields, have been built and installed in a number of synchrotron-light source storage-rings. For the most part, these devices have been wigglers, which have relatively long period lengths. This report concerns itself with the special cryogenic issues associated with short period undulators. The motivation for considering the incorporation of superconducting technology in insertion device designs is to achieve higher magnetic fields than can be achieved with more conventional permanent magnet technology. Since the peak field decreases sharply with increased magnet gap to period ratio, the cryogenic design of the magnet system is crucial. In particular, the insulation required for a warm vacuum bore device is impractical for short period undulators. This report describes the issues that are related to a cold bore (∼4 K) and an intermediate temperature bore (30 to 70 K) designs. The criteria for the use of small cryocoolers for cooling a short period undulator are presented. The problems associated with connecting small coolers to an undulator at 4.2 K are discussed

  20. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  1. The new international certification and design principles

    International Nuclear Information System (INIS)

    Heijnen, W.H.P.M.; Heineman, H.

    1995-01-01

    ISO/TC 67 deals with standardization of Equipment for the Petroleum and Natural Gas Industries at a global level. The paper will provide the reader with insight in the Certification system as well as its link with Design. It will explain how the total process fits in the business structure of the Petroleum and Natural Gas Industry, with the focus on the emerging concepts such as partnering, turn key contracts, the developments in the EC and the need to reduce costs at a global basis. The paper will also address the topic of Design Principles based on the results of the study performed for ISO/TC 67. The paper will provide a framework that can be used by the industry in how to deal with issues such as, there shall the activity of the Operator be focused on when ordering equipment or services and how the manufacturer or service provider should prepare himself to become an equal partner with regard to the required equipment, service and its associated technology now and in the future. In the changing world with ever increasing focus on Health, Safety and Environment (HSE), the topic efficiency, technology, equipment performance and functionality should not be overlooked or been given less attention. The Certification and Design principles, implemented in standards, aim predominantly at Fitness for Purpose of equipment and/or services to regain the balance. A further aim is to limit consequential costs due to deficiencies in the broadest sense, allowing the Petroleum and Natural Gas Industry to produce oil and gas in a cost effective manner with the highest possible HSE targets

  2. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  3. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  4. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  5. Application of high temperature superconductivity to electric motor design

    International Nuclear Information System (INIS)

    Edmonds, J.S.; Sharma, D.K.; Jordan, H.E.; Edick, J.D.; Schiferl, R.F.

    1992-01-01

    This paper reports on progress made in a joint project conducted by the Electric Power Research Institute and Reliance Electric Company to study the possible application of High Temperature Super Conductors (HTSC), materials to electric motors. Specific applications are identified which can be beneficially served by motors constructed with HTSC materials. A summary is presented of the components and design issues related to HTSC motors designed for these applications. During the course of this development program, a three tier HTSC wire performance specification has evolved. The three specifications and the rationale behind these three levels of performance are explained. A description of a test motor that has been constructed to verify the electromagnetic analytical techniques of HTSC motor design is given. Finally, a DC motor with an HTSC field coil is described. Measured data with the motor running is presented showing that the motor is operating with the field winding in the superconducting state

  6. Design of cryogenic heat exchangers for a superconducting magnet

    International Nuclear Information System (INIS)

    Chrusciel, W.A.; Tao, B.Y.; Ventura, S.A.

    1976-01-01

    Computer programs were written to design and simulate the behavior of three heat exchangers for cooling supercritical helium to approximately 4.3 0 K at 4 atm. Helium, at 1, 3, or 5 gm/sec, is cooled by passing it through 0.635-cm-diam copper tubing immersed in a liquid nitrogen bath, through a copper, concentric tube, counter-current heat exchanger, and then through 0.635-cm copper tubing immersed in a liquid helium bath. The helium then enters a superconducting test magnet and finally passes through the annulus of the countercurrent exchanger before venting to the atmosphere. Several acceptable designs are presented that meet design and space limitations

  7. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  8. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  9. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  10. A conceptual design of superconducting spherical tokamak reactor

    International Nuclear Information System (INIS)

    Nagayama, Yoshio; Shinya, Kichiro; Tanaka, Yasutoshi

    2012-01-01

    This paper presents a fusion reactor concept named 'JUST (Japanese Universities' Super Tokamak reactor)'. From the plasma confinement system to the power generation system is evaluated in this work. JUST design has features as follows: the superconducting magnet, the steady state operation with high bootstrap current fraction, the easy replacement of neutron damaged first wall, the high heat flux in the divertor, and the low cost (or high β). By winding the OH solenoid over the center stack of toroidal field coil, we have the low aspect ratio and the 80cm thick neutron shield to protect the superconducting center stack. JUST is designed by using the 0-D transport code under the assumption that the energy confinement time is 1.8 times of the IPB98(y,2) scaling. Main parameters are as follows: the major radius of 4.5m, the aspect ratio of 1.8, the elongation ratio of 2.5, the toroidal field of 2.36T, the plasma current of 18MA, the toroidal beta of 22%, the central electron and ion temperature of 15keV and the fusion thermal power of 2.4GW. By using the mercury heat exchanger and the steam turbine, the heat efficiency is 33% and the electric power is 0.74GW. (author)

  11. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  12. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  13. Personnel Selection Using Fuzzy Axiomatic Design Principles

    Directory of Open Access Journals (Sweden)

    Anant V. Khandekar

    2016-09-01

    Full Text Available Overall competency of the working personnel is often observed to ultimately affect the productivity of an organization. The globalised competitive atmosphere coupled with technological improvements demands for efficient and specialized manpower for the industrial operations. A set of typical technological skills and attitudes is thus demanded for every job profile. Most often, these skills and attitudes are expressed imprecisely and hence, necessitating the support of fuzzy sets for their effective understanding and further processing. In this paper, a method based on fuzzy axiomatic design principles is applied for solving the personnel selection problems. Selecting a middle management staff of a service department for a large scale organization is demonstrated here as a real life example. Five shortlisted candidates are assessed with respect to a set of 18 evaluation criteria, and the selection committee with experts from the related fields also realizes the outcome of the adopted approach to be quite appropriate, befitting and in agreement with their expectations.

  14. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.

    Science.gov (United States)

    Ren, Yong; Liu, Xiaogang; Gao, Xiang

    2016-01-01

    The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.

  15. Superconducting magnets in high radiation environments: Design problems and solutions

    International Nuclear Information System (INIS)

    St Lorant, S.J.; Tillmann, E.

    1989-11-01

    As part of the Stanford Linear Collider Project, three high-field superconducting solenoid magnets are used to rotate the spin direction of a polarized electron beam. The magnets are installed in a high-radiation environment, where they will receive a dose of approximately 10 3 rad per hour, or 10 8 rad over their lifetimes. This level of radiation and the location in which the magnets are installed, some 10 meters below ground in contiguous tunnels, required careful selection of materials for the construction of the solenoids and their ancillary cryogenic equipment, as well as the development of compatible component designs. This paper describes the materials used and the design of the equipment appropriate for the application. Included are summaries of the physical and mechanical properties of the materials and how they behave when irradiated. 16 refs., 7 figs., 1 tab

  16. Open midplane designs based on sector coils in superconducting dipoles

    CERN Document Server

    Bruer, J

    2009-01-01

    This paper presents a study of the effects of opening up the midplane in conventional sector coil dipoles, also known as cosè-designs. The open midplane design is a candidate for the higher luminosity upgrade for the LHC, and also for the future beta beam project at CERN, which has the heat deposition mainly concentrated in the midplane of the dipoles. By opening up the midplane, the major part of the spray particles can be avoided, allowing the use of strong superconductive magnets. The aim of this study is to maintain good field quality after a gap in the midplane has been inserted. Short sample field and the electromagnetic force distribution will also be presented for some solutions.

  17. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  18. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Science.gov (United States)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  19. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Directory of Open Access Journals (Sweden)

    Binping Xiao

    2015-04-01

    Full Text Available We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  20. Progress in the design of a superconducting toroidal magnet for the ATLAS detector on LHC

    International Nuclear Information System (INIS)

    Baze, J.M.; Berriaud, C.; Cure, C.

    1996-01-01

    The toroidal system consists of three air core superconducting toroids. The barrel toroid covers the central region over a length of 26 m with an inner bore of 9.4 m and an outer diameter of 19.5 m. The two end cap toroids are inserted in the barrel at each end over a length of 5.6 m with an inner bore of 1.26 m. Each toroid consists of eight flat coils assembled around the beam axis and carrying 3 MAt each. The present paper describes the barrel toroid. Features of the design which are presented include the electromagnetic design, field and forces calculations, the basic concept of indirectly cooled aluminium conductor and monolithic fully impregnated winding, the description of the alu-alloy mechanical structure, the thermal analysis and the quench protection. Cryogenics principles, cryostat and toroid assembly procedures are summarized. Unsymmetric loadings, fault sensing and stability are discussed, in relation with the requirements of transparency

  1. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  2. Design of the Cryostat for HT-7U Superconducting Tokamak

    Science.gov (United States)

    Yu, Jie; Wu, Song-tao; Song, Yun-tao; Weng, Pei-de

    2002-06-01

    The cryostat of HT-7U tokamak is a large vacuum vessel surrounding the entire basic machine with a cylindrical shell, a dished top and a flat bottom. The main function of HT-7U cryostat is to provide a thermal barrier between an ambient temperature test hall and a liquid helium-cooled superconducting magnet. The loads applied to the cryostat are from sources of vacuum pressure, dead weight, seismic events and electromagnetic forces originated by eddy currents. It also provides feed-through penetrations for all the connecting elements inside and outside the cryostat. The main material selected for the cryostat is stainless steel 304L. The structural analyses including buckling for the cryostat vessel under the plasma operation condition have been carried out by using a finite element code. Stress analysis results show that the maximum stress intensity was below the allowable value. In this paper, the structural analyses and design of HT-7U cryostat are emphasized.

  3. Design of new superconducting central solenoid of SST-1 tokamak

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh

    2015-01-01

    The key role of the central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current for longer duration. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼655 mm. The physics basis of the design includes volt-sec storage capacity of ∼0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼0.3 volt/m.The engineering design of new CS consists of Nb 3 Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The inter-layer low resistance (∼1 nΩ) at 14 kA @ 4.5 K terminal praying hand joints has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K

  4. Three-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-11-01

    Full Text Available This paper describes a concept for superconducting resonators for the acceleration of ions in the velocity range β=v/c=0.015–0.04. Such a resonator operates in λ/4 mode with three loading elements and so can be thought of as a triple quarter wave resonator (3-QWR providing 4 accelerating gaps. The use of a column to support the three stubs provides a benefit beyond those of the two-stub design (2-QWR. In the 3-QWR, the rf mirror currents in the walls surrounding the stubs need only travel through 45° instead of the 90° in the 2-QWR thus further reducing the current in the demountable joints. As in the 2-QWR, the shape of the column allows control of the frequency splitting between the accelerating and other modes. The copper structure is designed to be coated by a thin superconducting film of niobium or lead for operation at 4.3 K. The particular device reported here operates at 150 MHz with an optimum β of 0.04. Its outer cylinder is the same size and shape as for the 2-QWR structure reported previously, in order to minimize construction and cryostat costs. A simple transmission line model is presented and the results of microwave studio and other numerical analyses are discussed. The 3-QWR resonators are appropriate for the upgrade of the low-velocity sections of the ANU Heavy Ion Accelerator Facility and other heavy ion accelerator boosters.

  5. Materials design principles of ancient fish armour

    Science.gov (United States)

    Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  6. Human Factors Principles in Information Dashboard Design

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques V.; St. Germain, Shawn

    2016-06-01

    strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.

  7. From qualification design to training design using ECVET principles

    International Nuclear Information System (INIS)

    Ceclan, Mihail; Wastin, Franck

    2017-01-01

    The Joint Research Centre of European Commission was designated in 2009 as Operating agent of European Human Resources Observatory - in Nuclear (EHRO@N). EHRO@N identified the nuclear sector's major challenges: to fill@in the 30 % gap between HR demand and supply in decommissioning and to adapt nuclear E and T system to comply more to the labour market demands. The process of nuclear training system adaptation to the labour market needs is based on the design of the flexible qualifications (unit based qualifications) using European Credit system for Vocational Education and Training (ECVET) principles. The process of ECVET implementation in the nuclear energy sector is ongoing since 2011 and is based on the strategy and road map developed by EHRO-N. The current paper presents the latest developments on the designing of training programs based on exit outcomes.

  8. From qualification design to training design using ECVET principles

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail; Wastin, Franck [European Commission Joint Research Centre, Petten (Netherlands). Directorate Nuclear Safety and Security

    2017-05-15

    The Joint Research Centre of European Commission was designated in 2009 as Operating agent of European Human Resources Observatory - in Nuclear (EHRO@N). EHRO@N identified the nuclear sector's major challenges: to fill@in the 30 % gap between HR demand and supply in decommissioning and to adapt nuclear E and T system to comply more to the labour market demands. The process of nuclear training system adaptation to the labour market needs is based on the design of the flexible qualifications (unit based qualifications) using European Credit system for Vocational Education and Training (ECVET) principles. The process of ECVET implementation in the nuclear energy sector is ongoing since 2011 and is based on the strategy and road map developed by EHRO-N. The current paper presents the latest developments on the designing of training programs based on exit outcomes.

  9. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  10. Design rules for superconducting analog-digital transducers

    International Nuclear Information System (INIS)

    Haddad, Taghrid

    2015-01-01

    This Thesis is a contribution for dimensioning aspects of circuits designs in superconductor electronics. Mainly superconductor comparators inclusive Josephson comparators as well as QOJS-Comparators are investigated. Both types were investigated in terms of speed and sensitivity. The influence of the thermal noise on the decision process of the comparators represent in so called gray zone, which is analysed in this thesis. Thereby, different relations between design parameters were derived. A circuit model of the Josephson comparator was verified by experiments. Concepts of superconductor analog-to-digital converters, which are based on above called comparators, were investigated in detail. From the comparator design rules, new rules for AD-converters were derived. Because of the reduced switching energy, the signal to noise ratio (SNR) of the circuits is affected and therefore the reliability of the decision-process is affected. For special applications with very demanding requirements in terms of the speed and accuracy superconductor analog-to-digital converters offer an excellent performance. This thesis provides relations between different design paramenters and shows resulting trade-offs, This method is transparent and easy to transfer to other circuit topologies. As a main result, a highly predictive tool for dimensioning of superconducting ADC's is proved.

  11. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  12. Principles of superheated superconducting granules as a detector for dark matter and neutrinos

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.

    1993-01-01

    The interest in superconducting devices for particle detection is based on the very small quantum energies involved as compared to conventional ionization and semiconductor detectors. The use of superheated superconducting granules (SSG) as a particle detector is reviewed. Physical properties and experimental applications of SSG are discussed. The dynamic responses of the phase transition of superheated superconducting Sn, In, Al and Zn single granules (20-50μm in diameter) due to an applied magnetic field exceeding the superheating threshold are presented. A status report on further experimental development is given. (orig.)

  13. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  14. Permanent magnet design for high-speed superconducting bearings

    Science.gov (United States)

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  15. Permanent magnet design for high-speed superconducting bearings

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs

  16. Conceptual Design of the Superconducting Proton Linac Short Cryo-module

    CERN Document Server

    Bourcey, N; Capatina, O; Azevedo, P; Montesinos, E; Parma, V; Renaglia, T; Vande Craen, A; Williams, L R; Weingarten, W; Rousselot, S; Duthil, P; Duchesne, P; Reynet, D; Dambre, P

    2012-01-01

    The Superconducting Proton Linac (SPL) is an R&amp;amp;D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art Superconducting Radio Frequency technology, which would serve as a driver for new physics facilities such as neutrinos and radioactive ion beams. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium b=1 elliptical cavities, operating at 2 K and providing an accelerating field of 25 MV/m, and testing of a string of cavities integrated in a machine-type cryo-module. In an initial phase only four out of the eight cavities of an SPL cryo-module will be tested in a ½ length cryo-module developed for this purpose, and therefore called the Short Cryo-module. This paper presents the conceptual design of the SC, highlighting its innovative principles in terms of cavity supporting and alignment, and describes the integratio...

  17. Design of large aperture 500 MHz 5-cell superconducting cavity

    International Nuclear Information System (INIS)

    Wei Yelong; Feng Ziqiang; Lu Changwang; Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Mao Dongqing

    2012-01-01

    With the potential application of Energy Recovery Linac (ERL), the superconducting (SC) cavities were developed to deliver much higher current than before. Nowadays, the current of the international SC accelerator designed has already exceeded 100 mA. This paper presents the design of a new 500 MHz 5-cell SC cavity (SINAP 5-cell cavity), in which the parameters r/Q= 515.5 Ω of the fundamental mode and the geometry factor G=275.8 are under an acceptable Radio Frequency (RF) field level. (B peak /E acc =4.31 mT/MV/m and E peak /E acc =2.48). This design employs a larger beam pipe to propagate the Higher Order Modes (HOMs) out of the cavity and increases the damping efficiently for the dangerous HOMs. By simulation technique, it has been found that almost all the dangerous HOMs (including TE 111 , TM 110 , and TM 011 ) can be propagated into the beam pipe and are absorbed by ferrite absorbers, when the beam pile is enlarged. Finally, the loss factor for the new 5-cell cavity is also calculated. (authors)

  18. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    International Nuclear Information System (INIS)

    Pace, Marshall O.; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  19. Superconducting magnet systems for the ANL EPR design

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Kim, S.H.; Huang, Y.C.; Smith, R.P.

    1978-01-01

    The magnet systems for the current Argonne experimental power reactor (EPR) design build on the earlier designs but incorporate a number of improvements. The toroidal field (TF) coil system consists of 16 coils of the constant tension shape, with NbTi, copper, and stainless steel as superconductor, stabilizer, and support material respectively. They are designed for 10 T operation at 3.7 K or 9 T operation at 4.2 K. Two changes from earlier designs permit a saving in material requirements. The coils are wound with the conductor in precompression and the support material in pretension so that when the coils are energized, the stainless steel experiences a stress of 60,000 psi while the copper stress does not exceed 15,000 psi. Both the copper and NbTi are graded, with higher current densities where magnetic and radiation effects are smaller. The ohmic heating (OH) coil system consists of a central solenoid plus ten other coils, all located outside the TF coils for ease of maintenance. The NbTi-copper coils are cryostable and operate at 4.2 K. The solenoid is segmented, with rings of insulation between segments to transfer the centering force from the TF coils to an insulating cylinder inside the OH solenoid. Locating the OH solenoid inside the support cylinder plus raising the central field to 8 T, enables the OH system to develop more volt-seconds than the earlier designs, even though the plasma major radius is smaller. The superconducting equilibrium field coils, also outside the TF coils, provide the field pattern required for a D-shaped plasma

  20. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  1. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  2. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  3. Human Systems Interface Design Methods Using Ecological Interface Design Principles

    International Nuclear Information System (INIS)

    Hong, Seung Kweon; Park, Jung Chul; Kim, Sun Su; Sim, Kwang Pyo; Yuk, Seung Yul; Choi, Jae Hyeon; Yoon, Seung Hyun

    2009-12-01

    The results of this study categorized into two parts. The first part is the guidelines for EID designs. The procedure to observe for EID design is composed of 6 steps; 1) to define a target system, 2) to make an abstraction hierarchy model, 3) to check the link structure among each components included in the layers of abstraction hierarchy model, 4) to transform information requirements to variables, 5) to make the graphs related to each variables, 6) to check the graphs by visual display design principles and heuristic rules. The second part is an EID design alternative for nuclear power plant. The EID for high level function represents the energy balance and energy flow in each loop of nuclear power plant. The EID for middle level function represents the performance indicators of each equipment involved in the all processes of changing from coolants to steam. The EID for low level function represents the values measured in each equipment such as temperature, pressure, water level and so on

  4. Safety principles and design management of Chashma Nuclear Power Plant

    International Nuclear Information System (INIS)

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  5. Design and market considerations for axial flux superconducting electric machine design

    Science.gov (United States)

    Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.

    2014-05-01

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

  6. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  7. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  8. EVALUATION OF STREET FURNITURE ACCORDING TO BASIC DESIGN PRINCIPLES

    OpenAIRE

    GHORAB, Peyman; YÜCEL CAYMAZ, Gökçen Firdevs

    2014-01-01

    In the urban context, it is important to create more comfortable and livable environments with proper planning, design and application. Because aesthetic considerations are of more importance today, designing urban furniture to give a more beautiful appearance to cities is of high priority; designers and those working in related disciplines must be careful to observe these principles throughout the design process. This paper describes research conducted to review the aesthetic principles invo...

  9. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system

    International Nuclear Information System (INIS)

    Fukui, S.; Abe, R.; Ogawa, J.; Oka, T.; Yamaguchi, M.; Sato, T.; Imaizumi, H.

    2007-01-01

    Analytical study on the design of the superconducting magnet for the magnetic force assisted drug delivery system is presented in this paper. The necessary magnetic field condition to reside the magnetic drug particle in the blood vessels is determined by analyzing the particle motion in the blood vessel. The design procedure of the superconducting magnet for the M-DDS is presented and some case studies are conducted. The analytical results show that the superconducting magnet to satisfy the magnetic field conduction for the M-DDS is practically feasible

  10. 30 MJ superconducting coil design and fabrication. Report No. GA-A16104

    International Nuclear Information System (INIS)

    Purcell, J.R.

    1980-09-01

    The Bonneville 30 MJ superconducting stabilizing coil is being constructed by General Atomic under contract to LASL. Upon completion of the design, General Atomic began the procurement of materials and is now ready to start coil winding

  11. The Value of the Operational Principle in Instructional Design

    Science.gov (United States)

    Gibbons, Andrew S.

    2009-01-01

    Formal design studies are increasing our insight into design processes, including those of instructional design. Lessons are being learned from other design fields, and new techniques and concepts can be imported as they are demonstrated effective. The purpose of this article is to introduce a design concept--the "operational principle"--for…

  12. Enhancing the Therapy Experience Using Principles of Video Game Design.

    Science.gov (United States)

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  13. Design and construction of a superconducting magnet system for the absolute ampere experiment

    International Nuclear Information System (INIS)

    Chen, W.Y.; Olsen, P.T.; Phillips, W.D.; Purcell, J.R.; Williams, E.R.

    1982-01-01

    A complete superconducting magnet system designed by General Atomic Company for the National Bureau of Standards is described. It is to be utilized in the absolute ampere experiment. Key features of the magnet system are high precision, low LHe consumption, low eddy current effects, and modular construction. The system requirements are specified and the set-up illustrated schematically. Design description includes superconducting coils, (illustrated), coil dewar, field analysis, and three stages of fabrication

  14. Advanced modern superconductive materials for the machines and devices working on the principles of levitation

    International Nuclear Information System (INIS)

    Prikhna, T.A.; Novikov, N.V.; Savchuk, Ya.M.; Sverdun, V.V.

    2005-01-01

    By the high-pressure (2 GPa) high-temperature (800-900 degree C) synthesis from Mg and B taken in the MgB 2 stoichiometric ratio and with 10 wt.% of Ti, the MgB 2 -based nanostructural superconductive material with the record values of critical current density, J c , and the irreversible fields has been obtained

  15. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L

    2012-02-01

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  16. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  17. Urban Environment Development based on Universal Design Principles

    Science.gov (United States)

    Harsritanto, Bangun Ir

    2018-02-01

    Universal Design is a design which facilitated full range of human diversity. By applying Universal design principles, urban environment can be more functional and more user-friendly for everyone. This study examined five urban streets of South Korea as a country experienced on developing various urban street designs based on universal design. This study aimed to examine and compare the South Korea cases using seven principles of universal design. The research methods of this study are literature study, case study, and site observation. The results of this study are: South Korea cases are good practices, urgency of implementing the direction into local regulations; and change of urban development paradigm.

  18. Preliminary magnet design for a superconducting separated sector cyclotron

    International Nuclear Information System (INIS)

    Bertrand, P.; Chabert, A.; Duval, M.; Ripouteau, F.

    1992-01-01

    This paper reports that in order to increase the energies available at GANIL, studies on a superconducting separated six straight sector cyclotron for heavy ions with energy up to 500 MeV/A (ions with Q/A = 0.5) have been performed. With a mean injection radius of 2.5 m and an extraction radius of 5 m, the maximum magnetic field on a sector has to be 5T. Each of the six sectors consists of two superconducting main coils (wound around the poles), room temperature iron pole pieces and a large yoke. Due to the broad ranges of energy and ion species, the required field laws are very different and for the most difficult operating point, the induction difference between the injection and ejection radii is about one Tesla. As a consequence, correcting coils have to provide a high field and one unusual point is that the machine will be operated with superconducting trim coils

  19. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield

  20. Toward Instructional Design Principles: Inducing Faraday's Law with Contrasting Cases

    Science.gov (United States)

    Kuo, Eric; Wieman, Carl E.

    2016-01-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory…

  1. Design Principles for Achieving Integrated Healthcare Information Systems

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind

    2013-01-01

    and Lyytinen, to examine the design principles that facilitated this smallscale project to expand and become widespread. As a result of my findings, I outline three lessons learned that emphasize: (i) principles of flexibility, (ii) expansion from the installed base through modular strategies and (iii...

  2. Publish Subscribe Systems Design and Principles

    CERN Document Server

    Tarkoma, Sasu

    2012-01-01

    This book offers an unified treatment of the problems solved by publish/subscribe, how to design and implement the solutions In this book, the author provides an insight into the publish/subscribe technology including the design, implementation, and evaluation of new systems based on the technology.  The book also addresses the basic design patterns and solutions, and discusses their application in practical application scenarios. Furthermore, the author examines current standards and industry best practices as well as recent research proposals in the area. Finally, necessary content ma

  3. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  4. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  5. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    .... The contents have been updated to cover changes to regulatory requirements, testing methodology, and design approaches, as well as the emergent topics of pharmacological agents in the water supply...

  6. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  7. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  8. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  9. The new proposal to the mechanism of superconductivity Part 1: principle

    International Nuclear Information System (INIS)

    Huang Shiming

    2001-01-01

    The concept of hulun electron and collective potential are proposed based on plenty of experimental facts. The superconductivity is due to the collective behavior of the hulun electron's ordered phases. At 0 K, all hulun electrons must be existed in ordered phases. All the solids containing hulun electrons will become superconductors as the temperature approaches to 0 K. The solids not containing hulun electrons will never become superconductors. For the solids containing only one hulun electron phase, phase change occurs only one time as the temperature rises up from 0 K, this is the first kind superconductors. The superconducting temperature TC is the temperature at which the phase change occurs. For solids containing two or more hulun electron phases, as temperature rises up from 0 K, the hulun electron phases's change will begin from the lowest stablized phase, then the higher. As long as there is just one hulun electron phase retaining in ordered state, the solids is still a superconductor. The superconducting transition temperature T C is the temperature at which the most stable hulun electron phase occurs phase change. This is the second kind superconductors

  10. Principles of waveform diversity and design

    CERN Document Server

    Wicks, Michael

    2011-01-01

    This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is

  11. Design principles for radiological protection instrumentation systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1981-02-01

    This Code of Practice takes the form of recommendations intended for designers and installers of Radiological Protection Instrumentation, and should also be of value to the newcomer to the R.P.I. field. Topics are discussed under the following headings: outline of R.P.I. requirements, specifying the requirement, satisfying the requirements, (overall design, availability and reliability, information display, human factors, power supplies, manufacture, quality assurance, testing, and cost analysis), supply, location and operation of the equipment, importance of documentation. (U.K.)

  12. Detectors for the superconducting super collider, design concepts, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems.

  13. Detectors for the superconducting super collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems

  14. Detectors for the Superconducting Super Collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-01-01

    The physics of compensation calorimetry is reviewed in the light of the need of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems. 29 refs., 20 figs., 6 tabs

  15. Safety principles and design criteria for nuclear power stations

    International Nuclear Information System (INIS)

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  16. Seven principles to design for embodied sensemaking

    NARCIS (Netherlands)

    Hummels, C.C.M.; Dijk, van J.

    2015-01-01

    The TEI-community is based a various paradigms. We believe that the community matures by scrutinising these different paradigms and unravelling the consequences for designing for tangible, embedded and embodied interaction. In this paper we explore the consequences and possibilities of

  17. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  18. Design Principles for a Comprehensive Library System.

    Science.gov (United States)

    Uluakar, Tamer; And Others

    1981-01-01

    Describes an online design featuring circulation control, catalog access, and serial holdings that uses an incremental approach to system development. Utilizing a dedicated computer, this second of three releases pays particular attention to present and predicted computing capabilities as well as trends in library automation. (Author/RAA)

  19. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Boyang, E-mail: bs506@cam.ac.uk; Fu, Lin, E-mail: lf359@cam.ac.uk; Geng, Jianzhao, E-mail: jg717@cam.ac.uk; Zhang, Xiuchang, E-mail: xz326@cam.ac.uk; Zhang, Heng, E-mail: hz301@cam.ac.uk; Dong, Qihuan, E-mail: qd210@cam.ac.uk; Li, Chao, E-mail: cl644@cam.ac.uk; Li, Jing, E-mail: jl908@cam.ac.uk; Coombs, T.A., E-mail: tac1000@cam.ac.uk

    2016-05-15

    Highlights: • Design of superconducting magnets using Halbach Array configuration. • Combination of superconducting magnets together with Lorentz Force Electrical Impedance Tomography (LFEIT) system. • Simulation of superconducting LFEIT system based on the theory of magneto-acoustic effect. - Abstract: Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  20. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  1. Design principles for global commons: Natural resources and emerging technologies

    Directory of Open Access Journals (Sweden)

    Paul C. Stern

    2011-09-01

    Full Text Available Ostrom’s design principles for managing common pool resources were developed largely by examining local commons involving natural resources. This paper enumerates several key characteristics that distinguish such commons from more complex commons involving global resources and the risks of emerging technologies. It considers the degree to which the design principles transfer to those commons and concludes that although they have considerable external validity, the list needs some modification and elaboration to apply to global resources and risk commons. A list of design principles is offered for global resource commons and the risks of emerging technologies. Applying Ostrom’s approach to global resources and emerging technologies can improve understanding and expand the solution set for these problems from international treaties, top-down national regulation, and interventions in market pricing systems to include non-governmental institutions that embody principles of self-governance.

  2. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  3. Fuel cells principles, design, and analysis

    CERN Document Server

    Revankar, Shripad T

    2014-01-01

    ""This book covers all essential themes of fuel cells ranging from fundamentals to applications. It includes key advanced topics important for understanding correctly the underlying multi-science phenomena of fuel cell processes. The book does not only cope with traditional fuel cells but also discusses the future concepts of fuel cells. The book is rich on examples and solutions important for applying the theory into practical use.""-Peter Lund, Aalto University, Helsinki""A good introduction to the range of disciplines needed to design, build and test fuel cells.""-Nigel Brandon, Imperial Co

  4. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  5. Preserving SSC Design Function Using RCM Principles

    International Nuclear Information System (INIS)

    Mohammadi, K.

    2009-01-01

    Reliability-Centered Maintenance (RCM) can be defined as an approach that employs preventive, predictive, proactive, and reactive maintenance practices and strategies in an integrated manner to increase the probability that a Structure, System, or Component (SSC) will function as designed over its life cycle with optimum maintenance. The goal of RCM is to preserve the SSC intended design function at the lowest cost by developing a maintenance strategy that is supported by sound technical and economic justification. RCM has been used extensively by the aircraft, space, defense, power generation, and manufacturing industries where functional failures of SSCs can have the potential to compromise worker or public safety, cause adverse environmental impact, cause loss of production, and/or result in excessive damage to critical SSCs. This paper provides a framework for performing an RCM analysis in support of DOE Order 430.1A (Life Cycle Asset Management) and DOE Order 420.1B (Facility Safety). The influence of RCM on the various aspects of the maintenance program including the work control process is also discussed

  6. Geometry Design, Principles and Assembly of Micromotors

    Directory of Open Access Journals (Sweden)

    Huanpo Ning

    2018-02-01

    Full Text Available Discovery of bio-inspired, self-propelled and externally-powered nano-/micro-motors, rotors and engines (micromachines is considered a potentially revolutionary paradigm in nanoscience. Nature knows how to combine different elements together in a fluidic state for intelligent design of nano-/micro-machines, which operate by pumping, stirring, and diffusion of their internal components. Taking inspirations from nature, scientists endeavor to develop the best materials, geometries, and conditions for self-propelled motion, and to better understand their mechanisms of motion and interactions. Today, microfluidic technology offers considerable advantages for the next generation of biomimetic particles, droplets and capsules. This review summarizes recent achievements in the field of nano-/micromotors, and methods of their external control and collective behaviors, which may stimulate new ideas for a broad range of applications.

  7. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  8. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    International Nuclear Information System (INIS)

    Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.

    1978-01-01

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin

  9. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  10. Basic principles governing the design of magnetic switches

    International Nuclear Information System (INIS)

    Birx, D.L.; Lauer, E.J.; Reginato, L.L.; Schmidt, J.; Smith, M.

    1980-01-01

    The idea of using saturable reactors as the basis of high power pulse generators is not a new concept, but there have been few recent applications of this technology. Here the principle of magnetic pulse generation is briefly described and some of the basic guidelines used to design these circuits are discussed. A demonstration of the principles by a small scale pulse amplifier is presented, and finally there is an extrapolation to a large scale system

  11. The Elements and Principles of Design: A Baseline Study

    Science.gov (United States)

    Adams, Erin

    2013-01-01

    Critical to the discipline, both professionally and academically, are the fundamentals of interior design. These fundamentals include the elements and principles of interior design: the commonly accepted tools and vocabulary used to create and communicate successful interior environments. Research indicates a lack of consistency in both the…

  12. Non-Flutter Design Principle for long Span Bridges

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Starch Øvre, Michele

    velocity for a thin airfoil shows an asymptotical behavior. In traditional bridge design the torsional-to-vertical frequency ratio is increased to obtain higher flutter wind velocities. In the present study, we investigate, what we will label the non-flutter design principle, in which the torsional...

  13. Principle design of an energy efficient transfemoral prosthesis.

    NARCIS (Netherlands)

    Veltink, P.H.; Ünal, Ramazan; Eberle, W.; Hekman, Edsko E.G.; Carloni, Raffaella; Koopman, Hubertus F.J.M.; Stramigioli, Stefano

    2009-01-01

    In the pursuit of realizing an energy efficient transfemoral prosthetic, in this paper we present a preliminary study on a principle design. In particular, the design is based on the idea that the efficiency of the system can be realized by energetically coupling the knee and the ankle joints. In

  14. Design Principles of Next-Generation Digital Gaming for Education.

    Science.gov (United States)

    Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.

    2003-01-01

    Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…

  15. Designing User-Computer Dialogues: Basic Principles and Guidelines.

    Science.gov (United States)

    Harrell, Thomas H.

    This discussion of the design of computerized psychological assessment or testing instruments stresses the importance of the well-designed computer-user interface. The principles underlying the three main functional elements of computer-user dialogue--data entry, data display, and sequential control--are discussed, and basic guidelines derived…

  16. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  17. Advances in the design of superconducting magnetic bearings for static and dynamic applications

    International Nuclear Information System (INIS)

    Siems, S O; Canders, W-R

    2005-01-01

    Theoretical and experimental studies have led to an overall design for superconducting magnetic bearings (SMB) that is suitable to meet the requirements of industrial applications. The main benefits are high load capacities, compact dimensions and a 'warm' suspended part of the application. Two applications have been designed with a suspension provided only by SMB; one has already been built and tested successfully

  18. Conceptual design of dump resistor for superconducting CS of SST-1

    International Nuclear Information System (INIS)

    Roy, Swati; Pradhan, Subrata; Panchal, Arun

    2015-01-01

    During the upgradation of SST-1, the resistive central solenoid (CS) coil has been planned to be replaced with Nb 3 Sn based superconducting coil. The superconducting CS will store upto 3.5MJ of magnetic energy per operation cycle with operating current upto 14kA. In case of coil quench, the energy stored in the coils is to be extracted rapidly with a time constant of 1.5s. This will be achieved by inserting a 20m Ohm dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a vital part of the superconducting CS quench protection system, a conceptual design of the 20m Ohm dump resistor has been proposed. In this paper, the required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented. Natural air circulation is proposed as cooling method for this dump resistor. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the shape of meander to minimize the stray inductance and increase the surface area for cooling. The entire dump resistor will be an array of such grids connected in series and parallel to meet electrical as well as thermal parameters. The maximum temperature of the proposed dump resistor is upto 350 °C during dump 3.5MJ energy. The proposed design permits indigenous fabrication of the dump resistor using commercially available welding techniques. (author)

  19. Conceptual design of Dump resistor for Superconducting CS of SST-1

    Science.gov (United States)

    Roy, Swati; Raj, Piyush; Panchal, Arun; Pradhan, Subrata

    2017-04-01

    Under upgradation activities for SST-1, the existing resistive central solenoid (CS) coil will be replaced with Nb3Sn based superconducting coil. Design of Central solenoid had been completed and some of the initiative has already taken for its manufacturing. The superconducting CS will store upto 3 MJ of magnetic energy per operation cycle with operating current upto 14 kA. During quench, energy stored in the coils has to be extracted rapidly with a time constant of 1.5 s by inserting a 20 mΩ dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a critical part of the superconducting CS quench protection system, a conceptual design of the 20 mΩ dump resistor has been proposed. The required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented and discussed. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the form of meander to minimize the stray inductance and increase the surface area for cooling. Such an array of grids connected in series and parallel will cater to the electrical as well as thermal parameters. It will be cooled by natural convection. During operation, the estimated maximum temperature of the proposed dump resistor will raise upto 600 K.

  20. Robust design principles for reducing variation in functional performance

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and percei......This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability...... and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors’ experience. The paper presents 15 principles and describes...... their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method...

  1. Intelligent computer systems in engineering design principles and applications

    CERN Document Server

    Sunnersjo, Staffan

    2016-01-01

    This introductory book discusses how to plan and build useful, reliable, maintainable and cost efficient computer systems for automated engineering design. The book takes a user perspective and seeks to bridge the gap between texts on principles of computer science and the user manuals for commercial design automation software. The approach taken is top-down, following the path from definition of the design task and clarification of the relevant design knowledge to the development of an operational system well adapted for its purpose. This introductory text for the practicing engineer working in industry covers most vital aspects of planning such a system. Experiences from applications of automated design systems in practice are reviewed based on a large number of real, industrial cases. The principles behind the most popular methods in design automation are presented with sufficient rigour to give the user confidence in applying them on real industrial problems. This book is also suited for a half semester c...

  2. The design of a five-cell high-current superconducting cavity

    International Nuclear Information System (INIS)

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  3. Patterns, principles, and practices of domain-driven design

    CERN Document Server

    Millett, Scott

    2015-01-01

    Methods for managing complex software construction following the practices, principles and patterns of Domain-Driven Design with code examples in C# This book presents the philosophy of Domain-Driven Design (DDD) in a down-to-earth and practical manner for experienced developers building applications for complex domains. A focus is placed on the principles and practices of decomposing a complex problem space as well as the implementation patterns and best practices for shaping a maintainable solution space. You will learn how to build effective domain models through the use of tactical pat

  4. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  5. Optimal design of a 7 T highly homogeneous superconducting magnet for a Penning trap

    International Nuclear Information System (INIS)

    Wu Wei; He Yuan; Ma Lizhen; Huang Wenxue; Xia Jiawen

    2010-01-01

    A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass measurements at the Institute of Modern Physics(IMP). One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3 x 10 -7 over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils. With the help of this method an optimal design for the LPT superconducting magnet has been obtained. (authors)

  6. Mechanical design of SXLS [Superconducting X-ray Lithography Source] radio-frequency cavity

    International Nuclear Information System (INIS)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs

  7. Mechanical design of SXLS (Superconducting X-ray Lithography Source) radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs.

  8. Report of the Reference Designs Study Group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-05-01

    The study was based on three different styles of superconducting magnets, each emphasizing a different configuration aimed at sharply decreasing the cost of producing the needed magnet system below that achievable with existing designs. In the study three key areas were addressed: technical feasibility; economic feasibility; and identification of specific R and D needs. Primary emphasis was on estimating the cost range within which SSC construction can confidently be expected to fall. In doing this, attention was focused on the cost of creating the collider itself. The costs of research equipment, preconstruction R and D, and possible site acquisition are not included in this study. The report of the Reference Designs Study is meant neither as a proposal for SSC construction, nor as a site preference statement. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipted that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  9. Design criteria and principles for criticality detection and alarm systems

    International Nuclear Information System (INIS)

    Delafield, H.J.; Clifton, J.J.

    1984-10-01

    The report gives design principles and criteria for criticality detection and alarm systems based on earlier work and revised in the light of more recent experience. In particular, account is taken of the developments which have taken place in the field of radiation detection and in the understanding of the different types of criticality excursion. General guidance is given on the principles to apply in deciding upon the need for a criticality system. The characteristics of a criticality incident are described in terms of the minimum incident of concern, and the radiation field. Criteria for the threshold of detection of a criticality incident are then derived and the methods of detection considered. The selection and siting of criticality detectors is discussed, and design principles are given for alarm systems. Finally, testing and post-alarm procedures are outlined, followed by a summary of the principal recommendations. The supporting Appendices include a discussion of reliability and a summary of radiation detector characteristics. (author)

  10. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  11. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  12. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  13. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  14. Elements and Principles of Design Posters. Teacher's Guide.

    Science.gov (United States)

    1996

    This book accompanies a poster series and allows the teacher to pre-plan a lesson or activity for students with the objectives shown for each element or principle of design to be presented. Along with a black-and-white reproduction of each poster, major concepts are discussed. Suggested student activities relating to a particular element or…

  15. Implementation of the non-flutter design principle

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Sahin, Emrah; Laustsen, Benjamin

    2014-01-01

    The non-flutter design principle is introduced. Aerodynamically stable section model tests performed by three different research groups indicate, that flutter might be avoided if the torsional-to-vertical frequency ratio is kept below 1. A case study of a suspension bridge spanning 3:7 km...

  16. Design Principles for Cell Phone Learning in EFL

    Science.gov (United States)

    Wang, Feihong

    2010-01-01

    Cell phone learning (C-learning), as an instructional approach, has been gaining more and more attention in the field of teaching English as a foreign language (EFL) in the last 10 years. While studies have proved C-learning an effective instructional approach in research settings, a review of literature indicates the lack of design principles to…

  17. Design principle and structure of the ANI data centre

    International Nuclear Information System (INIS)

    Akopov, N.Z.; Arutyunyan, S.Kh.; Chilingaryan, A.A.; Galfayan, S.Kh.; Matevosyan, V.Kh.; Zazyan, M.Z.

    1985-01-01

    The design principles and structure of applied statistical programms used for processing the data from the ANI experiments are described. Nonparametric algorithms provide development of high-efficient method for simultaneous analysis of computerized and experimental data, from cosmic ray experiments. Relation data base for unified data storage, protection, renewing and erasuring as well as for fast and convenient information retrieval is considered

  18. Design Principles for Improving the Process of Publishing Open data

    NARCIS (Netherlands)

    Zuiderwijk, A.M.G.; Janssen, M.F.W.H.A.; Choenni, R.; Meijer, R.F.

    2014-01-01

    · Purpose: Governments create large amounts of data. However, the publication of open data is often cumbersome and there are no standard procedures and processes for opening data. This blocks the easy publication of government data. The purpose of this paper is to derive design principles for

  19. Authentic tasks in higher education: Studying design principles for assessment

    NARCIS (Netherlands)

    van Keulen, H.; van den Berg, I.; Ramaekers, S.

    2006-01-01

    Students may benefit significantly from learning through authentic tasks. But how do we assess their learning outcomes, taking into account the specific characteristics of authentic tasks? In the second presentation of this symposium on design principles for authentic tasks we present and discuss

  20. Web Interface Design Principles for Adults' Self-Directed Learning

    Science.gov (United States)

    Firat, Mehmet; Sakar, A. Nurhan; Kabakci Yurdakul, Isil

    2016-01-01

    One of the most important features which e-learning tools and environments must possess within the scope of lifelong learning is self-directed learning, which can be considered as a form of self-learning. The aim of this study was to determine, based on the views and recommendations of experts, interface design principles for the development of…

  1. An optimizing design method for a compact iron shielded superconducting magnet for use in MRI

    International Nuclear Information System (INIS)

    Tang Xin; Zu Donglin; Wang Tao; Han Baohui

    2010-01-01

    A method is developed for designing a special iron shielded superconducting magnet for MRI in this paper. The shield is designed as an integral part of the cryostat and high permeability and high saturated magnetization iron material is adopted. This scheme will result in a compact iron shielded magnet. In the presented design, the finite element (FE) method is adopted to calculate the magnetic field produced by superconducting coils and nonlinear iron material. The FE method is incorporated into the simulated annealing method which is employed for corresponding optimization. Therefore, geometrical configurations of both coils and iron shield can be optimized together. This method can deal with discrete design variables which are defined to describe the cable arrangements of coil cross sections. A detailed algorithm of the present design is described and an example for designing a 1.5 T clinical iron shielded magnet for MRI is shown.

  2. Computers as components principles of embedded computing system design

    CERN Document Server

    Wolf, Marilyn

    2012-01-01

    Computers as Components: Principles of Embedded Computing System Design, 3e, presents essential knowledge on embedded systems technology and techniques. Updated for today's embedded systems design methods, this edition features new examples including digital signal processing, multimedia, and cyber-physical systems. Author Marilyn Wolf covers the latest processors from Texas Instruments, ARM, and Microchip Technology plus software, operating systems, networks, consumer devices, and more. Like the previous editions, this textbook: Uses real processors to demonstrate both technology and tec

  3. Applying multimedia design principles enhances learning in medical education.

    Science.gov (United States)

    Issa, Nabil; Schuller, Mary; Santacaterina, Susan; Shapiro, Michael; Wang, Edward; Mayer, Richard E; DaRosa, Debra A

    2011-08-01

    The Association of American Medical Colleges' Institute for Improving Medical Education's report entitled 'Effective Use of Educational Technology' called on researchers to study the effectiveness of multimedia design principles. These principles were empirically shown to result in superior learning when used with college students in laboratory studies, but have not been studied with undergraduate medical students as participants. A pre-test/post-test control group design was used, in which the traditional-learning group received a lecture on shock using traditionally designed slides and the modified-design group received the same lecture using slides modified in accord with Mayer's principles of multimedia design. Participants included Year 3 medical students at a private, midwestern medical school progressing through their surgery clerkship during the academic year 2009-2010. The medical school divides students into four groups; each group attends the surgery clerkship during one of the four quarters of the academic year. Students in the second and third quarters served as the modified-design group (n=91) and students in the fourth-quarter clerkship served as the traditional-design group (n=39). Both student cohorts had similar levels of pre-lecture knowledge. Both groups showed significant improvements in retention (paffect transfer of learning. Further research on applying the principles of multimedia design to medical education is needed to verify the impact it has on the long-term learning of medical students, as well as its impact on other forms of multimedia instructional programmes used in the education of medical students. © Blackwell Publishing Ltd 2011.

  4. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  5. Design of a low temperature superconducting coil to be applied to current regulators

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Grau Carles, A

    1998-05-01

    We study the magnetic design and the cryogenic stability of a superconducting coil cooled with liquid helium, which works both in DC and AC modes. In DC mode, we obtain the maximum quench current; while in AC mode, we analyze Joule losses produced by the superconductor magnetization and the generation of eddy currents inside the copper matrix. (Author)

  6. Development and testing of a superconducting acceleration resonator using new methods in design and fabrication

    International Nuclear Information System (INIS)

    Steck, M.

    1986-01-01

    A superconducting quarter-wave resonator at 325 MHz was studied for the implementation at the Heidelberg post-accelerator. Using the computer programs SUPERFISH and URMEL the first design derived from analytical approaches was optimized regarding the superconducting operation. The measurements on the model showed good agreement with the calculations. By modification of the standard techniques the fabrication of the resonator body and the preparation of the superconducting surface could be simplified. On the superconducting resonator 1 μm thick superconducting surfaces of pure lead as well as a lead/tin alloy were tested. Thereby with lead a quality of the resonator Q 0 =8.5.10 7 and a maximal electrical acceleration field in the continuous region of epsilonsub(acc)=2.16 MV/m at Q=1.10 7 were reached. The measurements with a surface of lead/tin yielded Q 0 =1.4.10 8 and as maximal acceleration field epsilonsub(acc)=1.93 MV/m at Q=1.10 7 . A further increasing of the maximal electric field by conditioning of the resonator can be expected because of the test results. The excellent mechanical stability not reachable with other resonator types which manifests by a static frequency shift of 4 Hz/(MV/m) 2 and rapid frequency oscillations [de

  7. Design study for superconducting main field coils for the Oak Ridge Isochronous Cyclotron

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Litherland, P.S.; Ballou, J.K.

    1981-01-01

    The design study described here demonstrated the feasibility of replacing the existing ORIC coils with superconducting magnets. The design is quite conservative, requires no unusual technology, and should result in a coil system with good reliability and durability. The operating regime of ORIC will be considerably extended, and running costs should be reduced. A proposal to continue with detailed design and coil fabrication is currently under review and has been submitted to the Nuclear Science Advisory Committee

  8. Report of the reference designs study group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-01-01

    In December, 1983, the directors of the US high energy accelerator laboratories chartered the National SSC Reference Designs Study to review in detail the technical and economic feasibility of various options for creating the Superconducting Super Collider (SSC) facility, a 20 TeV on 20 TeV proton-proton collider having a luminosity up to 10 33 cm -2 sec -1 . The primary objective of the study was to help the DOE, the high energy physics community, and the scientific community as a whole to decide how best to proceed with SSC R and D directed toward improving the cost effectiveness of applicable accelerator technology. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipated that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  9. HT-7U superconducting tokamak: Physics design, engineering progress and schedule

    International Nuclear Information System (INIS)

    Wan Yuanxi

    2002-01-01

    The superconducting tokamak research program begun in China in ASIPP since 1994. The program is included in existent superconducting tokamak HT-7 and the next new superconducting tokamak HT-7U which is one of national key research projects in China. With the elongation cross-section, divertor and higher plasma parameter the main objectives of HT-7U are widely investigation both of the physics and technology for steady state advanced tokamak as well as the investigation of power and particle handle under steady-state operation condition. The physics and engineering design have been completed and significant progresses on R and D and fabrication have been achieved. HT-7U will begin assembly at 2003 and possible to get first plasma around 2004. (author)

  10. Design considerations for a superconducting linac as an option for the ESS

    CERN Document Server

    Bräutigam, W F; Schug, G; Zaplatin, E N; Meads, P F; Senichev, Yu V

    1999-01-01

    An approach for a superconducting high-current proton linac for the ESS has been discussed as an option in the "Proposal for a Next Generation Neutron Source for Europe-the European Spallation Source (ESS)". The following work studies the technical and economic conditions for a superconducting linac at the high-energy end of the proposed accelerator system. The use of superconducting elliptical cavities for the acceleration of high-energetic particles beta =v/c-1 is certainly state of the art. This is documented by many activities (TJNAF, TESLA, LEP, LHC, and KEK). A design study for the cavities is described in another paper on this conference. For low energy particles ( beta <<1) quarter wave type cavities and spoke-type cavities have been discussed. The main motivation for this study is the expectation of significant cost reduction in terms of operational and possibly investment cost. (5 refs).

  11. Experimental application of design principles in corrosion research

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Pohlman, S.L.

    1977-01-01

    Experimental design criteria for corrosion investigations are based on established principles for systems that have uniform, or nearly uniform, corrosive attack. Scale-up or scale-down may be accomplished by proper use of dimensionless groups that measure the relative importance of interfacial kinetics, solution conductivity, and mass transfer. These principles have been applied to different fields of corrosion which include materials selection testing and protection; and to a specific corrosion problem involving attack of a substrate through holes in a protective overplate

  12. Applying principles of Design For Assembly to ITER maintenance operations

    International Nuclear Information System (INIS)

    Heemskerk, Cock; de Baar, Marco; Elzendoorn, Ben; Koning, Jarich; Verhoeven, Toon; Vreede, Fred de

    2009-01-01

    In ITER, maintenance operations in the vessel and in the Hot Cell will be largely done by Remote Handling (RH). Remotely performed maintenance actions tend to be more time-costly than actions performed by direct human access. With a human operator in the control loop and adequate situational feedback, a two-armed master slave manipulator system can mimic direct access with dexterous manipulation, tactile feedback and vision. But even then, turnaround times are still very high. Adapting the design for simplified maintenance operations can yield significant time savings. One of the methods known to produce a simpler, more robust design, which is also better suited for handling with robots, is Design For Assembly (DFA). This paper discusses whether and how the principles of DFA can be applied to simplify maintenance operations for ITER. While DFA is normally used with series-production and ITER is a unique product, it is possible to apply the principles of DFA to ITER maintenance operations. Furthermore, DFA's principles can be applied at different abstraction levels. Combining principles of DFA with Virtual Reality leads to new insights and provides additional value.

  13. Integrated design of superconducting accelerator magnets. A case study of the main quadrupole

    International Nuclear Information System (INIS)

    Russenschuck, S.; Calmon, F.; Lewin, M.; Paul, C.; Ramberger, S.; Rodriguez-Mateos, F.; Tortschanoff, T.; Verweij, A.; Wolf, R.

    1998-01-01

    This paper describes the software tool which has been developed for the design of the superconducting magnets for the large hadron collider (LHC) at CERN. Applied methods include numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software tool is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, which was designed at CEA Saclay (France) using a different approach, was chosen as an example for the integrated design process. The paper focuses on the design issues and is not a project report on the main quadrupoles under construction. (orig.)

  14. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  15. Design study of an indirect cooling superconducting magnet for a fusion device

    International Nuclear Information System (INIS)

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  16. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-07-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: (1) a problem definition phase that specifies resources and constraints composing the problem boundary values; (2) a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives; (3) a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them; and (4) a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs. 6 references, 4 figures, 5 tables

  17. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-01-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: a problem definition phase that specifies resources and constraints composing the problem boundary values, a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives, a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them, and a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs

  18. Mechanical design of an electronic control unit using axiomatic principles

    Directory of Open Access Journals (Sweden)

    Cazacu Vlad

    2017-01-01

    Full Text Available If the engine of the car can be considered as the heart, then the E.C.U’s represents the brain of the car. Electronic control units (E.C.U’s are electronic devices which control the way different components of a car (engine, windows, airbags, etc. react in some situations (overheating, button pressed by a passenger, crash, etc.. Axiomatic design is a set of principles that theorizes the act of conceiving a new project. Based on two axiom this method comes into designers help, giving them the option to reach in a short period of time a fully functional and compliant product without supporting the design of the product on chance, past experiences or “try and fail” principle.

  19. Design and construction of a basic principle simulator: an experiment

    International Nuclear Information System (INIS)

    Fernandez, O.; Galdoz, E.; Flury, C.; Fontanini, H.; Maciel, F.; Rovere, L.; Carpio, R.

    1992-01-01

    This paper describes activities developed over design and building of a Basic Principle Simulator for nuclear power plants. This simulator has been developed in Process Control Division of Bariloche Atomic Center, Argentina. This project was sponsored jointly by CNEA and Atomic Energy International Organization, through the United Nations Program for Development. The paper specially emphasizes aspects like: architecture design methodology of real time simulators; graphic environment and interfaces design for users and instructor interaction, and for display information; test and validation of the used models; and human resources formation. Finally describes the actual implementation of the simulator to be used in Embalse Nuclear Power Plant. (author)

  20. Theory-generating practice. Proposing a principle for learning design

    DEFF Research Database (Denmark)

    Buhl, Mie

    2016-01-01

    This contribution proposes a principle for learning design – Theory-Generating Practice (TGP) – as an alternative to the way university courses are traditionally taught and structured, with a series of theoretical lectures isolated from practical experience and concluding with an exam or a project...... building, and takes tacit knowledge into account. The article introduces TGP, contextualizes it to a Danish tradition of didactics, and discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP. Finally, three...

  1. Babinet principle applied to the design of metasurfaces and metamaterials.

    Science.gov (United States)

    Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M

    2004-11-05

    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

  2. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications

    Science.gov (United States)

    Posen, S.; Liepe, M.; Hall, D. L.

    2015-02-01

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.

  3. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  4. Design Concept of Superconducting Multipole Wiggler with Variably Polarized X-Ray

    International Nuclear Information System (INIS)

    Hwang, C.S.; Chang, C.H.; Li, W.P.; Lin, F.Y.

    2004-01-01

    In response to the growing demand for X-ray research, and to satisfy future needs for generating circularly polarized synchrotron radiation in the X-ray region, a 3.5 T superconducting multipole with a periodic length of 6 cm was designed to produce horizontal linearly polarized, and circularly polarized light on a 1.5 GeV electron storage ring. Differently arranged excitation current loop for the same coil design switched between the operation of symmetric and asymmetric modes to creat the linearly and circularly polarized light, respectively. This study elucidates the design concepts of the superconducting multipole wiggler with symmetric and asymmetric operation modes. The design of the magnetic circuit and the field calculation are also discussed. Meanwhile, the spectra characteristics of the symmetric and asymmetric modes are calculated and presented in this article

  5. Design principles of a web interface for monitoring tools

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Fantinel, S; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A

    2008-01-01

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools

  6. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  7. Zero Energy Buildings – Design Principles and Built Examples

    DEFF Research Database (Denmark)

    Designing a zero energy building is a complicated task, and in order to achieve good results it is necessary to include knowledge from a range of sources. Therefore, cooperation is required between different professions and between generalists and specialists from the very beginning of the process...... knowledge must be acquired, depending on the project in question. Through a cross-disciplinary approach to architecture and building design, and based on an integrated design process, this publication will: • introduce a number of design strategies and technologies which are particularly important...... for the development of zero energy houses. These strategies and technologies are illustrated through simple design principles and built examples • identify technical and architectural potentials and challenges related to design strategies of crucial importance to the development of zero energy houses • identify...

  8. Design of X-Y steering magnet for extraction beamline of K-500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Naser, Md. Zamal A.; Paul, S.; Bhunia, U.; Pradhan, J.; Dey, M.K.; Nandi, C.; Mallik, C.; Bhandari, R.K.

    2005-01-01

    The K-500 Superconducting Cyclotron is in the advanced stage of commissioning at VEC Centre, Kolkata. This accelerator is designed to accelerate up to maximum 80 MeV/nucleon energy. A X-Y steering magnet is essential to guide this high energy beam into the external high energy beam line. This paper describes the designing and the other related necessary aspects of such a steering magnet. (author)

  9. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs.

  10. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    International Nuclear Information System (INIS)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs

  11. Design and Test of a Thermal Triggered Persistent Current System using High Temperature Superconducting Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Keun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kang, Hyoungku [Electro-Mechanical Research Institute, Hyundai Heavy Industries, Yongin (Korea, Republic of); Ahn, Min Cheol [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yang, Seong Eun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yoon, Yong Soo [Department of Electrical Engineering, Ansan College of Technology, 671 Choji-Dong, Danwon-Gu, Ansan, 425-792 (Korea, Republic of); Lee, Sang Jin [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Ko, Tae Kuk [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2006-06-01

    A superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as high uniformity of magnetic field and reduced thermal loss. A high temperature superconducting (HTS) persistent current switch (PCS) system was designed and tested in this research. The HTS PCS was optimally designed using two different HTS tapes, second generation coated conductor (CC) HTS tape and Bi-2223 HTS tape by the finite element method (FEM) in thermal quench characteristic view. The CC tape is more prospective applicable wire in these days for its high n value and critical current independency from external magnetic field than Bi-2223 tape. Also a prototype PCS system using Bi-2223 tape was manufactured and tested. The PCS system consists of a PCS part, a heater which induces the PCS to quench, and a superconducting magnet. The test was performed in various conditions of transport current. An initial current decay appeared when the superconducting magnet was energized in a PCS system was analyzed. This paper would be foundation of HTS PCS researches.

  12. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  13. Client Mobile Software Design Principles for Mobile Learning Systems

    Directory of Open Access Journals (Sweden)

    Qing Tan

    2009-01-01

    Full Text Available In a client-server mobile learning system, client mobile software must run on the mobile phone to acquire, package, and send student’s interaction data via the mobile communications network to the connected mobile application server. The server will receive and process the client data in order to offer appropriate content and learning activities. To develop the mobile learning systems there are a number of very important issues that must be addressed. Mobile phones have scarce computing resources. They consist of heterogeneous devices and use various mobile operating systems, they have limitations with their user/device interaction capabilities, high data communications cost, and must provide for device mobility and portability. In this paper we propose five principles for designing Client mobile learning software. A location-based adaptive mobile learning system is presented as a proof of concept to demonstrate the applicability of these design principles.

  14. Design principles for achieving integrated healthcare information systems.

    Science.gov (United States)

    Jensen, Tina Blegind

    2013-03-01

    Achieving integrated healthcare information systems has become a common goal for many countries in their pursuit of obtaining coordinated and comprehensive healthcare services. This article focuses on how a small local project termed 'Standardized pull of patient data' expanded and is now used on a large scale providing a majority of hospitals, general practitioners and citizens across Denmark with the possibility of accessing healthcare data from different electronic patient record systems and other systems. I build on design theory for information infrastructures, as presented by Hanseth and Lyytinen, to examine the design principles that facilitated this smallscale project to expand and become widespread. As a result of my findings, I outline three lessons learned that emphasize: (i) principles of flexibility, (ii) expansion from the installed base through modular strategies and (iii) identification of key healthcare actors to provide them with immediate benefits.

  15. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  16. Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design

    Science.gov (United States)

    2017-09-01

    MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES TO RECOMMEND AN EXISTING CVL DESIGN by William H. Ehlies September 2017 Thesis Advisor...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE USING MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES

  17. TPX superconducting Tokamak magnet system: 1995 design and status overview

    International Nuclear Information System (INIS)

    Deis, G.; Bulmer, R.; Carpenter, R.

    1995-01-01

    The TPX magnet preliminary design effort is summarized. Key results and accomplishments during preliminary design and supporting R and D are discussed, including conductor development, quench detection, TF and PF magnet design, conductor bending and forming, reaction heat treating, helium stubs, and winding pack insulation

  18. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  19. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb$_{3}$Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associ...

  20. Design for Natural Breast Augmentation: The ICE Principle.

    Science.gov (United States)

    Mallucci, Patrick; Branford, Olivier Alexandre

    2016-06-01

    The authors' published studies have helped define breast beauty in outlining key parameters that contribute to breast attractiveness. The "ICE" principle puts design into practice. It is a simplified formula for inframammary fold incision planning as part of the process for determining implant selection and placement to reproduce the 45:55 ratio previously described as fundamental to natural breast appearance. The formula is as follows: implant dimensions (I) - capacity of the breast (C) = excess tissue required (E). The aim of this study was to test the accuracy of the ICE principle for producing consistent natural beautiful results in breast augmentation. A prospective analysis of 50 consecutive women undergoing primary breast augmentation by means of an inframammary fold incision with anatomical or round implants was performed. The ICE principle was applied to all cases to determine implant selection, placement, and incision position. Changes in parameters between preoperative and postoperative digital clinical photographs were analyzed. The mean upper pole-to-lower pole ratio changed from 52:48 preoperatively to 45:55 postoperatively (p principle for surgical planning in breast augmentation that attractive natural breasts may be achieved consistently and with precision. Therapeutic, IV.

  1. Power electronics basics operating principles, design, formulas, and applications

    CERN Document Server

    Rozanov, Yuriy; Chaplygin, Evgeny; Voronin, Pavel

    2015-01-01

    Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive components of semiconductor power switchesCovers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processesAddresses pulse-width modulation, power quality control, and multilevel, modular, and multicell

  2. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  3. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  4. Design of MgB2 Superconducting coils for the Ignitor Experiment*

    Science.gov (United States)

    Grasso, G.; Penco, R.; Berta, S.; Coppi, B.; Giunchi, G.

    2009-11-01

    A feasibility study for the adoption of MgB2 superconducting cables for the largest (about 5 m in diameter) of the poloidal field coils of the Ignitor machine is being carried out. This initiative was prompted by the progress made in the fabrication of MgB2 long cables, and related superconducting magnets of relatively large dimensions. These magnets will be cryocooled at the operating temperature of 10-15 K that is compatible with the He-gas cryogenic cooling system of Ignitor as well as with the projected superconducting current density of the MgB2 material, at the magnetic field values (˜4-5 T) in which these coils are designed to operate. The optimal cable configuration has been identified that can provide an efficient cooling of the MgB2 conductors over times compatible with the machine duty cycles. MgB2 superconductors hold the promise of becoming suitable for high field magnets by appropriate doping of the material and of replacing gradually the normal conducting coils adopted, by necessity, in high field experiments. Therefore, an appropriate R&D program on the development of improved MgB2 material and related superconducting cabling options has been undertaken, involving different institutions.

  5. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  6. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept.

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Gino Fallone, B

    2017-04-21

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0 . However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  7. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Fallone, B. Gino

    2017-04-01

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  8. AGROECOLOGY: PRINCIPLES AND STRATEGIES FOR THE DESIGN OF SUSTAINABLE AGROECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    João Carlos Canuto

    2017-04-01

    Full Text Available The theme of this paper is the debate on principles and strategies for designing sustainable agricultural systems. The paper builds on a broad approach to principles, moving to the more specific approach to strategies and finalizing with a micro-scale perspective on the practice of drawings and the consequences of each possible option. The objective is first of all to put to the debate the dialectic between conceptual plurality and unity in Agroecology. The problem in focus is to situate more clearly what are sustainable agroecosystems and, as a consequence, how to connect principles and strategies to make them viable. Regarding the theoretical reference, we use the classic authors of Agroecology and some critical articles on the conceptual question. The methodology that gives foundation to the approach is based on the author's theoretical and practical experience, with a qualitative, subjective and intuitive character. The results are only the presentation of ideas in order to contribute to the conceptual debate now in vogue and also to glimpse, on a smaller scale, the practical issue of sustainable agroecosystems designs.

  9. Theory-Generating Practice: Proposing a principle for learning design

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2016-06-01

    Full Text Available This contribution proposes a principle for learning design: Theory-Generating Practice (TGP as an alternative to the way university courses often are taught and structured with a series of theoretical lectures separate from practical experience and concluding with an exam or a project. The aim is to contribute to a development of theoretical frameworks for learning designs by suggesting TGP which may lead to new practices and turn the traditional dramaturgy for teaching upside down. TGP focuses on embodied experience prior to text reading and lectures to enhance theoretical knowledge building and takes tacit knowledge into account. The article introduces TGP and contextualizes it to a Danish tradition of didactics as well as discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP, and is discussed through three empirical examples from bachelor and master programs involving technology, and showing three ways of practicing it.

  10. Theory-Generating Practice: Proposing a principle for learning design

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2016-05-01

    Full Text Available This contribution proposes a principle for learning design: Theory-Generating Practice (TGP as an alternative to the way university courses often are taught and structured with a series of theoretical lectures separate from practical experience and concluding with an exam or a project. The aim is to contribute to a development of theoretical frameworks for learning designs by suggesting TGP which may lead to new practices and turn the traditional dramaturgy for teaching upside down. TGP focuses on embodied experience prior to text reading and lectures to enhance theoretical knowledge building and takes tacit knowledge into account. The article introduces TGP and contextualizes it to a Danish tradition of didactics as well as discusses it in relation to contemporary conceptual currents of didactic design and learning design. This is followed by a theoretical framing of TGP, and is discussed through three empirical examples from bachelor and master programs involving technology, and showing three ways of practicing it.

  11. Design Aspects on Winding of an MgB2 Superconducting Generator Coil

    DEFF Research Database (Denmark)

    Magnusson, N.; Eliassen, J.C.; Abrahamsen, Asger Bech

    2015-01-01

    copper conductors at room temperature at one tenth of the wire cost per unit carried current. In the framework of the European project INNWIND.EU, an MgB2 superconducting generator pole will be designed, built and tested. Some of the design aspects of this work with emphasis on the winding process...... and associated coil insulation are discussed. An overall high current density in the coil is of crucial importance to obtain clear benefits compared to conventional solutions. The wire itself may be the most important parameter in that respect. However, the overall current density of the coil is also influenced......% compared to the use of an additional, dedicated, electrical insulation like Kapton for wet-winding or glass-fibre for dry-winding followed by vacuum impregnation. We show the results of a trial winding of 500 m of MgB2 superconducting wire into a double pancake coil using the wet-winding technique...

  12. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  13. Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.

    Science.gov (United States)

    Emmons, Mark; Wilkinson, Frances C.

    2001-01-01

    Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)

  14. Design principles and operating principles: the yin and yang of optimal functioning.

    Science.gov (United States)

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  15. Design of the proposed 250 MeV superconducting cyclotron magnet for proton therapy

    International Nuclear Information System (INIS)

    Dey, M.K.; Ahmed, M.; Murali, S.; Duttagupta, A.; Chaudhuri, J.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    Here we describe the design calculations for the superconducting magnet of a 250 MeV proton cyclotron to be used for therapeutic purpose. Hard-edge approximation method has been adopted for finding the poletip geometry to meet the basic focusing requirements of the beam. Then the uniform-magnetization method has been applied to calculate the 3D magnetic field distribution due to saturated iron poletips, to verify the beam dynamical issues. (author)

  16. Design and Structural Analysis for the Vacuum Vessel of Superconducting Tokamak JT-60SC

    International Nuclear Information System (INIS)

    Kudo, Y.; Sakurai, S.; Masaki, K.; Urata, K.; Sasajima, T.; Matsukawa, M.; Sakasai, A.; Ishida, S.

    2003-01-01

    A modification of the JT-60 is planned to be a superconducting tokamak (JT-60SC) in order to establish steady-state operation of high beta plasma for 100 s, and to ensure the applicability of ferritic steel as a reduced activation material for reactor relevant break-even class plasmas. This paper describes the detailed design of the vacuum vessel, which has a unique structure for cost effective manufacturing, as well as structural analysis results for a feasibility study

  17. Electromagnetic design, implementation and test of a superconducting undulator with a transverse gradient field amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Afonso Rodriguez, Veronica

    2015-11-25

    This thesis describes the development of a novel superconducting transversal gradient undulator (TGU) designed to form a compact, highly brilliant laser-wakefield accelerator (LWFA) driven radiation source. A TGU in combination with a dispersive beam transport line can be employed to produce undulator radiation with natural bandwidth despite the large energy spread of the LWFA. This thesis documents the construction, first tests and characterization of the full-scale TGU.

  18. Conceptual design and development of a superconducting bus-line for the Large Helical Device

    International Nuclear Information System (INIS)

    Mito, T.; Takahata, K.; Yamada, S.; Yamamoto, J.; Uede, T.; Ikeda, M.

    1993-01-01

    A superconducting bus-line is proposed and preliminarily tested as an electrical feeder between the superconducting coils of the Large Helical Device (LHD) and their electrical power supply. The bus-line consists of a superconductor and its cryogenic transfer-line. The superconductor is a specially developed aluminum stabilized NbTi wire, which is installed in the innermost channel of the transfer-line. The vacuum insulated transfer-line consists of four corrugated tubes assembled coaxially. Liquid helium flows through the innermost channel and shield gas flows through another annular channel in the line. We are completing the conceptual design of the bus-line and the installation plan for the LHD experimental hall and are carrying out development of wires, including an investigation of their mechanical properties and electrical insulation. This report describes the conceptual design of the superconducting bus-line for the LHD, and the results we obtained recently during the design and development of a full-scale demonstration facility. (orig.)

  19. In search of design principles for developing digital learning & performance support for a student design task

    NARCIS (Netherlands)

    Bollen, Lars; van der Meij, Hans; Leemkuil, Hendrik H.; McKenney, Susan

    2015-01-01

    A digital learning and performance support environment for university student design tasks was developed. This paper describes on the design rationale, process, and the usage results to arrive at a core set of design principles for the construction of such an environment. We present a collection of

  20. In search of design principles for developing digital learning & performance support for a student design task

    NARCIS (Netherlands)

    Bollen, Lars; Van der Meij, Hans; Leemkuil, Henny; McKenney, Susan

    2016-01-01

    A digital learning and performance support environment for university student design tasks was developed. This paper describes on the design rationale, process, and the usage results to arrive at a core set of design principles for the construction of such an environment. We present a collection of

  1. Design of diamagnetic loop on EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Xi Weibin; Shen Biao; Qian Jinping; Wu Songtao; Wan Baonan

    2007-01-01

    The design of EAST diamagnetic measurement system including diamagnetic loop and compensation loop has been given. The advantage of this method is that, the compensation loop is applied for eliminating the change of toroidal flux produced by the toroidal coils and the adjustable structure can be used to decrease the error signals come from the poloidal field. On the other hand, the effect of the material and structure on the diamagnetic loop is detailedly checked during engineering design. Error analysis of the measurement system is given. (authors)

  2. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  3. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  4. Zero Energy Buildings – Design Principles and Built Examples

    DEFF Research Database (Denmark)

    Bejder, Anne Kirkegaard; Knudstrup, Mary-Ann; Jensen, Rasmus Lund

    Designing a zero energy building is a complicated task, and in order to achieve good results it is necessary to include knowledge from a range of sources. Therefore, cooperation is required between different professions and between generalists and specialists from the very beginning of the process...... for the development of zero energy houses. These strategies and technologies are illustrated through simple design principles and built examples • identify technical and architectural potentials and challenges related to design strategies of crucial importance to the development of zero energy houses • identify...... technical and architectural potentials and challenges related to the application of new technologies • make visible engineering and architectural issues and create greater transparency, providing a point of departure for cross-disciplinary cooperation....

  5. Principles of human joint replacement design and clinical application

    CERN Document Server

    Buechel, Frederick F

    2015-01-01

    This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case hist...

  6. Principles of Human Joint Replacement Design and Clinical Application

    CERN Document Server

    Buechel, Frederick F

    2012-01-01

    Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement. They have written this book for the users and designers of joint replacements. It is an attempt to convey to the reader the knowledge accumulated by the authors during their thirty five year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter de...

  7. Autonomous Reactivity Control (ARC) — Principles, geometry and design process

    Energy Technology Data Exchange (ETDEWEB)

    Qvist, Staffan A., E-mail: staffan.qvist@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Department of Nuclear Engineering, University of California Berkeley (United States); Hellesen, Carl [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Thiele, Roman [Division of Reactor Technology, Royal Institute of Technology, Stockholm (Sweden); Dubberley, Allen E. [General Electric Advanced Reactor Systems Department (retired), Sunnyvale, CA (United States); Gradecka, Malwina; Greenspan, Ehud [Department of Nuclear Engineering, University of California Berkeley (United States)

    2016-10-15

    Highlights: • Here we define the principles of the operation and design of ARC systems. • ARC systems can provide inherent safety during and following unprotected transients. • A manufacturing and assembly method was developed and presented. - Abstract: The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety performance of Generation-IV reactors while having a minimal impact on reactor performance and economic viability. Here we present in detail the principles of how the ARC system operates, what materials should be used, what components make up the system and how they are interconnected. The relevant equations regarding how to design the system for a certain response are developed and defined, and the most important aspects determining the speed of actuation of the systems are analyzed. Thus, this study serves as the general reference material for all of the fundamental principles behind the ARC idea. Finally, we present a step-by-step guide to how a fast reactor fuel subassembly with an ARC system installed would be manufactured, using a full 3D-CAD model. For an ARC installation in a 1000 MWth sodium-cooled oxide-fueled fast reactor core, the system constitutes a relatively minor adjustment to a typical fuel assembly, increasing its total axial extent by ∼5–10% and the total primary coolant pressure drop by ∼1%. The main finding of this study is that it is possible to design, manufacture (using existing methods) and implement ARC systems in the fuel assemblies of fast reactor cores to provide inherent safety in all anticipated unprotected transients with only a modest increase in the length of the assembly and the pressure drop across the core.

  8. Reconfigurable manufacturing systems: Principles, design, and future trends

    Science.gov (United States)

    Koren, Yoram; Gu, Xi; Guo, Weihong

    2018-06-01

    Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are costeffective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

  9. Using Green Chemistry and Engineering Principles to Design ...

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. In addition, there are several approaches and frameworks focused on demonstrating that improvements were achieved through GC&E technologies. However, the application of these principles is not always straightforward. We propose using systematic frameworks and tools that help practitioners when deciding which principles can be applied, the levels of implementation, prospective of obtaining simultaneous improvements in all sustainability aspects, and ways to deal with multiobjective problems. Therefore, this contribution aims to provide a systematic combination of three different and complementary design tools for assisting designers in evaluating, developing, and improving chemical manufacturing and material management systems under GC&E perspectives. The WAR Algorithm, GREENSCOPE, and SustainPro were employed for this synergistic approach of incorporating sustainability at early stages of process development. In this demonstration, simulated ammonia production is used as a case study to illustrate this advancement. Results show how to identify process design areas for improvements, key factors, multi-criteria decision-making solutions, and optimal tradeoffs. Finally, conclusions were pre

  10. Design of Tokamak plasma with high Tc superconducting coils

    International Nuclear Information System (INIS)

    Uchimoto, T.; Miya, K.; Yoshida, Y.; Yamada, T.

    1999-01-01

    This paper presents a design of tokamak plasma in light of how the small ignited tokamak is possible with use of the HTSC coils as plasma stabilizer. The same data base and formulas as ITER are here used and any innovative technology other than the HTSC stabilizing coils is not assumed. (author)

  11. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  12. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  13. SYSTEMATIC PRINCIPLES AND METHODS OF SYMBOLIC APPROACHES IN URBAN DESIGN

    Directory of Open Access Journals (Sweden)

    BULAKH I. V

    2015-12-01

    Full Text Available Formulation of the problem. The low level of expression and personalization of mass architecture of the second half of the twentieth century connected with the spread of industrial technology and even to a greater extent with mechanistic traditionally functional relation to the average person as, abstract consumer architecture. The condition out of the critical situation is focusing on matters aesthetic, artistic understanding and harmonious image creation environment. The problem of increasing architectural and artistic level of architectural and urban planning solutions to overcome the monotony of planning and development, creating aesthetically expressive urban environment does not lose relevance over the past decades. Understanding and acceptance of enigma and dynamic development of cities encourage architects to find new design techniques that are able to provide in the future a reasonable possibility of forming artistic and aesthetic image of the modern city. Purpose. Define and systematize the principles of symbolization architectural and planning images; propose methods symbolism in the architectural planning of image of the urban environment. Conclusion based on analysis of the enhanced concept symbolizing the image of Architecture and Planning, the place, role and symbolization trends at all levels of the urban environment - planning, three-dimensional and improvement of urban areas; first identified the main stages and levels of symbolization (analohyzatsyya, schematization and alehoryzatsiya, their features and characteristics, formulated the basic principles of symbolization architectural and planning of image, namely the principles of communication between figurative analogies, transformation of subsequent circuits, switching allegorical groupings and metamorfizm ultimate goal – symbol birth .

  14. Integrating rock mechanics issues with repository design through design process principles and methodology

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.

    1996-01-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as open-quotes design for manufactureclose quotes or open-quotes concurrent engineeringclose quotes are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of open-quotes Design for Constructibility and Performanceclose quotes is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance

  15. A case study analysis of the application of design for manufacture principles by industrial design students

    OpenAIRE

    Marshall, R; Page, T

    2016-01-01

    This paper describes a case study evaluation of a module that engages students on product and industrial design programmes with the principles of Design for Manufacturing (DFM). The primary element of the module is to expose students to the constraints of a full design to manufacture process. The module explores the design of a small polymer promotional item, together with the means of mass producing that item. This is done through the process of injection moulding and students design an inje...

  16. Design principles and algorithms for automated air traffic management

    Science.gov (United States)

    Erzberger, Heinz

    1995-01-01

    This paper presents design principles and algorithm for building a real time scheduler. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high altitude airspace far from the airport and low altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time.

  17. Parameter design and performance simulation of a 10 kV voltage compensation type active superconducting fault current limiter

    International Nuclear Information System (INIS)

    Chen, L.; Tang, Y.J.; Song, M.; Shi, J.; Ren, L.

    2013-01-01

    Highlights: •For a practical 10 kV system, the 10 kV active SFCL’s basic parameters are designed. •Under different fault conditions, the 10 kV active SFCL’s performances are simulated. •The designed 10 kV active SFCL’s engineering feasibility is discussed preliminarily. -- Abstract: Since the introduction of superconducting fault current limiter (SFCL) into electrical distribution system may be a good choice with economy and practicability, the parameter design and current-limiting characteristics of a 10 kV voltage compensation type active SFCL are studied in this paper. Firstly, the SFCL’s circuit structure and operation principle are presented. Then, taking a practical 10 kV distribution system as its application object, the SFCL’s basic parameters are designed to meet the system requirements. Further, using MATLAB, the detailed current-limiting performances of the 10 kV active SFCL are simulated under different fault conditions. The simulation results show that the active SFCL can deal well with the faults, and the parameter design’s suitability can be testified. At the end, in view of the engineering feasibility of the 10 kV active SFCL, some preliminary discussions are carried out

  18. Offset coil designs for superconducting magnets, a logical development

    International Nuclear Information System (INIS)

    Collins, T.

    1986-03-01

    Dipoles and quadrupoles for any new, large proton ring must be stronger, smaller and have better field shape (systematic error) than those used in the Doubler. The present two-shell designs are rigid in that the coils are too thin but cannot be relatively fatter without destroying the field quality. An examination of the coil shapes for dipoles and quadrupoles which produce perfect fields from a uniform current density shows clearly that our persistent use of a circular form for the inner surface of the coils is a poor approximation. When this is corrected by ''offsets'' there is a striking improvement both in the strength of fields and in the field quality. The same analysis makes clear that the efficient use of superconductor and the overall magnet size is determined by the perfect coil shapes. Any reasonable magnet will not differ significantly from the ideal for these parameters. This will be particularly helpful in setting design goals for very large quadrupoles. The offset two-shell dipole design preserves the mechanical features of the highly successful, resilient doubler magnets while greatly extending the performance

  19. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    Science.gov (United States)

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  20. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds.

    Science.gov (United States)

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2013-10-25

    Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

  1. Design study of superconducting sextupole magnet using HTS coated conductor for neutron-focusing device

    International Nuclear Information System (INIS)

    Tosaka, T.; Koyanagi, K.; Ono, M.; Kuriyama, T.; Watanabe, I.; Tsuchiya, K.; Suzuki, J.; Adachi, T.; Shimizu, H.M.

    2006-01-01

    We performed a design study of sextupole magnet using high temperature superconducting (HTS) wires. The sextupole magnet is used as a focusing lens for neutron-focusing devices. A neutron-focusing device is desired to have a large aperture and a high magnetic field gradient of G, where G = 2B/r 2 , B is the magnetic field and r is a distance from the sextupole magnet axis. Superconducting magnets offer promising prospects to meet the demands of a neutron-focusing device. Recently NbTi coils of low temperature superconducting (LTS) have been developed for a sextupole magnet with a 46.8 mm aperture. The maximum magnetic field gradient G of this magnet is 9480 T/m 2 at 4.2 K and 12,800 T/m 2 at 1.8 K. On the other hand, rapid progress on second generation HTS wire has been made in increasing the performance of critical current and in demonstrating a long length. The second generation HTS wire is referred to as coated conductor. It consists of tape-shaped base upon which a thin coating of superconductor, usually YBCO, is deposited or grown. This paper describes a design study of sextupole magnet using coated conductors

  2. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, M. E-mail: matsukaw@naka.jaeri.go.jp; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T

    2003-09-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control.

  3. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    International Nuclear Information System (INIS)

    Matsukawa, M.; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T.

    2003-01-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control

  4. Teaching the Principles of Effective Online Course Design: What Works?

    Directory of Open Access Journals (Sweden)

    Clare Gormley

    2014-06-01

    Full Text Available While much has been written about the pedagogy and challenges of online learning, there is comparatively little research that advises how online course design competencies can be achieved. Certainly a growing range of course design resources is being created and made openly available, but there is a need to evaluate their actual impact on practice. This predominantly qualitative study describes the impact of two learning interventions – open online tutorials and a design and development workshop – aimed at introducing the fundamentals of online course design. Four online course developers at an Irish university were interviewed about their experiences creating multimedia-based online courses. Two of the developers were given access to targeted learning interventions and were subsequently interviewed about their experiences using those interventions. The main findings were that novice online course developers can potentially learn and apply design principles through a dedicated introductory phase, techniques that promote discussion of effective pedagogy, and ongoing collaboration in course design. These strategies could be adapted to specific contexts elsewhere.

  5. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    Science.gov (United States)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  6. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    Science.gov (United States)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  7. Refining design of superconducting magnets synchronous with winding using particle swarm optimization

    International Nuclear Information System (INIS)

    Du, J.J.; Wu, W.; Mei, E.M.; Yuan, P.; Ma, L.Z.; Dong, Z.W.

    2013-01-01

    Highlights: ► A method of synchronous optimization design of superconducting magnets is proposed. ► We get a refining design of a main magnet on Lanzhou Penning Trap by the method. ► We expounds the necessity of tracking optimizing of coils for magnets. ► Particle swarm optimization shows effectiveness in magnet optimization. ► The expected homogeneity of the magnet improves considerably. -- Abstract: A methodology of synchronous optimization design of magnets under construction according to original design scheme is put forward in this paper, and it has been successfully used for refining design of a superconducting magnet on Lanzhou Penning Trap (LPT). This paper expounds the necessity of tracking optimization of magnet coil in the process of traditional manufacturing, and optimization design of magnet coils by particle swarm optimization is proposed. Particle swarm optimization is turned out to be an effective design method for magnet optimization. The expected homogeneity of the magnet is improved to 200 ppm from 1150 ppm through the refining optimizing, which provides important guarantee for required homogeneity of the whole magnet

  8. Achieving integration in mixed methods designs-principles and practices.

    Science.gov (United States)

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-12-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.

  9. Five Principles for MOOC Design: With a Case Study

    Directory of Open Access Journals (Sweden)

    John R. Drake

    2015-05-01

    Full Text Available New web technologies have enabled online education to take on a massive scale, prompting many universities to create massively open online courses (MOOCs that take advantage of these technologies in a seemingly effortless manner. Designing a MOOC, however, is anything but trivial. It involves developing content, learning activities, and assessments to accommodate both the massiveness and openness of the course. To design an effective MOOC, instructors need to integrate both pedagogical and information systems theory. In this paper, we present a case study of a MOOC grant and a series of decisions made in its development. These decisions, when paired with the theoretical framework, suggest five principles – meaningful, engaging, measurable, accessible, and scalable – may be applicable to future MOOC development projects.

  10. Seeing is believing: good graphic design principles for medical research.

    Science.gov (United States)

    Duke, Susan P; Bancken, Fabrice; Crowe, Brenda; Soukup, Mat; Botsis, Taxiarchis; Forshee, Richard

    2015-09-30

    Have you noticed when you browse a book, journal, study report, or product label how your eye is drawn to figures more than to words and tables? Statistical graphs are powerful ways to transparently and succinctly communicate the key points of medical research. Furthermore, the graphic design itself adds to the clarity of the messages in the data. The goal of this paper is to provide a mechanism for selecting the appropriate graph to thoughtfully construct quality deliverables using good graphic design principles. Examples are motivated by the efforts of a Safety Graphics Working Group that consisted of scientists from the pharmaceutical industry, Food and Drug Administration, and academic institutions. Copyright © 2015 John Wiley & Sons, Ltd.

  11. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  12. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  13. Design of a 16 kbit superconducting latching/SFQ hybrid RAM

    International Nuclear Information System (INIS)

    Nagasawa, Shuichi; Hasegawa, Haruhiro; Hashimoto, Tatsunori; Suzuki, Hideo; Miyahara, Kazunori; Enomoto, Youichi

    1999-01-01

    We have designed a 16 kbit superconducting latching/SFQ hybrid (SLASH) RAM, which enables high-frequency clock operation up to 10 GHz. The 16 kbit SLASH RAM consists of four 4x4 matrix arrays of 256 bit RAM blocks, block decoders, latching block drivers, latching block senses, impedance matched lines and the powering circuits. The 256 bit RAM block is composed of a 16x16 matrix array of vortex transitional memory cells, latching drivers, SFQ NOR decoders and latching sense circuits. We have also designed and implemented an SFQ NOR decoder that is composed of magnetically coupled multi-input OR gates and RSFQ inverters. (author)

  14. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  15. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    International Nuclear Information System (INIS)

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  16. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    Energy Technology Data Exchange (ETDEWEB)

    Laganà, Alessandro [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States); Shasha, Dennis [Courant Institute of Mathematical Sciences, New York University, New York, NY (United States); Croce, Carlo Maria [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States)

    2014-12-11

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  17. Web Interface Design Principles for Adults’ Self-Directed Learning

    Directory of Open Access Journals (Sweden)

    Mehmet FIRAT

    2016-10-01

    Full Text Available One of the most important features which e-learning tools and environments must possess within the scope of lifelong learning is self-directed learning, which can be considered as a form of self-learning. The aim of this study was to determine, based on the views and recommendations of experts, interface design principles for the development of educational web interfaces that will support the self-directed learning of adults. This descriptive study was conducted with the contribution of 12 academicians specializing in interface design and self-directed learning. Within the scope of the study, new interfaces features were identified based on an evaluation of the literature on interface designs for self-directed learning, and the views of subject experts. Based on the study results, it was determined that interface designs supporting self-directed learning must possess five basic features, which include being user-directed, ensuring variety, being supported by learning analytics, being motivational, and being sharing-oriented.

  18. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  19. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  20. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  1. Integrated Design of Superconducting Magnets with the CERN Field Computation Program ROXIE

    CERN Document Server

    Russenschuck, Stephan; Bazan, M; Lucas, J; Ramberger, S; Völlinger, Christine

    2000-01-01

    The program package ROXIE has been developed at CERN for the field computation of superconducting accelerator magnets and is used as an approach towards the integrated design of such magnets. It is also an example of fruitful international collaborations in software development.The integrated design of magnets includes feature based geometry generation, conceptual design using genetic optimization algorithms, optimization of the iron yoke (both in 2d and 3d) using deterministic methods, end-spacer design and inverse field calculation.The paper describes the version 8.0 of ROXIE which comprises an automatic mesh generator, an hysteresis model for the magnetization in superconducting filaments, the BEM-FEM coupling method for the 3d field calculation, a routine for the calculation of the peak temperature during a quench and neural network approximations of the objective function for the speed-up of optimization algorithms, amongst others.New results of the magnet design work for the LHC are given as examples.

  2. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  3. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of built-up, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  4. Using the principles of circadian physiology enhances shift schedule design

    International Nuclear Information System (INIS)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance and alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced

  5. Usability principles to design mobile workplace learning content

    Directory of Open Access Journals (Sweden)

    Alessia Messuti

    2015-04-01

    Full Text Available The article describes the design of a mobile workplace learning tool for trainers of the International Training Centre of the International Labour Organization. The motivation behind is to provide trainers with a practical tool that will enable them to recall information at the moment of need and continue to learn in context. On this purpose a set of visual augmented reality cards was created, taking into consideration the fundamental mobile learning and usability principles. The nature of the article is empirical as it reports an experiment carried out with trainers which aimed at testing cards usability and learnability. Results show that the integration of both online and offline strategies was perceived as an added value as trainers could choose to retrieve information as they mostly like; finally, it also resulted in high usability scores, an aspect that contributes to their effectiveness at the workplace.

  6. Synthetic Elucidation of Design Principles for Molecular Qubits

    Science.gov (United States)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  7. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Adams, T.; Davis, M.; DiGiacomo, N.J.

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a ''proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs

  8. PRINCIPLE "EARLY MATCHING" AERODYNAMIC DESIGN AIRCRAFT WITH LANDING GEAR HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    V. P. Morozov

    2015-01-01

    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  9. Three Principles of Perception for Instructional Interface Design.

    Science.gov (United States)

    Lohr, Linda L.

    2000-01-01

    Discusses graphical user interfaces used for instructional purposes in educational environments, which promote learning goals, and in support environments, which promote performance goals. Explains three key principles of perception and gives guidelines for their use, including the figure/ground principle, the hierarchy principle, and the gestalt…

  10. Design and test of a short mockup magnet for the superconducting undulator at the SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jieping, E-mail: jpxu@sinap.ac.cn; Ding, Yi; Cui, Jian; Zhang, Wei; Wang, Hongfei; Yin, Lixin [Department of Mechanical Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2016-07-27

    A superconducting planar undulator is under development at the Shanghai Synchrotron Radiation Facility (SSRF) to provide the SSRF users with higher photon fluxes at higher photon energies. A 5-period magnet was designed and built for feasibility study. The short mockup magnet is composed of NbTi/Cu winding and low carbon steel former and was tested in a vertical cryocooler-cooled cryostat. The nominal current of 387 A was reached after 2 quenches and the maximum current of 433.2 A was achieved. The magnetic field profile was measured and a peak field of 0.93 T was obtained when stably operating at 400 A.

  11. Design of a short-period superconducting undulator at KEK-PF

    Energy Technology Data Exchange (ETDEWEB)

    Ohmi, K.; Ikeda, N.; Ishii, S.

    1998-06-01

    A short-period undulator using a superconducting magnet is proposed. This undulator has been designed to install in the KEK-Photon Factory 2.5-GeV or 6.5-GeV storage ring. The idea of a staggered wiggler, developed in Stanford university, is used in this undulator. The target of the period and K value of the undulator are set to be 1 cm and 1, respectively. We can obtain monochromatic photons with an energy of {approx} 5keV or {approx} 40 keV by using the undulator. (author)

  12. Conceptual design of the RF accelerating cavities for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Maggiore, M.; Calabretta, L.; Di Giacomo, M.; Rifuggiato, D.; Battaglia, D.; Piazza, L.

    2006-01-01

    A superconducting cyclotron accelerating ions up to 250 A MeV, for medical applications and radioactive ions production is being studied at Laboratori Nazionali del Sud in Catania. The radio frequency (RF) system, working in the fourth harmonic, is based on four normal conducting radio frequency cavities operating at 93 MHz. This paper describes an unusual multi-stem cavity design, performed with 3D electromagnetic codes. Our aim is to obtain a cavity, completely housed inside the cyclotron, with a voltage distribution ranging from 65 kV in the injection region to a peak value of 120 kV in the extraction region, and having a low power consumption

  13. Design of the MYRRHA 17-600 MeV Superconducting Linac

    CERN Document Server

    Biarrotte, J-L; Bouly, F; Carneiro, J-P; Vandeplassche, D

    2013-01-01

    The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100MWth Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. This paper will briefly describe the beam dynamics design of the main superconducting linac section which covers the 17 to 600 MeV energy range and requires enhanced fault-tolerance capabilities.

  14. Design and heat load analysis of support structure of CR superconducting dipole magnet for FAIR

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Songtao; Wu Weiyue; Xu Houchang; Liu Changle

    2008-01-01

    In order to meet the requirement of the Collector ring (CR) dipole superconducting magnet of FAIR in the process of operation, meanwhile, and to ensure the heat loads coming from the support structures to be lower than the design demands, the 3D models of support structures have been constructed with CATIA, then the calculation of low-temperature heat-load and the structure analysis have been done with ANSYS, the support structure material, 316LN+G10, is decided according to the heat-load calculation and the structure optimization, these results are necessary for manufacturing the formal magnet. (authors)

  15. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    ). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperatures, the transfer of liquid nitrogen over a high voltage drop and that of providing a well defined atmosphere inside the termination and around the cable conductor. Designs based on calculations and experiments will be presented. The solutions are optimized with respect to a low heat in-leak....

  16. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  17. Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project

    International Nuclear Information System (INIS)

    Baze, J.M.; Cacaut, D.; Jacquemin, J.P.; Lyraud, C.; Michez, C.; Pabot, Y.; Perot, J.; Rifflet, J.M.; Toussaint, J.C.; Vedrine, P.

    1992-01-01

    Within the framework of the LHC R and D program, CERN and CEA/Saclay have established a collaboration to carry out, amongst others, the design, building and testing of a superconducting LHC prototype quadrupole at the Saclay laboratory. The cold mass of this quadrupole is presently under construction at Saclay. The quadrupole design features a twin aperture configuration, a gradient design features a twin aperture configuration, a gradient of 250T/m, a length of 3m and a free coil aperture of 56mm. European industries participate in this project by delivering components and fabrication the tooling according to specifications prepared by Saclay. This paper gives details of the magnet design and construction. Coil winding will start in summer 1991 and the first prototype should be assembled and ready for testing by mid 1992

  18. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  19. Vacuum system design for a superconducting X-ray lithography light source

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1990-01-01

    A superconducting electron storage ring for X-ray lithography (SXLS) is to be built at Brookhaven National Laboratory (BNL). The goal is to design and construct a light source specifically dedicated to X-ray lithography production and which would be used as a prototype in a technology transfer to American industry. The machine will be built in two phases: phase I, a low energy ring (200 MeV, 500 mA) using all room temperature magnets which will be used primarily for low energy injection studies. Phase II will be a full energy machine (690 MeV, 500 mA) where the room temperature 180 0 dipole magnets of phase I will be replaced with superconducting magnets. The machine, with a racetrack shape and a circumference of 8.5 m, is designed to be portable and replaceable as a single unit. This paper will discuss the vacuum system design for both phases; i.e. gas desorption, warm bore vs cold bore, ion trapping, clearing electrodes, and diagnostic instrumentation. (author)

  20. Improving the design and analysis of superconducting magnets for particle accelerators

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1996-01-01

    The field quality in superconducting magnets has been improved to a level that it does not appear to be a limiting factor on the performance of RHIC. The many methods developed, improved and adopted during the course of this work have contributed significantly to that performance. One can not only design and construct magnets with better field quality than in one made before but can also improve on that quality after construction. The relative field error (ΔB/B) can now be made as low as a few parts in 10 -5 at 2/3 of the coil radius. This is about an order of magnitude better than what is generally expected for superconducting magnets. This extra high field quality is crucial to the luminosity performance of RHIC. The research work described here covers a number of areas which all must be addressed to build the production magnets with a high field quality. The work has been limited to the magnetic design of the cross section which in most cases essentially determines the field quality performance of the whole magnet since these magnets are generally long. Though the conclusions to be presented in this chapter have been discussed at the end of each chapter, a summary of them might be useful to present a complete picture. The lessons learned from these experiences may be useful in the design of new magnets. The possibilities of future improvements will also be presented

  1. Improving the design and analysis of superconducting magnets for particle acclerators

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh Chandra [Univ. of Rajasthan (India)

    1996-11-01

    The field quality in superconducting magnets has been improved to a level that it does not appear to be a limiting factor on the performance of RHIC. The many methods developed, improved and adopted during the course of this work have contributed significantly to that performance. One can not only design and construct magnets with better field quality than in one made before but can also improve on that quality after construction. The relative field error (ΔB/B) can now be made as low as a few parts in 10-5 at 2/3 of the coil radius. This is about an order of magnitude better than what is generally expected for superconducting magnets. This extra high field quality is crucial to the luminosity performance of RHIC. The research work described here covers a number of areas which all must be addressed to build the production magnets with a high field quality. The work has been limited to the magnetic design of the cross section which in most cases essentially determines the field quality performance of the whole magnet since these magnets are generally long. Though the conclusions to be presented in this chapter have been discussed at the end of each chapter, a summary of them might be useful to present a complete picture. The lessons learned from these experiences may be useful in the design of new magnets. The possibilities of future improvements will also be presented.

  2. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  3. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  4. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  5. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: xuying3270@cust.edu.cn; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-06-05

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca{sub 2}Li and Ca{sub 3}Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T{sub c}) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T{sub c} is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca{sub 2}Li, and Ca{sub 3}Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  6. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    International Nuclear Information System (INIS)

    Xu, Ying; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-01-01

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca_2Li and Ca_3Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T_c) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T_c is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca_2Li, and Ca_3Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  7. Design principles for engaging and retaining virtual citizen scientists.

    Science.gov (United States)

    Wald, Dara M; Longo, Justin; Dobell, A R

    2016-06-01

    Citizen science initiatives encourage volunteer participants to collect and interpret data and contribute to formal scientific projects. The growth of virtual citizen science (VCS), facilitated through websites and mobile applications since the mid-2000s, has been driven by a combination of software innovations and mobile technologies, growing scientific data flows without commensurate increases in resources to handle them, and the desire of internet-connected participants to contribute to collective outputs. However, the increasing availability of internet-based activities requires individual VCS projects to compete for the attention of volunteers and promote their long-term retention. We examined program and platform design principles that might allow VCS initiatives to compete more effectively for volunteers, increase productivity of project participants, and retain contributors over time. We surveyed key personnel engaged in managing a sample of VCS projects to identify the principles and practices they pursued for these purposes and led a team in a heuristic evaluation of volunteer engagement, website or application usability, and participant retention. We received 40 completed survey responses (33% response rate) and completed a heuristic evaluation of 20 VCS program sites. The majority of the VCS programs focused on scientific outcomes, whereas the educational and social benefits of program participation, variables that are consistently ranked as important for volunteer engagement and retention, were incidental. Evaluators indicated usability, across most of the VCS program sites, was higher and less variable than the ratings for participant engagement and retention. In the context of growing competition for the attention of internet volunteers, increased attention to the motivations of virtual citizen scientists may help VCS programs sustain the necessary engagement and retention of their volunteers. © 2016 Society for Conservation Biology.

  8. Virus-inspired design principles of nanoparticle-based bioagents.

    Directory of Open Access Journals (Sweden)

    Hongyan Yuan

    Full Text Available The highly effectiveness and robustness of receptor-mediated viral invasion of living cells shed lights on the biomimetic design of nanoparticle(NP-based therapeutics. Through thermodynamic analysis, we elucidate that the mechanisms governing both the endocytic time of a single NP and the cellular uptake can be unified into a general energy-balance framework of NP-membrane adhesion and membrane deformation. Yet the NP-membrane adhesion strength is a globally variable quantity that effectively regulates the NP uptake rate. Our analysis shows that the uptake rate interrelatedly depends on the particle size and ligand density, in contrast to the widely reported size effect. Our model predicts that the optimal radius of NPs for maximal uptake rate falls in the range of 25-30 nm, and optimally several tens of ligands should be coated onto NPs. These findings are supported by both recent experiments and typical viral structures, and serve as fundamental principles for the rational design of NP-based nanomedicine.

  9. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    Abdulhalim, Lina G.

    2015-12-08

    A strategy based on reticulating metal ions and organic ligands into atomically precise gold and silver nanoclusters (NCs) with high monodispersity has been advanced to a point that allows the design of NCs with strict stoichiometries, functionalities and valence. Of the Ag NCs discovered, Ag44 is the most studied, not only due to its high absorption that transcends the visible spectrum suitable for photovoltaics but also because of its long excited state lifetime, as revealed by nanosecond transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete ligand exchange process. This new discovery has led to the development of synthetic designs in which new sizes were obtained by varying the reaction parameters (e.g., ligands functionality, reaction temperature and time), namely, Ag29 using dithiols and phosphines. The synthesized NCs possess tetravalent functionalities that facilitate their crystallization and characterization. Furthermore, Ag29 glows red and is therefore a possible candidate for sensing and imaging applications.

  10. Design principles for solid-state lithium superionic conductors.

    Science.gov (United States)

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  11. 75 FR 80571 - Core Principles and Other Requirements for Designated Contract Markets

    Science.gov (United States)

    2010-12-22

    ... Part II Commodity Futures Trading Commission 17 CFR Parts 1, 16, and 38 Core Principles and Other... CFR Parts 1, 16, and 38 RIN 3038-AD09 Core Principles and Other Requirements for Designated Contract... Principles 1. Subpart B--Designation as Contract Market 2. Subpart C--Compliance With Rules i. Proposed Sec...

  12. 78 FR 32988 - Core Principles and Other Requirements for Designated Contract Markets; Correction

    Science.gov (United States)

    2013-06-03

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 38 RIN 3038-AD09 Core Principles and Other... regarding Core Principles and Other Requirements for Designated Contract Markets by inserting a missing... regarding Core Principles and Other Requirements for Designated Contract Markets (77 FR 36612, June 19, 2012...

  13. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  14. Defining DSL design principles for enhancing the requirements elicitation process

    Directory of Open Access Journals (Sweden)

    Gustavo Arroyo

    2012-03-01

    Full Text Available La Elicitación de Requisitos propicia el entendimiento de las necesidades de los usuarios con respecto a un desarrollo de software. Los métodos que se emplean provienen de las ciencias sociales por lo que se carece de una retroalimentación ejecutable. Consecuentemente, la primera versión del software podría no cumplir con las expectativas. El uso de DSLs como herramientas para el descubrimiento de requisitos es una idea aceptada, desafortunadamente, muy pocos trabajos en la literatura se enfocan en la definición de principios de diseño de DSLs. En este trabajo planteamos principios de diseño de DSLs orientados a la elicitación de requisitos, enseguida, generamos casos de prueba en ANTLR, Ruby y Curry. También, enunciamos el perfil que debe tener el nuevo analista de software. Con ello, se incrementa la retroalimentación entre los involucrados en el desarrollo de software y se mejora el producto.Requirements elicitation is concerned with learning and understanding the needs of users w.r.t. a new software development. Frequently the methods employed for requirements elicitation are adapted from areas like social sciences that do not include executable (prototype based on feedback. As a consequence, it is relatively common to discover that the first release does not fit the requirements defined at the beginning of the project. Using domain-specific languages (DSLs as an auxiliary tool for requirements elicitation is a commonly well accepted idea. Unfortunately, there are few works in the literature devoted to the definition of design principles for DSLs to be experienced in the frameworks for DSL developing such as ANTLR, Ruby, and Curry. We propose design principles for the DSL development (regardless of paradigm which are sufficient to model the domain in a requirements phase. Further more we enunciate a new profile for the requirements analyst and a set of elicitation steps. The use of DSLs not only giveus an immediate feedback with

  15. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  16. Conceptual designs of 50 kA 20 MJ superconducting ohmic heating coils

    International Nuclear Information System (INIS)

    Singh, S.K.; Murphy, J.H.; Janocko, M.A.; Haller, H.E.; Litz, D.C.; Eckels, P.W.; Rogers, J.D.; Thullen, P.

    1979-01-01

    Two designs of 20 Mj superconducting coils are described which were developed to demonstrate the feasibility of an ohmic heating system. NbTi and Nb;sub 3;Sn superconductors were considered for both 7 tesla and 9 tesla maximum fields. Cabled and braided conductors were investigated and the braided conductor is identified as the best alternative due to its high operating current densities and because of its porosity. The coils are designed to be cryostable for bipolar operation from +7 tesla to -7 tesla and from +9 tesla to -9 tesla maximum fields within 1 sec. The structural design addresses the distribution of structure and structural materials used in the pulsed field environment. Immersion cooled (pool boil) and forced flow cooled coils are described. 2 refs

  17. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  18. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  19. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  20. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  1. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  2. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  3. Conceptual design of the SPL II A high-power superconducting $H^-$ linac at CERN

    CERN Document Server

    Baylac, M; Benedico-Mora, E; Caspers, Friedhelm; Chel, S; Deconto, J M; Duperrier, R; Froidefond, E; Garoby, R; Hanke, K; Hill, C; Hori, M; Inigo-Golfin, J; Kahle, K; Kroyer, T; Küchler, D; Lallement, J B; Lindroos, M; Lombardi, A M; López Hernández, A; Magistris, M; Meinschad, T; Millich, Antonio; Noah-Messomo, E; Pagani, C; Palladino, V; Paoluzzi, M; Pasini, M; Pierini, P; Rossi, C; Royer, J P; Sanmartí, M; Sargsyan, E; Scrivens, R; Silari, M; Steiner, T; Tückmantel, Joachim; Uriot, D; Vretenar, M

    2006-01-01

    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000–012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 4–5MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of al...

  4. Optimal design of superconducting fault detector for superconductor triggered fault current limiters

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.; Park, K.B.; Lee, B.W.

    2008-01-01

    We have designed and tested a superconducting fault detector (SFD) for a 22.9 kV superconductor triggered fault current limiters (STFCLs) using Au/YBCO thin films. The SFD is to detect a fault and commutate the current from the primary path to the secondary path of the STFCL. First, quench characteristics of the Au/YBCO thin films were investigated for various faults having different fault duration. The rated voltage of the Au/YBCO thin films was determined from the results, considering the stability of the Au/YBCO elements. Second, the recovery time to superconductivity after quench was measured in each fault case. In addition, the dependence of the recovery characteristics on numbers and dimension of Au/YBCO elements were investigated. Based on the results, a SFD was designed, fabricated and tested. The SFD successfully detected a fault current and carried out the line commutation. Its recovery time was confirmed to be less than 0.5 s, satisfying the reclosing scheme in the Korea Electric Power Corporation (KEPCO)'s power grid

  5. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  6. Contribution to the design of superconducting Nb3Sn dipole windings for particle accelerator

    International Nuclear Information System (INIS)

    Felice, H.

    2006-10-01

    Improvement of particle accelerators relies on complex technologies such as the design and fabrication of superconducting magnets. A key parameter in magnet design is the mechanical pre-stress, applied at room temperature to insure compression of the coil during excitation. In dipole magnets, high field and high mechanical stresses in windings combined with the Nb 3 Sn stress sensitivity ask the question of the limit of the mechanical stress that the Nb 3 Sn can undergo without degradation. This limit estimated around 150 MPa is still discussed and has to be investigated. Whatever its value, preliminary studies show that conventional cosine theta design induces mechanical stresses (> 200 MPa) in large aperture (> 130 mm) and high field configurations, which underscore the need of alternative coil arrangements. The first part of this thesis gives an introduction to the issues and challenges encountered by the designers of superconducting ma nets. The second part is devoted to the study of large aperture (88, 130 and 160 mm) and high field (13 T) dipoles based on intersecting ellipses. After a theoretical study, a 2D magnetic design is detailed for each aperture and a mechanical study is developed for the 130 mm aperture dipole. In the last part, an experimental device dedicated to the study of the influence of the pre-stress on the training of sub-scale Nb 3 Sn dipole and to the investigation of the mechanical stress limit is presented. The design of this magnet is detailed and the result of the first test carried out with the structure is reported. (author)

  7. Design Principles for the Information Architecture of a SMET Education Digital Library.

    Science.gov (United States)

    Dong, Andy; Agogino, Alice M.

    This implementation paper introduces principles for the information architecture of an educational digital library, principles that address the distinction between designing digital libraries for education and designing digital libraries for information retrieval in general. Design is a key element of any successful product. Good designers and…

  8. EMERGING ENGINEERING PRINCIPLES FOR YIELD IMPROVEMENT IN MICROBIAL CELL DESIGN

    Directory of Open Access Journals (Sweden)

    Santiago Comba

    2012-10-01

    Full Text Available Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  9. Emerging engineering principles for yield improvement in microbial cell design

    Directory of Open Access Journals (Sweden)

    Santiago Comba

    2012-10-01

    Full Text Available Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  10. Principles for designing and delivering psychosocial and mental healthcare.

    Science.gov (United States)

    Williams, Richard; Kemp, V

    2018-03-08

    The development of the UK's military policy includes the potential for military organisations to deploy in support of humanitarian aid operations. This paper offers an overview of the risks to people's mental health of their exposure to emergencies, major incidents, disasters, terrorism, displacement, postconflict environments in which humanitarian aid is delivered, and deployments to conflict zones. It summarises the psychosocial approach recommended by many contemporary researchers and practitioners. It differentiates the extremely common experience of distress from the mental disorders that people who are affected may develop and introduces the construct of psychosocial resilience. The authors recognise the importance of trajectories of response in separating people who are distressed and require psychosocial care from those who require mental healthcare. Finally, this paper summarises a strategic approach to designing, planning and providing psychosocial and mental healthcare, provides a model of care and outlines the principles for early psychosocial interventions that do not require training in mental healthcare to deliver them. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Design principles of a conditional futile cycle exploited for regulation.

    Science.gov (United States)

    Tolla, Dean A; Kiley, Patricia J; Lomnitz, Jason G; Savageau, Michael A

    2015-07-01

    In this report, we characterize the design principles of futile cycling in providing rapid adaptation by regulatory proteins that act as environmental sensors. In contrast to the energetically wasteful futile cycles that are avoided in metabolic pathways, here we describe a conditional futile cycle exploited for a regulatory benefit. The FNR (fumarate and nitrate reduction) cycle in Escherichia coli operates under two regimes - a strictly futile cycle in the presence of O2 and as a pathway under anoxic conditions. The computational results presented here use FNR as a model system and provide evidence that cycling of this transcription factor and its labile sensory cofactor between active and inactive states affords rapid signaling and adaptation. We modify a previously developed mechanistic model to examine a family of FNR models each with different cycling speeds but mathematically constrained to be otherwise equivalent, and we identify a trade-off between energy expenditure and response time that can be tuned by evolution to optimize cycling rate of the FNR system for a particular ecological context. Simulations mimicking experiments with proposed double mutant strains offer suggestions for experimentally testing our predictions and identifying potential fitness effects. Our approach provides a computational framework for analyzing other conditional futile cycles, which when placed in their larger biological context may be found to confer advantages to the organism.

  12. Development of design principles for automated systems in transport control.

    Science.gov (United States)

    Balfe, Nora; Wilson, John R; Sharples, Sarah; Clarke, Theresa

    2012-01-01

    This article reports the results of a qualitative study investigating attitudes towards and opinions of an advanced automation system currently used in UK rail signalling. In-depth interviews were held with 10 users, key issues associated with automation were identified and the automation's impact on the signalling task investigated. The interview data highlighted the importance of the signallers' understanding of the automation and their (in)ability to predict its outputs. The interviews also covered the methods used by signallers to interact with and control the automation, and the perceived effects on their workload. The results indicate that despite a generally low level of understanding and ability to predict the actions of the automation system, signallers have developed largely successful coping mechanisms that enable them to use the technology effectively. These findings, along with parallel work identifying desirable attributes of automation from the literature in the area, were used to develop 12 principles of automation which can be used to help design new systems which better facilitate cooperative working. The work reported in this article was completed with the active involvement of operational rail staff who regularly use automated systems in rail signalling. The outcomes are currently being used to inform decisions on the extent and type of automation and user interfaces in future generations of rail control systems.

  13. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  14. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    Science.gov (United States)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  15. Design Principles for Online Instruction: A New Kind of Classroom

    Directory of Open Access Journals (Sweden)

    Neil TOPORSKI

    2004-01-01

    Full Text Available In the 1900’s, distance education attempted to mimic the traditional classroom lecture via the transmission of live or “canned” broadcasts, regardless of the technologies used: satellite, television, film, or radio. These kinds of media predisposed DE to closely adhere to the lecture (sit and absorb model, where content was disseminated in about the same time constraints as a traditional class: taught at scheduled times throughout the week–almost anywhere but not always anytime. Moreover, the modes of presentation in classic DE seemed to hinder the kinds of human interactions normally experienced in the traditional classroom, fostering individualized and isolated learning experiences.Online learning is a hybrid between the traditional classroom and the DE experience. Like the traditional classroom, instruction is teacher-facilitated. The student is enrolled in a conventional course with topic (lecture presentations, reading and homework assignments, classroom discussions, and class projects. Unlike the traditional classroom, courses are web-based and distributed from a distance, using an assortment of synchronous and asynchronous computer technologies and offered anywhere and anytime. In this way, online learning is different from the classic DE model by encouraging decentralized and collaborative learning environments. So that in this presentation will be discuss design principles for online instruction as being a new kind of classroom.

  16. Design principles for simulation games for learning clinical reasoning: A design-based research approach.

    Science.gov (United States)

    Koivisto, J-M; Haavisto, E; Niemi, H; Haho, P; Nylund, S; Multisilta, J

    2018-01-01

    Nurses sometimes lack the competence needed for recognising deterioration in patient conditions and this is often due to poor clinical reasoning. There is a need to develop new possibilities for learning this crucial competence area. In addition, educators need to be future oriented; they need to be able to design and adopt new pedagogical innovations. The purpose of the study is to describe the development process and to generate principles for the design of nursing simulation games. A design-based research methodology is applied in this study. Iterative cycles of analysis, design, development, testing and refinement were conducted via collaboration among researchers, educators, students, and game designers. The study facilitated the generation of reusable design principles for simulation games to guide future designers when designing and developing simulation games for learning clinical reasoning. This study makes a major contribution to research on simulation game development in the field of nursing education. The results of this study provide important insights into the significance of involving nurse educators in the design and development process of educational simulation games for the purpose of nursing education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  18. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Science.gov (United States)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  19. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    International Nuclear Information System (INIS)

    Arsenyev, Sergey A.; Simakov, Evgenya I.

    2012-01-01

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  20. Design and results of the radio frequency quadrupole RF system at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Grippe, J.; Marsden, E.; Marrufo, O.; Regan, A.; Rees, D.; Ziomek, C.

    1993-05-01

    The Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) entered into a joint venture to design and develop a 600 kW amplifier and its low-level controls for use in the Radio-Frequency Quadrupole (RFQ) accelerating cavity of the SSC. The design and development work has been completed. After being tested separately, the high power amplifier and low level RF control system were integrated and tested on a test cavity. Results of that tests are given. Tests were then carried out on the actual RFQ with and without the presence of the accelerated beam. Results of these tests are also given, along with the phase and amplitude information

  1. Design, construction, and performance of superconducting magnet support posts for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Blin, M.; Danielsson, H.; Evans, B.; Mathieu, M.

    1994-01-01

    Different support posts for the Large Hadron Collider (LHC) prototype superconducting magnets have been designed and manufactured. They have been evaluated both mechanically and thermally. The posts are made of a tubular section in composite materials, i.e. glass- or carbon-fibre and epoxy resin, with glued metallic heat intercepts and connections. Mechanical tests have been carried out with both radial and axial loads, before and after cooldown to working temperature. The design considerations and future developments concerning dimensions and other materials are also discussed in this paper. Thermal performance has been evaluated at 1.8 K, 5 K and 80 K in a precision heat leak measuring bench. The measurements have been carried out using calibrated thermal conductances (open-quotes heatmetersclose quotes) and boil-off methods. The measured performances of the posts have been compared with analytical predictions

  2. First Ideas Towards the Super-Conducting Magnet Design for the HESR at FAIR

    CERN Document Server

    Eichhorn, Ralf; Gussen, Achim; Martin, Siegfried

    2005-01-01

    The Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the HESR going to be part of the FAIR project at GSI. The HESR is a 50 Tm storage ring for antiprotons, based on a super-conducting magnet technology. On basis of the RHIC Dipole D0 (3.6 T), the magnet design for the HESR has started recently. One key issue will be a very compact layout because of the rather short magnets (been 1.82 m for the dipoles and 0.5 m for the other magnets). This paper will present first ideas of the magnetic and cryogenic layout, give a status report on the achievements so far and discuss the need and possible solutions for a bent magnet with a radius of curvature of 13.2 m.

  3. Design features of a seven-cell high-gradient superconducting cavity

    International Nuclear Information System (INIS)

    Liska, D.J.; Ledford, J.; Black, S.; Spalek, G.; DiMarco, J.N.

    1992-01-01

    A cavity development program is in place at Los Alamos National Laboratory to evaluate structures that could be used to accelerate pions. The work is being guided by the conceptual design of PILAC, a high-gradient superconducting linac for raising the energy of rapidly decaying intense pion beams generated by Los Alamos Meson Physics Facility (LAMPF) to 1 GeV. The specification requires a cavity gradient of 12.5 MV/m at 805 MHz. The design of a seven-cell prototype cavity to achieve these high gradients has been completed by the Accelerator Technology division. The cavity is presently under procurement for high power testing a 2.0 K in 1993

  4. Conceptual design of current lead for large scale high temperature superconducting rotating machine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Park, S. I.; Kim, H. M.

    2014-01-01

    High-temperature superconducting (HTS) rotating machines always require an electric current of from several hundreds to several thousand amperes to be led from outside into cold region of the field coil. Heat losses through the current leads then assume tremendous importance. Consequently, it is necessary to acquire optimal design for the leads which would achieve minimum heat loss during operation of machines for a given electrical current. In this paper, conduction cooled current lead type of 10 MW-Class HTS rotating machine will be chosen, a conceptual design will be discussed and performed relied on the least heat lost estimation between conventional metal lead and partially HTS lead. In addition, steady-state thermal characteristic of each one also is considered and illustrated.

  5. How bioethics principles can aid design of electronic health records to accommodate patient granular control.

    Science.gov (United States)

    Meslin, Eric M; Schwartz, Peter H

    2015-01-01

    Ethics should guide the design of electronic health records (EHR), and recognized principles of bioethics can play an important role. This approach was recently adopted by a team of informaticists who are designing and testing a system where patients exert granular control over who views their personal health information. While this method of building ethics in from the start of the design process has significant benefits, questions remain about how useful the application of bioethics principles can be in this process, especially when principles conflict. For instance, while the ethical principle of respect for autonomy supports a robust system of granular control, the principles of beneficence and nonmaleficence counsel restraint due to the danger of patients being harmed by restrictions on provider access to data. Conflict between principles has long been recognized by ethicists and has even motivated attacks on approaches that state and apply principles. In this paper, we show how using ethical principles can help in the design of EHRs by first explaining how ethical principles can and should be used generally, and then by discussing how attention to details in specific cases can show that the tension between principles is not as bad as it initially appeared. We conclude by suggesting ways in which the application of these (and other) principles can add value to the ongoing discussion of patient involvement in their health care. This is a new approach to linking principles to informatics design that we expect will stimulate further interest.

  6. Design and Fabrication Study on the TESLA500 Superconducting Magnet Package

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tabares, L.; Toral, F.; Calero, J.; Abramian, P.; Iturbe, R.; Etxeandia, J.; Lucia, C.; Landete, R.; Gomez, J.

    2001-07-01

    An international collaboration at DESY is currently studying the possibilities of a new type of particle accelerator: the superconducting linear collider (1). Developed under the project name TESLA, which stands for TeV Energy Superconducting Linear Accelerator, the facility would be placed in a 33 km long tunnel and would work at the energy range of 0.5 to 0.8 TeV. TESLA opens up new horizons not only as a particle accelerator because it can be also used to generate laser-type X-ray beams: the accelerated electrons would be guided through a refined system of magnetic fields to form a Free Electron Laser (FEL). This study is about one of the components of the accelerator: the magnet package. A technical design of this device and a cost estimate of the series production have been performed. The present report should be understood as a Spanish contribution to the TESLA project. The study has been lead by CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas) [2], and several Spanish companies have also been involved: ANTEC, JEMA and INGOVI. Special thanks are given to the Oficina de Ciencia y Tecnologia, which has granted this work. (Author) 16 refs.

  7. Superconducting high current magnetic Circuit: Design and Parameter Estimation of a Simulation Model

    CERN Document Server

    Kiefer, Alexander; Reich, Werner Dr

    The Large Hadron Collider (LHC) utilizes superconducting main dipole magnets that bend the trajectory of the particle beams. In order to adjust the not completely homogeneous magnetic feld of the main dipole magnets, amongst others, sextupole correctcorrector magnets are used. In one of the 16 corrector magnet circuits placed in the LHC, 154 of these sextupole corrector magnets (MCS) are connected in series. This circuit extends on a 3.35 km tunnel section of the LHC. In 2015, at one of the 16 circuits a fault was detected. The simulation of this circuit is helpful for fnding the fault by applying alternating current at different frequencies. Within this Thesis a PSpice model for the simulation of the superconducting corrector magnet circuit was designed. The physical properties of the circuit and its elements were analyzed and implemented. For the magnets and bus-bars, sub-circuits were created which reflect the parasitic effects of electrodynamics and electrostats. The inductance values and capacitance valu...

  8. Design and Fabrication Study on the TESLA500 Superconducting Magnet Package

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Toral, F.; Calero, J.; Abramian, P.; Iturbe, R.; Etxeandia, J.; Lucia, C.; Landete, R.; Gomez, J.

    2001-01-01

    An international collaboration at DESY is currently studying the possibilities of a new type of particle accelerator: the superconducting linear collider (1). Developed under the project name TESLA, which stands for TeV Energy Superconducting Linear Accelerator, the facility would be placed in a 33 km long tunnel and would work at the energy range of 0.5 to 0.8 TeV. TESLA opens up new horizons not only as a particle accelerator because it can be also used to generate laser-type X-ray beams: the accelerated electrons would be guided through a refined system of magnetic fields to form a Free Electron Laser (FEL). This study is about one of the components of the accelerator: the magnet package. A technical design of this device and a cost estimate of the series production have been performed. The present report should be understood as a Spanish contribution to the TESLA project. The study has been lead by CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas) [2], and several Spanish companies have also been involved: ANTEC, JEMA and INGOVI. Special thanks are given to the Oficina de Ciencia y Tecnologia, which has granted this work. (Author) 16 refs

  9. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  10. Transformer design principles with applications to core-form power transformers

    CERN Document Server

    Del Vecchio, Robert M; Feeney, Mary-Ellen F

    2001-01-01

    Transformer Design Principles presents the theory of transformer operation and the methods and techniques of designing them. It emphasizes the physical principles and mathematical tools for simulating transformer behavior, including modern computer techniques. The scope of the book includes types of construction, circuit analysis, mechanical aspects of design, high voltage insulation requirements, and cooling design. The authors also address test procedures and reliability methods to assure successful design and discuss the economic analysis of designs. Summarizing material currently scattered

  11. The investigation of the superconducting NMR-imaging main magnets

    International Nuclear Information System (INIS)

    Zhang, Y.; Han, S.; Feng, Z.X.

    1989-01-01

    The design principles of MRI main magnets and the problems in the design process have been analyzed. A computer program in which the critical characteristics of superconductor, the uniformity of the magnetic field, the economization of magnet and the selection of magnet constructions are considered has been established. The program can also be used to design high uniformity superconducting magnet in some other uses. In designing MRI superconducting main magnet, five different magnet constructions have been analyzed. Using this computer program the authors made a series of designs of MRI superconducting main magnets with different construction, different central magnetic field, and different bore diameters. By analyzing the computing results some conclusions useful for the practical design of the MRI superconducting main magnets are obtained

  12. Temporal Evolution of Design Principles in Engineering Systems: Analogies with Human Evolution

    DEFF Research Database (Denmark)

    Deb, Kalyanmoy; Bandaru, Sunith; Tutum, Cem Celal

    2012-01-01

    constructed later during optimization. Interestingly, there exists a simile between evolution of design principles with that of human evolution. Such information about the hierarchy of key design principles should enable designers to have a deeper understanding of their problems.......Optimization of an engineering system or component makes a series of changes in the initial random solution(s) iteratively to form the final optimal shape. When multiple conflicting objectives are considered, recent studies on innovization revealed the fact that the set of Pareto-optimal solutions...... portray certain common design principles. In this paper, we consider a 14-variable bi-objective design optimization of a MEMS device and identify a number of such common design principles through a recently proposed automated innovization procedure. Although these design principles are found to exist...

  13. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  14. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2002-01-01

    The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...

  15. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  16. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...... is designed with method of linear matrix inequality (LMI). Instead of replacing the original controller with a new one, the anti-windup compensation make use of the difference between the controller’s and the actuator’s output to mitigate the adverse influence of saturation, which leaves the original...... controller unaffected. Hence, this method can be used to enhance power system stability under the same capacity with its unsaturated controller so that SMES is utilized more efficiently....

  17. Design study of superconducting coils for the fusion DEMO plant at JAERI

    International Nuclear Information System (INIS)

    Isono, T.; Koizumi, N.; Okuno, K.; Kurihara, R.; Nishio, S.; Tobita, K.

    2006-01-01

    A design study of the TF coil for the fusion DEMO plant at JAERI is in progress. A major issue is to estimate the maximum fields generated by the TF coils for three tokamak options and two conductor options. Three tokamak options are proposed varying the aspect ratio and the role of the CS coil. Two kinds of conductors using advanced superconducting materials are candidates for the TF coils: Nb 3 Al and high temperature superconductor (HTS). In order to evaluate achievable magnetic fields, a simple method was adopted to calculate mechanical properties. The estimated maximum fields are 17-20 T by the HTS conductor and 16-17 T by the Nb 3 Al conductor. There is a possibility of a 0.7 T enhancement using grading of Nb 3 Al winding

  18. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  19. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    Science.gov (United States)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  20. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    International Nuclear Information System (INIS)

    Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J

    2012-01-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)

  1. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  2. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    Science.gov (United States)

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  3. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  4. Electromagnetic design issues in elliptic superconducting radio frequency cavity for H- LINAC

    International Nuclear Information System (INIS)

    Kumar, V.; Jana, A.R.; Gaur, R.

    2013-01-01

    Multi-cell elliptic superconducting radiofrequency (SCRF) cavities are used for efficient acceleration of a high power charged particle beam for a wide range of velocities, typically corresponding to β = 0.5 to ∼ 1, where β is the particle speed in unit of speed of light. Electromagnetic design of such cavities involves careful optimization of the cavity geometry with several design constraints. In this paper, we discuss a generalized approach to optimize the design to achieve maximum acceleration gradient and field flatness, while ensuring that the effect due to higher order modes supported by the cavity are within acceptable limits. Study of detuning in the cavity resonance frequency due to mechanical pressure associated with electromagnetic field inside the cavity, known as Lorentz Force Detuning (LFD), plays an important role in optimizing the scheme for stiffening of the cavity. Electromagnetic design calculations performed for SCRF cavities of medium energy section of 1 GeV H - injector linac for the proposed Indian Spallation Neutron Source (ISNS) at Raja Ramanna Centre for Advanced Technology are presented in the paper highlighting all these important design issues. (author)

  5. Design report for a cryostable 3m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    Fast, R.; Grimson, J.; Kephart, R.; Leung, E.; Mruzek, M.; Theriot, D.; Wands, R.; Yamada, R.

    1981-10-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed td study anti pp collisions at very high center of mass energies. The central detector for the CDF employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 4 m long and 3 m in diameter. To provide the desired Δp/sub T//p/sub T/ less than or equal to 15% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. This field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10 6 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe a design for a cryostable superconducting solenoid intended to meet the requirements of the Fermilab ies TDF

  6. Design and Fabrication of the Superconducting Bussystem for the Stellarator W7-X

    International Nuclear Information System (INIS)

    Sauer, M.; Giesen, B.; Charl, A.

    2006-01-01

    In the framework of cooperation with the Max-Planck-Institute for plasma physics (IPP) essential work packages of the superconducting stellarator Wendelstein 7-X (which is presently under construction at Greifswald, Germany) have been taken over by the Forschungszentrum Juelich (FZJ). One of these packages is the design, construction, qualification, manufacturing and assembly of the superconducting three-dimensional bussystem and its appropriate supports. An overall concept of the project was elaborated with the goal to optimize manufacturing steps, to simplify the system assembly and to provide easy transportation. In order to compensate the magnetic stray fields generated by the bus currents and to facilitate the bus assembly, a suitable bus topology was developed. For checking the geometry of the bent buses and to examine the buses assembly a 1:1 model of one W7-X section (72 o ) has been built. An insulation set up was developed and different samples have been fabricated. For qualification the insulation was examined as follows: - high voltage insulation checks including measurements of the Paschen firmness, - thermal tests and mechanical bending under cryo-temperatures at 77 K, - leakage and high pressure tests to simulate quench situations and - vacuum compatibilities of the materials and methods used. The design will be shown, calculation of magnetic fields and forces are presented. For series production of the 121 buses a production line has been installed. The fabrication process and its main appropriate steps will be presented: 1. Straightening of the superconductor on a rolling machine 2. Rounding on a special turning lathe, required to facilitate 3-dimensional bending 3. Bending on a 3-D-bending machine 4. Checking of geometry on the 1:1 model 5. Electrical insulation and conductive lacquer coat applied by hand 6. Vacuum and high voltage test at several pressure steps (Paschen test) inside bellow tube 7. Transportation in bundle of 6 buses to Greifswald

  7. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Science.gov (United States)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  8. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  9. Assessment Of Co60 Industrial Irradiators According To Basic Design Principles

    Directory of Open Access Journals (Sweden)

    El-Sayed Mohamed El Refaie

    2017-04-01

    Full Text Available Ensuring safe and easy operation providing relative uniform dose in the product and maximizing radiation utilization are the basic design principles for each Co60 industrial irradiator to maintain radiation safety. The study shows an assessment for four industrial irradiators to determine which active results were been maintained by using basic design principles. Different designs elements of the chosen irradiators have been illustrated and studied. The study shows that IRASM and ROBO industrial irradiators satisfy all basic design principles. IAEA-NR3772 irradiator maintains only two of the three basic design principles due to rotating door. Brevion irradiator satisfies only the principle of relative uniform radiation dose in product. Without affecting radiation safety this study proposes a new design of the irradiator to maximize energy utilization by adding a new track for low density products and also a static irradiation for cultural heritage beside the main track of high density products.

  10. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  11. Designing Next Generation Rechargeable Battery Materials from First-Principles

    Science.gov (United States)

    Kim, Soo

    Technology has advanced rapidly, especially in the twenty-first century, influencing our day-to-day life on unprecedented levels. Most such advances in technology are closely linked to, and often driven by, the discovery and design of new materials. It follows that the discovery of new materials can not only improve existing technologies but also lead to revolutionary ones. In particular, there is a growing need to develop new energy materials that are reliable, clean, and affordable for emerging applications such as portable electronics, electric vehicles, and power grid systems. Many researchers have been actively searching for more cost-effective and clean electrode materials for lithium-ion batteries (LIBs) during the last few decades. These new electrode materials are also required to achieve higher electrochemical performance, compared to the already commercialized electrodes. Unfortunately, discovering the next sustainable energy materials based on a traditional 'trial-and-error' method via experiment would be extremely slow and difficult. In the last two decades, computational compilations of battery material properties such as voltage, diffusivity, and phase stability against irreversible phase transformation(s) using first-principles density functional theory (DFT) calculations have helped researchers to understand the underlying mechanism in many oxide materials that are used as LIB electrodes. Here, we have examined the (001) and (111) surface structures of LiMn2O4 (LMO) spinel cathode materials using DFT calculations within the generalized gradient approximation (GGA) + U approach. Our theoretical results explain the observation of a wide spectrum of polyhedral shapes between (001)- and (111)-dominated LMO particles in experiments, which can be described by the narrow range of surface energies and their sensitivity to synthesis conditions. We further show that single-layer graphene coatings help suppress manganese dissolution in LMO by chemically

  12. Designing MOOC: a shared view on didactical principles

    NARCIS (Netherlands)

    Stoyanov, Slavi; De Vries, Fred

    2018-01-01

    The innovative impact of the paper can be highlighted by the following statements: 1. Applying the Group Concept Mapping, a non-traditional and power research methodology for objectively identifying the shared vision of a group of experts on MOOC didactical principles. 2. Defining MOOC didactical

  13. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    AbdulHalim, Lina G.

    2015-01-01

    transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete

  14. Design Principles for the Development of the Balanced Scorecard

    Science.gov (United States)

    Keser Ozmantar, Zehra; Gedikoglu, Tokay

    2016-01-01

    Purpose: The purpose of this paper is to investigate the development and implementation process of the balanced scorecard (BSC) approach in an educational institution in the context of the Turkish educational system. It also aims, on the basis of the results of the applications in a particular school, to define principles through which the…

  15. Design rules for superconducting analog-digital transducers; Entwurfsregeln fuer Supraleitende Analog-Digital-Wandler

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Taghrid

    2015-05-29

    This Thesis is a contribution for dimensioning aspects of circuits designs in superconductor electronics. Mainly superconductor comparators inclusive Josephson comparators as well as QOJS-Comparators are investigated. Both types were investigated in terms of speed and sensitivity. The influence of the thermal noise on the decision process of the comparators represent in so called gray zone, which is analysed in this thesis. Thereby, different relations between design parameters were derived. A circuit model of the Josephson comparator was verified by experiments. Concepts of superconductor analog-to-digital converters, which are based on above called comparators, were investigated in detail. From the comparator design rules, new rules for AD-converters were derived. Because of the reduced switching energy, the signal to noise ratio (SNR) of the circuits is affected and therefore the reliability of the decision-process is affected. For special applications with very demanding requirements in terms of the speed and accuracy superconductor analog-to-digital converters offer an excellent performance. This thesis provides relations between different design paramenters and shows resulting trade-offs, This method is transparent and easy to transfer to other circuit topologies. As a main result, a highly predictive tool for dimensioning of superconducting ADC's is proved.

  16. Superconducting link bus design for the accelerator project for upgrade of LHC

    International Nuclear Information System (INIS)

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.

    2011-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  17. Fault-tolerant superconducting linac design for a 5-MW neutron spallation source

    International Nuclear Information System (INIS)

    Swain, G.R.

    1993-01-01

    An 805-MHz superconducting linac is proposed which could accelerate protons from 0.1 to 2.0 GeV in less than 730 m for a peak surface field in the cavities of 17 MV/m. The linac would furnish 5 MW of beam for a neutron spallation source, plus up to 10 additional MW of beam for other purposes. The design uses 454 elliptical cavities arranged in twelve groups, identical cavities being used within each group. Characterization of elliptical cavities for betas from 0.44 to 0.94 and the steps of the design procedure are presented. The effective peak power fed by each rf coupler would be less than 100 kW for all of the cavities. 6.5 kW of power at 2 deg K would need to be extracted by the cryogenic system. Space charge was found to have a negligible effect on emittance growth. The design is such that one cavity per group could be inoperable, and the gradient in the remaining cavities could be increased to compensate. The longitudinal and transverse acceptances of the linac would not be significantly degraded under such fault conditions. A corresponding 402.5 MHz linac design is being developed

  18. Electromagnetic Design Study for a Large Bore 15T Superconducting Dipole Magnet

    CERN Document Server

    Schwerg, N; Devred, Arnaud; Henke, H

    2005-01-01

    In the framework of research and development (R&D) activities at CERN the Next European Dipole (NED) program is one which is to the development of a high-field dipole magnet using Nb_3Sn superconductors. Part of the NED activities is a design study of different possible dipole configurations which is shared amongst the collaborating institutes. This thesis covers the electromagnetic design study of an 88 mm large bore superconducting 15 T dipole magnet with a coil cross section in cos-theta-layer design. Based on analytically describable geometries the sources of multipole errors are studied and elementary estimations of the magnet are carried out, e.g., the required amount of superconductors or the influence of the iron yoke thickness on the field quality. The magnet cross section for NED is optimized by means of the CERN field computation program ROXIE. The preliminary NED design serves as starting point for the coil cross section optimization with respect to field quality and a radial positioning of th...

  19. Engineering Design and Manufacturing Challenges for a Wide-Aperture, Superconducting Quadrupole Magnet

    CERN Document Server

    Kirby, G A; Bielert, E; Fessia, P; Karppinen, M; Lepoittevin, B; Lorin, C; Luzieux, S; Perez, J C; Russenschuck, S; Sahner, T; Smekens, D; Segreti, M; Durante, M

    2012-01-01

    The design and construction of a wide-aperture, superconducting quadrupole magnet for the LHC insertion region is part of a study towards a luminosity upgrade of the LHC at CERN. The engineering design of components and tooling, the procurement, and the construction work presented in this paper includes innovative features such as more porous cable insulation, a new collar structure allowing horizontal assembly with a hydraulic collaring press, tuning shims for the adjustment of field quality, a fishbone like structure for the ground-plane insulation, and an improved quench-heater design. Rapid prototyping of coil-end spacers and trial-coil winding led to improved shapes, thus avoiding the need to impregnate the ends with epoxy resin, which would block the circulation of helium. The magnet construction follows established procedures for the curing and assembly of the coils, in order to match the workflow established in CERN’s ”large magnet facility.” This requirement led to the design and procurement of...

  20. Design calculation for the central region of the NSCL 500 MeV superconducting cyclotron

    International Nuclear Information System (INIS)

    Marti, F.; Gordon, M.M.; Chen, M.B.; Salgado, C.; Antaya, T.; Liukkonen, E.

    1982-01-01

    The 500 MeV superconducting cyclotron has three 60 0 dees within the magnet valleys, and the design of the central region is complicated because it must accommodate the inner tips of these dees, the tips of the three intervening dummy dees, and the ion source, all within a very small space. In addition, this cyclotron is designed to operate on harmonics from h=1 to 7, with dee voltages up to 100 kV, and must accelerate a wide variety of heavy ions with turn numbers from n=100 to 600. To satisfy these diverse requirement, the overall plan for the central region calls for the construction and use of many different, but readily interchangeable sets of electrode structures with each set designed for a different range of operating conditions. The procedure for determining the optimum geometry for a set of electrodes involves a converging sequence of tentative designs each of which is tested and improved through a combination of electrolytic tank measurements and orbit computations. For this purpose, the speed and accuracy of the tank measurements have been improved, and the resultant potentials are used in our computer programs to determine whether the ion orbits clear the obstacles successfully, gain energy efficiently, receive adequate vertical focusing, and finally emerge from the central region properly centered. The vertical motion computations are by far the most difficult, and a special effort has been made to obtain satisfactory results

  1. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  2. Representing Clarity: Using Universal Design Principles to Create Effective Hybrid Course Learning Materials

    Science.gov (United States)

    Spiegel, Cheri Lemieux

    2012-01-01

    This article describes how the author applied principles of universal design to hybrid course materials to increase student understanding and, ultimately, success. Pulling the three principles of universal design--consistency, color, and icon representation--into the author's Blackboard course allowed her to change the types of reading skills…

  3. 10 CFR 435.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 435.6 Section 435.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS...-Rise Residential Buildings. § 435.6 Sustainable principles for siting, design and construction...

  4. 10 CFR 433.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 433.6 Section 433.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS... BUILDINGS § 433.6 Sustainable principles for siting, design and construction. [Reserved] ...

  5. Integrating Quality Matters into Hybrid Course Design: A Principles of Marketing Case Study

    Science.gov (United States)

    Young, Mark R.

    2014-01-01

    Previous research supports the idea that the success of hybrid or online delivery modes is more a function of course design than delivery media. This article describes a case study of a hybrid Principles of Marketing course that implemented a comprehensive redesign based on design principles espoused by the Quality Matters Program, a center for…

  6. The principles of design of a shallow disposal site for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Holmes, R.E.

    1985-01-01

    This paper addresses the principles of design of a shallow disposal site for low and intermediate level radioactive wastes. The objective of the author is to review the need for shallow land disposal facilities in the UK and to propose design principles which will protect the public and operatives from excessive risk. It is not the intent of the author to present a detailed design of facility which will meet the design standards proposed although such a design is feasible and within the scope of currently available technology. The principles and standards proposed in this paper are not necessarily those of PPC Consultant Services Ltd. or NEI Waste Technologies Ltd. (author)

  7. Nonlinear elastic properties of superconducting antiperovskites MNNi 3 (M =Zn, Cd, Mg, Al, Ga, and In) from first principles

    KAUST Repository

    Liu, Lili

    2014-05-22

    We present theoretical studies for the third-order elastic constants (TOECs) of superconducting antiperovskites MNNi 3 (M = Zn, Cd, Mg, Al, Ga, and In) using the density functional theory (DFT) and homogeneous deformation method. From the nonlinear least-square fitting, the elastic constants are extracted from a polynomial fit to the calculated strain-energy data. Calculated second-order elastic constants (SOECs) are compared with the previous theoretical calculations, and a very good agreement was found. The nonlinear effects often play an important role when the finite strains are larger than approximately 2.5 %. Besides, we have computed the pressure derivatives of SOECs and provided rough estimations for the Grüneisen constants of long-wavelength acoustic modes by using the calculated TOECs. © 2014 Springer Science+Business Media New York.

  8. Nonlinear elastic properties of superconducting antiperovskites MNNi 3 (M =Zn, Cd, Mg, Al, Ga, and In) from first principles

    KAUST Repository

    Liu, Lili; Wu, Xiaozhi; Wang, Rui; Gan, Liyong; Wei, Qunyi

    2014-01-01

    We present theoretical studies for the third-order elastic constants (TOECs) of superconducting antiperovskites MNNi 3 (M = Zn, Cd, Mg, Al, Ga, and In) using the density functional theory (DFT) and homogeneous deformation method. From the nonlinear least-square fitting, the elastic constants are extracted from a polynomial fit to the calculated strain-energy data. Calculated second-order elastic constants (SOECs) are compared with the previous theoretical calculations, and a very good agreement was found. The nonlinear effects often play an important role when the finite strains are larger than approximately 2.5 %. Besides, we have computed the pressure derivatives of SOECs and provided rough estimations for the Grüneisen constants of long-wavelength acoustic modes by using the calculated TOECs. © 2014 Springer Science+Business Media New York.

  9. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Demko, Dr. Jonathan A [LeTourneau University, Texas; Lumsdaine, Arnold [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; McGinnis, William Dean [ORNL; Bjorholm, Thomas P [ORNL; Rapp, Juergen [ORNL

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.

  10. Application of the BRF system to some superconducting magnet design problems

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1974-01-01

    The Berkeley Remote Facility (BRF) system--affected through a system of teletype terminals linked to the LBL computers--was used to solve a large number of magnetic-field problems associated with the design and analysis of superconducting beam-transport magnets. The limitations of the BRF system are severe: total storage, 1000; 10 subscripted variables; no integer or complex arithmetic; no function or subroutine subprograms except those in its Spartan library; and a pidgin Fortran language. However, for fully 90 percent of the computational work, the low IQ of the BRF was more than counter-balanced by its being on-line. The magnets built have a long cylindrical aperture surrounded by arrays of longitudinal superconducting wires and iron arranged to produce a transverse field of prescribed shape, uniform fields for bending high energy charged particle beams, and quarupole fields for focusing. The field in the aperture is expressed, usually, in terms of the coefficients of the Taylor's expansion--the ''multipole coefficients''. Point values of the field vector are also of interest, especially within the windings, as the magnitude of the field determines the allowable current. Many small programs were developed to analyze both the two- and three-dimensional fields produced by various kinds of arrays of conductors. Some programs have the ability to vary a number of geometric parameters automatically in such a way as to drive the same number of multipole coefficients to zero. The on-line feature is especially handy, as such iterative calculations must often be cajoled into convergence. (U.S.)

  11. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  12. Novel model of stator design to reduce the mass of superconducting generators

    Science.gov (United States)

    Kails, Kevin; Li, Quan; Mueller, Markus

    2018-05-01

    High temperature superconductors (HTS), with much higher current density than conventional copper wires, make it feasible to develop very powerful and compact power generators. Thus, they are considered as one promising solution for large (10 + MW) direct-drive offshore wind turbines due to their low tower head mass. However, most HTS generator designs are based on a radial topology, which requires an excessive amount of HTS material and suffers from cooling and reliability issues. Axial flux machines on the other hand offer higher torque/volume ratios than the radial machines, which makes them an attractive option where space and transportation becomes an issue. However, their disadvantage is heavy structural mass. In this paper a novel stator design is introduced for HTS axial flux machines which enables a reduction in their structural mass. The stator is for the first time designed with a 45° angle that deviates the air gap closing forces into the vertical direction reducing the axial forces. The reduced axial forces improve the structural stability and consequently simplify their structural design. The novel methodology was then validated through an existing design of the HTS axial flux machine achieving a ∼10% mass reduction from 126 tonnes down to 115 tonnes. In addition, the air gap flux density increases due to the new claw pole shapes improving its power density from 53.19 to 61.90 W kg‑1. It is expected that the HTS axial flux machines designed with the new methodology offer a competitive advantage over other proposed superconducting generator designs in terms of cost, reliability and power density.

  13. Design Principles for Serious Video Games in Mathematics Education: From Theory to Practice

    OpenAIRE

    Konstantinos Chorianopoulos; Michail Giannakos

    2014-01-01

    There is growing interest in the employment of serious video games in science education, but there are no clear design principles. After surveying previous work in serious video game design, we highlighted the following design principles: 1) engage the students with narrative (hero, story), 2) employ familiar gameplay mechanics from popular video games, 3) engage students into constructive trial and error game-play and 4) situate collaborative learning. As illustrated examples we designed two...

  14. Electromagnetic design of a β=0.9, 650 MHz elliptic superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Jana, Arup Ratan; Kumar, V.

    2011-01-01

    We have recently performed two-dimensional (2D) electromagnetic design studies of a β=0.9, 650 MHz, elliptic superconducting radio frequency (SCRF) cavity using electromagnetic field solver code SUPERFISH. We have evolved the design starting from the design parameters of β=1, 1300 MHz, TESLA design SCRF cavity and then scaled it for the β=0.9 and 650 MHz case. The design has been optimized for minimizing the SCRF cavity power loss. One of the important parameters in the design of such elliptic SCRF cavities is the wall angle, which is defined as the vertical angle made by the common tangent to the iris and equator ellipses. Generally, there is a constraint on the minimum value of the wall angle, which is decided by the mechanical considerations, ease of chemical cleaning etc. In our optimization studies, we have first explored the case when there is no such constraint on wall angle. We find that from the point of view of low cavity power dissipation, the optimized design has a re-entrant geometry, where the wall angle is negative. We then perform design optimization, keeping the constraint that the wall angle should be greater than 5 degree. Keeping this constraint, we find that our optimized design parameters for the single cell match closely with the design parameters reported for Project-X. We discuss the results of 2D electromagnetic field calculations for this design using SUPERFISH. In the next, we have performed the design studies of the multi-cell β=0.9, 650 MHz, elliptic SCRF cavity. The design parameters of end-cells are optimized such that the frequency of the end-cell is matched to that of mid-cells. We have studied all the normal modes for the multi-cell cavity. The frequency of different normal modes is also calculated using a finite element code ANSYS and results are compared with those obtained using SUPERFISH. The field flatness, which is an important design criterion, is also studied. For multi-cell cavity, another important aspect is the cell

  15. Design principles for data- and change-oriented organisational analysis in workplace health promotion.

    Science.gov (United States)

    Inauen, A; Jenny, G J; Bauer, G F

    2012-06-01

    This article focuses on organizational analysis in workplace health promotion (WHP) projects. It shows how this analysis can be designed such that it provides rational data relevant to the further context-specific and goal-oriented planning of WHP and equally supports individual and organizational change processes implied by WHP. Design principles for organizational analysis were developed on the basis of a narrative review of the guiding principles of WHP interventions and organizational change as well as the scientific principles of data collection. Further, the practical experience of WHP consultants who routinely conduct organizational analysis was considered. This resulted in a framework with data-oriented and change-oriented design principles, addressing the following elements of organizational analysis in WHP: planning the overall procedure, data content, data-collection methods and information processing. Overall, the data-oriented design principles aim to produce valid, reliable and representative data, whereas the change-oriented design principles aim to promote motivation, coherence and a capacity for self-analysis. We expect that the simultaneous consideration of data- and change-oriented design principles for organizational analysis will strongly support the WHP process. We finally illustrate the applicability of the design principles to health promotion within a WHP case study.

  16. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  17. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    Science.gov (United States)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  18. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  19. Design study of superconducting magnets for a combustion magnetohydrodynamic /MHD/ generator

    Science.gov (United States)

    Thome, R. J.; Ayers, J. W.; Hrycaj, T. M.; Burkhart, J. A.

    1978-01-01

    Results are presented for a trade-off and preliminary design study on concepts of a superconducting magnet system for a combustion MHD generator test facility. The main objective is to gain insight into the magnitude of the project in terms of physical characteristics and cost. The net result of a first-phase evaluation of attractive design alternatives is to concentrate subsequent efforts on (1) a racetrack coil geometry with an operating temperature of 4.2 K, (2) a racetrack coil geometry with an operating temperature of 2.0 K, and (3) a rectangular saddle coil geometry with an operating temperature of 4.2 K. All three systems are to produce 8 T, and use NbTi superconductor and iron for field enhancement. Design characteristics of the three systems are described. It is shown that the racetrack and rectangular saddle coil geometries seem most suitable for this application, the former because of its simplicity and the latter because of its efficient use of material. Advantages of the rectangular saddle over the two other systems are stressed.

  20. Specific features of designs of superconducting magnets for high-energy synchrotrons

    International Nuclear Information System (INIS)

    Monoszon, N.A.

    1979-01-01

    Distinctive features of designs of synchrotron superconducting magnetic systems (SMS) are considered. Some results of testing the prototypes of the ISABELLE storage ring magnets, the DABLER energy doubler and the accelerating-storage complex project are presented. Designs of di.ooles and quadrupoles are described. It is shown that the design of the DABLER SMS considerably differs from the ISABELLE SMS. The DABLER uses nonsaturated magnetic screens which provide lesser distortions of the magnetic field distribution. For the ISABELLE project a dipole with a two-layer winding has been developed which produced a field of 6.2 T. Magnetization curves as well as training and field distribution curves for a number of DABLER dipoles are presented. To prevent local overheating provision is made for using a heater enclosed in a winding. A 1 m dipole model with a sector winding of the DABLER type has been manufactured and tested in the IHEP. During tests a short-sample current and a total value of calculated field equal to 4.45 T in the chamber centre amd 5.3 T in the winding have been achieved

  1. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    Science.gov (United States)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  2. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  3. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  4. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  5. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  6. Design and construction of superconducting quadrupole magnets for ion beam fusion

    International Nuclear Information System (INIS)

    Wang, S.T.; Ludwig, H.; Turner, L.R.

    1978-01-01

    A high gradient superconducting quadrupole has been designed and developed as the heavy ion beam focussing element in the low velocity portions of an rf linac for the Argonne Ion Beam Fusion Reactor. The quadrupole magnets will require an extremely short magnet coil length (approximately 20 cm to 30 cm) and extremely high central gradients (approximately 100 T/m to 200 T/m). The useful warm bore will be about 4 to 6 cm and the integral gradient homogeneity should be constant to +-5% over the useful warm bore. Special techniques have been developed which are especially suitable for multilayer coil winding and coil assembly with high average current density over the coil cross section. A 5-layer quadrupole with 9 cm winding bore has been built and tested to the full performance of about 100 T/m with little training. The achieved average current density is 22,000 A/cm 2 at a peak field in conductor of about 5.0 T. An 8-layer quadrupole is under construction for a design gradient of 140 T/m over 9 cm winding bore. The peak field will be about 7.2 T

  7. Friction reduction using discrete surface textures: principle and design

    International Nuclear Information System (INIS)

    Hsu, Stephen M; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-01-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed. (paper)

  8. Design of a Blended Learning Environment Based on Merrill’s Principles

    Science.gov (United States)

    Simarmata, Janner; Djohar, Asari; Purba, Janulis; Juanda, Enjang A.

    2018-01-01

    Designing blended learning courses requires a systematic approach, in instructional design decisions and implementations, instructional principles help educators not only to specify the elements of the course, but also to provide a solid base from which to build the technology. The blended learning course was designed based on Merrill’s First Principles of Instruction with five phases. This paper helps inform educators about how to develop appropriate learning styles and preferences according to students’ learning needs.

  9. Report of the Reference Designs Study Group on the Superconducting Super Collider. Appendix A. Design details

    International Nuclear Information System (INIS)

    1984-05-01

    Designs are presented for magnets, cryogenics, vacuum systems, main power supply and quench protection system, correction element power supplies, radio-frequency system, injection system, beam abort system, beam instrumentation, control system, site safety, injector, survey and alignment

  10. Four Principles for User Interface Design of Computerised Clinical Decision Support Systems

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    emphasises a focus on how users interact with the system, a focus on how information is provided by the system, and four principles of interaction. The four principles for design of user interfaces for CDSS are summarised as four A’s: All in one, At a glance, At hand and Attention. It is recommended that all...... four interaction principles are integrated in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors....

  11. Resisting Technological Gravity: Using Guiding Principles for Instructional Design

    Science.gov (United States)

    McDonald, Jason K.

    2010-01-01

    Instructional designers face tremendous pressure to abandon the essential characteristics of educational approaches, and settle instead for routine practices that do not preserve the level of quality those approaches originally expressed. Because this pressure can be strong enough to affect designers almost as gravity affects objects in the…

  12. Principles and Concepts for Information and Communication Technology Design.

    Science.gov (United States)

    Adams, Ray; Langdon, Patrick

    2003-01-01

    This article presents a theory for evaluating information and communication technology design for individuals with disabilities. Simplex 1 evaluates designs in five zones: sensory and input zone; output zone; abstract working memory; long-term memory; and central executive functioning. Simplex 2 evaluates feedback, emotional responses, cognitive…

  13. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  14. Design Principles and Concepts for Enhancing Long-Term Cap Performance and Confidence

    International Nuclear Information System (INIS)

    Steven J. Piet; Robert P. Breckenridge; Gregory J. White; Jacob J. Jacobson; Hilary I. Inyang

    2005-01-01

    The siting of new landfills is becoming increasing difficult as the public and stakeholders want more confidence of performance for longer times and landfill owners want to store more waste in the least area while knowing and limiting their long-term liabilities. These changes motivate re-examination of long-term performance mechanisms and their implications for cap and barrier designs. Accordingly, in this paper we first consider design principles from the standpoint of long-term performance and management, including the ability to monitor and repair barriers. We then consider some design concepts that may implement these principles, especially evapo-transpiration (ET) caps. We suggest five design principles based on experience in the cap and barrier field as well as other engineering disciplines. These principles are as follows: (1) Establish a clear and defendable design basis. (2) Design for ease of monitoring and repair. (3) Analyze the barrier as a dynamic system, not static. (4) Work with nature, not against. (5) Recognize that increased complexity can reduce, not enhance, net performance. ET caps are an excellent embodiment of these design principles. We apply the design principles to ET caps, as well as variants such as erosion armor, capillary breaks, bio-intrusion layers, and low permeability material layers

  15. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  16. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  17. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  18. Design and development progress of a LLRF control system for a 500 MHz superconducting cavity

    Science.gov (United States)

    Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.

    2012-07-01

    The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.

  19. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2000-01-01

    The program package ROXIE [1] has been developed at CERN for the design and optimization of the superconducting magnets for the LHC.The necessity of extremely uniform (coil dominated) fields in accelerator magnets requires very accurate methods of .eld computation. For this purpose a coupled boundary-element/ finite-element technique (BEM-FEM) is used [2]. Quadrilateral higher order finite-elements are used for the discretization of the iron domain.This is necessary for the accurate modeling of the iron contours and is favorable for 3D meshes. A new quadrilateral mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany [3] has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation.The frequent application of mathematical optimization techniques requires parametric models which are set-up using a feature-based approach.The structure of the magnet cross-section can be modeled using parametric object...

  20. Optimum design of flywheel energy storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Lee, Jeung Gun; Kim, Jong Soo [Ajou University, Suwon (Korea, Republic of)

    1997-07-01

    Electricity demands changes by as much as 30% over a 12-hour period and results in significant costs for utilities as power output get adjusted to meet these changes. The purpose of High-Temperature Superconducting Flywheel Energy Storage System (HTS FES) is to store unused nighttime electricity until it is needed during the daytime. The HTS FES is designed by using flywheel shape function with uniform stress. Natural frequencies and natural modes are estimated by using Finite Element Analysis and correlated with the experimental results. By performing a vibration test, the stiffness and the damping ratio of the flux line, the flux pinning phenomenon are measured Using the modal parameters of each component and the measured stiffness, damping coefficient, the IDEAS System Dynamics Analysis is performed and frequency response function(FRF) of the joined system is obtained. The effect of tangential torque on flywheel has been studied using cantilever shaft with rotor at free end. To obtain the equation of motion, the Lagrange`s equation and the assumed-mode method are used. As a admissible function, a free vibration mode of clamped-free beam is used. The eigenvalues are computed and the stability boundaries are obtained. 19 refs., 33 figs. (author)