WorldWideScience

Sample records for superconducting coupling magnet

  1. Superconductive combinational logic circuit using magnetically coupled SQUID array

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Y., E-mail: yamanasi@ynu.ac.j [Interdisciplinary Research Center, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Umeda, K.; Sai, K. [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2010-11-01

    In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.

  2. Investigation of spontaneous magnetization of coupled 2×2 superconducting π ring array

    Institute of Scientific and Technical Information of China (English)

    Li Zhuang-Zhi; Wang Fu-Ren; Yang Tao; Liu Xin-Yuan; Ma Ping; Xie Fei-Xiang; Nie Rui-Juan; Dai Yuan-Dong

    2004-01-01

    We present the theoretical investigation of spontaneous magnetization of a coupled 2 × 2 π ring array. It is indicated by free energy calculation that the system has the lowest energy when the four π rings have the full antiparallel configuration. Furthermore, the numerical evaluation results show that the system which favours full antiparallel spontaneous magnetization is a quantum effect deriving from the phase cohering of the superconducting quantum wavefunctions in the four superconducting rings through the shared Josephson junctions.

  3. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  4. Superconductivity and magnetism in the presence of interface-induced Rashba spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo [Zentrum fuer Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg (Germany)

    2012-07-01

    Two dimensional electron systems at oxide interfaces are often influenced by a Rashba type spin-orbit coupling (SOC), which is tunable by a transverse electric field. Ferromagnetism at the interface can simultaneously induce strong local magnetic fields. This combination of SOC and magnetism leads to anisotropic two-sheeted Fermi surfaces, on which superconductivity with finite-momentum pairing is favored. The superconducting order parameter is derived within a generalized pairing model realizing both, the FFLO superconductor in the limit of vanishing SOC and a mixed-parity pairing state with zero pair momentum if the magnetism vanishes. The nature of the pairing state is discussed in the context of interface superconductivity and ferromagnetism at LAO-STO interfaces.

  5. Numerical analysis of the superconducting magnet outer vessel of a Maglev train by a structural and electromagnetic coupling method

    Science.gov (United States)

    Matsue, H.; Demachi, K.; Miya, K.

    2001-09-01

    The harmonic magnetic field generated by the ground coils can cause vibration of the superconducting magnet, which must be reduced as it generates heat in the liquid helium temperature range. Therefore, it is important for the design of lighter magnets to exactly estimate the electromagnetic force on the superconducting magnet. Some causes of the vibration were analyzed by the structural and electromagnetic coupling FEM-BEM method.

  6. Magnetic field dependence of the coupling efficiency of a superconducting transmission line due to the proximity effect

    NARCIS (Netherlands)

    Zhu, S.; Zijlstra, T.; Golubov, A.A.; Van den Bemt, M.; Baryshev, A.M.; Klapwijk, T.M.

    2009-01-01

    The coupling efficiency of a Nb superconducting transmission line has been measured using a Fourier transform spectrometer for different magnetic fields. It is found that the coupling decreases with increasing magnetic field when the frequency is close to the gap of the Nb superconductor. This is at

  7. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  8. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    Science.gov (United States)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Longdell, Jevon J.

    2016-08-01

    We experimentally demonstrate the coupling at zero magnetic field of an isotopically pure erbium-doped yttrium orthosilicate crystal (167Er:YSO ) to a three-dimensional superconducting cavity with a Q factor of 105. A tunable loop-gap resonator is used and its resonance frequency is tuned to observe the hyperfine transitions of the erbium sample. The observed spectrum differs from what is predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observation of asymmetric line shapes for these hyperfine transitions. Such a broadly tunable superconducting cavity (from 1.6 to 4.0 GHz in the current design) is a promising device for building hybrid quantum systems.

  9. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    CERN Document Server

    Chen, Yu-Hui; Longdell, Jevon J

    2015-01-01

    We experimentally demonstrate the coupling of an erbium doped crystal to a three-dimensional superconducting cavity of a $10^5$ $Q$-factor at zero magnetic field. A tunable loop-gap resonator is used to match the cavity frequency to the hyperfine transitions of an erbium sample. The observed spectrum differs from what predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observations of asymmetric lineshapes of these hyperfine transitions, which are understood as the super-hyperfine interactions between the erbium ions and their adjacent yttrium ions. Such a broadly tunable superconducting cavity architecture, from 1.6 GHz to 4.0 GHz in the current design, is promising in building hybrid quantum systems.

  10. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  11. Accurate Calculation of Magnetic Fields in the End Regions of Superconducting Accelerator Magnets using the BEM-FEM Coupling Method

    CERN Document Server

    Kurz, S

    1999-01-01

    In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented.

  12. Magnetically coupled gear based drive mechanism for contactless continuous rotation using superconducting magnetic bearing below 10 K

    Science.gov (United States)

    Matsumura, T.; Sakurai, Y.; Kataza, H.; Utsunomiya, S.; Yamamoto, R.

    2016-11-01

    We present the design and mechanical performances of a magnetically coupled gear mechanism to drive a levitating rotor magnet of a superconducting magnetic bearing (SMB). The SMB consists of a ring-shaped high-temperature superconducting array (YBCO) and a ring-shaped permanent magnet. This rotational system is designed to operate below 10 K, and thus the design philosophy is to minimize any potential source of heat dissipation. While an SMB provides only a functionality of namely a bearing, it requires a mechanism to drive a rotational motion. We introduce a simple implementation of a magnetically coupled gears between a stator and a rotor. This enables to achieve enough torque to drive a levitating rotor without slip at the rotation frequency of about 1 Hz below 10 K. The rotational variation between the rotor and the drive gear is synchronised within σ = 0.019 Hz. The development of this mechanism is a part of the program to develop a testbed in order to evaluate a prototype half-wave plate based polarization modulator for future space missions. The successful development allows this modulator to be a candidate for an instrument to probe the cosmic inflation by measuring the cosmic microwave background polarization.

  13. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  14. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, ten H.H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport curre

  15. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    Science.gov (United States)

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  16. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  17. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  18. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  19. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  20. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  1. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  2. Spin-precession-assisted supercurrent in a superconducting quantum point contact coupled to a single-molecule magnet

    Science.gov (United States)

    Holmqvist, C.; Belzig, W.; Fogelström, M.

    2012-08-01

    The supercurrent through a quantum point contact coupled to a nanomagnet strongly depends on the dynamics of the nanomagnet's spin. We employ a fully microscopic model to calculate the transport properties of a junction coupled to a spin whose dynamics is modeled as Larmor precession brought about by an external magnetic field and find that the dynamics affects the charge and spin currents by inducing transitions between the continuum states outside the superconducting gap region and the Andreev levels. This redistribution of the quasiparticles leads to a nonequilibrium population of the Andreev levels and an enhancement of the supercurrent which is visible as a modified current-phase relation as well as a nonmonotonous critical current as function of temperature. The nonmonotonous behavior is accompanied by a corresponding change in spin-transfer torques acting on the precessing spin and leads to the possibility of using temperature as a means to tune the back-action on the spin.

  3. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  4. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  5. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  6. A calculation of Eliashberg equations for superconducting phase under the ultra-high magnetic field of strong coupling cases in 2 and 3 dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H. [Dept. of Mathematics and Physical Science, Graduate School of Science and Technology, Chiba Univ. (Japan); Natsume, Y. [Chiba Univ. (Japan). Dept. of Physics

    1995-04-01

    The estimation of Tc for the superconducting phase under the ultra-high magnetic feild is discussed on the basis of numerical calculation by the use of the expression of Eliashberg equations for strong coupling theory. The essenthial effect of the retardation of the interaction by phonons on making the gap is pointed out in comparison between 2 and 3 dimensinal systems. (orig.)

  7. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  8. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  9. Permanent magnet design for high-speed superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (5519 S. Bruner, Hinsdale, IL 60521); Uherka, Kenneth L. (830 Ironwood, Frankfort, IL 60423); Abdoud, Robert G. (13 Country Oaks La., Barrington Hills, IL 60010)

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  10. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  11. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  12. Superconducting materials suitable for magnets

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The range of materials available for superconducting magnets is steadily expanding, even as the choice of material becomes potentially more complex. When virtually all magnets were cooled by helium at ~2-5 K it was easy to separate the domain of Nb-Ti from those of Nb3Sn applications and very little surprise that more than 90% of all magnets are still made from Nb-Ti. But the development of useful conductors of the Bi-Sr-Ca-Cu-O and YBa2Cu3Ox high temperature superconductors, coupled to the recent discovery of the 39 K superconductor MgB2 and the developing availability of cryocoolers suggests that new classes of higher temperature, medium field magnets based on other than Nb-based conductors could become available in the next 5-10 years. My talks will discuss the essential physics and materials science of these 5 classes of material - Nb-Ti, Nb3Sn, MgB2, Bi-Sr-Ca-Cu-O and YBa2Cu3Ox - in the context of those aspects of their science, properties and fabrication properties, which circumscribe their applications...

  13. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  14. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  15. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  16. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  17. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  18. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  19. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  20. Superconductivity for Magnets

    CERN Document Server

    Flükiger, R

    2014-01-01

    The present state of development of a series of industrial superconductors is reviewed in consideration of their future applications in high field accelerator magnets, with particular attention on the material aspect. The discussion is centred on Nb3Sn and MgB2, which are industrially available in a round wire configuration in kilometre lengths and are already envisaged for use in the LHC Upgrade (HL-LHC). The two systems Bi-2212 and R.E.123 may be used in magnets with even higher fields in future accelerators: they are briefly described.

  1. Superconducting magnets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Francis Bitter National Magnet Lab.)

    1989-08-01

    Superconducting magnets are now being used in applications as diverse as medical imaging, fusion research, and power conditioning. The steady improvement in the understanding of instability and quenching has allowed increases in current density and compactness of winding. The reduction in winding size that has thus followed has allowed the construction of economic magnets for imaging, for acceleration, and for high-resolution spectrometers. Large magnets for fusion and energy applications have been made possible by composite conductors containing large fractions of copper or aluminum. The advent of high-temperature superconductors may hold the promise, eventually, of very-high-field magnets. Meanwhile low-temperature superconductors capable of generating fields up to 30 T have been developed.

  2. 2D Analysis of Thermomechanical Response to Unbalanced Currents in Quenching Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2140986

    The thesis aims at studying coupling between electromagneticthermal and mechanical phenomena occurring after a quench in the superconducting magnets. For this reason, two models representing both domains are coupled by means of area-based coupling.

  3. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

  4. Magnetism and superconductivity in neodymium/lanthanum superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, Desmond Francis

    1997-01-01

    bilayers. Magnetization studies reveal the onset of superconductivity at a temperature comparable to bulk DHCP La, and the results suggest coupling across the antiferromagnetic Nd layers. The magnetic structures, investigated using neutron diffraction techniques, resemble those found in bulk Nd....... For the cubic sites of the DHCP structure the magnetic order is confined to individual Nd blocks. However, the magnetic order on the Nd hexagonal sites propagates coherently through the La, even when it becomes superconducting. (C) 1998 Elsevier Science B.V. All rights reserved....

  5. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  6. Superconducting magnets. Citations from NTIS data base

    Science.gov (United States)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  7. Superconducting magnets in physics: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G.; Parain, J.

    1974-10-01

    The present status of solutions for the construction of magnets using superconducting windings is given. A review is given of achievements and projects using superconductors for the production of magnetic fields.

  8. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  9. Feeding helium to superconducting magnets

    CERN Multimedia

    1979-01-01

    The photo shows two of the 3 superconducting magnets (two MBS dipoles (CESAR) of 150 mm bore and 4.5 T, and one quadrupole (CASTOR) of 90 mm bore and 54 T/m) which were installed in the hall EHN1 (Annual Report 1978 p. 134) and ran until 1985. They formed a section of the beam H6 travelling from target T4 (down the bottom of the photo) towards the NA30 setup followed by the NA11 setup. The two big transversal pipelines are the quench lines of the two magnets (on the right, one quadrupole and one dipole, the other dipole lays down the photo and is not visible). The Jura side of the hall is on the right.

  10. Superconducting magnet system for PERC

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Carmen [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: PERC-Collaboration

    2012-07-01

    The new PERC (Proton Electron Radiation Channel) instrument will be an extremely bright and versatile source of neutron decay products. It will feed several novel precision experiments of spectra and correlation measurements in neutron decay. Its main component is a more than 11 m long superconducting magnet system. The neutron decay volume is located inside an 8 m long neutron guide in a strong longitudinal magnetic field of 1.5 T. A variable magnetic barrier of 3 T to 6 T serves to precisely limit the phase space of the emerging electrons and protons to control systematic errors on the 10{sup -4}level. The instrument is currently under development and will be installed at the neutron-beamline Mephisto at the FRM II, Garching. In this talk we give an overview on the special characteristics and advantages of PERC's field design. We show that with our design we can prevent magnetic traps in magnetic field and achieve a clean separation of neutrons and decay-products.

  11. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  12. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  13. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  14. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  15. Durability Evaluation of Superconducting Magnets

    Science.gov (United States)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  16. Suspended carbon nanotubes coupled to superconducting circuits

    NARCIS (Netherlands)

    Schneider, B.H.

    2014-01-01

    Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i

  17. On the interplay of superconductivity and magnetism

    CERN Document Server

    Powell, B J

    2002-01-01

    We explore the exchange field dependence of the Hubbard model with a attractive, effective, pairwise, nearest neighbour interaction via the Hartree-Fock-Gorkov approximation. We derive a Ginzburg-Landau theory of spin triplet superconductivity in an exchange field. For microscopic parameters which lead to ABM phase superconductivity in zero field, the Ginzburg-Landau theory allows both an axial (A, A sub 1 or A sub 2) solution with the vector order parameter, d(k), perpendicular to the field, H, and an A phase solution with d(k) parallel to H. We study the spin-generalised Bogoliubov-de Gennes (BdG) equations for this model with parameters suitable for strontium ruthenate (Sr sub 2 RuO sub 4). The A sub 2 phase is found to be stable in a magnetic field. However, in the real material, spin-orbit coupling could pin the order parameter to the crystallographic c-axis which would favour the A phase for fields parallel to the c-axis. We show that the low temperature thermodynamic behaviour in a magnetic field could...

  18. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  19. Numerical and experimental investigations of coupled electromagnetic and thermal fields in superconducting accelerator magnets; Numerische und experimentelle Untersuchungen gekoppelter elektromagnetischer und thermischer Felder in supraleitenden Beschleunigermagneten

    Energy Technology Data Exchange (ETDEWEB)

    Mierau, Anna

    2013-10-01

    The new international facility for antiproton and ion research FAIR will be built in Darmstadt (Germany). The existing accelerator facility of GSI Helmholtzzentrum for Heavy Ion Research will serve as a pre-accelerator for the new facility. FAIR will provide high-energy antiproton and ion beams with unprecedented intensity and quality for fundamental research of states of matter and the evolution of the universe. The central component of FAIR's accelerator and storage rings complex is a double-ring accelerator consisting of two heavy ion synchrotrons SIS100 and SIS300. The SIS100 is the primary accelerator of FAIR. The desired beam properties of SIS100 require a design of the machine much more challenging than the conventional design of existing proton and ion synchrotrons. The key technical components of each synchrotron are the special electromagnets, which allow guiding the charged particles on their orbits in the synchrotron during the acceleration processes. For a stable operation of the SIS100's the magnets have to produce extremely homogeneous magnetic fields. Furthermore, the SIS100 high-intensity ion beam modes, for example with U{sup 28+} ions, require an ultra-high vacuum in the beam pipe of the synchrotron, which can be generated effectively only at low temperatures below 15 K. Due to the field quality requirements for the magnets, the properties of the dynamic vacuum in the beam pipe but also in order to minimise future operating costs, fast ramped superconducting magnets will be used to guide the beam in SIS100. These magnets have been developed at GSI within the framework of the FAIR project. Developing a balanced design of a superconducting accelerator magnet requires a sound understanding of the interaction between its thermal and electromagnetic fields. Of special importance in this case are the magnetic field properties such as the homogeneity of the static magnetic field in the aperture of the magnet, and the dynamic heat losses of the

  20. The first LHC superconducting magnet is unloaded

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The first superconducting magnet is moved into position using a transfer table. This must be performed with great precision so that the LHC ring is correctly aligned, allowing the beams to travel along the correct paths.

  1. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  2. Induced Magnetism in Color-Superconducting Media

    CERN Document Server

    Ferrer, Efrain J

    2009-01-01

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  3. High temperature superconductivity induced by incipient magnetism

    Science.gov (United States)

    Weger, M.; Pereg, Y.

    1990-10-01

    We consider the BCS gap equation, with an attractive interaction λ with an upper cutoff ω 0 and lower cutoff ω 1, and a repulsive interaction μ with cutoffΓ. We consider parameters such that a superconducting solution does not exist. We add a repulsive interaction ν eith cutoff ω1 ( ω1 < ω0), and show that this repulsive interaction (that we attribute to incipient magnetism) induces a superconducting state possessing a high transition temperature. In this state, the gap function Δ(ɛ) oscillates as function of ɛ, with a period of order ω 0. We also find solutions antisymmetric in energy [ Δ( ɛ) = - Δ(- ɛ) ], which turn out to be almost degenerate with the normal, symmetric ones. We discuss the physical implications of this model. Our model thus combines a low frequency repulsion due to antiferromagnetic interactions, with excitonic attraction at intermediate frequencies, and ordinary Coulomb repulsion above that. All frequency ranges, and coupling strengths, are comparable with the bandwidth.

  4. Decoherence in Superconducting Qubits from Surface Magnetic States

    Science.gov (United States)

    Hover, David; Sendelbach, Steven; Kittel, Achim; Mueck, Michael; McDermott, Robert

    2008-03-01

    Unpaired spins in amorphous surface oxides can act as a source of decoherence in superconducting and other solid-state qubits. A density of surface spins can give rise to low-frequency magnetic flux noise, which in turn leads to dephasing of the qubit state. In addition, magnetic surface states can couple to high-frequency resonant magnetic fields, and thereby contribute to energy relaxation of the qubit. We present the results of low-frequency measurements of the nonlinear and imaginary spin susceptibility of surface magnetic states in superconducting devices at millikelvin temperatures. In addition, we describe high-frequency magnetic resonance measurements that directly probe the surface spin density of states. We present calculations that connect the measurement results to qubit energy relaxation and dephasing times.

  5. Integrated design of superconducting accelerator magnets

    CERN Document Server

    Russenschuck, Stephan; Ramberger, S; Rodríguez-Mateos, F; Wolf, R

    1999-01-01

    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs).

  6. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  7. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio of the r......We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...

  8. Progress on Superconducting Magnets for the MICE Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  9. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  10. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  11. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  12. Route to topological superconductivity via magnetic field rotation

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo [Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany)

    2015-07-01

    Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, a candidate system for topological superconductivity is a conventional, two-dimensional s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H{sub c2}, which excludes its realization. Here we argue that this problem is overcome by rotating the magnetic field into the superconducting plane. We explore the topological transitions which occur upon changing the strength and the orientation of the magnetic field and show that an unusual superconducting state with finite-momentum pairing exists, which preserves its topological nature up to an in-plane field orientation. We discuss the realizability of this state at the superconducting interface between LaAlO{sub 3} and SrTiO{sub 3}.

  13. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  14. Unconventional superconductivity from magnetism in transition-metal dichalcogenides

    Science.gov (United States)

    Rahimi, M. A.; Moghaddam, A. G.; Dykstra, C.; Governale, M.; Zülicke, U.

    2017-03-01

    We investigate proximity-induced superconductivity in monolayers of transition-metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional s -wave superconductor with singlet Cooper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.

  15. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  16. Nonlinearly Coupled Superconducting Lumped Element Resonators

    Science.gov (United States)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  17. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  18. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  19. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  20. The advantages and challenges of superconducting magnets in particle therapy

    Science.gov (United States)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  1. Design of a superconducting magnet for CADS

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Liang; MA Li-Zhen; WU Vei; ZHENG Shi-Jun; DU Jun-Jie; HAN Shao-Fei; GUAN Ming-Zhi; HE Yuan

    2012-01-01

    This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS).The magnetic field is provided hy one main,two bucking and four racetrack coils.The main coil produces a central field of up to 7 T and the effective length is more than 140 mm,the two bucking coils can shield most of the fringe field,and the four racetrack superconducting coils produce the steering magnetic field.Its leakage field in the cavity zone is about 5 × 10-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively.The quench calculations and protection system are also discussed.

  2. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  3. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  4. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  5. Preliminary study of superconducting bulk magnets for Maglev

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  6. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    Science.gov (United States)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  7. High-temperature superconducting undulator magnets

    Science.gov (United States)

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; Welp, Ulrich

    2017-04-01

    This paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm‑2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advance in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.

  8. Strong coupling of an Er3+-doped YAlO3 crystal to a superconducting resonator

    Science.gov (United States)

    Tkalčec, A.; Probst, S.; Rieger, D.; Rotzinger, H.; Wünsch, S.; Kukharchyk, N.; Wieck, A. D.; Siegel, M.; Ustinov, A. V.; Bushev, P.

    2014-08-01

    Quantum memories are integral parts of both quantum computers and quantum communication networks. Naturally, such a memory is embedded into a hybrid quantum architecture, which has to meet the requirements of fast gates, long coherence times, and long distance communication. Erbium-doped crystals are well suited as a microwave quantum memory for superconducting circuits with additional access to the optical telecom C band around 1.55 μm. Here, we report on circuit QED experiments with an Er3+:YAlO3 crystal and demonstrate strong coupling to a superconducting lumped element resonator. The low magnetic anisotropy of the host crystal allows for attaining the strong coupling regime at relatively low magnetic fields, which are compatible with superconducting circuits. In addition, Ce3+ impurities were detected in the crystal, which showed strong coupling as well.

  9. SMES: Superconducting Magnetic Energy Storage

    Science.gov (United States)

    1993-01-01

    power to magnetically levitated trains . A very small size SMES can poten- tially be part of a hybrid propul- sion system on large transit buses...potentially lead to the increased use of urban transit, maglev and electric vehicles, thereby re- ducing air pollution. Illustration courtesy of

  10. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  11. Torus CLAS12-Superconducting Magnet Quench Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  12. Superconducting magnets for the LHC main lattice

    CERN Document Server

    Rossi, L

    2004-01-01

    The main lattice of the Large Hadron Collider (LHC) will employ about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets will fill more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication will be addressed: uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements will be discussed. Finally a realistic schedule based on actual achievements is presented.

  13. Permanent superconducting magnets for space applications

    Science.gov (United States)

    Weinstein, Roy

    1994-01-01

    Work has been done to develop superconducting trapped field magnets (TFM's) and to apply them to a bumper-tether device for magnetic docking of spacecraft. The quality parameters for TFM's are J(c), the critical current of the superconductor, and d, the diameter of the superconducting tile. During this year we have doubled d, for production models, from 1 cm to 2 cm. This was done by means of seeding, an improved temperature profile in processing, and the addition of 1 percent Pt to the superconductor chemistry. Using these tiles we have set increasing records for the fields' permanent magnets. Magnets fabricated from old 1 cm tiles trapped 1.52 Tesla at 77K, 4.0T at 65K and 7.0T at 55K. The second of these fields broke a 17 year old record set at Stanford. The third field broke our own record. More recently using 2 cm tiles, we have trapped 2.3T at 77K, and 5.3T at 65K. We expect to trap lOT at 55K in this magnet in the near future. We have also achieved increases in J(c) using a method we developed for seeding U-235, and subsequently bombarding with neutrons. This method doubles J(c). We have not yet fabricated magnets from these tiles. During this year we have increased production yields from 15 percent to 95 percent. We have explored the properties of a magnetic bumper-tether for spacecraft. We have measured the bumper forces, and their dependence on time, distance, and the field of the ordinary ferromagnet (used together with a TFM). We have accounted for 85 percent of the collision energy, and its transformation to magnetic energy and heat energy. We have learned to control the relative bumper and tether forces by controlling TFM and ferromagnetic field strengths.

  14. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  15. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  16. Ruthenocuprats: Playground for superconductivity and magnetism

    Directory of Open Access Journals (Sweden)

    A. Khajehnezhad

    2008-03-01

    Full Text Available  We have compared the structural, electrical, and magnetic properties of Ru(Gd1.5-xPrxCe0.5Sr2Cu2O10-δ (Pr/Gd samples with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5-xPrxSr2Cu2O10-δ (Pr/Ce samples with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique with RuGd1.5(GdxCe0.5-x Sr2Cu2O10-δ (Gd/Ce samples with x= 0.0, 0.1, 0.2, 0.3. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from the Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity and magnetoresistivity, with Hext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature Tc and magnetic transition Tirr have been obtained through resistivity and ac susceptibility measurements. The Tc suppression due to Gd/Ce, Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurity, hole doping due to different ionic valences, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce or Gd/Ce, showing that the effect of hole doping and pair breaking by magnetic impurity is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr and Gd, and absorption of more oxygen due to higher valence of Pr with respect to Gd, decrease the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. But, Pr/Ce and Gd/Ce substitutions have a reverse effect. The magnetic properties such as Hc, obtained through magnetization measurements versus applied magnetic field isoterm at 77K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr

  17. Phenomena in Coupled Superconducting Weak Links.

    Science.gov (United States)

    Neumann, Lawrence George

    Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 (mu)m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 (mu)m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge -imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt. A deviation of the critical current of planar microbridges from a linear temperature dependence can be explained as an effective length effect. Variable thickness bridges show a linear temperature dependence except very near T(,c), where fluctuations are important. The critical current of the one

  18. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  19. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jinsheng; Birgeneau, R J [Physics Department, University of California, Berkeley, CA 94720 (United States); Xu Guangyong; Gu Genda; Tranquada, J M, E-mail: jinshengwen@berkeley.edu, E-mail: jtran@bnl.gov [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-15

    In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe{sub 1+y}Te{sub 1-x}Se{sub x} (11), and A{sub x}Fe{sub 2-y}Se{sub 2} (A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, T{sub c}, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In A{sub x}Fe{sub 2-y}Se{sub 2}, superconductivity with T{sub c} {approx} 30 K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors.

  20. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations

    Science.gov (United States)

    Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    2011-12-01

    In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe1+yTe1-xSex (11), and AxFe2-ySe2 (A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, Tc, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In AxFe2-ySe2, superconductivity with Tc ~ 30 K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors.

  1. SUPERCONDUCTING HELICAL SNAKE MAGNET FOR THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    WILLEN, E.; ANERELLA, M.; ESCALLIER, G.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; LUCCIO, A.; MACKAY, W.; MARONE, A.; MURATORE, J.; PLATE, S.; ET AL.

    2005-05-16

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This ''partial Snake'' magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

  2. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  3. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  4. Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review

    Science.gov (United States)

    Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.

    2017-03-01

    In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin–orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet–triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

  5. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  6. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  7. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  8. Time Transient Effects in Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2051280; Russenschuck, Stephan; Palumbo, Luigi

    2004-01-01

    The subject of this thesis is the study of time transient effects in super- conducting cables, with applications to accelerator magnets, and the development of a simulation code. The superconducting cables are modeled at the strand level as a lumped resistor, inductor generator circuit. The analysis in time domain of the circuit currents discloses the transient effects. The code developed can solve Rutherford type cable of any size, shape geometry under any exciting external field. The code has been implemented in Roxie where it is used to compute ramp dependent field error and heat losses.

  9. Magnetically Coupled Microcalorimeters

    Science.gov (United States)

    Bandler, S. R.; Irwin, K. D.; Kelly, D.; Nagler, P. N.; Porst, J. P.; Rotzinger, H.; Sadleir, J. E.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetic calorimeters have been under development for over 20 years targeting a wide variety of different applications that require very high resolution spectroscopy. They have a number of properties that distinguish them from other 10w temperature detectors. In this paper we review these properties and emphasize the types of application to which they are most suited. We will describe what has been learned about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. While most magnetic calorimeter research has concentrated on the use of paramagnets to provide the temperature sensitivity, recently magnetically coupled microcalorimeters have been in development that utilize the diamagnetic response of superconductors. We will contrast some of the properties of the two different magnetic sensor types.

  10. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  11. Ultralow Friction in a Superconducting Magnetic Bearing

    Science.gov (United States)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  12. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  13. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  14. Quench thresholds in operational superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, J; Danby, G; Foelsche, H; Jackson, J; Lowenstein, D; Prodell, A; Weng, W

    1978-01-01

    Superconducting magnets exposed to intense primary proton beams in high energy physics applications are subject to potentially extreme heat deposition. The beam power density, its duration and spatial distribution, the current density in the superconductor and, potentially, in the normal metal substrate, as well as the construction and cooling details of the magnet, are all relevant parameters. An extension of some earlier work is discussed in which 28.5 GeV/c proton beams with up to 50 k joules of energy were targeted upstream from a 4 m long, 4 T dipole magnet used to deflect the protons through an angle of 8/sup 0/. Quench thresholds much greater than the enthalpy limit of the magnet materials were observed. In the beam exposure experiment described, intense beams of 1.5 GeV/c protons have been deflected directly into the magnet coil at relatively steep angles of incidence. The magnet quench threshold was studied by varying the beam currents and beam sizes.

  15. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  16. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  17. Operational experience with forced cooled superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.P., E-mail: denis.ivanov30@mail.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kolbasov, B.N., E-mail: kolbasov@nfi.kiae.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Anashkin, I.O.; Khvostenko, P.P. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Pan, W.J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Pradhan, S.; Sharma, A.N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Song, Y.T.; Weng, P.D. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2013-10-15

    Highlights: ► Seventeen breakdowns happened in the fusion facilities with forced cooled superconducting magnets (FCSMs). ► The breakdowns always began on the electric, cryogenic and diagnostic communications (ECDCs) and never on the coils. ► In all the FCSMs the ECDCs were always insulated worse than the coils. ► For reliable operation of ITER organization team should essentially improve the ECDC insulation. ► Use of stainless steel grounded casings filled up with solid insulation over all the ECDCs is the best way to get reliable insulation. -- Abstract: Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.

  18. Electrical joints in the CMS superconducting magnet

    CERN Document Server

    Farinon, S; Curé, B; Fabbricatore, P; Greco, Michela; Musenich, R

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The CMS coil consists of five independent modules each containing four winding layers. Each winding layer is composed of a single length of aluminum stabilized and aluminum alloy reinforced conductor. Each of the four conductor lengths within a module will be electrically joined after winding is completed, and each of the five modules will be connected to the magnet bus bars during module assembly. Due to the large dimensions of the conductor and to the high current it carries, the conductor joints are sources of substantial and nontrivial joule heating during nonsteady state operation of the magnet. In addition to steady-state conditions, three transient conditions have been analyzed. The first is related to the current diffusion during a magnet transient that results in a time dep...

  19. Magnetization measurements on LHC superconducting strands

    CERN Document Server

    Le Naour, S; Wolf, R; Puzniak, R; Szewczyk, A; Wisniewski, A; Fikis, H; Foitl, M; Kirchmayr, H

    1999-01-01

    When using superconducting magnets in particle accelerators like the LHC, persistent currents in the superconductor often determine the field quality at injection, where the magnetic field is low. This paper describes magnetization measurements made on LHC cable strands at the Technical University of Vienna and the Institute of Physics of the Polish Academy of Sciences in collaboration with CERN. Measurements were performed at T=2 K and T=4.2 K on more than 50 strands of 7 different manufacturers with NbTi filament diameter between 5 and 7 micrometer. Two different measurement set-ups were used: vibrating sample magnetometer, with a sample length of about 8 mm, and an integrating coil magnetometer, with sample length of about 1 m. The two methods were compared by measuring the same sample. Low field evidence of proximity effect is discussed. Statistics like ratio of the width of the magnetization loop at 4.2 K 2 K, and the initial slope dM/dB after cooldown are presented. Decrease of the magnetization with ti...

  20. Electromagnetic superconductivity of vacuum induced by strong magnetic field

    CERN Document Server

    Chernodub, M N

    2012-01-01

    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (th...

  1. Reliability of large superconducting magnets through design

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.

    1980-09-05

    As superconducting magnet systems grow larger and become the central component of major systems involving fusion, magnetohydrodynamics, and high-energy physics, their reliability must be commensurate with the enormous capital investment in the projects. Although the magnet may represent only 15% of the cost of a large system such as the Mirror Fusion Test Facility, its failure would be catastrophic to the entire investment. Effective quality control during construction is one method of ensuring success. However, if the design is unforgiving, even an inordinate amount of effort expended on quality control may be inadequate. Creative design is the most effective way of ensuring magnet reliability and providing a reasonable limit on the amount of quality control needed. For example, by subjecting the last drawing operation is superconductor manufacture to a stress larger than the magnet design stress, a 100% proof test is achieved; cabled conductors offer mechanical redundancy, as do some methods of conductor joining; ground-plane insulation should be multilayered to prevent arcs, and interturn and interlayer insulation spaced to be compatible with the self-extinguishing of arcs during quench voltages; electrical leads should be thermally protected; and guard vacuum spaces can be incorporated to control helium leaks. Many reliable design options are known to magnet designers. These options need to be documented and organized to produce a design guide. Eventually, standard procedures, safety factors, and design codes can lead to reliability in magnets comparable to that obtained in pressure vessels and other structures. Wihout such reliability, large-scale applications in major systems employing magnetic fusion energy, magnetohydrodynamics, or high-energy physics would present unacceptable economic risks.

  2. Quench Simulation of Superconducting Magnets with Commercial Multiphysics Software

    CERN Document Server

    AUTHOR|(SzGeCERN)751171; Auchmann, Bernhard; Jarkko, Niiranen; Maciejewski, Michal

    The simulation of quenches in superconducting magnets is a multiphysics problem of highest complexity. Operated at 1.9 K above absolute zero, the material properties of superconductors and superfluid helium vary by several orders of magnitude over a range of only 10 K. The heat transfer from metal to helium goes through different transfer and boiling regimes as a function of temperature, heat flux, and transferred energy. Electrical, magnetic, thermal, and fluid dynamic effects are intimately coupled, yet live on vastly different time and spatial scales. While the physical models may be the same in all cases, it is an open debate whether the user should opt for commercial multiphysics software like ANSYS or COMSOL, write customized models based on general purpose network solvers like SPICE, or implement the physics models and numerical solvers entirely in custom software like the QP3, THEA, and ROXIE codes currently in use at the European Organisation for Nuclear Research (CERN). Each approach has its strengt...

  3. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    CERN Document Server

    Han, Xu; Tang, Hong X

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...

  4. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  5. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  6. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-10-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  7. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-01-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity. PMID:27708255

  8. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  9. Quench Protection and Magnet Supply Requirements for the MICEFocusingand Coupling Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Witte, Holger

    2005-06-08

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched.

  10. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  11. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  12. Constructing a Superconducting Corrector Magnet for the LHC

    CERN Multimedia

    CERN Audiovisual Unit

    1998-01-01

    1. Construction principles : development at CERN shown on a decapolar (MCD) superconducting corrector magnet.2. Computer controlled automatic winding : development with Ferrara University, Italy.3. Electro-mechanically controlled automatic winding : development with CAT-Patel, India

  13. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  14. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.

    Science.gov (United States)

    Marcos, D; Wubs, M; Taylor, J M; Aguado, R; Lukin, M D; Sørensen, A S

    2010-11-19

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.

  15. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  16. Ultrathin two-dimensional superconductivity with strong spin–orbit coupling

    Science.gov (United States)

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R.; Kratz, Philip A.; Kirtley, John R.; Moler, Kathryn; Adams, Philip W.; MacDonald, Allan H.; Shih, Chih-Kang

    2016-01-01

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap. PMID:27601678

  17. Ultrathin two-dimensional superconductivity with strong spin-orbit coupling.

    Science.gov (United States)

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R; Kratz, Philip A; Kirtley, John R; Moler, Kathryn; Adams, Philip W; MacDonald, Allan H; Shih, Chih-Kang

    2016-09-20

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.

  18. Magnetic coupling by using levitation characteristics of YBCO superconductors

    Science.gov (United States)

    Ishigaki, H.; Ito, H.; Itoh, M.; Hida, A.; Takahata, R.

    1993-03-01

    A mechanical system which uses high lateral restoring forces of high-Tc materials as the driving force for a magnetic coupling is proposed. As the basic study of the superconducting magnetic coupling, the relationship between the lateral restoring force and levitation force, transmitted torque characteristics as a function of a twisting angle and clearance, and damping characteristics of the coupling were examined. Superiorities of the coupling such as high damping coefficients and high stability against time and twisting angle were revealed. A magnetic force sensor system was used to evaluate the superconducting characteristics of materials, and nonuniform distribution of repulsive force was observed for the YBCO pellet fabricated by the melt-powder-melt-growth process. The improvement of the homogeneity was achieved by compensating for the composition rate which had changed during the quenching process.

  19. Dynamical coupled modes theory for an s{sub ±}-pairing mechanism of superconductivity in doped iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Mikhail [International Center for Theoretical Physics, I-34151 Trieste (Italy); Efremov, Dmitriy; Drechsler, Stefan-Ludwig; Brink, Jeroen van den [Institute for Theoretical Solid State Physics at the Leibniz Institute for Solid State an Materials Research Dresden, IFW-Dresden, D-01171 Dresden (Germany); Kikoin, Konstantin [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2016-07-01

    We develop a high-temperature approach to the problem of the interplay between magnetic and superconducting phases in multi-band iron pnictides. A dynamical mode-mode coupling theory is derived from the the microscopic theory based on the solution of the coupled Bethe-Salpeter equations. We focus on the vicinity to a spin density wave (SDW) where spin fluctuations enhance the onset of superconducting ordering. Special attention is paid to arsenic deficient materials where As vacancies behaves as effective magnetic defects. The proposed theory allows generalization to multi-mode regimes.

  20. Effect of mutual inductance coupling on superconducting flux qubit decoherence

    Institute of Scientific and Technical Information of China (English)

    Yanyan Jiang; Hualan Xu; Yinghua Ji

    2009-01-01

    In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation, the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The influence on decoherence of the mutual inductance coupling between the circuit components is complicated. The mutual inductance coupling between different loops will decrease the decoherence time. However, the mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time. Therefore, we can control the decoherence time by changing the mutual inductance parameters such as the strength and direction of coupling.

  1. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    Science.gov (United States)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  2. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  3. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  4. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  5. Design and Manufacture of the Superconducting Bus-bars for the LHC Main Magnets

    CERN Document Server

    Belova, L M; Perinet-Marquet, J L; Ivanov, P; Urpin, C

    2002-01-01

    The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighbouring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100°C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns th...

  6. Imprinting superconducting vortex footsteps in a magnetic layer.

    Science.gov (United States)

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M; Veerapandian, Savita K P; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A; Nguyen, Ngoc Duy; Kramer, Roman B G; Silhanek, Alejandro V

    2016-06-06

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

  7. Magnetic response of superconducting mesoscopic-size YBCO powder

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, C.V. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: cesard@df.ufscar.br; Motta, M.; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP Brazil (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy (SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples.

  8. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  9. Vibration-induced field fluctuations in a superconducting magnet

    Science.gov (United States)

    Britton, J. W.; Bohnet, J. G.; Sawyer, B. C.; Uys, H.; Biercuk, M. J.; Bollinger, J. J.

    2016-06-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed-matter systems, and fundamental atomic particles. In high-precision applications, a common view is that slow (Be+9 electron-spin qubits in the 4.46 -T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ˜6 ms for the Be+9 electron-spin resonance at 124 GHz , limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ˜50 ms.

  10. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  11. Anisotropic superconductivity and vortex dynamics in magnetially coupled F/S and F/S/F hybrids.

    Energy Technology Data Exchange (ETDEWEB)

    Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milosevic, M. V.; Peeters, F. M. (Materials Science Division); (Illinois Inst. of Tech.); (Temple Univ.); (Slovak Academy of Sciences); (Univ. Antwerpen)

    2011-01-01

    Magnetically coupled superconductor-ferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductor-ferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and Ginzburg-Landau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-anti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T{sub c

  12. Entangled States in a Single-Qubit Structure with SQUID Coupled with a Super-conducting Resonator

    Institute of Scientific and Technical Information of China (English)

    SONG Jian-Wen; LIANG Bao-Long; HAI Wen-Hua; WANG Ji-Suo; ZHONG Hong-Hua; MENG Xiang-Guo; LUO Xiao-Bing

    2008-01-01

    In this paper, the number-phase quantization scheme of the mesoscopic circuit, which consists of a single-qubit structure with superconducting quantum interference device coupled with a super-conducting resonator, is given. By introducing a unitary matrix and by means of spectral decomposition, the Hamiltonian operator of the system is exactly formulated in compact forms in spin-1/2 notation. The eigenvalues and the eigenstates of the system are investigated. It is found that using this system the entangled states can not only be prepared, but also be manipulated by tuning the magnetic flux through the super-conducting loop.

  13. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  14. Superconducting Resonant Inductive Power Coupling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop a technology to wirelessly and efficiently transfer power over hundreds of meters via resonant inductive coupling. The key...

  15. Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Vijay; Nguyen, Thuy-Anh; Mansell, Rhodri; Ritchie, David [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Mussler, Gregor [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425, Juelich (Germany)

    2016-03-15

    There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi{sub 2}Se{sub 3}. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures. (copyright 2016 The Authors. Phys. Status Solidi RRL published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Evaluation of superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Little, A. D.

    1979-11-01

    Superconducting magnetic energy storage (SMES) systems differ from other storage systems presently in use, or considered for use, by the electric utility industry, principally because of the radically different technology involved. SMES also has certain unique advantages: it appears to be able to store and deliver energy at very high efficiency, and it can switch from the charge to discharge mode in a few tens of milliseconds. The combination of these two desirable characteristics distinguishes SMES from almost all other energy storage systems. This investigation was undertaken to discover if the nation and the electric utility industry might benefit sufficiently from the use of SMES systems to justify continued research and development support by DOE. At present, systems development is in a relatively early stage, and much component development for many of the major subsystems remains to be performed. It appears each SMES unit will be large and therefore expensive; also that the investment in research and development required to achieve final commercial success may be substantial.

  17. Electromagnetic, stress and thermal analysis of the Superconducting Magnet

    CERN Document Server

    Ren, Yong

    2015-01-01

    Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...

  18. Exchange couplings in magnetic films

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Liu Xiong-Hua; Cui Wei-Bin; Gong Wen-Jie; Zhang Zhi-Dong

    2013-01-01

    Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide (AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.

  19. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Science.gov (United States)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  20. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  1. Case Studies on Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Ferracin, P

    2014-01-01

    During the CERN Accelerator School 'Superconductivity for accelerators', the students were divided into 18 groups, and 6 different exercises (case studies), involving the design and analysis of superconducting magnets and RF cavities, were assigned. The problems covered a broad spectrum of topics, from properties of superconducting materials to operation conditions and general dimensions of components. The work carried out by the students turned out to be an extremely useful opportunity to review the material explained during the lectures, to become familiar with the orders of magnitude of the key parameters, and to understand and compare different design options. We provide in this paper a summary of the activities related to the case studies on superconducting magnets and present the main outcomes.

  2. Analytical & Numerical Modelings of Elliptical Superconducting Filament Magnetization

    CERN Document Server

    Bottura, L; Bouillault, F; Devred, Arnaud

    2005-01-01

    This paper deals with the two-dimensional computation of magnetization in an elliptic superconducting filament by using numerical and analytical methods. The numerical results are obtained from the finite element method and by using Bean's model. This model is well adapted for Low Tc superconductor studies. We observe the effect of the axis ratio and of the field angle to the magnetic moment per unit length at saturation, and also to the cycle of magnetization. Moreover, the current density and the distribution of the electromagnetic fields in the superconducting filament are also studied.

  3. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, M., E-mail: Mas_Ishizuka@shi.co.j [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Hamajima, T. [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Itou, T. [Ehime Works, Sumitomo Heavy Industries, Ltd., 5-2 Soubiraki-cho, Niihama, Ehime 792-8588 (Japan); Sakuraba, J. [Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Nishijima, G.; Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb{sub 3}Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb{sub 3}Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x {partial_derivative}Bz/{partial_derivative}z) of 4500 T{sup 2}/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb{sub 3}Sn layer and its large diameter formed on Nb-barrier component in Nb{sub 3}Sn wires.

  4. A FORMULA FOR CALCULATING THE ERRORS OF SUPERCONDUCTING MAGNETIZATION CURVE

    Institute of Scientific and Technical Information of China (English)

    GUO SHU-QUAN; LIU MENG-LIN; ZHENG DONG-NING; ZHAO BAI-RU

    2001-01-01

    Because of field inhomogeneity in the magnetization measurement system, large errors may exist in the decreasing field superconducting magnetization curves, but not in the increasing field curves. The physical origin of the large errors is proposed here. A simple formula for calculating the errors is given. This formula is consistent with the experimental data.

  5. Power Switches Utilizing Superconducting Material for Accelerator Magnets

    CERN Document Server

    March, S A; Yang, Y

    2009-01-01

    Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

  6. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    Science.gov (United States)

    Watanabe, K.; Nishijima, G.; Awaji, S.; Koyama, K.; Takahashi, K.; Kobayashi, N.; Kiyoshi, T.

    2006-11-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi2Sr2Ca2Cu3O10superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet.

  7. Effect of temperature and magnetic field on two-flavor superconducting quark matter

    Science.gov (United States)

    Mandal, Tanumoy; Jaikumar, Prashanth

    2016-10-01

    We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in the presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark coupling strength, we study the interdependent evolution of the quark Bardeen-Cooper-Schrieffer gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field B ≳0.02 GeV2 (1 018 G ) leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultrahigh magnetic field due to the mismatched Fermi surfaces of up and down quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although the latter effect is tempered by nonzero temperature. We discuss the implications for newly born compact stars with superconducting quark cores.

  8. Transport signatures of topological superconductivity in a proximity-coupled nanowire

    Science.gov (United States)

    Reeg, Christopher; Maslov, Dmitrii L.

    2017-05-01

    We study the conductance of a junction between the normal and superconducting segments of a nanowire, both of which are subjected to spin-orbit coupling and an external magnetic field. We directly compare the transport properties of the nanowire assuming two different models for the superconducting segment: one where we put superconductivity by hand into the wire and one where superconductivity is induced through a tunneling junction with a bulk s -wave superconductor. While these two models are equivalent at low energies and at weak coupling between the nanowire and the superconductor, we show that there are several interesting qualitative differences away from these two limits. In particular, the tunneling model introduces an additional conductance peak at the energy corresponding to the bulk gap of the parent superconductor. By employing a combination of analytical methods at zero temperature and numerical methods at finite temperature, we show that the tunneling model of the proximity effect reproduces many more of the qualitative features that are seen experimentally in such a nanowire system.

  9. On the Coexistence of Superconductivity and Magnetic Ordering in Unconventional Superconductors

    Science.gov (United States)

    Rodrigues de Campos, Fillipi Klos; Zanella, Fernando; Dartora, C. A.

    2017-04-01

    It is demonstrated that the coexistence of superconductivity and magnetic ordering, occurring, for instance, in iron-based pnictides and uranium compounds, is not forbidden by classical Maxwell's equations and London-type equations. It predicts simply that internal magnetization is allowed but localized magnetic moments are screened at distances of the order of the London penetration depth. A microscopic theory is considered for the case of ferromagnetic ordering, described in simple terms by electron-magnon coupling. For the sake of simplicity, we assume that itinerant electrons are not responsible for the magnetic ordering, but interact with phonon and magnon excitations, leading to an alternative Cooper pair channel. The temperature dependence and the isotope effect of the superconducting gap is also analysed.

  10. Using LSTM recurrent neural networks for detecting anomalous behavior of LHC superconducting magnets

    CERN Document Server

    Wielgosz, Maciej; Mertik, Matej

    2016-01-01

    The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyses voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for anomaly detection in voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regre...

  11. 2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets

    CERN Document Server

    Auchmann, B; Kurz, S; Russenschuck, Stephan

    2006-01-01

    Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL.

  12. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  13. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  14. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  15. Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model.

    Science.gov (United States)

    Yamase, Hiroyuki; Eberlein, Andreas; Metzner, Walter

    2016-03-04

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Néel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  16. High Magnetic Field Superconducting Magnets Fabricated In Budker Inp For Sr Generation

    CERN Document Server

    Zolotarev, K V; Khruschev, S V; Krämer, Dietrich; Kulipanov, G N; Lev, V H; Mezentsev, N A; Miginsky, E G; Shkaruba, V A; Syrovatin, V M; Tsukanov, V M; Zjurba, V K

    2004-01-01

    BESSY operates a 3-rd generation synchrotron light source in VUV to XUV region at Berlin-Adlershof. The main radiation sources in storage ring are special magnetic elements as undulators and wigglers. 3 superconducting shifters and one multipole superconducting wiggler are operating giving enhanced photon flux for 10-25 keV X-ray region. As the superconducting elements presently are located in straight sections, BESSY intends to exchange 4 of conventional room-temperature bending magnets by superconducting ones.The report contains brief description of 9 Tesla superbend prototype as a candidate for replacing of conventional magnets of BESSY-2, which was designed, fabricated and tested at Budker INP and was commissioned at BESSY in June 2004.Main parameters of 9 Tesla superconducting bending magnet prototype as well as testing results are presented.

  17. Design of A Conduction-cooled 4T Superconducting Racetrack for Multi-field Coupling Measurement System

    CERN Document Server

    Chen, Yuquan; Wu, Wei; Guan, Mingzhi; Wu, Beimin; Mei, Enming; Xin, Canjie

    2015-01-01

    A conduction-cooled superconducting magnet producing a transverse field of 4 Tesla has been designed for the new generation multi-field coupling measurement system, which was used to study the mechanical behavior of superconducting samples at cryogenic temperature and intense magnetic fields. Considering experimental costs and coordinating with system of strain measurements by contactless signals (nonlinear CCD optics system), the racetrack type for the coil winding was chosen in our design, and a compact cryostat with a two-stage GM cryocooler was designed and manufactured for the superconducting magnet. The magnet was composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational form and two Bi2Sr2CaCu2Oy superconducting current leads. All the coils were connected in series and can be powered with a single power supply. The maximum central magnetic field is 4 T. In order to support the high stress and uniform thermal distribution in t...

  18. Study of quench propagation velocity in superconducting magnets for UNK

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.V.; Sheherbakov, P.A.; Snitko, V.P.; Tkachenko, N.P.; Vasiliev, L.M.; Vybornov, M.G.; Ziobin, A.V.

    1989-03-01

    Two superconducting magnet models, warm-iron and cold-iron designs are studied within the frames of work on UNK. The present note describes the method and results on measuring quench propagation velocity in the superconducting cables with a transport current in external field under the cooling conditions typical for those of the magnet winding. The results on measuring quench propagation velocities in warm-iron and cold-iron designs are presented. The results obtained for short samples and model coils are compared.

  19. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  20. Elementary Superconductivity in Nonlinear Electrodynamics Coupled to Gravity

    CERN Document Server

    Dymnikova, Irina

    2015-01-01

    Source-free equations of nonlinear electrodynamics minimally coupled to gravity admit regular axially symmetric asymptotically Kerr-Newman solutions which describe charged rotating black holes and electromagnetic spinning solitons (lumps). Asymptotic analysis of solutions shows, for both black holes and solitons, the existence of de Sitter vacuum interior which has the properties of a perfect conductor and ideal diamagnetic and displays superconducting behaviour which can be responsible for practically unlimited life time of an object. Superconducting current flows on the equatorial ring replacing the Kerr ring singularity of the Kerr-Newman geometry. Interior de Sitter vacuum supplies the electron with the finite positive electromagnetic mass related the interior de Sitter vacuum of the electroweak scale and to breaking of space-time symmetry, which allows to explain the mass-square differences for neutrino and the appearance of the minimal length scale in the annihilation reaction $e^{+}e^{-}\\rightarrow\\gam...

  1. Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    CERN Document Server

    Cui, Wei; Pan, Yu

    2010-01-01

    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio $r\\equiv\\omega_c/\\omega_0$ between the reservoir cutoff frequency $\\omega_c$ and the system oscillator frequency $\\omega_0$, % between $\\omega_0$ the characteristic frequency of the %quantum system of interest, and $\\omega_c$ the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio $r$ and the thermal energy $k_BT$, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and t...

  2. Normal zone propagation in adiabatic superconducting magnets: Pt. 1; Normal zone propagation velocity in superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.P.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab. Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)

    1991-09-01

    A normal zone propagation model has been developed for superconducting composites under adiabatic conditions. It is based on the Whetstone-Roos model, originally developed for normal zone propagation in adiabatic wires of unclad superconductor. The model takes into account the temperature and magnetic field dependent material properties, for both superconductor and matrix metal. Analytical results agree well with experimental data. (author).

  3. Strongly Enhanced Superconductivity in Coupled t-J Segments.

    Science.gov (United States)

    Reja, Sahinur; van den Brink, Jeroen; Nishimoto, Satoshi

    2016-02-12

    The t-J Hamiltonian is one of the cornerstones in the theoretical study of strongly correlated copper-oxide based materials. Using the density-matrix renormalization group method we obtain the phase diagram of the one-dimensional t-J chain in the presence of a periodic hopping modulation, as a prototype of coupled-segment models. While in the uniform 1D t-J model the near half-filling superconducting state dominates only at unphysically large values of the exchange coupling constant J/t>3; we show that a small hopping and exchange modulation very strongly reduces the critical coupling to be as low as J/t∼1/3--well within the physical regime. The phase diagram as a function of the electron filling also exhibits metallic, insulating line phases and regions of phase separation. We suggest that a superconducting state is easily stabilized if t-J segments creating local spin-singlet pairing are coupled to each other--another example is the ladder system.

  4. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  5. Size effect of strong-coupled superconducting In{sub 2}Bi nanoparticles: An investigation of short-range electron phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Yu; Gandhi, Ashish Chhaganlal; Wu, Sheng Yun, E-mail: sywu@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2015-05-07

    We report the influence of the nanosized effect on the superconducting properties of bimetallic In{sub 2}Bi nanoparticles. In this study, the temperature- and applied magnetic field-dependence of the magnetization were utilized to investigate the electron-phonon coupling effect while controlling particle sizes 〈d〉 from 21(2) to 42(5) nm. As the particle size decreases, the electron-phonon constant λ{sub EP} decreases rapidly, signaling the short-range electron-phonon coupling effect which acts to confine the electrons within a smaller volume, thereby giving rise to a higher superconducting transition temperature T{sub C}. An enhanced superconducting transition was observed from the temperature dependence of magnetization, revealing a main diamagnetic Meissner state below T{sub C} ∼ 5.72(5) K for 〈d〉 = 31(1) nm In{sub 2}Bi nanoparticles. The variation of the T{sub C} is very sensitive to the particle size, which might be due to crystallinity and size uniformity of the samples. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the In{sub 2}Bi system.

  6. Vibration-induced field fluctuations in a superconducting magnet

    CERN Document Server

    Britton, J W; Bohnet, J G; Uys, H; Biercuk, M J; Bollinger, J J

    2015-01-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed matter systems, and fundamental atomic particles. In high-precision applications, a common view is that that slow (<1 Hz) drift of the homogeneous magnetic field limits control and measurement precision. We report on previously undocumented higher-frequency field noise (10 Hz to 200 Hz) that limits the coherence time of 9Be+ electron-spin qubits in the 4.46 T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ~6 ms for the 9Be+ electron-spin resonance at 124 GHz, limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ~50 ms.

  7. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  8. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    Science.gov (United States)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  9. Equilibrium of a magnet floating above a superconducting disk

    Science.gov (United States)

    Williams, Richard; Matey, J. R.

    1988-02-01

    A superconducting body will repel a nearby magnet. The repulsion is due to the perfect diamagnetism resulting from the Meissner effect. A small magnet will float above a superconducting disk at an equilibrium position over the disk center, stable against lateral displacements. It is not intuitively obvious why the potential energy of the magnet over a flat disk should have a minimum at the center, rather than a maximum. We have measured the properties of the attractive potential well of a YBa2Cu3O7 disk by two experiments. In the first, we use a low-frequency magnetic field, 0-100 Hz, to excite oscillations of a small, freely levitating bar magnet about its equilibrium position. We find sharp resonances, corresponding to longitudinal, transverse, and torsional modes of oscillation. The frequencies of these resonances define the properties near the bottom of the potential well. In the second experiment, we attach the magnet to a vertical glass fiber of known stiffness. The magnet is suspended horizontally a small known distance, z, above the superconducting disk. By moving the magnet from the center of the disk to the edge and measuring the bending of the support fiber as a function of position we determine the shape of the potential curve for large displacements and the total energy needed to escape from the well.

  10. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  11. Lifetime Effects in Color Superconductivity at Weak Coupling

    CERN Document Server

    Manuel, C

    2000-01-01

    Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.

  12. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  13. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    Science.gov (United States)

    Tang, Jiqiang; Fang, Jiancheng; Ge, Shuzhi Sam

    2012-12-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  14. Academic Training Lecture Regular Programme: Superconducting Magnets with HTS

    CERN Multimedia

    2012-01-01

    Superconducting Magnets with HTS (1/5), by Justin Schwartz (North Carolina State University).   Monday, June 25, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 30-7-018 - Kjell Johnsen Auditorium ).   More information here.

  15. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  16. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  17. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  18. Superconductivity and magnetic order in La--Ce alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Finnemore, D.K.

    1971-03-01

    Superconductivity and magnetic order have been studied both above and below the Kondo temperature for the La--Ce system. Electrical resistivity measurements on La 0.2, 1.0, 2.0, 3.2, and 4.0 wt. percent Ce have been made from 0.060 to 20.0K.

  19. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel L∞ -bound which is of independent...

  20. The Darwin-Breit magnetic interaction and superconductivity

    CERN Document Server

    Essen, Hanno

    2013-01-01

    A number of facts indicating the relevance of the Darwin magnetic interaction energy in the superconducting phase are pointed out. The magnetic interaction term derived by Darwin is the same as the, so called, Breit term in relativistic quantum mechanics. While this term always is a small perturbation in few body systems it can be shown to be potentially dominating in systems of large numbers of electrons. It is therefore a natural candidate in the explanation of emergent phenomena---phenomena that only occur in sufficiently large systems. The dimensionless parameter that indicates the importance of the magnetic energy is the number of electrons times the classical electron radius divided by the size of the system. The number of electrons involved are only the electrons at the Fermi surface; electrons with lower energy cannot contribute to current density and thus not to the magnetic field. The conventional understanding of superconductivity has always been problematic and no really reductionistic derivation ...

  1. State-of-the-art of superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lubell, M. S.

    1972-09-01

    A survey of the most recent developments in superconducting magnet materials is presented, and complete data on the upper critical field and transition temperature for the NbTi alloy system are given. The overall critical current density of compound conductors is shown for both low and high field commercial superconductors. A tabulation is given of high field and large bore solenoids, comparing design and test data. Comparative data are also given for some nonsolenoidal coils, and details are listed for the systems under construction or design. A criterion is derived for the stable current density attainable in extremely large magnet systems such as those envisioned for fusion reactors: j ∝ (stored energy)-1/6 . The review concludes with summaries concerning the structural materials useful in large magnets and the effects of radiation on superconducting magnets.

  2. Scaling of Superconducting Switches for Extraction of Magnetic Energy

    CERN Document Server

    Ballarino, A

    2010-01-01

    In certain cases it is necessary to extract the energy from a superconducting magnet when it quenches, in order to limit the heat generated by the event and thus prevent irreversible damage. This is usually achieved by opening a contact breaker across a resistor in the circuit feeding the magnet. For the heavy currents used to excite large magnets such switches incorporate sophisticated devices to limit arcing during the operation; besides being quite large and expensive, such switches have a limited lifetime. It is therefore interesting to consider the use of superconducting switches to perform this function, the advantage being that such switches would (i) not require maintenance and (ii) would be housed within the cryogenic environment of the magnet, and thus avoid permanent diversion of the current in and out of that environment to the mechanical switch (which operates at room temperature). However, practical switches for such an application are made up of superconductor in a metal matrix, and it is conve...

  3. Field Measurement for Superconducting Magnets of ADS Injector I

    CERN Document Server

    Yang, Xiangchen

    2013-01-01

    The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.

  4. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  5. Experimental evidence for Froehlich superconductivity in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, N. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States)]. E-mail: nharrison@lanl.gov; Mielke, C.H.; Singleton, J. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States); Brooks, J.S. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States); Tokumoto, M. [Electrotechnical Laboratory, Tsukuba, Ibaraki (Japan)

    2001-05-14

    Resistivity and irreversible magnetization data taken within the high magnetic field CDW{sub x} phase of the quasi-two-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin depth measurements show that the resistive transition on entering the CDW{sub x} phase is both isotropic and representative of the bulk. (author). Letter-to-the-editor.

  6. Structural materials for large superconducting magnets for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly.

  7. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  8. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  9. Field Quality and Hysteresis of LHC Superconducting Corrector Magnets

    CERN Document Server

    Allitt, M; Giloux, C; Karppinen, M; Khare, P; Lombardi, A M; Maurya, T; Puntambekar, A; Remondino, Vittorio; Santrich-Badal, A; Venturini-Delsolaro, W; Wolf, R

    2004-01-01

    The Large Hadron Collider (LHC) will use some 7600 superconducting corrector magnets. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurements at 4.2 K and at 1.9 K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits.

  10. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  11. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    CERN Document Server

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  12. Vacuum impregnation with epoxy of large superconducting magnet structures

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Coyle, D.E.; Miller, P.B.; Wenzel, W.F.

    1978-06-01

    The Lawrence Berkeley Laboratory (LBL) has been developing a new generation of superconducting magnets which have the helium cooling system as an integral part of the magnet structure. The LBL technique calls for large sections of the magnet structure to be vacuum impregnated with epoxy. The epoxy was chosen for its impregnation properties. Epoxies which have good impregnation characteristics are often subject to cracking when they are cooled to cryogenic temperatures. The cracking of such an epoxy can be controlled by: (1) minimizing the amount of epoxy in the structure; (2) reducing the size of unfilled epoxy spaces; and (3) keeping the epoxy in compression. The technique for using the epoxy is often more important than the formulation of the epoxy. The LBL vacuum impregnation and curing technique is described. Experimental measurements on small samples of coil sections are presented. Practical experience with large vacuum impregnation superconducting coils (up to two meters in dia) is also discussed.

  13. A superconducting large-angle magnetic suspension. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  14. The design considerations for a superconducting magnetic bearing system

    Science.gov (United States)

    Cansiz, Ahmet; Yildizer, Irfan

    2014-09-01

    In this paper a high temperature superconducting magnetic bearing is studied with various design considerations. The design of the bearing consists of a rotor with 7.5 kg mass. The stable levitation of the rotor is provided with the Evershed type and superconducting components. The dynamic stability of the rotor is strengthened with the electromagnetic and electrodynamic levitation techniques. The force on the rotor is predicted in terms of semi-analytical frozen image model. The designed driving system sustains stable levitation during the rotation of the rotor and achieves higher rotational speed than that of the torque driver. The results indicate that the designed rotor and driving system have potential solutions for the development of the superconducting flywheel energy storage.

  15. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  16. Magnetically coupled system for mixing

    Energy Technology Data Exchange (ETDEWEB)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  17. Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family

    Science.gov (United States)

    Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.

    1994-10-01

    We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.

  18. Discrete Differential Geometry Applied to the Coil-End Design of Superconducting Magnets

    CERN Document Server

    Auchmann, B; Schwerg, N

    2007-01-01

    Coil-end design for superconducting accelerator magnets, based on the continuous strip theory of differential geometry, has been introduced by Cook in 1991. A similar method has later been coupled to numerical field calculation and used in an integrated design process for LHC magnets within the CERN field computation program ROXIE. In this paper we present a discrete analog on to the continuous theory of strips. Its inherent simplicity enhances the computational performance, while reproducing the accuracy of the continuous model. The method has been applied to the design

  19. Accurate periodicity measurement of superconducting quantum interference device magnetic flux response.

    Science.gov (United States)

    Nakanishi, Masakazu

    2010-09-01

    It is theoretically explained that a response of a superconducting quantum interference device (SQUID) is periodically dependent on total magnetic flux coupling to the SQUID ring (Φ) and its period is a flux quantum (Φ(o)=h/2e, where h and e, respectively, express Planck's constant and elementary charge). For example, the voltage of an electromagnetically oscillated rf-SQUID or a current biased dc-SQUID is thought to be periodically dependent on Φ with a period of Φ(o). In this paper, we propose an accurate method to check the periodicity of a SQUID response by using a set of sensing coils covered with a superconducting sheath. As a demonstration, we measured periodicity of a commercially available thin-film type rf-SQUID response in magnetic flux ranging up to approximately 4300Φ(o). Its flux dependence was periodic below about 3400Φ(o).

  20. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  1. Superconducting Magnets for Accelerators and Detectors

    CERN Document Server

    Rossi, L

    2003-01-01

    The development of superconductors for magnet applications has received a strong boost from the High Energy Physics (HEP) community, both for detector magnets and for accelerator magnets. The demand for very high current density (both Jc and Jc,overall), for fine filaments, for control of the copper content, for very compact cables with large current capability, the ability to superstabilize large cables at moderate cost, together with necessity of producing hundreds of tons of materials for large projects, have been the main motivation for the continued improvement of practical superconductors. HEP has provided so far, and still does nowadays, a unique forum where material scientists, fabrication engineers and final users, i.e. magnet designers and magnet constructors, gather together and, by sharing their knowledge and their needs, are able to accomplish real progress in the technology. In particular accelerator magnets have reached a point where, in order to go beyond the 9 T limit of the present LHC in co...

  2. Cryogenic Infrastructure for Testing of LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Herblin, L; Lamboy, J P; Tovar-Gonzalez, A; Vuillerme, B

    2005-01-01

    The ~1800 superconducting magnets for the LHC machine shall be entirely tested at reception before their installation in the tunnel. For this purpose and in order to reach the reliability and efficiency at the nominal load required for an industrial operation for several years, we have gradually upgraded and retrofitted the cryogenic facilities installed in the early nineties for the testing at CERN of prototypes and preseries magnets. The final infrastructure of the test station, dedicated to check industrially the quality of the series magnets, is now nearly complete. We present the general layout and describe the overall performance of the system.

  3. Superconducting Magnet Technology for the Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Rifflet, J. M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Segreti, M. [Alternative Energies and Atomic Energy Commission (CEA), Saclay (France); Nakamoto, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); van Weelderen, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Xu, Q. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  4. Thermo-magnetic instabilities in Nb3Sn superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, Bernardo [Univ. of Pisa (Italy)

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb3Sn. Several laboratories in the US and Europe are currently working on developing Nb3Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb3Sn; a description of the manufacturing process of Nb3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.

  5. Optimum design of flywheel storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)

    1999-03-01

    The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.

  6. Quench absorption coils: a quench protection concept for high-field superconducting accelerator magnets

    Science.gov (United States)

    Mentink, M.; Salmi, T.

    2017-06-01

    A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called ‘quench absorption coils’ are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.

  7. Magnetism and superconductivity in the system Ce1-xLaxRh3B2

    Science.gov (United States)

    Malik, S. K.; Umarji, A. M.; Shenoy, G. K.; Aldred, A. T.; Niarchos, D. G.

    1985-10-01

    The compound CeRh3B2 is magnetically ordered with a low saturation moment of ~0.4 μB per formula unit and an unusually large Curie temperature of 115 K while isostructural LaRh3B2 is superconducting with a transition temperature of ~2.3 K. Magnetic and superconducting studies on the series of compounds Ce1-xLaxRh3B2 reveal that the magnetic state persists for 0<=x<=0.8. The magnetic moment per Ce ion goes through a maximum and the Curie temperature decreases as La is substituted for Ce. On the La-rich side, superconductivity is destroyed even with 1% replacement of La by Ce, indicating a strong coupling of Ce 4f moments with conduction-electron spins. The temperature dependence of the upper critical field of LaRh3B2 has been measured and is discussed in terms of Werthammer-Helfand-Hohenberg theory.

  8. Effect of temperature and magnetic field on two-flavor superconducting quark matter

    CERN Document Server

    Mandal, Tanumoy

    2016-01-01

    We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in presence of constant external magnetic field. Within the Nambu-Jona-Lasinio (NJL) model, by tuning the diquark coupling strength, we study the inter-dependent evolution of the quark BCS gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field $B\\gtrsim 10^{18}$ G leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultra-high magnetic field due to the mismatched Fermi surfaces of $u$ and $d$ quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although th...

  9. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  10. Estimating effects from trapped magnetic fluxes in superconducting magnetic levitation measurement

    Institute of Scientific and Technical Information of China (English)

    Masakazu Nakanishi

    2008-01-01

    Superconducting magnetic levitation measurement is one of the most promising approaches to define mass standard based on the fundamental physical constants. However, the present system has unknown factors causing error larger than 50 ppm. We examined the effects of magnetic fluxes trapped in the superconducting coil and the superconducting floating body. When fluxes were trapped in either coil or floating body, their effects were able to be cancelled by reversing polarities of current and magnetic field, as had been believed. However, fluxes trapped in both coil and body induced an attractive force between them and caused error. In order to reduce the fluxes, the coil and the floating body should be cooled in low magnetic field in magnetic and electromagnetic shields.

  11. Compact Superconducting Final Focus Magnet Options for the ILC

    CERN Document Server

    Parker, Brett; Escallier, John; Harrison, Michael; He, Ping; Jain, Animesh K; Markiewicz, Thomas W; Marone, Andrew; Maruyama, Takashi; Nosochkov, Yuri; Seryi, Andrei; Wu, Kuo-Chen

    2005-01-01

    We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing be...

  12. Magnetic phenomena in holographic superconductivity with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Aldo Dector

    2015-09-01

    Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

  13. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Directory of Open Access Journals (Sweden)

    Andrey V. Chubukov

    2016-12-01

    Full Text Available Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s^{+-} superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s^{+-} superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe_{2}As_{2} and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  14. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Science.gov (United States)

    Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.

    2016-10-01

    Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s+- superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s+- superconductivity, and magnetic order does not develop down to T =0 . We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe2 As2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  15. Power deposition in superconducting magnets of the momentum cleaning insertion

    CERN Document Server

    CERN. Geneva; Baishev, I S; Jeanneret, J B; Kourotchkine, I A

    2002-01-01

    This note describes the calculation of power deposition in the superconducting magnets Q6, Q7 and MB8 downstream of the momentum collimators in IR3. To reduce a relatively high power deposition density of 1.8mW/cm^3 in the coils of Q6, we propose to install some fixed shielding collimators upstream of the warm dogleg dipoles D4.

  16. Zinc contamination from brass upon heat treating a superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.W.; Hassenzahl, W.V.

    1994-07-01

    Theoretical calculations predicted that zinc outgassing from brass spacers during a planned heat treatment would likely damage a lab-scale superconducting magnet. This specter was reinforced by a simulated heat treatment, the samples of which were analyzed by gravimetry, metallography, and microprobe chemical analysis. It was found that zinc escaping from the brass could diffuse 80 {mu}m into copper electrical conductors and degrade their conductivity. To avoid this, steel was temporarily substituted for the brass during the heat treatment process.

  17. Supercurrent-induced skyrmion dynamics and tunable Weyl points in chiral magnet with superconductivity

    Science.gov (United States)

    Takashima, Rina; Fujimoto, Satoshi

    2016-12-01

    Recent studies show superconductivity provides new perspectives on spintronics. We study a heterostructure composed of an s -wave superconductor and a cubic chiral magnet that stabilizes a topological spin texture, a skyrmion. We propose a supercurrent-induced spin torque, which originates from the spin-orbit coupling, and we show that the spin torque can drive a skyrmion in an efficient way that reduces Joule heating. We also study the band structure of Bogoliubov quasiparticles and show the existence of Weyl points, whose positions can be controlled by the magnetization. This results in an effective magnetic field acting on the Weyl quasiparticles in the presence spin textures. Furthermore, the tilt of the Weyl cones can also be tuned by the strength of the spin-orbit coupling, and we propose a possible realization of type-II Weyl points.

  18. Flywheel energy storage using superconducting magnetic bearings

    Science.gov (United States)

    Abboud, R. G.; Uherka, K.; Hull, J.; Mulcahy, T.

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  19. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  20. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging

    Science.gov (United States)

    Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.

    2017-02-01

    A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.

  1. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  2. Precision transport of LHC superconducting magnet

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These photos show tests of the first convoy with a prototype short straight section (SSS) quadrupole in the LHC tunnel. There is little free space in the tunnel as the SSS convoy passes alongside a dipole vacuum vessel. These convoys feature infrared guidance, which offsets the minimal clearance in the tunnel and limits vibration, both of which could damage the fragile magnets.

  3. Ultra-high-field superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, R.W.; Cornish, D.N.; Scanlan, R.M.; Zbasnik, J.P.; Leber, R.L.; Hickman, R.B.; Lee, J.D.

    1983-08-01

    The following topics are considered: (1) superfluid helium for advanced magnets, (2) conductor reinforcement, (3) designing a 20-T, 2-m bore solenoidal coil, (4) coil size and conductor properties, (5) axial forces on the coil, (6) effect of radiation on the coil systems, and (7) helium-II transient heat transfer and coil protection. (MOW)

  4. Precise Thermometry for Next Generation LHC Superconducting Magnet Prototypes

    CERN Document Server

    Datskov, V; Bottura, L; Perez, J C; Borgnolutti, F; Jenninger, B; Ryan, P

    2013-01-01

    The next generation of LHC superconducting magnets is very challenging and must operate in harsh conditions: high radiation doses in a range between 10 and 50 MGy, high voltage environment of 1 to 5 kV during the quench, dynamic high magnetic field up to 12 T, dynamic temperature range 1.8 K to 300 K in 0.6 sec. For magnet performance and long term reliability it is important to study dynamic thermal effects, such as the heat flux through the magnet structure, or measuring hot spot in conductors during a magnet quench with high sampling rates above 200 Hz. Available on the market cryogenic temperature sensors comparison is given. An analytical model for special electrically insulating thermal anchor (Kapton pad) with high voltage insulation is described. A set of instrumentation is proposed for fast monitoring of thermal processes during normal operation, quenches and failure situations. This paper presents the technology applicable for mounting temperature sensors on high voltage superconducting (SC) cables....

  5. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Yeninas, Steven Lee [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials.

  6. Phase boundary of the hexagonal-prism superconducting network in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    金绍维; 李伟; 易佑民; 甄胜来; 缪胜清

    2002-01-01

    In this paper, we systematically study the phase boundary Tc(H ) of a hexagonal-prism superconducting network inan external magnetic field H of arbitrary magnitude and direction. The result indicates that the phase boundary of thehexagonal-prism superconducting circuit varies more sharply than that of the cubic circuit. The potential applicationsof the hexagonal-prism superconducting circuit are also discussed.

  7. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  8. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  9. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides

    Science.gov (United States)

    de Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; Cataudella, V.; Chiarella, F.; Cantoni, C.; Lupini, A. R.; Brookes, N. B.; Huijben, M.; Koster, G.; Rijnders, G.; Salluzzo, M.

    2014-11-01

    The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La1.85Sr0.15CuO4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La0.66Sr0.33MnO3 ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

  10. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides.

    Science.gov (United States)

    De Luca, G M; Ghiringhelli, G; Perroni, C A; Cataudella, V; Chiarella, F; Cantoni, C; Lupini, A R; Brookes, N B; Huijben, M; Koster, G; Rijnders, G; Salluzzo, M

    2014-11-24

    The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La(1.85)Sr(0.15)CuO(4) thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La(0.66)Sr(0.33)MnO(3) ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

  11. The helium cryogenic plant for the CMS superconducting magnet

    CERN Document Server

    Perinic, G; Dagut, F; Dauguet, P; Hirel, P

    2002-01-01

    A new helium refrigeration plant with a cooling capacity of 800 W at 4.45 K, 4500 W between 60 K and 80 K, and 4 g/s liquefaction simultaneously has been designed and is presently being constructed by Air Liquide for CERN. The refrigeration plant will provide the cooling power for the cool down and the operation of the CMS (Compact Muon Solenoid) superconducting coil whose cold mass weighs 225 t. The refrigeration plant will at first be installed in a surface building for the tests of the superconducting magnet. On completion of the tests the cold box will be moved to its final underground position next to the CMS experimental cavern. This paper presents the process design, describes the main components and explains their selection. (4 refs).

  12. Magnetic design of a 14 mm period prototype superconducting undulator

    Science.gov (United States)

    Gehlot, Mona; Mishra, G.; Trillaud, Frederic; Sharma, Geetanjali

    2017-02-01

    In this paper we report the design of a 14 mm period prototype superconducting undulator that is under fabrication at Insertion Device Development Laboratory (IDDL) at Devi Ahilya Vishwavidyalaya, Indore, India. The field computations are made in RADIA and results are presented in an analytical form for computation of the on axis field and the field on the surface of the coil. On the basis of the findings, a best fit is presented for the model to calculate the field dependence on the gap and the current density. The fit is compared with Moser-Rossmanith formula proposed earlier to predict the magnetic flux density of a superconducting undulator. The field mapping is used to calculate the field integrals and its dependence on gap and current densities as well.

  13. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  14. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  15. Fundamental study of cesium decontamination from soil by superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: •The method for the soil decontamination by the superconducting magnet is proposed. •Cesium ion can be absorbed by Prussian blue in potassium iodide wash fluid. •It is possible to recover Cs{sup +} ion-adsorbing Prussian blue with a high rate by HGMS. •It is expected that HGMS can be applied to the actual soil decontamination. -- Abstract: The radioactive substances have been spread out all over the surrounding area of Fukushima Daiichi Nuclear Power Plant caused by the accident in March 2011. Decontamination and volume reduction of radioactive substances, especially cesium ion, are desired issue. This study proposed a decontamination method of the soil by the magnetic separation using superconducting magnet. Cesium ion was adsorbed by Prussian blue in the potassium iodide solution. We succeeded in separating selectively the cesium ion-adsorbed Prussian blue out of the liquid phase by high gradient magnetic separation. High recovery ratio of the Prussian blue was achieved by this method.

  16. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  17. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  18. A superconducting magnet upgrade of the ATF2 final focus

    CERN Document Server

    Parker, B; Escallier, J; He, P; Jain, P; Marone, A; Wanderer, P; Wu, KC; Hauviller, C; Marin, E; Tomas, R; Zimmermann, F; Bolzon, B; Jeremie, A; Kimura, N; Kubo, K; Kume, T; Kuroda, S; Okugi, T; Tauchi, T; Terunuma, N; Tomaru, T; Tsuchiya, K; Urakawa, J; Yamamoto, A; Bambade, P; Coe, P; Urner, D; Seryi, A; Spencer, C; White, G

    2010-01-01

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF [1]. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF [2]. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction [3]. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC [4]. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet perfo...

  19. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker B.; Anerella M.; Escallier J.; He P.; Jain A.; Marone A.; Wanderer P.; Wu K.C.; Hauviller C.; Marin E.; Tomas R.; Zimmermann F.; Bolzon B.; Jeremie A.; Kimura N.; Kubo K.; Kume T.; Kuroda S.; Okugi T.; Tauchi T.; Terunuma N.; Tomaru T.; Tsuchiya K.; Urakawa J.; Yamamoto A.; Bambabe P.; Coe P.; Urner D.; Seryi A.; Spencer C.; White G.

    2010-05-23

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.

  20. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Brett; /Brookhaven; Anerella, Michael; /Brookhaven; Escallier, John; /Brookhaven; He, Ping; /Brookhaven; Jain, Animesh; /Brookhaven; Marone, Andrew; /Brookhaven; Wanderer, Peter; /Brookhaven; Wu, Kuo-Chen; /Brookhaven; Bambade, Philip; /Orsay, LAL; Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Coe, Paul; /Oxford U.; Urner, David /Oxford U.; Hauviller, Claude; /CERN; Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Zimmermann, Frank; /CERN; Kimura, Nobuhiro; /KEK, Tsukuba; Kubo, Kiyoshi; /KEK, Tsukuba; Kume, Tatsuya /KEK, Tsukuba; Kuroda, Shigeru; /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /SLAC /SLAC /SLAC

    2012-07-05

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R&D FF prototype under construction at BNL.

  1. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  2. Local magnetization fluctuations in superconducting glasses resolved by Hall sensors

    Science.gov (United States)

    Lefebvre, J.; Hilke, M.; Altounian, Z.; West, K. W.; Pfeiffer, L. N.

    2009-05-01

    We report on magnetization measurements performed on a series of FexNi1-xZr2 superconducting metallic glasses with 0≤x≤0.5 using the Hall effect of a nearby two-dimensional electron gas (2DEG) in a GaAs/Al0.33Ga0.67As heterostructure as a local probe. The great sensitivity of the Hall effect of the 2DEG in such heterostructure is exploited to determine the magnetization of the superconductor due to the Meissner effect and flux trapping. The data are used to determine the lower critical-field Bc1 of the superconductors as a function of temperature. Surprisingly large fluctuations in the magnetization are also observed and attributed to the presence of large flux clusters in the superconductor.

  3. A Scaling Law for the Snapback in Superconducting Accelerator Magnets

    CERN Document Server

    Bottura, L; Bauer, P; Haverkamp, M; Pieloni, T; Sanfilippo, S; Velev, G

    2005-01-01

    The decay of the sextupole component in the bending dipoles during injection and the subsequent snapback at the start of beam acceleration are issues of common concern for all superconducting colliders built or in construction. Recent studies performed on LHC and Tevatron dipole magnets revealed many similarities in the snapback characteristics. Some are expected, e.g. the effect of operational history. One particular similarity, however, is striking and is the subject of this paper. It appears that there is a simple linear relation between the amount of sextupole drift during the decay and the magnet current (or field) change during the ramp required to resolve the snapback. It is surprising that the linear correlation between snapback amplitude and snapback field holds very well for all magnets of the same family (e.g. Tevatron or LHC dipoles). In this paper we present the data collected to date and discuss a simple theory that explains the scaling found.

  4. The superconducting magnet system for the Wendelstein7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany)

    2000-05-01

    The superconducting magnet system for the new stellarator Wendelstein7-X, to be located at Greifswald, Germany, consists of 50 non-planar and 20 planar large magnet coils. The conductor used is a cable-in-conduit type, composed of copper stabilized NbTi strands and enveloped by an aluminium alloy jacket (CICC). The individual winding packs are built up from six (three) double layers, glass insulated and resin impregnated. A cast steel casing encapsulates each winding pack to achieve sufficient mechanical stiffness. The toroidal set-up of the coil system weighs 400 tons and has a diameter of 11 metres. Operation will be at 6 T and a coil current of 1.75 MA. Cooling is provided by supercritical helium. A fast de-energizing system protects the magnet from overheating in the case of a quench. (author)

  5. A novel rotating experimental platform in a superconducting magnet

    Science.gov (United States)

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  6. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    Science.gov (United States)

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  7. Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer

    Science.gov (United States)

    Mallett, B. P. P.; Khmaladze, J.; Marsik, P.; Perret, E.; Cerreta, A.; Orlita, M.; Biškup, N.; Varela, M.; Bernhard, C.

    2016-11-01

    We show that in Pr0.5La0.2Ca0.3MnO3 /YBa2Cu3O7 (PLCMO/YBCO) multilayers the low temperature state of YBCO is very resistive and resembles that of a granular superconductor or a frustrated Josephson-junction network. Notably, a coherent superconducting response can be restored with a large magnetic field which also suppresses the charge-orbital order in PLCMO. This coincidence suggests that the granular superconducting state of YBCO is induced by the charge-orbital order of PLCMO. The coupling mechanism and the nature of the induced inhomogeneous state in YBCO remain to be understood.

  8. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  9. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B; Bednarek, M; Bellodi, G; Bracco, C; Bruce, R; Cerutti, F; Chetvertkova, V; Dehning, B; Granieri, P P; Hofle, W; Holzer, E B; Lechner, A; Del Busto, E Nebot; Priebe, A; Redaelli, S; Salvachua, B; Sapinski, M; Schmidt, R; Shetty, N; Skordis, E; Solfaroli, M; Steckert, J; Valuch, D; Verweij, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2015-01-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  10. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  11. Heat Transfer through Cable Insulation of Nb–Ti Superconducting Magnets Operating in He II

    CERN Document Server

    Granieri, P P

    2013-01-01

    The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests p...

  12. Electric control of superconducting transition through a spin-orbit coupled interface

    Science.gov (United States)

    Ouassou, Jabir Ali; di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-07-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices.

  13. Electric control of superconducting transition through a spin-orbit coupled interface

    Science.gov (United States)

    Ouassou, Jabir Ali; Di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-01-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices. PMID:27426887

  14. Superconducting Magnetic Energy Storage:. Conventional and Trapped Field

    Science.gov (United States)

    Rabinowitz, Mario

    Superconducting magnetic energy storage (SMES) is a most efficient system for energy storage because it stores energy directly in electrical form. The SMES concept is described and analyzed with an examination of its economic viability. The impact of high-temperature supeconductivity on SMES is explored, and a trapped energy storage (TES) innovation that may have beneficial technical and economic ramifications is introduced. In addition to presenting a broad overview, this paper may be of help to those making an evaluation of the potential impact of SMES/TES on the development of new energy sources, and to determine for which energy sources it is most appropriate.

  15. Po Superconducting Magnet:detail of the windings

    CERN Multimedia

    1982-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam Po. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8307552X.

  16. Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

    CERN Document Server

    Murrell, J K J

    2001-01-01

    previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...

  17. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  18. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets

    Science.gov (United States)

    Wielgosz, Maciej; Skoczeń, Andrzej; Mertik, Matej

    2017-09-01

    The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regression results were measured in terms of RMSE for different number of future steps and history length taken into account for the prediction. The best result of RMSE = 0 . 00104 was obtained for a network of 128 LSTM cells within the internal layer and 16 steps history buffer.

  19. Magnetism and Superconductivity in Iron-based Superconductors as Probed by Nuclear Magnetic Resonance

    CERN Document Server

    Hammerath, Franziska

    2012-01-01

    Nuclear Magnetic Resonance (NMR) has been a fundamental player in the studies of superconducting materials for many decades. This local probe technique allows for the study of the static electronic properties as well as of the low energy excitations of the electrons in the normal and the superconducting state. On that account it has also been widely applied to Fe-based superconductors from the very beginning of their discovery in February 2008. This dissertation comprises some of these very first NMR results, reflecting the unconventional nature of superconductivity and its strong link to magnetism in the investigated compounds LaO1–xFxFeAs and LiFeAs.

  20. Surface field in an ensemble of superconducting spheres under external magnetic field

    CERN Document Server

    Peñaranda, A; Ramírez-Piscina, L

    1999-01-01

    We perform calculations of the magnetic field on the surface of an ensemble of superconducting spheres when placed into an external magnetic field, which is the configuration employed in superheated superconducting granule detectors. The Laplace equation is numerically solved with appropriate boundary conditions by means of an iterative procedure and a multipole expansion.

  1. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  2. Flow Cooling of Superconducting Magnets for Spacecraft Applications

    Science.gov (United States)

    Dietz, A. J.; Audette, W. E.; Barton, M. D.; Hilderbrand, J. K.; Marshall, W. S.; Rey, C. M.; Winter, D. S.; Petro, A. J.

    2008-03-01

    The development and testing of a flow cooling system for high-temperature superconducting (HTS) magnets is described. The system includes a turbo-Brayton cryocooler, a magnet thermal interface, and a magnet thermal isolation and support system. The target application is the Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Turbo-Brayton coolers are well suited to such spacecraft applications, as they are compact, modular, lightweight, and efficient, with long maintenance-free lifetimes. Furthermore, the technology scales well to high-cooling capacities. The feasibility of using turbo-Brayton coolers in this application was proven in a design exercise in which existing cooler designs were scaled to provide cooling for the magnet sets required by 200 kW and 1 MW VASIMR engines. The performance of the concepts for the thermal interface and the thermal isolation and support system were measured in separate laboratory tests with a demonstration system built about a representative HTS magnet. Cooling for these tests was provided by a flow cooling loop comprising a compressor, recuperator and GM cryocooler, with the flow pressure, temperature, and mass flow rate selected to effectively simulate the turbo-Brayton operating condition. During system testing, the magnet was cooled below its design operating temperature of 35 K, and good thermal uniformity (<0.4 K) and low thermal loads (<0.5 W) were demonstrated.

  3. PREFACE: International Conference on Superconductivity and Magnetism-ICSM2008

    Science.gov (United States)

    Gencer, Ali; Grasso, Gianni

    2009-03-01

    The International Conference on Superconductivity and Magnetism (ICSM2008) was held at the congress centre of Ankara University in Side, Antalya, between 25-29 August 2008. The conference was the first conference on the combined fields of superconductivity and magnetism organized in Turkey at international level, and it had broad international participation from 42 countries, with registered delegates numbering over 400. A quarter of the attendees were research students. The conference attracted many of the best known leading scientists and experts in the field of superconductivity and magnetism from all over the world. The scientific program involved the presentation and discussion of 336 papers, classified as 65 invited, 81 oral and 190 posters. Submission of papers for the proceedings was on a volunteer basis and we therefore had nearly half of the presented papers, i.e. 30 submitted invited papers, peer-reviewed by Superconductor Science and Technology, and 85 submitted contributing papers, peer-reviewed by the organizers through processes administered by the Editorial Board and Scientific Committee. Reviews were conducted by expert referees at professional level and with the scientific standards expected of a proceedings journal issue published by IOP Publishing. The invited papers on superconductivity and magnetism with superconductivity were considered and processed for Superconductor Science and Technology by IOP itself. Although there are missing papers from some of the plenary speakers, we believe that this special issue of Superconductor Science and Technology (SUST) and the corresponding issue of Journal of Physics: Conference Series (JPCS) reflect most of the booming research in the fields of superconductivity and magnetism. We are very pleased to have worked with IOP on the conference proceedings, with special thanks to Dr Tom Miller and Dr Graham Douglas. Based on a refereed evaluation of all the papers and posters submitted, about 93 papers were

  4. Coupled Coils, Magnets and Lenz's Law

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  5. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  6. The contrasting magnetic fields of superconducting pulsars and magnetars

    CERN Document Server

    Lander, S K

    2013-01-01

    We study equilibrium magnetic field configurations in a neutron star whose core has type-II superconducting protons. Unlike normal matter, whose equations do not involve any special field strength, those for superconductors contain the lower critical field, of order 10^{15} G. We find that the ratio between this critical field and the smooth-averaged stellar magnetic field at the crust-core boundary is the key feature dictating the field geometry. Our results suggest that pulsar and magnetar-strength fields have notably different configurations. Field decay for neutron stars with B_{pole}\\sim 10^{14} G could thus result in substantial internal rearrangements, with the toroidal field component being pushed out of the core; this may be related to observed magnetar activity.

  7. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  8. High temperature superconducting axial field magnetic coupler: realization and test

    Science.gov (United States)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  9. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  10. Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface

    Science.gov (United States)

    Kantar, Ersin

    2017-09-01

    The hysteretic properties of a Ising-type endohedral fullerene (EF) with a doped magnetic spin-1/2 particle confined within a spherical cage (by diluted magnetic spin-1 particles) are investigated by using the effective-field theory with correlations. The extrinsic and intrinsic parameters dependencies of the magnetic hysteresis curves and superconductivity-like phenomena in the Ising-type EF system have investigated. We have reported that doped magnetic core atom is chiefly responsible of the occurrence of the superconductivity-like phenomena in the system. Moreover, three superconductivity series have been presented by the temperature, surface composition and crystal field.

  11. Exchange coupling and superconductivity in light rare earth alloys and superlattices

    CERN Document Server

    Deen, P P M

    2003-01-01

    The complementary techniques of X-ray magnetic resonant scattering, neutron and X-ray diffraction and SQUID magnetometry have been employed to explore rare earth superlattices and thin films. In particular, this thesis concerns the complex magnetism of Cerium, exchange coupling in Nd/Pr superlattices and the interplay between magnetism and superconductivity in Gd/La superlattices. Molecular beam epitaxy enables the growth of high quality single-crystal structures that do not occur in nature with tailor-made physical properties. Fundamental problems in condensed matter physics can therefore be addressed. Through a study of CeY and CeLu alloys, the origin of diffuse scattering and intermediate valence behaviour observed in CeHo alloys was determined. XMRS was able to probe the behaviour of Ce in various environments. A higher energy resonance, indicative of intermediate valence behaviour, is present for the Lu and Ho based alloys but not for those containing Y. Since the lattice parameters of CeLu closely match...

  12. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  13. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle.

  14. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator.

    Science.gov (United States)

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-23

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  15. Magnetic phase diagrams based on static and dynamic magnetic behaviour in Ru-based superconducting ferromagnets.

    Science.gov (United States)

    Nigam, R; Pan, A V; Dou, S X

    2011-11-02

    In this work, we present magnetic phase diagrams of a RuSr(2)Eu(1.5)Ce(0.5)Cu(2)O(10-δ) (Ru-1222) superconducting ferromagnet derived from its static and dynamic magnetic responses, measured by temperature and field dependences of dc magnetization and nonlinear ac susceptibility in both low and high magnetic fields. Comparison of magnetic phase diagrams of phase pure and impure samples singles out the intrinsic and extrinsic magnetic features, naturally proposing a unified model of Ru-1222 magnetic behaviour. The results considered within the proposed interpretation indicate full agreement between static and dynamic properties which, if measured in combination, effectively complement each other, uncovering existing ambiguities.

  16. Superconducting Solenoid and Press for Permanent Magnet Fabrication

    Science.gov (United States)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T.

  17. The Test Facility for the EAST Superconducting Magnets

    Institute of Scientific and Technical Information of China (English)

    Wu Yu; Weng Peide

    2005-01-01

    A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K ~ 4.5 K, 1.8 bar ~ 5 bar, 20 g/s ~ 40 g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead,three sets of 14.5 kA~ 50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise.The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.

  18. Analysis of magnetization loops of electrospun nonwoven superconducting fabrics

    Science.gov (United States)

    Zeng, Xian Lin; Karwoth, Thomas; Koblischka, Michael R.; Hartmann, Uwe; Gokhfeld, Denis; Chang, Crosby; Hauet, Thomas

    2017-09-01

    Networks of superconducting Bi2Sr2CaCu2O8 (Bi-2212) nanowires were fabricated by the electrospinning technique. The nanowires have a diameter of the order of 150-200 nm and lengths up to the micrometer range and form a nonwoven, fabric-like network with numerous interconnections enabling a current flow between the nanowires. The porosity of this nanowire network is 0.9928. Therefore, this material represents a novel class of ultraporous high-temperature superconductors. The magnetizations of the nanowire networks [M (T ) and M (H )] were recorded by SQUID magnetometry. The magnetic properties were analyzed using the extended critical state model (ECSM). It is supposed that the averaged diameter of the nanowires rules the magnetic field dependence of the critical current density of the nanowire network. Single nanowires have remarkably high values of the critical current density of 1.04 ×107A /cm2 at 5 K. The macroscopic critical current density less than ˜0.05 A /cm2 at 5 K is fine for this lightweight material. Using ECSM, several important magnetic parameters could be determined including the penetration field Hp, the irreversibility fields Hirr, the upper critical field Hc 2, and the flux pinning forces. Applications for this material class may be found in the direction of sensors, thin shielding layers, or nanoporous bulks.

  19. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  20. The Test Facility for the EAST Superconducting Magnets

    Science.gov (United States)

    Wu, Yu; Weng, Peide

    2005-08-01

    A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20 g/s-40 g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.

  1. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir [Fermilab; Andreev, Nikolai [Fermilab; DiMarco, Joseph [Fermilab; Makarov, Alexander [Fermilab; Tartaglia, Michael [Fermilab; Velev, George [Fermilab

    2016-12-30

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currents where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.

  2. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  3. Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling

    Science.gov (United States)

    Kang, Jian; Fernandes, Rafael M.

    2016-11-01

    The origin of the high-temperature superconducting state observed in FeSe thin films, whose phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase diagram of this material, can promote superconductivity. We find that nematic fluctuations alone promote a highly degenerate pairing state, in which both s -wave and d -wave symmetries are equally favored, and Tc is consequently suppressed. However, the presence of a sizable spin-orbit coupling or inversion symmetry breaking at the film interface lifts this harmful degeneracy and selects the s -wave state, in agreement with recent experimental proposals. The resulting gap function displays a weak anisotropy, which agrees with experiments in monolayer FeSe and intercalated Li1 -x(OH )xFeSe .

  4. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  5. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  6. Effect of Anti-dots on the Magnetic Susceptibility in a Superconducting Long Prism

    Science.gov (United States)

    Aguirre, C. A.; Joya, Miryam R.; Barba-Ortega, J.

    2017-02-01

    The magnetic susceptibility of a long mesoscopic superconducting square prism containing one/two (dot) anti-dots is calculated in the framework of the Ginzburg-Landau theoretical model. This magnetic susceptibility shows jumps at each of the vortex transition fields. We studied the influence of the number, size and geometry of the anti-dots on the magnetic susceptibility in a superconducting sample. We found interesting physical behavior when several kinds of materials filled into the anti-dot are considered.

  7. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.;

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma...

  8. Reinvestigation of superconducting phase diagram of UGe{sub 2} by AC magnetic susceptibility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ban, S. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)]. E-mail: f060214d@mbox.nagoya-u.ac.jp; Deguchi, K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan); Aso, N. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Homma, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Sato, N.K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)

    2007-03-15

    We report a superconducting phase diagram of the ferromagnetic superconductor UGe{sub 2} investigated by AC magnetic susceptibility measurements. In contrast to previous phase diagrams, we found that the superconducting transition temperature and volume fraction show a 'M-shaped' structure as a function of pressure. From this observation, we suggest that both of two critical points will play a crucial role in the occurrence of superconductivity in UGe{sub 2}.

  9. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    Science.gov (United States)

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  10. Incommensurate magnetism in non-superconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Hill, J.P.; McMorrow, D.F.

    1999-01-01

    We report the discovery of incommensurate magnetic order in non-superconducting single crystals PrBa2Cu3O6.92. Resonant X-ray magnetic scattering at the Pr L-II and L-III edges and high resolution neutron diffraction were used to characterise the magnetic order on the different magnetic sublattices...

  11. A 1 T, 0.33 m bore superconducting magnet operating with cryocoolers at 12 K

    NARCIS (Netherlands)

    Laan, van der M.T.G.; Tax, R.B.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1992-01-01

    The application of small cryocoolers to cooling a superconducting magnet at 12 K has important advantages, especially for small and medium-size magnets. Simple construction and a helium-free magnet system were obtained. The demonstration magnet developed is a six-coil system with a volume of 75 L an

  12. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    CERN Document Server

    Pfeffer, H; Wolff, D

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  13. Technical issues of a high-T{sub c} superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan). E-mail: fujimoto at rtri.or.jp

    2000-06-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-}x superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and hig{sub h} magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss technical issues of a high-T{sub c} superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future. (author)

  14. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  15. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2016-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  16. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  17. Epoxy resin developments for large superconducting magnets impregnation

    Science.gov (United States)

    Rey, J. M.; Gallet, B.; Kircher, F.; Lottin, J. C.

    The future detectors ATLAS and CMS of the Large Hadron Collider at CERN will use two huge superconducting magnets. Both are now under design, and their electrical insulation could be realized using epoxy resin and a wet impregnation technique. Because of their large dimensions, and the indirect cooling of the superconductor, the strengths of the resin and of the resin/conductor interface are of major importance. A new generation of epoxy resins for vacuum/pressure impregnation methods has been tested, and compared with some classical and well-known epoxy resins used in impregnation techniques. In order to understand the mechanical behaviour at 4 K, the complete evolution from liquid state to low temperature service condition is considered. The paper will present some results on the mechanical properties, the density and the chemical shrinkage occurring during the polymerization and the thermal contraction between room temperature and 4 K for these different types of epoxy resins.

  18. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B. [Sredne-Nevskiy Shipyard (SNSZ), 10 Zavodskaya str., c. Pontonniy, Saint-Petersburg (Russian Federation); Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Y.; Stepanov, D. B. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint-Petersburg (Russian Federation)

    2014-01-29

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  19. Local imaging of magnetic flux in superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, Tetyana

    2010-01-26

    Local studies of magnetic flux line (vortex) distribution in superconducting thin films and their pinning by natural and artificial defects have been performed using low-temperature magnetic force microscopy (LT-MFM). Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural defects under the influence of the force that the MFM tip exerts on the individual vortex was visualized and the local pinning force was estimated. The good agreement of these results with global transport measurements demonstrates that MFM is a powerful and reliable method to probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the presence of an ordered array of 1-{mu}m-sized ferromagnetic permalloy dots being in a magneticvortex state underneath the Nb film significantly influences the natural pinning landscape of the superconductor leading to commensurate pinning effects. This strong pinning exceeds the repulsive interaction between the superconducting vortices and allows vortex clusters to be located at each dot. Additionally, for industrially applicable YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films the main question discussed was the possibility of a direct correlation between vortices and artificial defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness (droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge polishing technique that allows to overcome this problem was developed. Mounting the sample under a defined small angle results in a smooth surface and a monotonic thickness reduction of the film along the length of the sample. It provides a continuous insight from the film surface down to the substrate with surface sensitive scanning techniques. (orig.)

  20. Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism

    Science.gov (United States)

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0204 Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism Jose Rodriguez CALIFORNIA...TITLE AND SUBTITLE Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism 5a.  CONTRACT NUMBER 5b.  GRANT...SUBJECT TERMS quantum magnetism, HTS, superconductivity 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT UU 18.  NUMBER        OF

  1. Safety aspects of superconducting magnets for Super-FRS

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The Super Fragment Separator (Super FRS) is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. A superferric design with superconducting coils and standard iron yoke shaping the magnetic field was chosen for the magnets. The cooling will be by a liquid Helium bath. For the main dipoles only the coil is at cold for the multiplets (asemblies of quadrupoles and hgher order correctors) also the iron yoke will be in the bath. From a safety point of view the large He-volumes of more than 1000 l of the multiplets, the high design pressure of 20 bar, as well as the high inductances of the magnets up to 30 H are challenges to be considered in the design and definition of the testing procedures.

  2. Superconducting flux pump for high-temperature superconductor insert coils of NMR magnets

    Science.gov (United States)

    Jeong, S.; Lee, H.; Iwasa, Y.

    2002-05-01

    This paper describes a prototype flux pump recently operated at the MIT Francis Bitter Magnet Laboratory. The results of the prototype flux pump will be used in the development of a full-scale flux pump that will be coupled to a high-temperature superconductor (HTS) insert coil of a high-field NMR magnet. Such an HTS insert is unlikely to operate in persistent mode because of the conductor's low index (n). The flux pump can compensate for field decay in the HTS insert coil and make the insert operate effectively in persistent mode. The flux pump, comprised essentially of a transformer and two switches, all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A prototype flux pump has been designed, fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting prototype flux pump is made of Nb3Sn tape. The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid; the effluent helium vapor maintains the thermal stability of the flux pump. [This paper is also published in Advances in Cryogenic Engineering Volume 47A, AIP Conference Proceedings Volume 613, pp. 441-448.

  3. a Thermohydraulic-Quenching Code for Superconducting Magnets in Network Circuits

    Science.gov (United States)

    Feng, Jun; Schultz, Joel; Minervini, Joe

    2010-04-01

    A thermohydraulic-quench code "Solxport3D-Quench" has been developed for a system of superconducting and normal solenoid magnets with supply network circuits. Each power supply network circuit consists of at least one superconducting magnet with parallel circuits including voltage sources, resistors or diodes. When used for analysis of a magnetic confinement fusion device, the plasma currents and passive structure eddy currents are also included in all scenarios. The simulation starts from superconducting stage for each magnet coil. The superconducting stage switches to quench stage if any one of the superconducting magnets quenches (i.e., exceeding the current sharing temperature.) It is followed by the dumping stage after a given quench detection time. The recovery of the superconducting stage is allowed at any time step before dumping. The currents of each magnetic coil are calculated by a time-difference method. The thermohydraulic parameters during superconducting and quench/dumping stage are obtained by a finite element method. The size and location of each finite element are dynamically defined at each time step during quench and dumping. Calibrations against test data are presented.

  4. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...

  5. New 50 Hz Superconducting Power Supply for a 2 kA DC Magnet

    NARCIS (Netherlands)

    Chevtchenko, O.A.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.

    1994-01-01

    A new superconducting power supply able to operate directly from the mains voltage at a frequency of 50-60 Hz is under development in our institutes. It will be applied to power a separator magnet for iron ore recycling. The supply consists of a full wave superconducting converter, a `cold'

  6. Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model

    CERN Document Server

    Asai, Y

    1995-01-01

    Superconducting, magnetic, and charge correlation functions and dynamic spin correlation functions of the doped two-chain Hubbard model is studied with the projector Quantum Monte carlo method and Lanczos recursion method. Of the three correlation functions, the interchain singlet superconducting correlation function is the most long range. Our data is not consistent with the Luther-Emery picture.

  7. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    Science.gov (United States)

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-04

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  8. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    applications. The more recent discovery of high-temperature superconductors, with superconducting transition temperatures above 100~K, has led to the hope that superconductivity at room-temperature might be achievable, although a complete theoretical understanding of the high-temperature superconductors......Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...

  9. Superconducting Pb stripline resonators in parallel magnetic field and their application for microwave spectroscopy

    Science.gov (United States)

    Ebensperger, Nikolaj G.; Thiemann, Markus; Dressel, Martin; Scheffler, Marc

    2016-11-01

    Planar superconducting microwave resonators are key elements in a variety of technical applications and also act as sensitive probes for microwave spectroscopy of various materials of interest in present solid state research. Here superconducting Pb is a suitable material as a basis for microwave stripline resonators. To utilize Pb stripline resonators in a variable magnetic field (e.g. in ESR measurements), the electrodynamics of such resonators in a finite magnetic field has to be fully understood. Therefore we performed microwave transmission measurements (with ample applied power to work in linear response) on superconducting Pb stripline resonators in a variable, parallel magnetic field. We determined surface resistance, penetration depth, as well as real and imaginary parts, {σ }1 and {σ }2, of the complex conductivity of superconducting Pb as a function of a magnetic field. Here we find features reminiscent of those in temperature-dependent measurements, such as a maximum in {σ }1 (coherence peak). At magnetic fields above the critical field of this type-I superconductor we still find a low-loss microwave response, which we assign to remaining superconductivity in the form of filaments within the Pb. Hysteresis effects are found in the quality factor of resonances once the swept magnetic field has exceeded the critical magnetic field. This is due to normal conducting areas that are pinned and can therefore persist in the superconducting phase. Besides zero-field-cooling we show an alternative way to eliminate these even at T\\lt {T}c. Based on our microwave data, we also determine the critical magnetic field and the critical temperature of Pb in a temperature range between 1.6 K and 6.5 K and magnetic fields up to 140 mT, showing good agreement with BCS predictions. We also study a Sn sample in a Pb resonator to demonstrate the applicability of superconducting Pb stripline resonators in the experimental study of other (super-)conducting materials in a

  10. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  11. Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets

    Science.gov (United States)

    Ishihara, A.; Akasaka, T.; Tomita, M.; Kishio, K.

    2017-03-01

    Homogeneity of trapped magnetic field in radial and circumferential directions of high temperature superconducting bulk magnets, MgB2 (T c ˜38.3 K) and YBa2Cu3O y (T c ˜91.5 K), have been measured. In polycrystalline MgB2 bulks, the circularity of trapped magnetic field in a cylindrical disk is over 97% at 20-32.5 K, while that of YBa2Cu3O y was ˜87% at 77 K. Magnetic field distribution of MgB2 bulk was satisfactorily homogeneous and these measurements suggest MgB2 bulks with highly efficient cryocoolers should be very useful for novel high field permanent magnet applications.

  12. Measurement and Modeling of Magnetic Hysteresis in the LHC Superconducting Correctors

    CERN Document Server

    Venturini-Delsolaro, W; Chaudhari, Y; Karppinen, M; Sammut, N

    2006-01-01

    The Large Hadron Collider, now under construction at CERN, relies heavily on superconducting magnets for its optics layout: besides the main magnets, almost all the correcting magnets are superconducting. Along with clear advantages, this brings about complications due to the effects of persistent currents in the superconducting filaments. Corrector magnets that trim key beam parameters or compensate field errors of the main magnets (among others those due to hysteresis), are in their turn hysteretic. In this paper we present the measured magnetic hysteresis and its possible influence on accelerator operation, with particular reference to realtime compensation of dynamic effects in the main magnets, and reproducibility issues between runs. The modeling strategy as a function of the required accuracy is discussed, and two examples are presented.

  13. Vafa-Witten theorem, vector meson condensates and magnetic-field-induced electromagnetic superconductivity of vacuum

    CERN Document Server

    Chernodub, M N

    2012-01-01

    We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant internal global symmetries of QCD with the electromagnetic gauge group.

  14. Magnetic Field-Induced Superconductivity in the Ferromagnet URhGe

    Science.gov (United States)

    Lévy, F.; Sheikin, I.; Grenier, B.; Huxley, A. D.

    2005-08-01

    In several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis. We also report that a second pocket of superconductivity occurs at low temperature for a range of fields enveloping this magnetic transition, well above the field of 2 tesla at which superconductivity is first destroyed. Our findings strongly suggest that excitations in which the spins rotate stimulate superconductivity in the neighborhood of a quantum phase transition under high magnetic field.

  15. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    Science.gov (United States)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  16. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  17. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  18. Spontaneous electromagnetic superconductivity of vacuum induced by a strong magnetic field: QCD and electroweak theory

    CERN Document Server

    Chernodub, M N; Verschelde, H

    2012-01-01

    Both in electroweak theory and QCD, the vacuum in strong magnetic fields develops charged vector condensates once a critical value of the magnetic field is reached. Both ground states have a similar Abrikosov lattice structure and superconducting properties. It is the purpose of these proceedings to put the condensates and their superconducting properties side by side and obtain a global view on this type of condensates. Some peculiar aspects of the superfluidity and backreaction of the condensates are also discussed.

  19. Letter report for the Superconducting Magnet Development Program, April 1, 1977--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W. A.; Lubell, M. S. [eds.

    1977-11-01

    The results and accomplishments of the Superconducting Magnet Development Program (SCMDP) for the second quarter of the calendar year 1977 are summarized. The presentations are arranged according to projects rather than the group organization by discipline of the Magnetics and Superconductivity Section. The design, procurement, and fabrication of the Large Coil Segment are well under way. Significant progress is reported on the conductor stability and loss experiments for both toroidal field coils and poloidal field coils.

  20. Evidence for spin-triplet superconducting correlations in metal-oxide heterostructures with noncollinear magnetization

    Science.gov (United States)

    Khaydukov, Yu. N.; Ovsyannikov, G. A.; Sheyerman, A. E.; Constantinian, K. Y.; Mustafa, L.; Keller, T.; Uribe-Laverde, M. A.; Kislinskii, Yu. V.; Shadrin, A. V.; Kalaboukhov, A.; Keimer, B.; Winkler, D.

    2014-07-01

    Heterostructures composed of ferromagnetic La0.7Sr0.3MnO3, ferromagnetic SrRuO3, and superconducting YBa2Cu3O6+x were studied experimentally. Structures of composition Au /La0.7Sr0.3MnO3/SrRuO3/YBa2Cu3O6+x were prepared by pulsed laser deposition, and their high quality was confirmed by x-ray diffraction and reflectometry. A noncollinear magnetic state of the heterostructures was revealed by means of superconducting quantum interference device magnetometry and polarized neutron reflectometry. We have further observed superconducting currents in mesa structures fabricated by deposition of a second superconducting Nb layer on top of the heterostructure, followed by patterning with photolithography and ion-beam etching. Josephson effects observed in these mesa structures can be explained by the penetration of a triplet component of the superconducting order parameter into the magnetic layers.

  1. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  2. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  3. Magnetic measurements of superconducting glass-ceramic fine rods in Bi sub 1 Ca sub 1 Sr sub 1 Cu sub 2 Al sub 0. 5 O sub x prepared under a temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Higashida, Y.; Yokoyama, H.; Michishita, K.; Kubo, Y.; Yoshida, H. (R D Laboratory, Japan Fine Ceramics Center, Mutuno-cho, Atsuta-ku, Nagoya 456, Japan (JP)); Abe, Y.; Hosono, H. (Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan)

    1989-10-09

    It is shown that the crystallization of the glass precursor under a temperature gradient is very effective for preparing the superconducting glass ceramics in the Bi-Ca-Sr-Cu-O system. The magnetization measurements show that the specimen prepared under a temperature gradient has a magnetization hysteresis several times larger at 4.2 K than that prepared under no temperature gradient; the coupling between superconducting grains of the former is stronger than that of the latter.

  4. Magnetic measurements of superconducting glass-ceramic fine rods in Bi1Ca1Sr1Cu2Al(0.5)O(x) prepared under a temperature gradient

    Science.gov (United States)

    Higashida, Yutaka; Yokoyama, Hisanori; Michishita, Kazuo; Kubo, Yukio; Yoshida, Hiroshi

    1989-10-01

    It is shown that the crystallization of the glass precursor under a temperature gradient is very effective for preparing the superconducting glass ceramics in the Bi-Ca-Sr-Cu-O system. The magnetization measurements show that the specimen prepared under a temperature gradient has a magnetization hysteresis several times larger at 4.2 K than that prepared under no temperature gradient; the coupling between superconducting grains of the former is stronger than that of the latter.

  5. Concept of a Hybrid (Normal and Superconducting) Bending Magnet based on Iron Magnetization for 80-100km Lepton/Hadron Colliders

    CERN Document Server

    Milanese, A; Piekarz, H

    2014-01-01

    We present a concept of twin aperture iron dominated bending magnets. These compact “transmission line” dipoles are meant to be installed in the same 80-100 km tunnel of the Future Circular Colliders (FCC) currently being studied at CERN, where they shall be used for the high energy injector synchrotrons. The main feature is the coupling of a resistive cable (for first use in a leptons machine) with a superconducting one (for hadrons operation, presumably in a second phase of FCC). The main challenges in terms of operating field range are commented in the light of similar magnets already built.

  6. Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip

    CERN Document Server

    Minniberger, Stefan; Haslinger, Stefan; Hufnagel, Christoph; Novotny, Christian; Lippok, Nils; Majer, Johannes; Schneider, Stephan; Schmiedmayer, Jörg

    2013-01-01

    We report the realization of a robust magnetic transport scheme to bring 3x10^8 ultracold 87Rb atoms into a cryostat. The sequence starts with standard laser cooling and trapping of 87Rb atoms, transporting first horizontally and then vertically through the radiation shields into a cryostat by a series of normal- and superconducting magnetic coils. Loading the atoms in a superconducting microtrap paves the way for studying the interaction of ultracold atoms with superconducting surfaces and quantum devices requiring cryogenic temperatures.

  7. Magnetoresistance peculiarities and magnetization of materials with two kinds of superconducting inclusions

    Directory of Open Access Journals (Sweden)

    Shevtsova O. N.

    2015-03-01

    Full Text Available Low-temperature properties of a crystal containing type I superconducting inclusions of two different materials have been studied. In the approximation assuming that the inclusions size is much smaller than the coherence length/penetration depth of the magnetic field, the theory of magnetoresistance of a crystal containing spherical superconducting inclusions of two different materials has been developed, and magnetization of crystals has been calculated. The obtained results can be used for correct explanation of the low temperature conductivity in binary and more complex semiconductors, in which precipitation of the superconducting phase is possible during the technological processing or under external impact.

  8. Development of Superconducting Magnetic Heat Switches for an Ideal Integrating Bolometer

    Science.gov (United States)

    Nagler, P. C.; Canavan, E.; De Alba, R.; Stevenson, T. R.

    2016-07-01

    We are developing an ideal integrating bolometer (IIB), a novel detector for far-infrared applications. An IIB consists of a dissipationless temperature sensor weakly coupled to a thermal bath through a heat switch. If the heat switch's thermal conductance in the "off" state is much smaller than its conductance in the "on" state, the thermometer temperature will depend linearly on integrated incident power, until the bolometer temperature is reset by changing the conductance to the "on" state. A key component of an IIB is the heat switch, the subject of this paper. We have fabricated and tested prototype IIB devices designed to demonstrate a superconducting magnetic heat switch on both solid substrates and membranes. In this work, we will present details on the design, fabrication, and experimental performance of our prototype IIB devices.

  9. Fast Cycled Superconducting Magnet - Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Photo 1 : Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box. Patrck Viret and Guy Deferne technicians of TE-MSC-TF in SM18. - Photo 2 : Installation of the Fast Cycled Superconducting Magnet (FCM) to the new cold feed box in Sm18. - Photo 3 : Connecting the powering cables of the FCM to the feed box. - Photo 5/6 : The connections of the Fast Cycled Magnet. Intermediate pieces. - Photo 7 : Hydraulic connections of the Fast Cycle Magnet cable to allow the cooling of the magnet’s conductor ( Cable in conduit type) with supercritical helium. - Photo 8 : Verification of the connection: design versus reality. Guy Deferne and Frederick Rougemont, technicians of TE-MSC-TE in SM18.

  10. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  11. Trapped magnetic field of a superconducting bulk magnet in high- T{sub c} RE-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken [Railway Technical Research Institute, Tokyo (Japan); Murakami, Masato [International Superconductivity Technology Center, Tokyo (Japan)

    1999-07-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} and LRE (light rare-earth) Ba{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  12. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

    Science.gov (United States)

    Hu, Jiangping; Yuan, Jing

    2016-10-01

    Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1 g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high- T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high- T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high- T c superconductivity.

  13. A Superconducting Magnet with Center Field of 10 T and φ100 mm Warm Bore

    Institute of Scientific and Technical Information of China (English)

    王秋良; 严陆光; 赵宝志; 宋守森

    2006-01-01

    A conduction-cooled superconducting magnet with central field of 10T and warm bore of 100 mm was designed based on a Nb3Sn and two NbTi superconducting coils. At the first stage, the NbTi coils have been fabricated and tested. A two-stage 4 K Gifford-McMahon (GM) cryocooler with the second-stage power in 1W, 4.2K is used to cool the magnet from room temperature to 4 K. The superconducting magnet with the same power supply has the operating current of 116A. The magnet can be rotated with a support frame to be operated with either horizontal or vertical position. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4.2K level. The NbTi coils reachto the operating current of 120A without training effect to be observed during charging of the magnet during 40 minutes charging time and generate the center field of 6.5T. The training effect in the NbTi magnet directly cool-down by cryocooler and inter-winding support structure in magnet can be remarkably improved. The superconducting magnet has been stably operated for more than 275 hours with 6.5T. In this paper, the detailed design, fabrication, stress analysis and quench protection characteristics are presented.

  14. Magnetization of Coupled Ultrathin Ferromagnetic Films

    Institute of Scientific and Technical Information of China (English)

    WANG Huai-Yu; ZHOU Yun-Song; WANG Chong-Yu

    2002-01-01

    The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.

  15. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme, E-mail: g.tosi@unsw.edu.au; Mohiyaddin, Fahd A.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, New South Wales 2052, Australia. (Australia); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, D-80799 Munich, Germany. (Germany)

    2014-08-15

    Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  16. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  17. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  18. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  19. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [Jefferson Lab, Newport News, VA; Hogan, John P. [Jefferson Lab, Newport News, VA; Fair, Ruben J. [Jefferson Lab, Newport News, VA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA; Luongo, Cesar [Jefferson Lab, Newport News, VA; Elouadrhiri, Latifa [Jefferson Lab, Newport News, VA

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  20. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  1. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  2. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    Science.gov (United States)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  3. Charging of Superconducting Layers and Novel Type of Hysteresis in Coupled Josephson Junctions

    OpenAIRE

    Shukrinov, Yu M.; Gaafar, Ma. A.

    2011-01-01

    A manifestation of a novel type of hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. Opposite to McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and depends also on coupling between junctions and the boundary conditions. An investigation of time dependence of the electric charge in superconducting layers allow us to explain the origin of this hysteresis by ...

  4. Enhanced charge stripe order of superconducting La2-xBaxCuO4 in a magnetic field

    Science.gov (United States)

    Hücker, M.; v. Zimmermann, M.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2013-01-01

    The effect of a magnetic field on the charge stripe order in La2-xBaxCuO4 has been studied by means of high-energy (100 keV) x-ray diffraction for charge carrier concentrations ranging from strongly underdoped to optimally doped. We find that charge stripe order can be significantly enhanced by a magnetic field applied along the c axis, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x=(1)/(8) compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of a magnetic field. The results for La2-xBaxCuO4 resemble recent observations in YBa2Cu3O6+δ and, independent of potential differences in the microscopic origin of charge order in these two compounds, imply a very similar competition with three-dimensionally coherent superconductivity.

  5. Design of microchannels for cryostabilization of high temperature superconducting magnets

    Science.gov (United States)

    Cha, Y. S.; Hull, J. R.; Niemann, R. C.

    Microchannel cooling using subcooled liquid nitrogen is proposed to cryogenically stabilize high-temperature superconducting magnets. Various design constraints and parameters are identified and summarized. A graphical method is proposed for the design of microchannel systems. This graphical method helps to reduce the amount of work towards achieving optimum design for a specific application because there are a large number of parameters involved in the design of a microchannel system. The proposed graphical method are illustrated by three examples. The results show that a design window may appear for a given application. Any point within this window is an acceptable design. Another advantage of the graphical method is that, by selecting a design point, the design margin against various design contrains can be easily identified. Any two of the design variables can be selected as the independent variables. The choice depends on specific application and, to a certain extent, on individual preference. The three examples revealed that, for high current density applications, the most scattering constraints are the coolant temperature rise and the fin tip temperatures provided that a moderate pressure drop can be tolerated.

  6. Application of 60 mmphi superconducting bulk magnet to magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, T.; Kashimoto, S.; Imai, A.; Yanagi, Y.; Itoh, Y.; Ikuta, H.; Mizutani, U.; Sakurai, K.; Hazama, H

    2003-10-15

    We constructed the planar magnetron sputtering apparatus using a c-axis oriented single-domain Sm123 bulk superconductor with 60 mm in diameter as a very powerful magnet in place of an ordinary Nd-Fe-B magnet. A high magnetic field of 4.2 T at the surface of the superconductor coupled with a high target voltage of maximum 6 kV enabled us to discharge even at pressure of 1 x 10{sup -3} Pa. A target-to-substrate distance of 300 mm was successfully employed under low pressures of 10{sup -2}-10{sup -3} Pa to make the deposition of almost contamination-free films feasible. The simulation software (JMAG) was used to optimize the magnetic circuit configurations. The simulations could reproduce well the distribution of the magnetic field above the target measured by a three-axial Hall sensor. The discharging characteristics of Cu, Ni and Fe targets in the pressure range over 10{sup -1}-10{sup -3} Pa were studied under different target voltages. The deposition rates of 0.063 nm/s (or 38 Angst/min) and 0.013 nm/s (or 8 Angst/min) were achieved for Cu and Fe targets with 3 mm in thickness, respectively, under the Ar pressure of 6.6 x 10{sup -2} Pa (or 4.9 x 10{sup -4} Torr)

  7. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  8. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  9. Effect of Pr doping on the superconductivity and interlayer coupling of the Bi{sub 2}Sr{sub 2-x}Pr{sub x}Ca{sub 1}Cu{sub 2}O{sub y} system

    Energy Technology Data Exchange (ETDEWEB)

    Salamati, H [Department of Physics, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Kameli, P [Department of Physics, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Razavi, F S [Department of Physics, Brock University, St Catharines, ON L2S 3A1 (Canada)

    2003-08-01

    We investigate the effect of Pr substitution on the superconductivity and interlayer coupling of the Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub y} system. Magnetic and transport measurements were performed for the purposes of characterization. The superconducting transition temperature T{sub c} first increases and then decreases until it becomes zero at x = 0.6. The effective superconducting volume also decreases due to Pr substitution. From the fluctuation conductivity analysis, it is found that the interlayer coupling constant J decreases monotonically with the increase of the Pr content. This result shows that the Pr doping weakens the CuO{sub 2} interlayer coupling of the Bi2212 system due to the loss of local superconductivity in the CuO{sub 2} layers.

  10. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  11. Narrow dip around zero magnetic field in magnetization hysteresis loops of thin YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Delimova, L [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Liniichuk, I [A F Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Laehderanta, E [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Safonchik, M [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland); Traito, K B [Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku (Finland)

    2003-01-01

    A narrow dip is observed around zero magnetic field in magnetization curves M(B) of superconducting YBCO films with about 10 nm thickness. This anomaly occurs in the same field range with an anomaly of ac surface impedance Z(B) found recently in thin YBCO films. Because the thickness of our films is considerably less than the London penetration depth, two-dimensional limit of the critical state model is applied. In the framework of this model the magnetic field dependence of the critical current density j{sub c}(B) is found. The obtained j{sub c}(B) function agrees well with that found in the ac surface impedance investigation.

  12. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    Science.gov (United States)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  13. Enhanced charge stripe order in superconducting La2-xBaxCuO4 in high magnetic fields

    Science.gov (United States)

    Huecker, M.; Zimmermann, M. V.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2013-03-01

    There is mounting evidence for a proximity of the superconducting ground state in the cuprates to competing states with static spin and/or charge density modulations. One such competing state is the spin and charge stripe phase in La2-xBaxCuO4. By means of high energy (100 keV) x-ray diffraction we have studied the effect of a high magnetic field (H||c) on the charge stripe order in a broad range of doping (0.095 <= x <= 0.155). We find that the field can significantly enhance the charge stripe order, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x =1/8 compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of the field. The results imply that static stripe order and three-dimensionally coherent superconductivity are competing ground states. The work at Brookhaven was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy (DOE), under Contract No. DE-AC02-98CH10886.

  14. Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-01-01

    Full Text Available In regard to the rapid development of renewable energy sources, more and more photovoltaic (PV generation systems have been connected to main power networks, and it is critical to enhance their transient performance under short-circuit faults conditions. This paper proposes and studies the coordinated control of a flux-coupling-type superconducting fault current limiter (SFCL and a superconducting magnetic energy storage (SMES, to improve the fault ride through (FRT capability and smooth the power fluctuation of a grid-connected PV generation system. Theoretical analyses of the device structure, operating principle and control strategy are conducted, and a detailed simulation model of 100 kW class PV generation system is built in MATLAB/SIMULINK. During the simulations of the symmetrical and asymmetrical faults, the maximum power point tracking (MPPT control is disabled, and four different cases including without auxiliary, with SFCL, with SMES, and with SFCL-SMES, are compared. From the demonstrated results, the combination of without MPPT and with SFCL-SMES can more efficiently improve the point of common coupling (PCC voltage sag, inhibit the DC-link overvoltage and alleviate the power fluctuation. Finally, a preliminary parameter optimization method is suggested for the SFCL and the SMES, and it is helpful to promote their future application in the real PV projects.

  15. submitter Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

    CERN Document Server

    Garcia-Tabares, Luis; Calero, Jesus; Gutierrez, Jose L; Munilla, Javier; Obradors, Diego; Perez, Jose M; Toral, Fernando; Iturbe, Rafael; Minguez, Leire; Gomez, Jose; Rodilla, Elena; Bajko, Marta; Michels, Matthias; Berkowitz, Daniel; Haug, Friedrich

    2016-01-01

    The present paper describes the development process of a low critical temperature superconducting magnet to be installed in a compact cyclotron producing single-dose radioisotopes for clinical and preclinical applications. After a brief description of the accelerator, the magnet development process is described, starting from the magnetic, mechanical, quench, and thermal calculations, continuing with the designing process, particularly the support structure of the magnet and the cryogenic supply system, to finish with the fabrication and the first tests than have been performed.

  16. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    Institute of Scientific and Technical Information of China (English)

    ZHU Yinfeng; ZHU Zhe; XU Houchang; WU Weiyue

    2012-01-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  17. Heat transfer through cable insulation of Nb-Ti superconducting magnets operating in He II

    Science.gov (United States)

    Granieri, P. P.

    2013-01-01

    The operation of Nb-Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests performed at different applied pressures and heating configurations. The model allows identifying the heat fluxes in the cable cross-section as well as the dimensions of the micro-channels. These dimensions are confirmed by microscope images of the two insulations schemes.

  18. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    Science.gov (United States)

    Zhu, Yinfeng; Zhu, Zhe; Xu, Houchang; Wu, Weiyue

    2012-08-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  19. New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored e...

  20. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    Science.gov (United States)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  1. Magnetization of two coupled rings

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Y [Department of Physics and Ilse Katz Center for Nanotechnology, Ben Gurion University, Beer Sheva 84105 (Israel); Luck, J M [Institut de Physique Theorique, IPhT, CEA Saclay, and URA 2306, CNRS, 91191 Gif-sur-Yvette cedex (France)], E-mail: yshai@bgu.ac.il, E-mail: jean-marc.luck@cea.fr

    2009-05-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum.

  2. Interaction between an electric charge and a magnetic dipole of any kind (permanent, para- or dia- magnetic or superconducting)

    CERN Document Server

    Coïsson, R

    2015-01-01

    The interaction between point charge and magnetic dipole is usually considered only for the case of a rigid ferromagnetic dipole (constant-current): here the analysis of force, momentum and energy (including the energy provided by the internal current generator) is generalised to any magnetic dipole behaviour: rigid, paramagnetic, diamagnetic or superconducting (perfectly diamagnetic).

  3. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Demuer, A.; Sheikin, I.; Braithwaite, D. E-mail: dbraithwaite@cea.fr; Faak, B.; Huxley, A.; Raymond, S.; Flouquet, J

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd{sub 2}Si{sub 2}, an antiferromagnet with a quantum critical point at P{sub C}=28 kbar and UGe{sub 2} an itinerant ferromagnet which transits in a paramagnetic phase above P{sub C}=16 kbar. In CePd{sub 2}Si{sub 2} the superconductivity domain is centered on P{sub C}. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Neel temperatures. In UGe{sub 2} superconductivity appears in 9 kbar at a temperature T{sub S}, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border (P

  4. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Science.gov (United States)

    Demuer, A.; Sheikin, I.; Braithwaite, D.; Fåk, B.; Huxley, A.; Raymond, S.; Flouquet, J.

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd 2Si 2, an antiferromagnet with a quantum critical point at PC=28 kbar and UGe 2 an itinerant ferromagnet which transits in a paramagnetic phase above PC=16 kbar. In CePd 2Si 2 the superconductivity domain is centered on PC. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Néel temperatures. In UGe 2 superconductivity appears in 9 kbar at a temperature TS, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border ( P< PC). Another characteristic temperature TX is detected by resistivity; the zigzag uranium chain of the lattice may favor a supplementary nesting in the majority spin band.

  5. Superconductivity and magnetism in intermetallic Bi3Ni1-xFex superconductor

    Science.gov (United States)

    Gonsalves, Silvio Henrique; Opata, Yuri Aparecido; Pinheiro, Lincoln Brum Leite Gusmão; Da Silva Leal, Adriane Consuelo; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa; de Andrade, André Vitor Chaves; Jurelo, Alcione Roberto

    2016-09-01

    In this work, we investigated the apparent coexistence of superconductivity and magnetism in polycrystalline Bi3Ni1-xFex samples for low concentrations of iron (0 ≤ x ≤ 0.10). The compound was synthesized by the solid-state reaction method and characterized by X-ray diffraction and magnetic measurements. From X-ray, it was observed that the main phase corresponds to an orthorhombic structure with space group Pnma and shows no dependence on the Fe concentration. From magnetic measurements, it was observed that the critical temperature was not affected by iron doping and that ferromagnetism and superconductivity coexist apparently in an interesting interplay.

  6. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  7. Pressure induced superconductivity on the border of magnetic order in MnP.

    Science.gov (United States)

    Cheng, J-G; Matsubayashi, K; Wu, W; Sun, J P; Lin, F K; Luo, J L; Uwatoko, Y

    2015-03-20

    We report the discovery of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure. Superconductivity with T(sc)≈1  K emerges and exists merely near the critical pressure P(c)≈8  GPa, where the long-range magnetic order just vanishes. The present finding makes MnP the first Mn-based superconductor. The close proximity of superconductivity to a magnetic instability suggests an unconventional pairing mechanism. Moreover, the detailed analysis of the normal-state transport properties evidenced non-Fermi-liquid behavior and the dramatic enhancement of the quasiparticle effective mass near P(c) associated with the magnetic quantum fluctuations.

  8. Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxypnictides.

    Science.gov (United States)

    Sanna, S; Carretta, P; Bonfà, P; Prando, G; Allodi, G; De Renzi, R; Shiroka, T; Lamura, G; Martinelli, A; Putti, M

    2011-11-25

    We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe(1-x)Ru(x)AsO(0.85)F(0.15) for 0.1≤x≲0.5. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and eventually disappear around a common critical threshold x(c)~0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x(c).

  9. Magnet tests and status of the superconducting electron cyclotron resonance source SERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Gammino, S.; Cafici, M.; Castro, M.; Chines, F.; Marletta, S. [INFN-Laboratorio Nazionale del Sud, Via S. Sofia 44, 95123 Catania (Italy); Alessandria, F. [INFN-LASA, Via F.lli Cervi 201, 20090 Segrate (Midway Islands) (Italy); Bourg, F.; Briand, P.; Melin, G.; Lagnier, R.; Seyfert, P. [CEA-Departement de Recherche Fondamentale sur la Matiere Condensee, Centre detudes Nucleaires de Grenoble, 38054 Grenoble Cedex 9 (France); Gaggero, G.; Losasso, M.; Penco, R. [ANSALDO-GIE, Via N. Lorenzi 8, 16152 Genova (Italy)

    1996-03-01

    At Laboratorio Nazionale del Sud a superconducting 14.5 GHz electron cyclotron resonance (ECR) source will be used as injector for the K-800 superconducting cyclotron. The original project of its magnetic system has been upgraded by taking into account the results of the high B mode operation of the 6.4 GHz SC-ECRIS at MSU-NSCL and now the mirror field may achieve 2.7 T, which is much higher than the confining field of any other ECR source. The magnet design will allow us to operate in a wide range of magnetic configurations making it easy to tune the source. The status of the project will be outlined and the preliminary results of the tests of the superconducting magnets will be described. A brief description of the tests to be carried out on the source during the first period of operation on the test bench in Grenoble follows. {copyright} {ital 1996 American Institute of Physics.}

  10. Magnetic field effects on the charge-density-wave and superconducting states in pressurized {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kartsovnik, M.V., E-mail: mark.kartsovnik@wmi.badw.de [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Biberacher, W.; Andres, D.; Jakob, S.; Kunz, M.; Neumaier, K. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Mueller, H. [European Synchrotron Radiation Facility, 38043 Grenoble (France); Kushch, N.D. [Institute of Problems of Chemical Physics, 142432 Chernogolovka (Russian Federation)

    2012-06-01

    Coupling of a magnetic field to the orbital and spin degrees of freedom of charge carriers is well known to cause suppression of superconductivity. While the orbital pair-breaking generally dominates in conventional superconductors, the Pauli paramagnetic effect may become important in some heavy fermion compounds or strongly anisotropic materials such as high-T{sub c} or organic superconductors. The same two mechanisms are predicted to be operative also in the case of charge-density-wave (CDW) ordering. However, now they lead to opposite effects: the paramagnetic coupling weakens the CDW interaction whereas the orbital coupling enhances it in a system with an imperfectly nested Fermi surface. Here we report on the experimental evidence of both kinds of magnetic field effects on the CDW and superconducting instabilities in the layered organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under quasihydrostatic pressure.

  11. Magnetic field effects on the charge-density-wave and superconducting states in pressurized α-(BEDT-TTF)2KHg(SCN)4

    Science.gov (United States)

    Kartsovnik, M. V.; Biberacher, W.; Andres, D.; Jakob, S.; Kunz, M.; Neumaier, K.; Müller, H.; Kushch, N. D.

    2012-06-01

    Coupling of a magnetic field to the orbital and spin degrees of freedom of charge carriers is well known to cause suppression of superconductivity. While the orbital pair-breaking generally dominates in conventional superconductors, the Pauli paramagnetic effect may become important in some heavy fermion compounds or strongly anisotropic materials such as high-Tc or organic superconductors. The same two mechanisms are predicted to be operative also in the case of charge-density-wave (CDW) ordering. However, now they lead to opposite effects: the paramagnetic coupling weakens the CDW interaction whereas the orbital coupling enhances it in a system with an imperfectly nested Fermi surface. Here we report on the experimental evidence of both kinds of magnetic field effects on the CDW and superconducting instabilities in the layered organic metal α-(BEDT-TTF)2KHg(SCN)4 under quasihydrostatic pressure.

  12. Neutron scattering study on the magnetic and superconducting phases of MnP

    Science.gov (United States)

    Yano, Shinichiro; Lancon, Diane; Ronnow, Henrik; Hansen, Thomas; Gardner, Jason

    We have performed series of neutron scattering experiments on MnP. MnP has been investigated for decades because of its rich magnetic phase diagram. The magnetic structure of MnP is ferromagnetic (FM) below TC = 291 K. It transforms into a helimagnetic structure at TS = 47 K with a propagation vector q = 0 . 117a* . Superconductivity was found in MnP under pressures of 8 GPa with a TSC around 1 K by J.-G. Cheng. Since Mn-based superconductors are rare, and the superconducting phase occurs in the vicinity of FM, new magnetic and helimagnetic phases, there is a need to understand how the magnetism evolves as one approach the superconducting state. MnP is believed to be a double helix magnetic structure at TS = 47 K. We observed new 2 δ and 3 δ satellite peaks whose intensity are 200 ~ 1000 times smaller than these of 1 δ satellite peaks on the cold triple axis spectrometer SIKA under zero magnetic fields. We also found the periods of helimagnetic structure changes as a function of temperature. If time permits, we will discuss recent experiments under pressure. However, we have complete picture of magnetic structure of this system with and without applied pressure, revealing the interplay between the magnetic and superconducting phases.

  13. New magnetic coherence effect in superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Schröder, A.; Aeppli, G.

    1996-01-01

    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La2-xSrxCuO4. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response...

  14. Novel Ways of Heat Removal from Highly Irradiated Superconducting Windings in Accelerator Magnets

    NARCIS (Netherlands)

    Bielert, Erwin R.; Verweij, Arjan P.; Kate, ten Herman H.J.

    2012-01-01

    Novel ideas of heat removal from superconducting windings in accelerator type magnets are investigated with the help of a recently developed and validated thermal model of a magnet cold mass implemented in COMSOL Multiphysics. Here the focus is on how to improve heat removal from the midplane of a s

  15. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    Science.gov (United States)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  16. Competitions of magnetism and superconductivity in FeAs-based materials

    Institute of Scientific and Technical Information of China (English)

    Yang Shuo; You Wen-Long; Gu Shi-Jian; Lin Hai-Qing

    2009-01-01

    Using the numerical unrestricted Hartree-Fock approach, we study the ground state of a two-orbital model describing newly discovered FeAs-based superconductors. We observe the competition of a (0, π) mode spin-density wave and the superconductivity as the doping concentration changes. There might be a small region in the electron-doping side where the magnetism and superconductivity coexist. The superconducting pairing is found to be spin singlet,orbital even, and coexisting sxy + dx2-y2 wave (even parity).

  17. Classification of magnetic inhomogeneities and 0 -π transitions in superconducting-magnetic hybrid structures

    Science.gov (United States)

    Baker, Thomas E.; Richie-Halford, Adam; Bill, Andreas

    2016-09-01

    We present a comparative study of pair correlations and currents through superconducting-magnetic hybrid systems with a particular emphasis on the tunable Bloch domain wall of an exchange spring. This study of the Gor'kov functions contrasts magnetic systems with domain walls that change at discrete points in the magnetic region with those that change continuously throughout. We present results for misaligned homogeneous magnetic multilayers, including spin valves, for discrete domain walls, as well as exchange springs and helical domain walls—such as Holmium—for the continuous case. Introducing a rotating basis to disentangle the role of singlet and triplet correlations, we demonstrate that substantial amounts of (so-called short-range) singlet correlations are generated throughout the magnetic system in a continuous domain wall via the cascade effect. We propose a classification of 0 -π transitions of the Josephson current into three types, according to the predominant pair correlations symmetries involved in the current. Properties of exchange springs for an experimental study of the proposed effects are discussed. The interplay between components of the Gor'kov function that are parallel and perpendicular to the local magnetization lead to a novel prediction about their role in a proximity system with a progressively twisting helix that is experimentally measurable.

  18. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  19. Radiation hardness of superconducting magnet insulation materials for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Tim

    2013-03-15

    This thesis focuses on radiation degradation studies of polyimide, polyepoxy/glass-fiber composites and other technical components used, for example, in the superconducting magnets of new ion accelerators such as the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz Center of Heavy Ion Research (GSI) in Darmstadt. As accelerators are becoming more powerful, i.e., providing larger energies and beam intensities, the potential risk of radiation damage to the components increases. Reliable data of the radiation hardness of accelerator materials and components concerning electrical, thermal and other technical relevant properties are of great interest also for other facilities such as the Large Hadron Collider (LHC) of CERN. Dependent on the position of the different components, induced radiation due to beam losses consists of a cocktail of gammas, neutrons, protons, and heavier particles. Although the number of heavy fragments of the initial projectiles is small compared to neutrons, protons, or light fragments (e.g. ? particles), their large energy deposition can induce extensive damage at rather low fluences (dose calculations show that the contribution of heavy ions to the total accumulated dose can reach 80 %). For this reason, defined radiation experiments were conducted using different energetic ion beams (from protons to uranium) and gamma radiation from a Co-60 source. The induced changes were analyzed by means of in-situ and ex-situ analytical methods, e.g. ultraviolet-visible and infrared spectroscopy, residual gas analysis, thermal gravimetric analysis, dielectric strength measurements, measurements of low temperature thermal properties, and performance tests. In all cases, the radiation induces a change in molecular structure as well as loss of functional material properties. The amount of radiation damage is found to be sensitive to the used type of ionizing radiation and the long term stability of the materials is

  20. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  1. Coupling InSb quantum dots to a superconducting microwave resonator

    Science.gov (United States)

    Cassidy, Maja; Kammhuber, Jakob; Car, Diana; Plissard, Sebastien; Bakkers, Erik; Dicarlo, Leo; Kouwenhoven, Leo

    2014-03-01

    We present measurements of a superconducting half-wave resonator coupled to two InSb nanowire quantum dots. Precise nanowire alignment at the electric field antinodes at opposite ends of the microwave cavity allows for a maximal electric field along the wire axis, without compromising the intrinsic quality factor of the cavity. This architecture may be useful for reaching the strong coupling limit between a single spin and a microwave photon, paving the way to on-chip coupling of single spins for quantum information processing.

  2. Magnetic Coupling in the Quiet Solar Atmosphere

    CERN Document Server

    Steiner, O

    2009-01-01

    Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfv\\'en and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the ...

  3. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz-1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The

  4. Polymorphism control of superconductivity and magnetism in Cs(3)C(60) close to the Mott transition.

    Science.gov (United States)

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Jeglic, Peter; Arcon, Denis; Potocnik, Anton; Baker, Peter J; Ohishi, Yasuo; McDonald, Martin T; Tzirakis, Manolis D; McLennan, Alec; Darling, George R; Takata, Masaki; Rosseinsky, Matthew J; Prassides, Kosmas

    2010-07-08

    The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition

  5. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Science.gov (United States)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  6. Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator

    Science.gov (United States)

    Koerting, V.; Schmidt, T. L.; Doiron, C. B.; Trauzettel, B.; Bruder, C.

    2009-04-01

    We investigate a superconducting single-electron transistor capacitively coupled to a nanomechanical oscillator and focus on the double Josephson quasiparticle resonance. The existence of two coherent Cooper-pair tunneling events is shown to lead to pronounced back action effects. Measuring the current and the shot noise provides a direct way of gaining information on the state of the oscillator. In addition to an analytical discussion of the linear-response regime, we discuss and compare results of higher-order approximation schemes and a fully numerical solution. We find that cooling of the mechanical resonator is possible and that there are driven and bistable oscillator states at low couplings. Finally, we also discuss the frequency dependence of the charge noise and the current noise of the superconducting single electron transistor.

  7. Improving the design and analysis of superconducting magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh Chandra [Univ. of Rajasthan, Jaipur (India). Dept. of Physics

    1996-11-01

    High energy particle accelerators are now the primary means of discovering the basic building blocks of matter and understanding the forces between them. In order to minimize the cost of building these machines, superconducting magnets are used in essentially all present day high energy proton and heavy ion colliders. The cost of superconducting magnets is typically in the range of 20--30% of the total cost of building such machines. The circulating particle beam goes through these magnets a large number of times (over hundreds of millions). The luminosity performance and life time of the beam in these machines depends significantly on the field quality in these magnets. Therefore, even a small error in the magnetic field shape may create a large cumulative effect in the beam trajectory to throw the particles of the magnet aperture. The superconducting accelerator magnets must, therefore, be designed and constructed so that these errors are small. In this thesis the research and development work will be described 3which has resulted in significant improvements in the field quality of the superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). The design and the field quality improvements in the prototype of the main collider dipole magnet for the Superconducting Super Collider (SSC) will also be presented. RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100 GeV/u and protons up to 250 GeV. It is expected that RHIC will create a hot, dense quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in the early universe.

  8. Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD

    CERN Document Server

    Braguta, V V; Chernodub, M N; Kotov, A Yu; Polikarpov, M I

    2013-01-01

    In the background of the strong magnetic field the vacuum is suggested to possess an electromagnetically superconducting phase characterised by the emergence of inhomogeneous quark-antiquark vector condensates which carry quantum numbers of the charged rho mesons. The rho-meson condensates are inhomogeneous due to the presence of the stringlike defects ("the rho vortices") which are parallel to the magnetic field (the superconducting vacuum phase is similar to the mixed Abrikosov phase of a type-II superconductor). In agreement with these expectations, we have observed the presence of the rho vortices in numerical simulations of the vacuum of the quenched two-color lattice QCD in strong magnetic field background. We have found that in the quenched QCD the rho vortices form a liquid. The transition between the usual (insulator) phase at low B and the superconducting vortex liquid phase at high B turns out to be very smooth, at least in the quenched QCD.

  9. Anomalous magnetism of superconducting Mg-doped InN film

    Directory of Open Access Journals (Sweden)

    P. H. Chang

    2016-02-01

    Full Text Available We report on the Meissner effect of Mg-doped InN film with superconducting transition onset temperature Tc,onset of 5 K. Mg-doped InN is magnetically ordered and exhibits a simultaneous first-order magnetic and electric transition near 50 K. Its behavior is similar to that of iron-based superconductors. A strong correlation is proposed to exist between structural distortion and superconductivity when Mg is doped into InN. The suppression of magnetic ordering close to Tc by doping is further demonstrated by anisotropic magnetoresistance and M-H measurements. The findings suggest that the superconducting mechanism in the system may not be conventional BCS.

  10. Feasibility of Using Conductively Cooled Magnets in Cryomidules of Superconducting Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Terechkine, I. [Fermilab; Cheban, Cheban,S. [Fermilab; Nicol. T., Nicol. T. [Fermilab; Poloubotko, V. [Fermilab; Sergatskov, D. [Fermilab

    2013-09-01

    As part of a search for optimal ways to configure cryomodules of the low-beta section of a high-current, high-power superconducting linac, an option of using conductively cooled superconducting focusing lenses was evaluated. Superconducting magnet was installed inside existing test cryostat, which was modified by adding current feed-throughs and two conductively cooled current leads. Each lead was equipped with heat sinks at the temperatures of liquid nitrogen and liquid helium. The magnet was mounted inside the cryostat on an individual heat sink plate, and thermometers were installed on the leads, heat sinks, and on the magnet. In this report we provide some details of the test setup and analyse results of the temperature measurements.

  11. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    Science.gov (United States)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  12. Quantum information transfer with superconducting flux qubits coupled to a resonator

    CERN Document Server

    Yang, Chui-Ping

    2010-01-01

    We propose a way for implementing quantum information transfer with two superconducting flux qubits, by coupling them to a resonator. This proposal does not require adjustment of the level spacings or uniformity in the device parameters. Moreover, neither adiabatic passage nor a second-order detuning is needed by this proposal, thus the operation can be performed much faster when compared with the previous proposals.

  13. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike [Paul Scherrer Institut (PSI), Villigen (Switzerland)

    2016-11-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques.

  14. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.

    Science.gov (United States)

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike

    2016-09-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques. Copyright © 2016. Published by Elsevier GmbH.

  15. High Temperature Superconducting Magnets: Revolutionizing Next Generation Accelerators and Other Applications (466th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh (BNL Superconducting Magnet Division)

    2011-02-16

    BNL has always been a leader in the world of superconducting magnets, which are essential to the great modern ccelerators such as the Relativistic Heavy Ion Collider at BNL, or the Large Hadron Collider at CERN, Switzerland. These magnets are made of material that, cooled to 4 Kelvins (K) (-452° Farenheit) become superconducting, that is, lose essentially all resistance to electricity. For the past decade, however, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. These materials can operate at the relatively high temperature of 77 K (-351°F), allowing them to be cooled by cheap, plentiful liquid nitrogen, rather than helium, and can create very high magnetic fields. Now far in the lead of this area of research, BNL scientists are exploring avenues for high temperature superconducting magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth’s. If successful, these new magnets could potentially revolutionize usage in future accelerators, play a key role in energy efficiency and storage, and make possible new applications such as muon colliders and MRI screening in remote areas.

  16. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  17. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  18. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  19. Enhancement of critical current in mesoscopic superconducting strips by external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ilin, Konstantin; Henrich, Dagmar; Luck, Yannick; Fuchs, Lea; Meckbach, Johannes Maximilian; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2013-07-01

    Current crowding in superconducting mesoscopic strips with bends results in decrease of critical current in these structures with respect to the strips without geometrical non-uniformities. Recently it has been shown that Meissner currents induced by externally applied magnetic field of appropriate direction allow to suppress this effect so that I{sub c}(B) can exceed I{sub c}(0). Experimental dependencies of critical current in mesoscopic bended strips made from ultra-thin superconducting films on externally applied magnetic field and their comparison to the theoretical predictions are presented and discussed.

  20. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    Science.gov (United States)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  1. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)

    2010-01-15

    In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  2. Frustrated magnetic response of a superconducting Nb film with a square lattice of columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Zadorosny, R; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C M [Universidade Federal do Parana, Departamento de Fisica, Curitiba, PR (Brazil); Patino, E; Blamire, M G [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)], E-mail: rafazad@df.ufscar.br

    2008-02-01

    The magnetic response of a superconducting system presenting a frustrated state is investigated. The system is a superconducting film with mechanically pierced columns, cooled in a field which is then removed. Frustration originates from the competition between return flux of a dipole - created by flux trapped in the empty columns - and flux exclusion by the surrounding superconductor in the Meissner state. The system resolves the incompatibility among conflicting constraints, leading to frustration, by eliminating return flux, which is possibly assimilated by nearby columns, as manifested by a sudden reduction of the magnetic moment on the decreasing field branch of the hysteresis loop.

  3. Precooling of a superconducting magnet using a cryocooler and thermal switches.

    Science.gov (United States)

    Yamamoto, J; Yanai, M

    1979-11-01

    A simple precooling system for a superconducting magnet is developed using a Cryomech GB02 cryocooler and gas filled thermal switches. A superconducting magnet (NbTi wire, 7 T of maximum field, 5.6 kg of weight) is precooled to 16 K in about 70 h without any manual control. Heat transfer rate of each thermal switch (H2 or N2 gas filled at 1.3 MPa at room temperature) is about 3x10(-1) W/K during the ON state, and 5x10(-3) W/K during the OFF state.

  4. Design of a superconducting insert to obtain a high and quasi-uniform magnetic force field

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, Jean [GREEN, University of Nancy BP 239, 54506 Vandoeuvre (France); Netter, Denis [GREEN, University of Nancy BP 239, 54506 Vandoeuvre (France); Quettier, Lionel [DAPNIA, CEA Saclay (France); Mailfert, Alain [INPL, 2 av de la foret de Haye, 54516 Vandoeuvre (France)

    2005-10-01

    In this paper, we study the magnetic force generated by the combination of a solenoid and a superconducting ring insert. We have focused our study on the uniformity of the magnetic force. We use a genetic algorithm to determine the optimal shape of the superconducting ring. We are able to obtain uniformity of 0.5% variance. We also study the influence of several factors on uniformity, such as the critical current of the coil, the ring, and the size of the working area.

  5. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    Science.gov (United States)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  6. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb3Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associated ...

  7. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  8. Effects of pressure and magnetic field on superconductivity in ZrTe3: local pair-induced superconductivity

    Science.gov (United States)

    Tsuchiya, S.; Matsubayashi, K.; Yamaya, K.; Takayanagi, S.; Tanda, S.; Uwatoko, Y.

    2017-06-01

    In this work, the origin of the highly anisotropic superconducting transition in ZrTe3, where the resistance along the a axis, R a , is reduced at 4 K but those along the b axis, R b , and {c}\\prime axis, R c‧, are reduced at 2 K, was explored with the application of a magnetic field and pressure by the electrical resistance measurements. We found that the behavior of the upper critical field and its anisotropy as well as the pressure dependence determined by the R a measurements are quite similar to those of R b . Moreover, the excess conductivity for R b indicates anomalous behavior. These results support an unconventional origin for the anisotropic transition rather than conventional superconducting fluctuation. The reduction in R a is due to filamentary superconductivity (SC) induced by locally bound electron pairs (local pairs), which correspond to bi-polarons, and the transition of R b corresponds to the emergence of bulk SC originating from the Cooper pairs triggered by the transfer of the local pairs.

  9. Local magnetic order vs superconductivity in a layered cuprate

    Science.gov (United States)

    Ichikawa; Uchida; Tranquada; Niemoller; Gehring; Lee; Schneider

    2000-08-21

    We report on the phase diagram for charge-stripe order in La1.6-xNd0. 4SrxCuO4, determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x approximately 1 / 8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.

  10. Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-19

    We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO{sub 3} heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.

  11. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  12. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  13. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    Science.gov (United States)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  14. Mechanics of a magnet and a Meissner superconducting ring at arbitrary position and orientation

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Diaz, J.L., E-mail: jlperez@ing.uc3m.e [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15. E28911 Leganes (Spain); Garcia-Prada, J.C.; Diaz-Garcia, J.A. [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque, 15. E28911 Leganes (Spain)

    2009-04-01

    The force and torque exerted by a magnetic dipole on a superconducting ring (or hollow cylinder) in the Meissner state at arbitrary position and orientation are calculated using a Maxwell-London model previously proposed by the authors. The center of the ring is an unstable equilibrium point for the magnet. At this point the ring tends to align the magnet but tends to expel it for any small axial deviation from the center. There is also a non-monotonic and oscillatory dependence of the forces and torques on the position caused by the finiteness of the ring and a torque arises when the magnet is displaced both radially and axially from the center of the cylinder which corresponds to the experimental data. Therefore, the use of a magnet in a Meissner superconducting ring as a self aligning bearing requires a centered position and that the axial unstability to be compensated by additional mechanical means.

  15. Possible coexistence of superconductivity and magnetic order in NdPt2B2C

    Indian Academy of Sciences (India)

    S K Dhar; A D Chinchure; E Alleno; C Godart; L C Gupta; R Nagarajan

    2002-05-01

    Coexistence of superconductivity and magnetic order has been one of the exciting aspects of the quaternary borocarbide superconductors. So far, RNi2B2C (R=Tm, Er, Ho and Dy) are the only known magnetic superconductors in this family. Here, we present our resistivity, magnetization and heat capacity studies on NdPt2B2C (nominal composition, NdPt1.5Au0.6B2C and NdPt2.1B2.4C1.2). We find superconductivity in both samples with c,onset∼ 3 K. Bulk magnetic order is found to occur below 1.7 K. We suggest that NdPt2B2C is a possible magnetic superconductor.

  16. Superconducting Magnets for the 12 GeV Upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Young, Glenn R. [JLAB

    2015-06-01

    Jefferson Laboratory is embarked on an energy upgrade to its flagship continuous electron beam accelerator in order to expand the scope of its research capabilities and probe further into the structure of nuclear particles. The 12 GeV upgrade includes the design, manufacture, integration, installation and commissioning of eight different superconducting magnets in three separate experimental halls. The effort involves other national laboratories, universities and industry spanning three countries. This paper will summarize the key characteristics of these magnets, ranging in size from 0.2 to 23 MJ in stored energy, and featuring many different types and configurations. The paper will also give an overview of the specific technical challenges for each magnet, and a status report on magnet manufacture and expected delivery dates. The 12GeV upgrade at J-Lab represents the largest superconducting magnet fabrication and installation program currently ongoing in the United States and this paper will present the breadth of collaborations supporting it.

  17. DFBX boxes - electrical and cryogenic distribution boxes for the superconducting magnets in the LHC straight sections

    CERN Document Server

    Zbasnik, J P; Gourlay, S A; Green, M A; Hafalia, A Q; Kajiyama, Y; Knolls, M J; La Mantia, R F; Rasson, J E; Reavill, D; Turner, W C

    2003-01-01

    DFBX distribution boxes provide cryogenic and electrical services to superconducting quadrupoles and to a superconducting dipole at either end of four of the long straight sections in the LHC. The DFBX boxes also provide instrumentation and quench protection to the magnets. Current for the quadrupole and the dipole magnet is delivered through leads that combine HTS and gas cooled leads. Current for the 600 A and 120 A correction magnets is provided by pure gas-cooled leads. The bus bars from the leads to the magnets pass through low leak-rate lambda plugs between 1.8 K and 4.4 K. The heat leak into the 1.9 K region from the liquid helium tank is determined by the design of the lambda plugs. This paper describes the DFBX boxes and their function of delivering current and instrumentation signals to the magnets. (2 refs).

  18. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    Science.gov (United States)

    TonThat, Dinh M.; Clarke, John

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect 27Al NQR signals in ruby (Al2O3[Cr3+]) at 359 and 714 kHz.

  19. Magnetic proximity effect and superconducting triplet correlations at the cuprate superconductor and oxide spin valve interface

    Science.gov (United States)

    Ovsyannikov, G. A.; Constantinian, K. Y.; Demidov, V. V.; Khaydukov, Yu. N.

    2016-10-01

    A heterostructure consisting of a cuprate superconductor YBa2Cu3O7-δ and a ruthenate/manganite (SrRuO3/La0.7Sr0.3MnO3) spin valve was studied using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that because of the magnetic proximity effect a magnetic moment is excited in the superconducting portion of the heterostructure, whereas the magnetic moment in the spin valve becomes suppressed. The experimentally obtained value of a typical penetration depth of a magnetic moment into the superconductor is significantly greater than the coherence length of the cuprate superconductor, which indicates that the induced magnetic moment mechanism of Cu atoms is dominant. The mesastructure prepared by adding niobium film as a second superconducting electrode to the existing heterostructure, exhibited a superconducting current (dc Josephson effect) at interlayer thicknesses that are much greater than the coherence length of the ferromagnetic materials. The maximum of the critical current density dependence on the thickness of the spin valve material corresponds to the interlayer coherence length, which agrees with the theoretical predictions associated with spin-triplet pairing. The superconducting current is observed at magnetic fields that are two orders of magnitude greater than the field corresponding to the occurrence of one magnetic flux quantum in the mesastructure. The ratio of the second harmonic of the current-phase dependence of the mesastructure superconducting current to the first, determined according to the dependence of the Shapiro steps on the amplitude of microwave exposure, did not exceed 50%.

  20. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  1. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  2. Magnetic Exchange Between Superconducting and Ferromagnetic Oxide Layers

    Science.gov (United States)

    Giblin, Sean; Taylor, Jon; Duffy, Jon; Dugdale, Stephen; Nakamura, T.; Santamaria, Jacobo

    2012-02-01

    The origins of high temperature superconductivity and the rich phase diagrams in complex oxides are still a matter of contention that have stimulated many novel experimental studies and observations. Recently the improvement of layer by layer growth techniques of thin films has enabled investigations of both bulk and surface properties. For most common superconductors the order parameter is thought to be antagonistic to that of the exchange mechanism in ferromagnets. Accurately grown thin fllms have enabled these competing interactions to be probed experimentally. In particular, the growth of epitaxial oxide layers, with well-characterized atomically flat interfaces, consisting of superconducting layers of YBa2Cu3O7 (YBCO) and lattice-matched ferromagnetic La2/3Ca1/3MnO3 (LCMO) has flourished. Using XMCD we demonstrate that the known superexchange between Mn and Cu across the YBCO/LCMO is modified when an apparent critical thickness of the superconducting layer is reduced. All samples show an apparent exchange below the superconducting transition but above it is dependent on the YBCO thickness. Possible origins of this behaviour will be discussed.

  3. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    Science.gov (United States)

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  4. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  5. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  6. Study on cooling process of cryogenic system for superconducting magnets of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    ZONG Zhan-Guo; LIU Li-Qiang; XIONG Lian-You; LI Shao-Peng; XU Qing-Jin; HE Kun; ZHANG Liang; GAO Jie

    2008-01-01

    In the upgrade project of the Beijing Electron Positron Collider(BEPCⅡ),three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity.A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics(IHEP)to support the operations of these superconducting devices.For preparing the commissioning of the system,the refrigeration process Was simulated and analyrzed numerically.The numerical model Was based on the latest engineering progress and focused on the normal operation mode.The pressure and temperature profiles of the cryogenic system are achieved with the simulation.The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.

  7. Optical Probe of the Superconducting Normal Mixed State in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S. -J.; Nagler, P. C.; Smith, S. J.

    2016-01-01

    Using ultraviolet photon pulses, we have probed the internal behavior of a molybdenum-gold Magnetic Penetration Thermometer (MPT) that we designed for x-ray microcalorimetry. In this low-temperature detector, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons. We have previously described an approximate model that explains the high responsivity of the detector to temperature changes as a consequence of a Meissner transition of the molybdenum-gold film in the magnetic field applied by the superconducting circuit used to bias the detector. We compare measurements of MPT heat capacity and thermal conductance, derived from UV photon pulse data, to our model predictions for the thermodynamic properties of the sensor and for the electron cooling obtained by quasiparticle recombination. Our data on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  8. Competing superconducting channels in iron pnictides from the strong coupling theory with biquadratic spin interactions

    Science.gov (United States)

    Yu, Rong; Nevidomskyy, Andriy H.

    2016-12-01

    We study the symmetry and strength of the superconducting pairing in a two-orbital t-{{J}1}-{{J}2}-K model for iron pnictides using the slave boson strong coupling approach. We show that the nearest-neighbor biquadratic interaction -K{{({{S}i}\\cdot {{S}j})}2} strongly affects the superconducting pairing phase diagram by promoting the {{d}{{x2}-{{y}2}}} B 1g and the {{s}{{x2}+{{y}2}}} A 1g channels. The resulting phase diagram consists of several competing pairing channels, including the isotropic {{s}+/-} A 1g channel, an anisotropic {{d}{{x2}-{{y}2}}} B 1g channel, and two s+\\text{i}d pairing channels. We have investigated the evolution of superconducting states with electron doping, and find that the biquadratic interaction plays a crucial role in stabilizing the s+\\text{i}d and even pure d-wave pairing in the heavily electron- and hole-doped regimes. In addition, we identify a novel orbital-B 1g pairing channel, which has a s-wave form factor but a B 1g symmetry. This channel has a comparable pairing amplitude to the d-wave pairing, and may strongly influence the superconducting gap anisotropy of the system in the overdoped regime. These findings are crucial in understanding the doping evolution of the superconducting gap anisotropy observed by angle resolved photoemission spectroscopy in the iron pnictides and iron chalcogenides, including the heavily K-doped BaFe2As2 and K-doped FeSe films.

  9. Magnetically Coupled Impedance-Source Inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    input-to-output gain and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters, most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...

  10. Magnetically coupled impedance-source inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2012-01-01

    input-to-output gain, and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters. Most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...

  11. Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC

    CERN Document Server

    Venturini-Delsolaro, W; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Charrondiere, C; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Karppinen, M; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Remondino, V; Reymond, H; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schirm, K; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiesen, H; Vergara Fernandez, A; Verweij, A; Wolf, R; Zerlauth, M

    2008-01-01

    The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1446 different electrical circuits at currents ranging from 60 A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated group. All together, about 60000 high current connections had to be made. A fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain parallel protection resistors to by-pass the current still flowing in the other magnets of the same circuit when they quench. In this paper the performance of these magnet circuits is presented, focussing on the quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits are compar...

  12. Heat load tests of superconducting magnets vibrated electromagnetically for the Maglev train

    Science.gov (United States)

    Ohmori, J.; Nakao, H.; Yamashita, T.; Sanada, Y.; Shudou, M.; Kawai, M.; Fujita, M.; Terai, M.; Miura, A.

    Superconducting magnets on Maglev trains vibrate due to harmonic ripples of electromagnetic flux generated by ground coils. Heat load caused by vibration in the magnet amounted to several tens of watts in the electromagnetic vibration test. This was mainly because a.c. loss was induced in the helium vessel housing the superconducting coil, due to relative vibration between the aluminium thermal shield and the coil. The heat load caused by vibration should be strictly restricted to less than 4W due to limited cryogenic refrigeration capacity. The heat load was tested using electromagnetic flux ripples for a superconducting magnet model of one coil which corresponds to 1/4 of an actual magnet. The flux ripples simulated the 6th harmonic of the actual ground levitation coil. Some ideas to reduce the heat load were tried for the magnet model, such as applying high resistance thermal radiation shielding, increasing rigidity of the vacuum vessel, and using high purity copper plating on the helium vessel. These ideas proved effective, and the maximum heat load due to vibration was held to less than 4 W per magnet for the one coil magnet model.

  13. Thermal and magnetic behaviors of a melt-textured superconducting bulk magnet in the zero-field-cooling magnetizing process

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T [Faculty of Engineering, Niigata University, 8050 Ikarashi-Nino-cho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K [Ashikaga Department of Electrical and Electronic Engineering, Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Fujishiro, H; Noto, K [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: okat@eng.niigata-u.ac.jp

    2009-06-15

    The heat generation and magnetic field trapping behaviors of the melt-textured single-domain Sm-Ba-Cu-O bulk superconductor have been precisely investigated in the zero-field-cooling magnetizing processes (ZFC). The temperature and magnetic flux density were simultaneously measured in the temperature range of 50-60 K. Since the invasion of magnetic flux is suppressed by the superconducting pinning effect, the applied magnetic field is not supplied to the whole of the sample. Therefore, the trapped field distributions consequently exhibit trapezoid shapes. According to the balance of heat generation and draining, the temperature profiles show us distinctive behaviors of magnetic fluxes. Both the temperature and the magnetic flux density kept increasing even after the external magnetic field has stopped growing at 5 T. This is attributed to the flux creeping phenomenon which propagates from the periphery to the center portion of the sample like a snow slide. The highest temperature rise due to the flux motion reached 7.5 K even when the sample was magnetized at a slow sweeping rate of 5.06 mT s{sup -1}. As the temperature profiles were different between the ascending and descending field processes, it is suggested that the magnetic fluxes invade in and diffuse out in different heating manners between the processes. This assists the hypothesis that the time while the moving fluxes heat the sample strongly affects the total amount of heat generation, which acts contrary to the FC case. This behavior implies that the improvements of the heat propagation property of the HTS bulk material by embedding metallic membranes and more powerful/efficient cooling systems must suppress the temperature increases and enhance the field trapping abilities.

  14. A new ring-shape high-temperature superconducting trapped-field magnet

    Science.gov (United States)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  15. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  16. A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials

    Institute of Scientific and Technical Information of China (English)

    俎栋林; 郭华; 宋枭禹; 包尚联

    2002-01-01

    The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4 × 6 layers of superconducting wires is de signed The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/Bo in the single-solenoid magnet is 30%lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.

  17. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  18. Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects.

    Science.gov (United States)

    Zapf, Sina; Dressel, Martin

    2017-01-01

    Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu(2+) magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.

  19. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    CERN Document Server

    Salmi, T; Caspi, S; Felice, H; Prestemon, S; Chlachidze, G; Kate, H H J ten

    2013-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  20. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...

  1. AC Loss in the Superconducting Cables of the CERN Fast Cycled Magnet Prototype

    NARCIS (Netherlands)

    Borgnolutti, F.; Bottura, L.; Nijhuis, A.; Zhou, C.; Liu, B.; Miyoshi, Y.; Krooshoop, H.J.G.; Richter, D.

    2012-01-01

    Fast Cycled Superconducting Magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. The economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 0.5 Hz repetition rate, depends critically on the AC loss pr

  2. Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects

    Science.gov (United States)

    Zapf, Sina; Dressel, Martin

    2017-01-01

    Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu2+ magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.

  3. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  4. Numerical calculation of superheating magnetic fields and currents for superconducting slabs

    Science.gov (United States)

    Landau, I. L.; Rinderer, L.

    1995-08-01

    Numerical calculations of superheating magnetic fields and superheating currents for superconducting slabs for a wide range of the sample thickness are presented. The calculations were made for low values of Ginzburg-Landau parameter κ, i.e., for type-1 superconductors. We propose also experimental procedures to measure superheating fields and currents in films and bulk samples.

  5. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  6. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  7. Superconductivity and Magnetism in Organic Materials Studied with μSR

    Science.gov (United States)

    Pratt, Francis

    2016-09-01

    A review is given of the current status and recent progress in the use of μSR for the study of superconductivity and magnetism in organic materials. For organic superconductors, important factors are discussed that influence the observed μSR line widths and their field and temperature dependences in the superconducting state. The accumulated μSR results give direct information about the scaling relationship between superfluid stiffness and transition temperature that provides a strong constraint for theories of organic superconductors. For organic magnetism, μSR offers a sensitive probe for detecting various weak magnetic phenomena ranging from spin-density-wave transitions through spin dynamics and 3D ordering of Heisenberg chain systems to field induced magnetism of quantum spin liquids. Finally, experiments are described that focus on two current issues in organic spintronics: direct measurement of the spin coherence length and the identification of the relative importance of different mechanisms of spin decoherence.

  8. Fabrication of a superconducting cable for construction of Hi-Lumi Magnet

    CERN Multimedia

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables made from state-of-the-art Nb3Sn conductor. The video shows the production of a long length Nb3Sn cable that will be use in a 11 T High Luminosity LHC dipole magnet.

  9. LETTER TO THE EDITOR: Experimental evidence for Fröhlich superconductivity in high magnetic fields

    Science.gov (United States)

    Harrison, N.; Mielke, C. H.; Singleton, J.; Brooks, J. S.; Tokumoto, M.

    2001-05-01

    Resistivity and irreversible magnetization data taken within the high magnetic field CDWx phase of the quasi-two-dimensional organic metal α-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.

  10. Magnetic design and modelling of a 14 mm-period prototype superconducting undulator.

    Science.gov (United States)

    Mishra, G; Gehlot, Mona; Sharma, Geetanjali; Trillaud, Frederic

    2017-03-01

    The magnetic design of a ten-period (each period 14 mm) prototype superconducting undulator is reported using RADIA. The results of modelling the magnetic flux density are presented in an analytical formula. The dependence of the field integrals and phase error on the current density and undulator gap has been calculated, and temperature curves are determined for the models and are compared with earlier reported Moser-Rossmanith fits.

  11. Finite Element Model of Training in the superconducting quadrupole magnet SQ02

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, Shlomo; Ferracin, Paolo

    2007-11-01

    This paper describes the use of 3D finite element models to study training in superconducting magnets. The simulations are used to examine coil displacements when the electromagnetic forces are cycled, and compute the frictional energy released during conductor motion with the resulting temperature rise. A computed training curve is then presented and discussed. The results from the numerical computations are compared with test results of the Nb{sub 3}Sn racetrack quadrupole magnet SQ02.

  12. Detection of magnetic nanoparticles with a large scale AC superconducting susceptometer

    Science.gov (United States)

    Hincapie Ladino, E. A.; Zufelato, N.; Bakuzis, A. F.; Oliveira Carneiro, A. A.; Covas, D. T.; Baffa, O.

    2017-08-01

    Magnetic nanoparticles (MNPs) are being used in several applications in medicine such as hyperthermia, magnetic particle imaging, in vitro and in vivo bioassay, and still there are many other possibilities for use of these particles to come as research progress in this field. One crucial step of its use is the detection of these particles when present in a certain tissue. For in vitro bioassay, the sample can be harvested and placed inside the detector in optimal conditions to favor sensitivity. However, for in vivo human measurements the system must be noninvasive and conform to the anatomic restrictions requiring sensitive detectors and dedicated setups. In this study, we detect nanoparticles with an AC biosusceptometer having an excitation homogeneous magnetic field with 145 μT, provided by a set of rectangular large Rubens coils driven at 10 Hz. The magnetization induced in the sample was detected by a second-order axial gradiometer (20 mm in diameter and 40 mm of baseline) coupled to an RF Superconducting Quantum Interference Device (SQUID) model 330X (BTi). The MNPs used were manganese ferrite-based surface-coated with citric acid ({{M}}{{n}}{{F}}{{{e}}}2{{{O}}}4-{{C}}{{i}}{{t}}{{r}}{{a}}{{t}}{{e}}), dissolved in water at various concentrations. The colloid is stable at physiological conditions. X-ray diffraction confirmed the spinel structure and using Scherrer’s relation revealed a particle size of 17.3 nm. The magnetization curve showed a typical superparamagnetic behavior with a specific saturation magnetization of 51.2 emu g-1. The stock solution of nanoparticles had a concentration of 23.17 mg ml-1, corresponding to 1.7 × 1015 NPs ml-1. Measurements were made in a volume of 30 ml with 20 × 103-100 × 103 dilutions of the stock solution of nanoparticles and performed at distances of 1.1, 1.5 and 2.5 cm from the top of the sample vial to the closest coil of the gradiometer. The limits of detection were 8.1 × 109 NP ml-1, 9.5 × 109 NP ml-1 and 11

  13. Local Magnetic Order vs Superconductivity in a Layered Cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, N. [Department of Superconductivity, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, (Japan); Uchida, S. [Department of Superconductivity, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, (Japan); Tranquada, J. M. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Niemoeller, T. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, (Germany); Gehring, P. M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Lee, S.-H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); University of Maryland, College Park, Maryland 20742 (United States); Schneider, J. R. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, (Germany)

    2000-08-21

    We report on the phase diagram for charge-stripe order in La{sub 1.6-x} Nd{sub 0.4}Sr {sub x}CuO{sub 4} , determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x , and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x{approx_equal}(1/8) . This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations. (c) 2000 The American Physical Society.

  14. Principles Developed for the Construction of the High Performance, Low-cost Superconducting LHC corrector Magnets

    CERN Document Server

    Allitt, M; Ijspeert, Albert; Karppinen, M; Mazet, J; Pérez, J; Salminen, J; Karmarkar, M; Puntambekar, A

    2002-01-01

    The Large Hadron Collider (LHC) needs more than 6000 superconducting corrector magnets. These must be sufficiently powerful, have enough margin, be compact and of low cost. The development of the 11 types of magnets was spread over several years and included the magnetic and mechanical design as well as prototype building and testing. It gradually led to the systematic application of a number of interesting construction principles that allow to realize the above mentioned goals. The paper describes the techniques developed and presently used in practically all the LHC corrector magnets ranging from dipoles to dodecapoles.

  15. Topology optimization of magnetic source distributions for diamagnetic and superconducting levitation

    Science.gov (United States)

    Kuznetsov, Sergey; Guest, James K.

    2017-09-01

    Topology optimization is used to obtain a magnetic source distribution providing levitation of a diamagnetic body or type I superconductor with maximized thrust force. We show that this technique identifies non-trivial source distributions and may be useful to design devices based on non-contact magnetic suspension and other magnetic devices, such as micro-magneto-mechanical devices, high field magnets etc. Diamagnetic and superconducting suspensions are often used in physical experiments and thus we believe this approach will be interesting to physics community as it may generate non-trivial and often unexpected topologies and may be useful to create new experiments and devices.

  16. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [IHEP, Protvino, Moscow region, 142284 (Russian Federation); ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); Buividovich, P.V. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); JINR, Joliot-Curie str. 6, Dubna, Moscow region, 141980 (Russian Federation); Institute of Theoretical Physics, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Chernodub, M.N., E-mail: maxim.chernodub@lmpt.univ-tours.fr [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Kotov, A.Yu.; Polikarpov, M.I. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); MIPT, Institutskii per. 9, Dolgoprudny, Moscow region, 141700 (Russian Federation)

    2012-12-05

    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged {rho} mesons if the strength of the magnetic field exceeds the critical value eB{sub c}=0.927(77) GeV{sup 2} or B{sub c}=(1.56{+-}0.13) Dot-Operator 10{sup 16} Tesla. The condensation of the charged {rho} mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  17. The research of parallel-coupled linear-phase superconducting filter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai, E-mail: kyang@uestc.edu.cn; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-15

    Highlights: • Parallel-connected linear phase filter can be achieved when the group delays of sub-networks compensate each other. • We give the coupling and routing diagrams of four linear phase filters with self-synthesized coupling matrixes, and verified the correctness of theory data and the feasibility of the circuit design. • There are a variety of topological coupling and routing diagrams for a same order filter. • We give a reasonable arrangement of design steps for high-order parallel-coupled linear phase filter. - Abstract: This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO{sub 3}/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than −12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  18. Repeated magnetization with temperature control in a high-Tc superconducting bulk; Ondo seigyo wo tomonatta koon chodendo baaruku tai no dotai no kurikaeshi no chakuji ho

    Energy Technology Data Exchange (ETDEWEB)

    Kamijo, H.; Fujimoto, H. [Railway tech. Research Inst., Tokyo (Japan)

    2000-05-29

    It examines applicability of the hulk magnet which uses magnetize-ingly the high-temperature superconductivity bulk body to the superconducting magnet for levitation system railway. It must be magnetized to the superconductive bulk body in respect of as much as possible large magnetic flux in order to obtain the powerful bulk magnet. Therefore, large coil for the impression magnetic field and power are required, and there is a problem of the growth of large electromagnetic mosquito even in the magnetizing process. Then, it is trying the method for magnetizing large magnetic field to the superconductive bulk body by comparatively small impression magnetic field by the method for repeatedly carrying out field cool and pulse magnetizing, while it gradually lowers the temperature of the superconductive bulk body from the critical temperature. (NEDO)

  19. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  20. The role of superconductivity in magnetic bearings for high-load applications

    Science.gov (United States)

    Downer, James; Eisenhaure, David

    1993-01-01

    Slewing of large payloads will require control torque and angular momentum storage capacities that are large in comparison to the capabilities of available control moment gyros (CMG's). SatCon Technology Corporation is currently designing a CMG which may be employed as a slew actuator for large spacecraft or other payloads. The slew actuator employs a type of magnetic bearing which may be used in high load applications. The magnetic bearing is also used to fully gimbal the suspended rotor of the slew actuator. The use of magnetic bearings in angular momentum exchange actuators has the primary advantage that physical contact between the rotor and stator is eliminated. This leads to greatly extended life, increased reliability, and reduced vibrations. Several actuators operating on magnetic bearings have been demonstrated in previous research efforts. These were sized for use in small satellites. For conventional magnetic bearings, which employ magnetic cores, high torsional loading may require that the magnetic structure be excessively massive. An alternative magnetic bearing design which employs a superconducting coil and eliminates conventional magnetic structures is discussed. The baseline approach is to replace the field coil of a conventional magnetic bearing with the superconducting coil.

  1. Magnetic levitation using a stack of high temperature superconducting tape annuli

    Science.gov (United States)

    Patel, A.; Hahn, S.; Voccio, J.; Baskys, A.; Hopkins, S. C.; Glowacki, B. A.

    2017-02-01

    Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite J c can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.

  2. Superconducting/magnetic Three-state Nanodevice for Memory and Reading Applications.

    Science.gov (United States)

    del Valle, J; Gomez, A; Gonzalez, E M; Osorio, M R; Granados, D; Vicent, J L

    2015-10-15

    We present a simple nanodevice that can operate in two modes: i) non-volatile three-state memory and ii) reading device. The nanodevice can retain three well defined states -1, 0 and +1 and can operate in a second mode as a sensor for external magnetic fields. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film gown on Si substrates. The device runs based on the combination of superconducting vortex ratchet effect (superconducting film) with the out of plane magnetization (nanomagnets). The input signals are ac currents and the output signal are dc voltages. The memory mode is realized without applying a magnetic field and the nanomagnet stray magnetic fields govern the effect. In the sensor mode an external magnetic field is applied. The main characteristic of this mode is that the output signal is null for a precise value of the external magnetic field that only depends on the fabrication characteristics of the nanodevice.

  3. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  4. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  5. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    Science.gov (United States)

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  6. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  7. Antenna-Coupled Superconducting Tunnel Junctions with Single-Electron Transistor Readout for Detection of Sub-mm Radiation

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  8. Superconductivity enhanced by d-density wave: A weak-coupling theory

    Science.gov (United States)

    Ha, Kim; Subok, Ri; Ilmyong, Ri; Cheongsong, Kim; Yuling, Feng

    2011-04-01

    Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/ t=3.4, since the antiferromagnetic instability occurs for higher values of U/ t.

  9. Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1-xCox)2As2

    DEFF Research Database (Denmark)

    Larsen, Jacob; Uranga, B. Mencia; Stieber, G.

    2015-01-01

    We have studied the magnetic and superconducting properties of Ba(Fe1-xCox)2As2 as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist...

  10. The research of parallel-coupled linear-phase superconducting filter

    Science.gov (United States)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-01

    This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO3/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than -12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  11. Magnon-phonon coupling and implications for charge-density wave states and superconductivity in cuprates

    Science.gov (United States)

    Struzhkin, Viktor V.; Chen, Xiao-Jia

    2016-10-01

    The mechanism of high-temperature superconductivity of copper oxides (cuprates) remains unsolved puzzle in condensed matter physics. The cuprates represent extremely complicated system, showing fascinating variety of quantum phenomena and rich phase diagram as a function of doping. In the suggested "superconducting glue" mechanisms, phonon and spin excitations are invoked most frequently, and it appears that only spin excitations cover the energy scale required to justify very high transition temperature Tc ˜ 165 K (as in mercury-based triple layer cuprates compressed to 30 GPa). It appears that pressure is quite important variable helping to boost the Tc record by almost 30°. Pressure may be also considered as a clean tuning parameter, helping to understand the underlying balance of various energy scales and ordered states in cuprates. In this paper, a review of mostly our work on cuprates under pressure will be given, with the emphasis on the interactions between phonon and spin excitations. It appears that there is a strong coupling between superexchange interaction and stretching in-plane oxygen vibrations, which may give rise to a variety of complex phenomena, including the charge-density wave state intertwined with superconductivity and attracting a lot of interest recently.

  12. Direct observation of a helical magnetic order near the superconducting state of MnP under pressure

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Rosenbaum, T. F.

    A recent high-pressure electrical transport study of the 3d transition metal compound MnP manifested a complex pressure-temperature phase diagram of different types of magnetism and superconductivity. However, the nature of the high-pressure magnetic phase proximate to the superconducting state was not determined. We use non-resonant X-ray magnetic diffraction to probe the magnetic order in MnP under pressure. We discover incommensurate helical order in a confined region under high pressure, and ascertain the phase boundary through the pressure evolution of the lattice. Although the antiferromagnetic and superconducting phases are separated, there is no signature of a strong first-order phase transition between them. We discuss how our direct observation of a helimagnetic order in MnP helps to better understand aspects of magnetically-mediated superconductivity.

  13. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  14. Magnetic remanent states in antiferromagnetically coupled multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, N.S., E-mail: m.kyselov@ifw-dresden.d [IFW Dresden, Postfach 270116, D-01171 Dresden (Germany); Donetsk Institute for Physics and Technology, 83114 Donetsk (Ukraine); Roessler, U.K.; Bogdanov, A.N. [IFW Dresden, Postfach 270116, D-01171 Dresden (Germany); Hellwig, O. [San Jose Research Center, Hitachi Global Storage Technologies, San Jose, CA 95135 (United States)

    2010-05-15

    In antiferromagnetically coupled multilayers with perpendicular anisotropy unusual multidomain textures can be stabilized due to a close competition between long-range demagnetization fields and short-range interlayer exchange coupling. In particular, the formation and evolution of specific topologically stable planar defects within the antiferromagnetic ground state, i.e. wall-like structures with a ferromagnetic configuration extended over a finite width, explain configurational hysteresis phenomena recently observed in [Co/Pt(Pd)]/Ru and [Co/Pt]/NiO multilayers. Within a phenomenological theory, we have analytically derived the equilibrium sizes of these 'ferroband' defects as functions of the antiferromagnetic exchange, a bias magnetic field, and geometrical parameters of the multilayers. In the magnetic phase diagram, the existence region of the ferrobands mediates between the regions of patterns with sharp antiferromagnetic domain walls and regular arrays of ferromagnetic stripes. The theoretical results are supported by magnetic force microscopy images of the remanent states observed in [Co/Pt]/Ru.

  15. InSb nanowire double quantum dots coupled to a superconducting microwave cavity

    Science.gov (United States)

    Wang, R.; Deacon, R. S.; Car, D.; Bakkers, E. P. A. M.; Ishibashi, K.

    2016-05-01

    By employing a micrometer precision mechanical transfer technique, we embed individual InSb nanowires into a superconducting coplanar waveguide resonator. We investigate the characteristics of a double quantum dot formed in an InSb nanowire interacting with a single mode microwave field. The charge stability diagram can be obtained from the amplitude and phase response of the resonator independently from the dc transport measurement. As the charge transits between dot-dot, or dot-lead, the change of resonator transmission is compared and the charge-cavity coupling strength is extracted to be in the magnitude of several MHz.

  16. InSb nanowire double quantum dots coupled to a superconducting microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. [Advanced Device Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Deacon, R. S., E-mail: russell@riken.jp; Ishibashi, K. [Advanced Device Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); Car, D. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Bakkers, E. P. A. M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Kavli Institute, Quantum Transport Group, Delft University of Technology, 2628 CJ Delft (Netherlands)

    2016-05-16

    By employing a micrometer precision mechanical transfer technique, we embed individual InSb nanowires into a superconducting coplanar waveguide resonator. We investigate the characteristics of a double quantum dot formed in an InSb nanowire interacting with a single mode microwave field. The charge stability diagram can be obtained from the amplitude and phase response of the resonator independently from the dc transport measurement. As the charge transits between dot-dot, or dot-lead, the change of resonator transmission is compared and the charge-cavity coupling strength is extracted to be in the magnitude of several MHz.

  17. Determining the spin-orbit coupling via spin-polarized spectroscopy of magnetic impurities

    Science.gov (United States)

    Kaladzhyan, V.; Simon, P.; Bena, C.

    2016-10-01

    We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic impurities in two-dimensional as well as one-dimensional systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a combination of a numerical T -matrix approximation and a direct analytical calculation of the bound-state wave function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the FT of the spin-polarized LDOS, a quantity accessible via spin-polarized scanning tunneling microscopy, allows to accurately extract the strength of the spin-orbit coupling. Also, we confirm that the presence of magnetic impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have access to the value of the spin-orbit coupling.

  18. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    Science.gov (United States)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  19. Electrical and Mechanical Performance of an Enhanced Cable Insulation Scheme for Superconducting Magnets

    CERN Document Server

    Fessia, P; Luzieux, S; Tommasini, D; Gerardin, A; Guinchard, M; Regis, F; Sgobba, S; Zaghloul, A

    2010-01-01

    New polyimide cable insulation schemes improving the cooling of Nb-Ti superconducting coils were recently developed to face the severe heat loads at which the next generation of superconducting accelerator magnets will work. In order to qualify the new insulation, a test campaign was realized to assess both its electrical and mechanical features with respect to the standard LHC insulation. The electrical tests assessed the dielectric strength and inter-turn leakage current to be satisfactory. The mechanical tests investigated the insulation thickness under load and the stress relaxation at ambient temperature, thus providing essential information for the magnetic and mechanical design of the final focusing magnets for the LHC upgrade phase I.

  20. Fabrication of superconducting tunnel junctions with embedded coil for applying magnetic field

    Science.gov (United States)

    Yamaguchi, Kenji; Nakagawa, Hiroshi; Aoyagi, Masahiro; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru

    2016-11-01

    We have proposed and demonstrated a superconducting tunnel junction (STJ) with an embedded coil for applying a magnetic field. The STJ was fabricated on the coil, which was embedded in a Si substrate. The coil in the Si substrate consists of superconducting microstrip lines and applies a magnetic field to the STJ to suppress the dc Josephson current. The embedded coil was designed with a line and space of 3 μm and a thickness of 120 nm. To planarize the coil, we employed chemical mechanical polishing (CMP) in our fabrication process. In this STJ, the maximum current of the embedded coil was 28 mA, which corresponded to the maximum magnetic field of 11.76 mT.