WorldWideScience

Sample records for superconducting cable splices

  1. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  2. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  3. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. 30 CFR 75.603 - Temporary splice of trailing cable.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  5. Economical Aspects of Superconducting Cable

    Science.gov (United States)

    Ohya, Masayoshi

    High-temperature superconducting (HTS) cables are expected to resolve technical problems with power grids because they put large-capacity, low-loss power transmission into a compact package. One problem is replacing old 275-kV oil filled (OF) cables with cross-linked polyethylene insulated vinyl sheath cables (XLPE cables). This is difficult because XLPE cable has a lower transmission capacity than OF cable. In addition, the high concentration of public infrastructure underground makes it extremely difficult to build new ones. However, if 66-kV HTS cables can be installed inside existing underground conduits and can achieve a power capacity equivalent to conventional 275-kV cables, construction costs could be significantly reduced. Moreover, if XLPE cables are used for a 1,000 MVA-class transmission line, then three circuits of nine 275-kV single-core cables would be required, which would incur a transmission loss of 90 W/m/cct. Three circuits of three 66-kV Three-in-One HTS cables, however, with an AC loss of 1 W/m/ph@3 kA, heat invasion of 2 W/m, and cooling system efficiency of 0.1, would reduce transmission loss to less than three-fifths that of XLPE cables.

  6. Power applications for superconducting cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Hansen, Steen; Jørgensen, Preben

    2000-01-01

    High temperature superconducting (HTS) cables for use in electric ac power systems are under development around the world today. There are two main constructions under development: the room temperature dielectric design and the cryogenic dielectric design. However, theoretical studies have shown...

  7. 46 CFR 111.60-19 - Cable splices.

    Science.gov (United States)

    2010-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  8. Brookhaven superconducting cable test facility

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Gibbs, R.J.

    1976-08-17

    Construction has started on an outdoor testing station for flexible ac superconducting power transmission cables. It is intended to serve as an intermediate step between laboratory-scale experiments and qualification testing of prototype-scale cables. The permanent equipment includes a 500 W supercritical helium refrigerator using a screw compressor and multistage turbine expanders. Helium storage for 250,000 cu ft of helium at 250 psi is provided. Initially, the cables will be tested in a horizontal cryostat some 250 ft long. High-voltage 60 Hz tests will be performed with the cable in a series resonant mode with a maximum line to ground capability of 240 kV, this is adequate for a 138 kV system design. Impulse testing up to about 650 kV is planned. The cable conductor will be energized by current transformers, initially at about 4 kA and later up to fault levels of 40 kA. The refrigerator is now at the site and testing on a dummy load will commence in the Fall of 1976. The cryostat will be installed in 1977 followed about a year later by the first cable tests.

  9. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  10. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... alternative to conventional cables, as they are able to transmit two or more times the energy than a conventional cable. HTS cables with a room temperature dielectric design are especially interesting as a target for replacing overhead lines. Superconducting cables in the overall network are of interest...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...

  11. DC Characterization of the Coaxial Superconducting Cable

    Science.gov (United States)

    Šouc, J.; Gömöry, F.; Vojenčiak, M.; Frolek, L.; Isfort, D.; Ehrenberg, J.; Bock, J.

    2008-01-01

    Coaxial cable model with superconducting core and superconducting shield conductor was constructed and tested in DC regime. While the core was already examined in our previous works, in this contribution the detailed study of the superconducting shield conductor in DC conditions is presented. It consists of 16 ReBCO coated tapes with critical current 35 A each connected in parallel. Using shunts with known values placed in series the currents in individual tapes were possible to measure. Distribution of the total cable current into the individual tapes was monitored and its influence on critical current of the cable is discussed.

  12. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...... that the thermal insulation and cooling machine efficiency are the most important loss element in a superconducting cable system...

  13. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  14. Superconducting power cables in Denmark - a case study

    DEFF Research Database (Denmark)

    Østergaard, Jacob

    1997-01-01

    A case study of a 450 MVA, 132 kV high temperature superconducting (HTS) power transmission cable has been carried out. In the study, a superconducting cable system is compared to a conventional cable system which is under construction for an actual transmission line in the Danish grid. The study...... that HTS cables will be less expensive for high power ratings, have lower losses for lines with a high load, and have a reduced reactive power production. The use of superconducting cables in Denmark accommodate plans by the Danish utility to make a substantial conversion of overhead lines to underground...

  15. Results from the Danish high temperature superconducting power cable project

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob

    2002-01-01

    For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying approxim......For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying...

  16. Results from the Danish high temperature superconducting power cable project

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob

    2002-01-01

    For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying approxim...

  17. Analytical Solution for the Current Distribution in Multistrand Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2002-01-01

    Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady ...

  18. High Voltage Cable Splicing and Cable Termination Techniques

    Science.gov (United States)

    1976-08-01

    solid dielectric insulations currently used are high-molecular-weight polyethylene (EP) and cross-linked poly- ethylene ( XLPE ). The EP insulation is...rated for 750 C a maximum temperature, and the XLPE insulation is rated for 900C maximum temperature. These insulation materials provide the conductor...The cost of installing PILC with copper conductors is compared to the cost of installing XLPE cable with aluminum conductors in Table 1. The

  19. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  20. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  1. Development of superconducting transmission cable. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.; Stovall, J.P. [Oak Ridge National Lab., TN (United States); Hughey, R.L.; Sinha, U.K. [Southwire Co., Carrollton, GA (United States)

    1997-10-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.

  2. High-temperature superconducting conductors and cables

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  3. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  4. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  5. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of the layers are therefore studied theoretically. The current distribution between the superconducting layers is monitored as a function of transport current, and the results are compared with the expected current distribution given by our electrical circuit model.The AC-losses are measured as a function...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC...

  6. Analytical Calculation of Current Distribution in Multistrand Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2003-01-01

    In recent years the problem of current distribution in multistrand superconducting cables has received increasing attention for large scale superconductivity applications due to its effect on the stability of fusion magnets and the field quality of accelerator magnets. A modelling approach based on distributed parameters has revealed to be very effective in dealing with long cables made of some tens or hundreds of strands. In this paper we present a fully analytical solution equation for a distributed parameters model in cables made of an arbitrary number of strands, whose validity is subjected to symmetry conditions generally satisfied in practical cables. We give in particular analytical formulae of practical use for the estimation of the maximum strand currents, time constants and redistribution lengths as a function of the cable properties and the external voltage source.

  7. Development of scaling rules for Rutherford type superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Royet, J.M.; Scanlan, R.M.

    1990-09-01

    During the R D phase of the Superconducting Supercollider (SSC) program, LBL was responsible for establishing the parameters for cables used in SSC dipole and quadrupole magnets. In addition, the design and fabrication of a new cable for use in the Low Beta Quadrupoles. As a result of the development work on these and other cables, we have arrived a set of scaling rules which provide guidelines for choosing the parameters for a wide range of superconducting cables. These parameters include strand size, strand number, keystone angle, percent compaction, cable pitch and compacted cable dimensions. In addition, we have defined the tolerance ranges for the key cable manufacturing parameters such as mandrel size and shape, stand tension, and Turkshead temperature control. In this paper, we present the results on cables ranging from 8 strands to 36 strands of 0.65mm wire and from 8 strands to 30 strands of 0.8mm wire. We use these results to demonstrate the application of the scaling rules for Rutherford-type cable.

  8. Design and Evaluation of joint resistance in SSC Rutherford type cable splices for Torus magnet for the Jefferson Lab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Probir K. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fair, Ruben J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kashy, David H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rajput-Ghoshal, Renuka [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampshire, Damian; Tsui, Yeekin; Haden-Gates, Virginia

    2016-06-01

    The Hall B 3.6-T superconducting torus magnet is being designed and built as part of the Jefferson Lab 12-GeV upgrade. The magnet consists of six trapezoidal coils connected in series, with an operating current of 3770 A. The magnet and the joints (or splices) connecting the coils are all conduction cooled by supercritical 4.6-K helium. This paper studies the design and manufacturing process of the splices made between two SSC Rutherford-type cables and discusses the tests performed to evaluate the performance of the splices under varying incident magnetic fields.

  9. Splice Resistance Measurements in the LHC Main Superconducting Magnet Circuits by the New Quench Protection System

    CERN Document Server

    Charifoulline, Z; Denz, R; Siemko, A; Steckert, J

    2012-01-01

    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus-bar. After the 2008 LHC incident, caused by a defective interconnection, a new layer of high resolution magnet circuit quench protection (nQPS) has been developed and integrated with the existing systems. It allowed mapping of the resistances of all superconducting splices during the 2009 commissioning campaign. Since April 2010, when the LHC was successfully restarted at 3.5 TeV, every bus bar interconnection is constantly monitored by the nQPS electronics. The acquired data are saved to the LHC Logging Database. The paper will briefly describe the data analysis method and will present the results from the two years of resistance measurements. Although no splice was found with resistance higher than 3.3 n and no significant degradation in time was observed so far, the monitoring of splices will stay active till the end of LHC 4 TeV run. The detected outliers wil...

  10. Analysis of DC Power Transmission Using High Tc Superconducting Cables

    Institute of Scientific and Technical Information of China (English)

    Jun-Lian Zhang; Jian-Xun Jin

    2008-01-01

    A conceptual superconducting DC cable model is designed and its magnetic fields distribution is analyzed with Ansoft/Maxwell soft. A DC Power transmission system is also studied by using the Matlab/Simulink. With the DC Line and AC Ground Fault, the system losses analysis is introduced.The analysis results mainly include the magnetic fields distribution of the HTS cable model with Ansoft/Maxwell, the system loss, the DC Line and AC Ground Fault with Matlab/Simulation.

  11. TESTING AND EVALUATION OF SUPERCONDUCTING CABLES FOR THE LHC.

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,R.; GHOSH,A.; MCCHESNEY,D.; JAIN,A.

    1999-03-29

    As one of the activities of the US-LHC Accelerator Project, BNL is testing short samples of superconducting cables that will be used in the main LHC dipoles and quadrupoles. The purpose of these tests is to verify that the reels of superconducting cables as supplied by the vendors meet the required critical current specifications. The short-sample testing facility and the computer-assisted testing techniques for acquiring the data will be described. We also describe the data analysis, data storage, and data transmission methods.

  12. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  13. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  14. Considerations about an improved superconducting cable for Linear Collider Detectors

    CERN Document Server

    Gaddi, A

    2009-01-01

    This note puts together arguments, discussed within the Linear Collider Detector community in the last months, about setting up an R&D program aiming to demonstrate the industrial feasibility and build a significant prototype length (tbd) of superconducting cable for next HEP detector magnets.

  15. Cryostat for a high-temperature superconducting power cable

    NARCIS (Netherlands)

    Chevtchenko, O.A.; Smit, J.J.; Geschiere, A.

    2010-01-01

    Cryostat for a high-temperature superconducting power cable, comprising concentric tubes, an annular region between said tubes, wherein a multilayer thermal insulation and getter material for supporting high vacuum conditions are provided in said annular region, and wherein the multilayer insulation

  16. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  17. Performance Improvement of a Measurement Station for Superconducting Cable Test

    CERN Document Server

    Arpaia, P; Montenero, G; Le Naour, S

    2012-01-01

    A fully digital system, improving measurements flexibility, integrator drift, and current control of superconducting transformers for cable test, is proposed. The system is based on a high-performance integration of Rogowski coil signal and a flexible direct control of the current into the secondary windings. This allows state-of-the-art performance to be overcome by means of out-of-the-shelf components: on a full-scale of 32 kA, current measurement resolution of 1 A, stability below 0.25 Amin-1, and controller ripple less than 50 ppm. The system effectiveness has been demonstrated experimentally on the superconducting transformer of the Facility for the Research of Superconducting Cables at the European Organization for Nuclear Research (CERN).

  18. 7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.

    Science.gov (United States)

    2010-01-01

    ... splices. (2) American National Standard Institute/National Fire Protection Association (ANSI/NFPA) 70... cable sheath and cable filling compound are susceptible to fire and will support combustion. Fire, smoke... be any damage to the buffer tubes. The jacket shall be peeled back and cut at the end of the...

  19. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  20. Development and testing of a 50-kA, pulsed superconducting cable

    Science.gov (United States)

    Wollan, J. J.; Hamilton, W. C.; Declerc, J.; Zeitlin, B. A.

    1982-11-01

    Prototype cables for 7.5-T, pulsed field application in Tokamak poloidal coils were designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  1. Development and testing of a 50-kA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Hamilton, W.C.; DeClerc, J.; Zeitlin, B.A.

    1982-01-01

    Prototype cables for 7.5-T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  2. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  3. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  4. Status of the LHC Superconducting Cable Mass Production

    CERN Document Server

    Adam, J D; Cavallari, Giorgio; Charifoulline, Z; Denarié, C H; Le Naour, S; Leroy, D F; Oberli, L R; Richter, D; Verweij, A P; Wolf, R

    2002-01-01

    Six contracts have been placed with industrial companies for the production of 1200 tons of the superconducting (SC) cables needed for the main dipoles and quadrupoles of the Large Hadron Collider (LHC). In addition, two contracts have been placed for the supply of 470 tons of NbTi and 26 tons of Nb sheets. The main characteristic of the specification is that it is functional. This means that the physical, mechanical and electrical properties of strands and cables are specified without defining the manufacturing processes. Facilities for the high precision measurements of the wire and cable properties have been implemented at CERN, such as strand and cable critical current, copper to superconductor ratio, interstrand resistance, magnetisation, RRR at 4.2 K and 1.9 K. The production has started showing that the highly demanding specifications can be fulfilled. This paper reviews the organisation of the contracts, the test facilities installed at CERN, the various types of measurements and the results of the ma...

  5. Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger;

    1999-01-01

    Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...

  6. Analysis of FCL effect caused by superconducting DC cables for railway systems

    Science.gov (United States)

    Nishihara, Taichi; Hoshino, Tsutomu; Tomita, Masaru

    2017-02-01

    DC superconducting cable that is expected for railway system has been developed in the world, since the introduction effects were expected to energy saving. However, behaviour under unsteady states such as a short circuit accident are not entirely clear, and appropriate method of protection has not been established. Therefore, simulation model of the superconducting cable under direct current system was built and analyzed. Analysis result suggests the superconducting cable has the effect of Fault Current Limited (FCL) and critical current rise was effective method for temperature-rise suppression under unsteady states. Trade-off between cable temperature rise and overcurrent was confirmed.

  7. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa;

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  8. Fabrication of a superconducting cable for construction of Hi-Lumi Magnet

    CERN Multimedia

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables made from state-of-the-art Nb3Sn conductor. The video shows the production of a long length Nb3Sn cable that will be use in a 11 T High Luminosity LHC dipole magnet.

  9. metrological performance improvement of a superconducting cable test station

    CERN Document Server

    Montenero, Giuseppe; Ballarino, Amalia

    The work presented in this PhD thesis concerns the metrological performance improvement of a superconducting cable test station based on superconducting transformers. The main cable’s parameter to be assessed –as a function of temperature and magnetic field– is the critical current, i.e. beyond this limit the phase transition to the normal state occurs. Ramping the current at levels in the order of the tens of kA can be achieved with superconducting transformers at moderate capital and operational cost. But, issues such as (i) accurate/precise measurements and (ii) monitoring of the secondary current during the device operation have to be addressed. In this regard, the goals of the thesis are the design, prototyping, and validation of a new cryogenic current transducer and effective monitoring system for test stations transformer-based. Among the available transducers for current sensing at room temperature, the DC current transformer (DCCT) provides measurement accuracy in the order of the hundreds of ...

  10. Model inverse calculation of current distributions in the cross-section of a superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Usak, P. [Institute of Electrical Engineering, Department of Electrodynamics of Superconductors, Slovak Academy of Sciences, Bratislava (Slovakia)]. E-mail: elekusak@savba.sk; Sastry, P.V.P.S.S. [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Schwartz, J. [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2006-02-01

    The solution of an inverse problem for magnetic field mapping, and the related current distribution in the cross-section of a superconducting cable are generally not unique. Nevertheless, for many natural configurations of a transport current distribution in the cross-section of a superconducting cable, the resulting magnetic field can be used for the reconstruction of a current distribution even in the presence of noise to a degree. We show it using several examples. To perform the inverse calculation, the Tichonov method of regularization was successfully applied. The approach was applied for superconducting cables, but its application is general.

  11. Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Charifoulline, Z

    2006-01-01

    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets.

  12. Fabrication of Rutherford-type superconducting cables for construction of dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.; Royet, J.; Hannaford, R.

    1988-05-01

    An experimental cabling machine has been constructed and used to investigate the fabrication of a variety of superconducting cables. These include the 23-strand and 30-strand NbTi alloy cables for the Superconducting Supercollider (SSC) and a number of experimental cables. The experimental cables include 24-strands and 36-strands as well as two-level cables with a 6 or 7-strand first level and 23 or 30-strand second level. These results were used to aid in selecting the optimum cable for the SSC dipole and quadrupole magnets. As a result of these studies, cable can now be fabricated to exacting mechanical tolerances (+/- .006 mm) and with low critical current degradation (2-5%). In addition, tooling design studies have been performed and a Prototype SSC Production Cabling Machine has been designed. The results of the cable optimization studies and the tooling design studies will be discussed. SSC cable production experience on the experimental cabling machine and the production cabling machine will be reported.

  13. Review of the R&D and Supply of the LHC Superconducting Cables

    CERN Document Server

    Leroy, D

    2006-01-01

    The construction of the superconducting magnets for the LHC machine has required the supply of ~ 7350 km of superconducting cables. The delivery of cables which is completed at 97% has made use of a large part of the world wide production capacity. Ten contracts have been placed with firms in Europe, Japan, USA. The Nb-Ti and the Nb materials have been contracted by CERN. Before tendering and placing the contracts, a R&D program has combined studies at CERN and orders of finished cables of significant lengths to industry. The report will present the main results of the R&D program, the characteristics of the LHC cables, the encountered difficulties and the obtained successes during the long duration fabrication contracts of the highly sophisticated LHC superconducting cables.

  14. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  15. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    In this presentation we discuss the design of a termination for a high temperature superconducting power cable with the following design: A cable conductor consisting of superconducting tapes wound onto a tight flexible tube (former) is placed inside a thermally insulating jacet (cryostat......). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperature and to connect an external cooling machine at ground potential to the cable. Some of the aspects that have to be considered include the thermal insulation of the termination, the transition from superconducting tapes to a normal conductor, the current lead carrying current between high and low...

  16. Measurements of interstrand thermal and electrical conductance in multistrand superconducting cables

    CERN Document Server

    Yuan Zhong Lei; Yin Ming Dai; Heli, Nan

    2002-01-01

    A new apparatus has been developed to investigate interstrand contact properties of multistrand superconducting cables. The apparatus can measure interstrand electrical and thermal conductance simultaneously. Two NbTi samples were measured and influences of surface coating, contact force and pressing history on contact properties were investigated. These measurements provide essential data for theoretical analyses of stability of multistrand superconducting cable against local disturbances. (9 refs).

  17. Superconducting cables: Long distance energy transmission. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the design, development, and evaluation of superconducting cables and power transmission lines for long distance energy transmission. Topics include methods of cryogenic refrigeration and electrical insulation, fabrication and development of niobium alloy conductors, energy loss analysis, and dielectric design of superconducting power transmission systems. Government research reports on superconducting technology for electric power transmission and distribution are also reviewed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  19. Analysis of a Liquid Nitrogen-Cooled Tri-Axial High-Temperature Superconducting Cable System

    Science.gov (United States)

    Demko, J. A.; Lue, J. W.; Gouge, M. J.; Fisher, P. W.; Lindsay, D.; Roden, M.

    2004-06-01

    This tri-axial high-temperature superconducting (HTS) cable design uses three concentric superconducting layers for the phase conductors, separated by a cold dielectric material. The design offers an efficient HTS cable configuration by reducing the amount of superconductor needed and places all three phases in a single cryostat. The tri-axial cable cooling circuit analyzed includes heat loads at the ends for the cable terminations and cable heat loads due to ac, dielectric, and thermal losses. The HTS cable critical current and ac loss are functions of the local temperature that must be determined by the analysis. The radial heat transfer also has an influence on these parameters due to the relatively low thermal conductivity of the dielectric material separating the HTS phases. The study investigates whether the tri-axial cable must be cooled both inside the former and outside of the cable. In this study, the range of operating parameters for a tri-axial HTS cable system and refrigeration requirements are determined based on expected HTS tape performance.

  20. Heat transfer between the superconducting cables of the LHC accelerator magnets and the superfluid helium bath

    CERN Document Server

    Granieri, Pier Paolo; Tommasini, D

    In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by superfluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of the CERN Large Hadron Collider (LHC). We performed an experimental analysis, a theoretical modeling and a fundamental research to characterize the present LHC insulation and to develop new ideas of thermally enhanced insulations. The outcome of these studies allowed to determine the thermal stability of the magnets for the LHC and its future upgrades. An innovative measurement technique was developed to experimentally analyze the heat transfer between the cables and the superfluid helium bath. It allowed to describe the LHC coil behavior using the real cable structure, an appropriate thermometry and controlling the applied pressure. We developed a new thermally enhanced insulation scheme based on an increased porosity to superfluid helium. It aims at withstan...

  1. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  2. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa;

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  3. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Higuchi, Noboru

    2003-04-01

    Establishment of long-distance cooling techniques and design of a compact cross section are required for development of HTC superconducting underground power cables. To save space of return coolant, a counter-flow cooling system appears promising. However, it is difficult to cool down long cables because of heat exchange between counter-flows due to high thermal conductivity of dielectric materials which separate both flows in range of liquid nitrogen temperature. We estimated temperature distributions analytically along model HTS power cables with counter-flow. Results of calculation showed that when liquid-nitrogen-impregnated polypropylene laminated paper was chosen for a dielectric material, great thickness was required to reduce heat exchange between counter-flows. We investigated various cable structures to optimize the counter-flow cooling system and cable size.

  4. Equipment qualification research test of electrical cable with factor splices and insulation rework: Test no. 2, report no. 1

    Science.gov (United States)

    Minor, E. E.; Furgal, D. T.

    1982-09-01

    Electric cables with flame retardant chemically crosslinked polyolefin extruded insulation containing factory made center conductor splices and insulation repairs manufactured by the Rockbestos Company were used in a methodology test of the IEEE Standard 383-1974. Cable specimens were radiation aged at a low dose rate and then thermally aged to simulate a 40 year containment exposure. After aging, the specimens were subjected to LOCA radiation and a 33 day steam and chemical spray exposure. The cables were electrically loaded and functioned without failure during and after LOCA steam and chemical spray exposure. Insulation resistance measurements were taken during the exposure sequence. Subsequence to the exposures, hipot and mandrel bend tests were conducted. To determine the most severe cable aging sequence, cable insulation material samples were subjected to varied aging exposure to observe sequence related and dose rate related material degradation. A dose rate effect was observed.

  5. Military Curricula for Vocational & Technical Education. Construction Electrician/Power and Communications Cable Splicing, 5-3.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This curriculum outline, instructor's guide, and student's guide for a secondary-postsecondary-level course in construction electrician/power and communications cable splicing are one of a number of military-developed curriculum packages developed for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose…

  6. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  7. AC Loss of Ripple Current in Superconducting DC Power Transmission Cable

    Science.gov (United States)

    Yoshitomi, K.; Otabe, E. S.; Vyatkin, V. S.; Kiuchi, M.; Matsushita, T.; Hamabe, M.; Yamaguchi, S.; Inada, R.

    As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60 Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40 mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5 W/m which is obtained with a newly developed cable.

  8. Smart monitoring system based on adaptive current control for superconducting cable test

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, Pasquale [Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Napoli (Italy); Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Ballarino, Amalia; Montenero, Giuseppe [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Daponte, Vincenzo [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy); Svelto, Cesare [Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy)

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  9. Smart monitoring system based on adaptive current control for superconducting cable test.

    Science.gov (United States)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  10. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  11. Ultrasound Diagnostics of the Superconducting Cable Connections between the Main Ring Magnets of LHC

    CERN Document Server

    Caspers, Friedhelm; Kulka, J; Tock, J-P; Williams, L R

    2007-01-01

    As part of the LHC assembly program, the super-conducting magnets are interconnected after installation. Electrical continuity between the magnets is ensured via a specifically designed cable junction box which allows the cables to be electrically joined by an automated low temperature soldering technique. The electrical resistance and mechanical strength of the cable junctions depend on the quality of the soldered joint. An ultrasound diagnostic of the soldered junction has been developed to accompany the visual inspection and reinforce the quality control process. Non-standard ultrasound diagnostic techniques, without using matching liquids or gel in the harsh and congested working environment, applied to the sandwich structure of the cable junction box, which presents high ultra-sonic losses due to multiple scattering, have been developed. The equipment and methods implemented are described in detail, together with results of quality control tests made in the production environment.

  12. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Science.gov (United States)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  13. Concepts and methods of refrigeration for superconducting power transmission cables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Manatt, S.A.; Wapato, P.G.; Stanko, J.; Baumgartner, J.P.

    1976-06-01

    An analysis of refrigeration system requirements for the superconducting power transmission cables currently under study at the three principal US cable development centers indicates the need for cable system design considering the interrelated performance of the various cable system elements to successfully develop these systems for commercial operation in the 1990's. Hardware alternatives, compatible with the application timeframe, are evaluated to establish reliable refrigerator system design to a composite requirement typical of the range of refrigerator requirements presented by the cables currently under development. In addition, a methodology is presented and utilized to establish an estimate of hardware reliability and to evaluate redundancy requirements to a specific refrigerator system reliability allocation for a cable system used in previous cable development center studies. Reliability and performance of several compressor systems are evaluated. The oil-flooded screw compressor is felt to be the superior positive displacement compressor; however, the efficiency advantage resulting from preliminary design analysis of a multistage compliant toll process gas bearing centrifugal compressor system indicates a potential major operating cost reduction and the elimination of the need for oil lubrication and its subsequent cleanup requirements. Heat exchangers and expansion engines are evaluated. A preliminary design for a compliant foil process gas bearing permanent magnet turboalternator operating entirely at expansion turbine temperatures is discussed.

  14. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  15. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  16. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  17. Optimization of operating parameters of internally cooled superconducting cables; Optimale Betriebsparameter fuer intern gekuehlte Supraleiterkabel

    Energy Technology Data Exchange (ETDEWEB)

    Katheder, H. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany). NET Team

    1995-12-31

    Large superconducting coils such as are used for fusion experiments (Tokamak or Stellarator confiurations) are best equipped with internally cooled superconducting cables. These cables, which are cooled with helium at 4 Kcable can be cooled with minimum mass flow. The present paper deals with the thermodynamic behaviour of flowing helium in conduits and with the thermal load which may occur in a cable. It describes a mehtod of optimising the operating paramters and gives a numerical calculation using typical cable data. (orig.) [Deutsch] Bei grossen supraleitenden Spulen z.B. fuer Fusionsexperimente (Tokamak- oder Stellarator Anordnungen) werden mit Vorteil intern gekuehlte Supraleiterkabel eingesetzt. Seit einigen Jahren werden solche Kabel, gekuehlt mit Helium bei 4

  18. Testing to evaluate synergistic effects from LOCA environments. Test IX. Simultaneous mode; cables, splice assemblies, and electrical insulation samples

    Energy Technology Data Exchange (ETDEWEB)

    Thome, F.V.

    1978-04-01

    This test was conducted to complement Test VIII which was a sequential test of cables, cable splices, and insulation samples. In this test, the generic LOCA environments (radiation, temperature, pressure, chemical spray) were simulated and simultaneously applied to the test items. There were no failures of any assemblies and all were able to function at rated current and voltage throughout the entire test. An additional parameter, dissipation factor, was monitored in this test and when used in conjunction with capacitance, provided a better indication of insulation degradation.

  19. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  20. Heat Transfer through Cable Insulation of Nb–Ti Superconducting Magnets Operating in He II

    CERN Document Server

    Granieri, P P

    2013-01-01

    The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests p...

  1. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  2. A model for calculating a.c. losses in multistage superconducting cables

    Science.gov (United States)

    Schild, T.; Ciazynski, D.

    Superconducting magnets in tokamaks for fusion experiments are subjected to fast variations in magnetic field. As the high current conductors used in these magnets are made of multistage cables, these variations induce interstrand coupling currents that create losses. These losses are usually characterized by the so-called time constant of the conductor. A model is given to calculate this time constant. Working formulas are also proposed to calculate the current induced in the different cabling stages. This model takes into account the strand characteristics and the detailed cabling pattern. Using it, a method is also given to deduce the time constant from resistive measurements. The influence of the resistive barrier (chrome plating, CuNi shell, outer bronze matrix) is pointed out. Finally, this model is applied to a conductor that is foreseen for the toroidal coils of the International Thermonuclear Experimental Reactor (ITER).

  3. An Analytical Benchmark for the Calculation of Current Distribution in Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2002-01-01

    The validation of numerical codes for the calculation of current distribution and AC loss in superconducting cables versus experimental results is essential, but could be affected by approximations in the electromagnetic model or incertitude in the evaluation of the model parameters. A preliminary validation of the codes by means of a comparison with analytical results can therefore be very useful, in order to distinguish among different error sources. We provide here a benchmark analytical solution for current distribution that applies to the case of a cable described using a distributed parameters electrical circuit model. The analytical solution of current distribution is valid for cables made of a generic number of strands, subjected to well defined symmetry and uniformity conditions in the electrical parameters. The closed form solution for the general case is rather complex to implement, and in this paper we give the analytical solutions for different simplified situations. In particular we examine the ...

  4. AC loss of the short coaxial superconducting cable model made from ReBCO coated tapes

    Energy Technology Data Exchange (ETDEWEB)

    Souc, J; Goemoery, F; Vojenciak, M; Frolek, L [Institute of Electrical Engineering., Centre of Excellence CENG, SAS, 841 04 Bratislava (Slovakia); Isfort, D; Ehrenberg, J; Bock, J [Nexans SuperConductors GmbH, Chemiepark Knapsack 50351, Huerth (Germany); Usoskin, A; Rutt, A [EHTS GmbH and Co. KG, Alzenau, (EAS, HANAU) (Germany)], E-mail: eleksouc@savba.sk

    2008-02-15

    Coaxial cable model with both the core as well as the shield conductor made from high-temperature superconducting tapes of the 2nd generation was constructed. AC current was fed to the model of 0.5 m length using a cold core transformer system. The core consists of 14 EHTS YBCO tapes of 4 mm width, and its properties have been published already. Now the system was completed by the shield conductor using 16 ReBCO tapes of 10 mm width produced by Nexans. In this contribution, the properties of the shield conductor are reported in detail. The experimental data on ac transport loss are presented and compared with ac transport loss of the superconducting core. The currents in individual tapes and the total cable current was monitored using Rogowski coils. Significant non-uniformity of the current distribution was found, which is a common issue in short cable models. Therefore, the AC transport loss of the shield conductor was measured by 16 lifted loops placed along the cable, using the averaging method to extract the true loss voltage.

  5. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  6. The Electrical Aspects of the choice of Former in a High T-c Superconducting Power Cable

    DEFF Research Database (Denmark)

    Däumling, Manfred; Kühle (fratrådt), Anders Van Der Aa; Olsen, Søren Krüger

    1999-01-01

    Centrally located in a superconducting power cable the former supplies a rigid means onto which to wind the superconducting tapes and enables a continuous supply of cooling power via a flow of liquid cryogen through it. Therefore, the choice of former has a broad impact on the construction...... and design of a cable. The diameter of the former determines the overall diameter of the total cable, influences the heat loss to the ambient and enters into the total AC-losses. Depending on whether the former is made of a good or poor electrical conductor eddy currents in the former itself may also...... contribute significantly to the AC-loss of the cable; the choice between an open and a closed former determines how and where the pressure load (pressurized coolant) has to be accommodated. In this work the electrical impact of the choice of material and diameter of the former on the AC-loss of a cable...

  7. Heat transfer through cable insulation of Nb-Ti superconducting magnets operating in He II

    Science.gov (United States)

    Granieri, P. P.

    2013-01-01

    The operation of Nb-Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests performed at different applied pressures and heating configurations. The model allows identifying the heat fluxes in the cable cross-section as well as the dimensions of the micro-channels. These dimensions are confirmed by microscope images of the two insulations schemes.

  8. Aluminum strand coating for increasing the interstrand contact resistance in Rutherford type superconducting cables

    CERN Document Server

    Scheuerlein, C; Verweij, A; Bonasia, A; Oberli, L; Taborelli, M; Richter, R

    2009-01-01

    The interstrand contact resistance (Rc) in Rutherford type cables for fast cycling superconducting magnets must be sufficiently high in order to limit eddy current losses. The required value for Rc depends on the cable and magnet geometries and on the foreseen cycling rate, but is typically of the order of one mW. Such values can be reached with a dedicated strand coating or with a resistive internal cable barrier. As a possible candidate Al strand coatings have been tested. For a Rutherford type inner conductor cable of the Large Hadron Collider (LHC) made of Al coated strands Rc values higher than 500 Omega are achieved. The native Al2O3 oxide layer formed at ambient temperature in air is sufficient to reach this high contact resistance. A 6 h-200 °C oxidation heat treatment in air with 100% relative humidity further increases Rc to values above 600 μOmega . Due to the high thermal and mechanical stability of Al2O3 only a relatively moderate Rc drop of about 40 % is obtained during a 190 °C heat treatmen...

  9. THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment

    Science.gov (United States)

    Ciotti, M.; Nijhuis, A.; Ribani, P. L.; Savoldi Richard, L.; Zanino, R.

    2006-10-01

    The new THELMA code, including a thermal-hydraulic (TH) and an electro-magnetic (EM) model of a cable-in-conduit conductor (CICC), has been developed. The TH model is at this stage relatively conventional, with two fluid components (He flowing in the annular cable region and He flowing in the central channel) being particular to the CICC of the International Thermonuclear Experimental Reactor (ITER), and two solid components (superconducting strands and jacket/conduit). In contrast, the EM model is novel and will be presented here in full detail. The results obtained from this first version of the code are compared with experimental results from pulsed tests of the ENEA stability experiment (ESE), showing good agreement between computed and measured deposited energy and subsequent temperature increase.

  10. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  11. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  12. Analytical Model of Thermo-electrical Behaviour in Superconducting Resistive Core Cables

    CERN Document Server

    Calvi, M; Breschi, M; Coccoli, M; Granieri, P; Iriart, G; Lecci, F; Siemko, A

    2006-01-01

    High field superconducting Nb3Sn accelerators magnets above 14 T, for future High Energy Physics applications, call for improvements in the design of the protection system against resistive transitions. The longitudinal quench propagation velocity (vq) is one of the parameters defining the requirements of the protection. Up to now vq has been always considered as a physical parameter defined by the operating conditions (the bath temperature, cooling conditions, the magnetic field and the over all current density) and the type of superconductor and stabilizer used. It is possible to enhance the quench propagation velocity by segregating a percent of the stabilizer into the core, although keeping the total amount constant and tuning the contact resistance between the superconducting strands and the core. Analytical model and computer simulations are presented to explain the phenomenon. The consequences with respect to minimum quench energy are evidenced and the strategy to optimize the cable designed is discuss...

  13. Electrical and Mechanical Performance of an Enhanced Cable Insulation Scheme for Superconducting Magnets

    CERN Document Server

    Fessia, P; Luzieux, S; Tommasini, D; Gerardin, A; Guinchard, M; Regis, F; Sgobba, S; Zaghloul, A

    2010-01-01

    New polyimide cable insulation schemes improving the cooling of Nb-Ti superconducting coils were recently developed to face the severe heat loads at which the next generation of superconducting accelerator magnets will work. In order to qualify the new insulation, a test campaign was realized to assess both its electrical and mechanical features with respect to the standard LHC insulation. The electrical tests assessed the dielectric strength and inter-turn leakage current to be satisfactory. The mechanical tests investigated the insulation thickness under load and the stress relaxation at ambient temperature, thus providing essential information for the magnetic and mechanical design of the final focusing magnets for the LHC upgrade phase I.

  14. SC Power leads and cables - Nominal Current Test Performance of 2 kA-Class High-Tc Superconducting Cable Conductors and Its Implications for Cooling Systems for Utility Cables

    DEFF Research Database (Denmark)

    Willen, D. W. A; Daumling, M.; Rasmussen, C. N.

    2000-01-01

    at high currents. The critical currents of these conductors are in the range of 1-3 kA, and ac losses smaller than 1 W/m are measured at 2 kArms. AC currents with peak values exceeding the dc critical currents are applied. Increased losses, in excess of the expected magnitization losses are observed when...... individual layers in the cables saturate. The loss-contributions from other components of the cable system are discussed,and the implications for the cooling apparatus for superconducting utility cables are determined....

  15. Study of Nb{sub 3}Sn cables for superconducting quadrupoles; Etude de cables Nb{sub 3}Sn pour quadripoles supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, R

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  16. Design criteria for warm temperature dielectric superconducting dc cables: Impact of co-pole magnetic fields

    Science.gov (United States)

    Grant, P. M.; Hassenzahl, W. V.; Gregory, B.; Eckroad, S. W.

    2008-02-01

    HTSC dc superconducting cables are under consideration for a variety of applications ranging from bi-directional interties between regional ac grids ("back-to-backs"), internal connection within, and out-feeds from, low voltage solar or wind farm generators, and up to multi-gigawatt transmission trunks linking remote nuclear clusters to urban load centers. In every instance, there are two principal design choices - coaxial, or "cold temperature dielectric; and mono-axial, also termed "warm temperature dielectric." In the former, both poles may be serviced by concentric conductors in the same physical package, separated by insulation held at the temperature necessary for superconducting operation, and in the latter, the poles are contained in two separate cables of more or less conventional design, each holding a cryostat enclosing the superconductor surrounded by a dielectric material at ambient temperature. Both have "pluses and minuses." CTD has the advantage of compactness, but requires a cryogenic dielectric, whereas WTD is simpler to manufacture and less costly overall as well. However, depending on the dimensional separation of the two poles and their containment infrastructure, WTD can experience considerable outward compressive physical forces and some reduction in critical state properties due to interpenetration of their respective magnetic fields. Recent progress in introducing homogeneous pinning in YBCO coated conductors could considerably ameliorate this latter issue, and thus the WTD design could engage a range of applications formerly out of reach of BSCCO tapes. We will examine these two issues in detail.

  17. First tests of twisted-pair HTS 1 kA range cables for use in superconducting links

    CERN Document Server

    Ballarino, A; Hurte, J; Sitko, M; Willering, G

    2011-01-01

    The requirement at CERN for 1 kA range High Temperature Superconducting (HTS) cables optimized for long electrical transfer has led to the design and assembly of a novel type of cable that can be made from pre-reacted MgB2, Bi-2223 or YBCO tapes. The cable consists of an assembly of twisted pairs, each of which is made from three superconducting tapes with the required copper stabilizer. The twisted pair cable is designed to transfer a DC current of ± 600 A in helium gas environment. The paper reports on the results of the electrical tests performed on twisted-pair cables of identical structure and made from commercially available MgB2, Bi-2223 and YBCO tapes. The twist pitch of the cables is adapted to match the mechanical properties of the different superconductors. Critical current tests were performed at both liquid helium and liquid nitrogen temperature. The electrical performance of several cables made from different conductors is reported and compared.

  18. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  19. Heat transfer through Rutherford superconducting cable with novel pattern of polyimide electrical insulation in pressurized superfluid helium environment

    Science.gov (United States)

    Chorowski, Maciej; Polinski, Jaroslaw; Strychalski, Michal

    2012-06-01

    Future LHC accelerator luminosity upgrade will increase a beam losses heat deposition in the superconducting magnet coils. Main barrier of the heat evacuation from the coils made of Rutherford type cables is a cable electrical insulation. The insulation is made of polyimide tapes wrapped around the cable in a special configuration. Presently used insulation wrapping schemes constitute very good electrical insulation with relatively low heat transport ability. Therefore a new insulation wrapping schemes with enhanced helium permeability and adequate dielectric properties have been developed at CERN. An experimental comparative study of heat transfer perpendicular to the Rutherford type cable, for an old and new insulation wrapping schemes have been accomplished at Wroclaw University of Technology. The tests have been performed in pressurized superfluid helium conditions, and at 60 MPa of the sample applied external pressure simulating the Lorentz forces. This paper presents the measurements methodology and gives experimental results.

  20. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  1. The Oxidation of Sn-Ag coated Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Cantoni, M

    2006-01-01

    The oxides formed on the Sn-Ag coated LHC superconducting cables during a 200°C heat treatment in air are described and the oxide composition is compared with the interstrand contact resistance (Rc). The analysis of more than 250 interstrand contact areas shows that the higher the average Cu content with respect to the Sn content in the oxide, the higher is Rc. During the 200°C heat treatment, Sn in the coating is transformed into a Cu3Sn layer, on which an oxide grows that consists essentially of a thin outermost layer of CuO on top of Cu2O, similar to the oxide structure formed on bare Cu. The underlying Cu3Sn layer acts as an O diffusion barrier that prevents O diffusion into the Cu bulk during the subsequent cable heat treatment under high pressure. On contact zones where the Cu3Sn layer is not formed during the 200°C heat treatment mainly Sn oxide grows and Rc is comparatively low.

  2. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  3. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    Science.gov (United States)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  4. Live-Grid Operation and Maintenance of the 35 kV/121 MVA Superconducting Cable System

    Institute of Scientific and Technical Information of China (English)

    Huan-Huan Li; An-Lin Ren; Ying Xin; Hui Hong; Zhi-Li Chen; Lin-Na Shi

    2008-01-01

    A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying electricity to four industrial customers (including two metallurgical refineries) and a residential population of about 100000. In this paper, we give an update on the operation and maintenance status of the system and comments on reliability issues. We conclude that the superconducting cable system is currently quite robust and feasible for particular utility applications, and it will be improved by advancement in cryogenic equipment and system technology.

  5. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  6. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  7. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  8. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  9. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Science.gov (United States)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-05-01

    High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat increase significantly. It can be concluded that higher heat transfer rate and lower pumping power can be achieved with SCAR as coolant in the HTS cables.

  10. Voltage spike observation in superconducting cable-in-conduit conductor under ramped magnetic fields. Pt. 1: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sangkwon Jeong; Schultz, J.H.; Takayasu, Makoto; Vysotsky, Vitaly; Michael, P.C. [Massachusetts Inst. of Technology, Plasma Fusion Center, Cambridge, MA (United States); Warnes, William [Oregan State Univ., Corvallis, OR (United States); Shen, Stewart [Lawrence Livermore National Lab., Livermore, CA (United States)

    1997-06-01

    A 27-strand hybrid superconducting cable-in-conduit conductor (CICC) was fabricated and tested under quickly-ramped high magnetic fields. When the field increased linearly on the CICC, the voltage signal showed several intermittent spikes before it quenched. This paper describes an observation of peculiar voltage spikes during these ramp-rate limitation experiments. The voltage spikes are interpreted as quench precursors and understood as current redistribution events within the local cable inside the conduit. A quantitative correlation is obtained for the magnetic field at which the first voltage spike occurs during ramping fields. The non-uniform current distribution among the strands and the induced loop current in the cable, which is generated by ramped fields, are found to be responsible for the voltage spikes. (author)

  11. Proposal for the award of two contracts, each for the supply of 60 km of superconducting multi-wire cable

    CERN Document Server

    2001-01-01

    This document concerns the award of two contracts, each for the supply of 60 km of superconducting multi-wire cable. Following a market survey carried out among sixteen firms in six Member States, Japan and the USA, a call for tenders (IT-2563/LHC/LHC) was sent on 6 December 2000 to four firms in four Member States. By the closing date, CERN had received three tenders from three firms in three Member States. The Finance Committee is invited to agree to the negotiation of contracts with: - ALSTOM (FR), the lowest bidder, for the supply of 60 km of superconducting multi-wire cable for a total amount of 751 531 euros (1 157 599 Swiss francs), subject to revision after 31 December 2001, with options for 9 km of superconducting multi-wire cable, for an additional amount of 114 267 euros (176 008 Swiss francs), subject to revision after 31 December 2001, bringing the total amount to 865 798 euros (1 333 607 Swiss francs), subject to revision after 31 December 2001. The rate of exchange which has been used is that s...

  12. Design and Manufacture of a Large-Bore 10 T Superconducting Dipole for the CERN Cable Test Facility

    CERN Document Server

    Leroy, D; Verweij, A P; Boschmann, H; Dubbeldam, R L; González-Pelayo, J

    2000-01-01

    A large-bore 10 T superconducting dipole magnet was designed and fabricated in close cooperation between CERN and HMA Power Systems. The dipole has a length of about 1.7 m and an aperture of 88 mm and is composed of two two-layer poles wound with NbTi cables cooled to 1.9 K to reach magnetic inductions close to 10 T. This dipole will be installed at the CERN cable test facility and used as a background field magnet to test LHC superconducting cables. In its large aperture up to four cable samples can be tested at the same time. The mechanical design of the magnet is such that coil prestress variations between warm and cold conditions are kept within 20 MPa. A short model was also built and cooled down in order to check and confirm with test results the mechanical behavior of the dipole. Magnetic measurements, at room temperature, were performed upon its arrival at CERN prior to installation in the test facility. The dipole was recently cooled down and tested. This paper will discuss the design, the main manu...

  13. The reactive Mg-liquid infiltration to obtain long superconducting MgB$_{2}$ cables

    CERN Document Server

    Giunchi, G

    2009-01-01

    An alternative “in situ” process to the MgB2 wire manufacturing is represented by the Reactive Mg-Liquid Infiltration (Mg-RLI) process [1], in which the precursor wire is constituted by a metallic sheath encasing a central Mg rod, surrounded by the B powders. We demonstrated that this peculiar “internal Mg” assembly is able to produce very dense superconducting material of high critical current density, with an acceptable fill factor, up to 0.28. Furthermore the Mg-RLI allows also to easily dope the MgBB2 material either by carbon or nanoSiC powders. In order to realize long cables with this technique, two different approaches may be applied. The first one relies on the assembly of thin wires, fine enough that the liquid Mg cannot freely percolate along the wire during the reaction, and the second one relies on the assembly of thick hollow wires, reacted with a continuous supply of Mg to avoid deficiency of Mg in some part of the precursor wire. Both techniques have been demonstrated feasible and the ...

  14. Semiannual report for the period October 1, 1978 to March 31, 1979 of work on: (1) superconducting power transmission system development; and (2) cable insulation development

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-11

    The objective of the program is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors, and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications. Progress in cable conductor and cable insulation development and in the engineering facilities for fabricating and testing the superconducting cables is reported. (LCL)

  15. Characterization of superconducting wires and cables by X-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion, E-mail: tiseanu@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); Zani, Louis [JT60-SA EU Home Team, Fusion for Energy, Boltzmannstrasse 2, 85748 Garching (Germany); Craciunescu, Teddy [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); Cotorobai, Florin [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); National Institute for Material Physics, Atomistilor Street, 105bis, Bucharest, Magurele (Romania); Dobrea, Cosmin; Sima, Adrian [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania)

    2013-10-15

    Highlights: • A methodology in support of quality controls monitoring of Cable-in-Conduit-Conductor (CICC) to be used in tokamak magnet systems was developed. • High resolution (≈40 μm) X-ray tomography images of CICC section up to 300 mm long have been obtained. • All constitutive elements of CICC (316SS jacket, NbTi and Cu strands and external wrapper foil) can be noninvasively inspected. • Derivation of quantities like void fraction and void homogeneity at the local and global level, automatic identification of individual NbTi and Cu strands. • Derivation of geometric parameters like: trajectory, pitch angle and their space distribution. -- Abstract: Due to their mechanical strength and ability to withstand the large electromagnetic force applied to the superconductors in large magnets during excitation, the Cable-in-Conduit-Conductor (CICC) type superconductors will be employed in the next stage of fusion magnets. Here, we discuss the recent results on the application of a non-invasive method for the characterization of CCIC by X-ray micro-tomography (μXCT). The experiments have been carried out on a high resolution X-ray tomograph in INFLPR ( (http://tomography.inflpr.ro)). An open type nanofocus X-ray source with maximum high voltage of 225 kVp at 15–30 W maximum power and multiple targets of W on different windows materials (Be, Al, Cu or diamond) is the main component. X-rays are detected by means of amorphous silicon flat panel sensor in the cone-beam configuration and high-energy efficient line sensor based on individual scintillators in the fan-beam scanning configuration. The quality of tomographic images (≈40 μm space resolution) allowed the majority of strands of analyzed CICC samples to be fully reconstructed along the investigated segment (up to 300 mm long). Our method provides: (i) local and global void fractions (over a 300 mm length of the sample), (ii) void homogeneity factor as the ratio between void space surface and

  16. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations; AmpaCity. Supraleitende Kabel und Strombegrenzer fuer die Energieverteilung in Ballungsgebieten

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, F. [RWE Deutschland AG, Essen (Germany); Noe, M. [Karlsruher Institute of Technology (KIT), Karlsruhe (Germany); Stemmle, M. [Nexans Deutschland GmbH, Hannover (Germany); Hobl, A. [Nexans SuperConductors GmbH, Huerth (Germany); Sauerbach, O. [Westnetz GmbH, Essen (Germany)

    2013-07-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  17. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    CERN Document Server

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  18. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    Science.gov (United States)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  19. DC measurement of electrical contacts between strands in superconducting cables for the LHC main magnets

    CERN Document Server

    Richter, D; Depond, J M; Leroy, D; Oberli, L R

    1996-01-01

    In the LHC main magnets, using Rutherford type cable, the eddy current loss and dynamic magnetic field error depend largely on the electrical resistance between crossing (Rc) and adjacent (Ra) strands. Cables made of strands with pre-selected coatings have been studied at low temperature using a DC electrical method. The significance of the inter-strand contact is explained. The properties of resistive barriers, the DC method used for the resistance measurement on the cable, and sample preparation are described. Finally the resistances are presented under various conditions, and the effect is discussed that the cable treatment has on the contact resistance.

  20. CUDI A Model for Calculation of Electrodynamic and Thermal Behaviour of Superconducting Rutherford Cables

    CERN Document Server

    Verweij, A

    2006-01-01

    CUDI is the extended Fortran code to calculate the electrodynamic and thermal behaviour of any type of Rutherford cable subject to global and/or local variations in field, transport current, and external heat release. The internal parameters of the cable can be freely varied along the length and across the width, such as contact resistances, critical current, cooling rates etc. In this way, all the typical non-uniformities occurring in a cable, e.g. broken filaments, strand welds, cable joints, and edge degradation can be simulated. Also the characteristics of the strands in the cable can be varied from strand to strand. Heat flows through the matrix, through the interstrand contacts, and to the helium are incorporated, as well as the self-field and self- and mutual inductances between the strands. The main features and structure of the program will be discussed.

  1. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  2. Methods to detect faulty splices in the superconducting magnet system of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.; Bellesia, B.; Lasheras, N.Catalan; Dahlerup-Petersen, K.; Denz, R.; Robles, C.; Koratzinos, M.; Pojer, M.; Ponce, L.; Saban, R.; Schmidt, R.; /CERN /Fermilab /Moscow, INR /Cracow, INP

    2009-05-01

    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 n{Omega} resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R > 20 n{Omega}. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 n{Omega} in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 n{Omega} and 50 n{Omega} respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the n{Omega} level.

  3. Methods to detect faulty splices in the superconducting magnet system of the LHC

    CERN Document Server

    Bailey, R; Catalan Lasheras, N; Dahlerup-Petersen, K; Denz, R; Robles, C; Koratzinos, M; Pojer, M; Ponce, L; Saban, R; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernandez, A; Flora, R H; Charifoulline, Z; Bednarek, M; Górnicki, E; Jurkiewicz, P; Kapusta, P; Strait, J

    2010-01-01

    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 nΩ resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R>20 nΩ. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 nΩ in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nΩ and 50 nΩ respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the nΩ level.

  4. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM); Collings, Edward W. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM)

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  5. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    CERN Document Server

    Salmi, T; Caspi, S; Felice, H; Prestemon, S; Chlachidze, G; Kate, H H J ten

    2013-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  6. AC Loss in the Superconducting Cables of the CERN Fast Cycled Magnet Prototype

    NARCIS (Netherlands)

    Borgnolutti, F.; Bottura, L.; Nijhuis, A.; Zhou, C.; Liu, B.; Miyoshi, Y.; Krooshoop, H.J.G.; Richter, D.

    2012-01-01

    Fast Cycled Superconducting Magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. The economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 0.5 Hz repetition rate, depends critically on the AC loss pr

  7. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Progress report, 1 September 1975--31 October 1975. [Operation of helium liquefiers

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, F J; Longsworth, R C

    1975-01-01

    Progress made in a six task program on methods for cryogenic refrigeration for superconducting transmission cables is reported. The current report period included a review of equipment versus requirements, development of an optimization criteria, and evaluation of component reliability and efficiency. The results and findings of the helium refrigerator user visits, system and component manufacturers responses to questionnaires, telephone calls and visits, and the information obtained from a review of APCI standard N/sub 2/ plant experience are presented.

  8. Current and field distributions of a superconducting power transmission cable composed of helical tape conductors

    Science.gov (United States)

    Tominaka, Toshiharu

    2009-12-01

    The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.

  9. Current and field distributions of a superconducting power transmission cable composed of helical tape conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tominaka, Toshiharu, E-mail: tominaka@mext.go.j, E-mail: tominaka@riken.j [Ministry of Education, Culture, Sports, Science and Technology (MEXT), 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); RIKEN - Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2009-12-15

    The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.

  10. 14 CFR 23.689 - Cable systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cable systems. 23.689 Section 23.689... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must meet approved specifications. In addition— (1) No cable smaller than 1/8 inch diameter may be used...

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  12. Development of Superconducting Strang and Cable with Improved Properties for Use in SSC Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.

    1989-02-01

    The critical current requirement for the NbTi superconductor strand was set at 2750 A/mm{sup 2} (5 T, 4.2 K) in the SSC Conceptual Design, compared with a value of 1800 A/mm{sup 2} which was specified for the strand used in the Tevatron dipoles. In addition, a filament diameter of 5 {micro}m, instead of the 9 {micro}m diameter used in the Tevatron. was chosen to reduce field distonion at injection. In order to meet the requirements for field homogeneity, the dimensional requirements for both strand and cable were also tightened. The technical solutions employed to achieve these improved properties and the resulting specifications will be discussed.

  13. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...... to detect degradation due to the short-circuit current. During the over-current testing the current and voltage along the CC were measured as well as its temperature. Significant warming above the critical temperature occurs for short-circuit currents of 10 kA and above. No critical current degradation...

  14. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    Science.gov (United States)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  15. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  16. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  17. 14 CFR 25.689 - Cable systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cable systems. 25.689 Section 25.689... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No...

  18. Proposal for the award of a contract for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components for the LHC. Following a market survey carried out among 63 firms in twelve Member States, a call for tenders (IT-2651/LHC/LHC) was sent on 21 December 2000 to four firms and five consortia in eight Member States. By the closing date, CERN had received seven tenders from three firms and four consortia in eight Member States. The Finance Committee is invited to agree to the negotiation of a contract with ISQ (PT), the lowest bidder, for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components over the years 2001-2005 for a total amount of 7 458 077 euros (11 472 760 Swiss francs), not subject to revision until 1 January 2002, with an option covering the provision of four additional inspectors over a period of four years, for an additional amount of 1 665 660 euros (2 562 285...

  19. Electrical power cable engineering

    CERN Document Server

    Thue, William A

    2011-01-01

    Fully updated, Electrical Power Cable Engineering, Third Edition again concentrates on the remarkably complex design, application, and preparation methods required to terminate and splice cables. This latest addition to the CRC Press Power Engineering series covers cutting-edge methods for design, manufacture, installation, operation, and maintenance of reliable power cable systems. It is based largely on feedback from experienced university lecturers who have taught courses on these very concepts.The book emphasizes methods to optimize vital design and installation of power cables used in the

  20. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  1. Test up to 80 kA of an Al-Stabilized NbTi Cable With the Upgraded Saclay Superconducting Transformer

    CERN Document Server

    Berriaud, C; Donati, A; Gharib, A; Peiro, G; Willering, G

    2014-01-01

    An ATLAS Barrel Toroid conductor was tested in the Saclay High Current Test Facility. The conductor is a Nb-Ti Rutherford cable imbedded in a high purity aluminum stabilizer. The conductor's width was reduced from 57 mm to 30 mm in order to be able to use an existing sample holder. We tried to measure the critical current in background fields of up to 3 T. The field was produced by a 0.8 m long superconducting dipole magnet. The test station was equipped with a superconducting transformer transferring maximum primary and secondary currents of respectively 174 A and 80 kA. The secondary current was measured with flux coils and with a superconducting Direct Control Current Transducer (DCCT), a modified version of the ``Macc+{''} 600 A commercial DCCT from Hitec, which was operated at currents of up to 57 kA. This paper reports on the performance of the test station, on the results of the quench current measurements performed on the stabilized ATLAS conductor and on the difficulties to measure the critical curre...

  2. Semiannual report for the period April 1 to September 30, 1978 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project technical note No. 83

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-07

    Progress in the development, fabrication and testing of superconductors for HVAC power transmission systems is reported. Information is included on the materials evaluation of superconducting alloys, production of tapes from these alloys, principally Nb/sub 3/Sn cable insulation requirements and development, and the cryogenic equipment used in this research program. (LCL)

  3. Realisation and instrumentation of high current power station for superconducting cables testing; Realisation et instrumentation d'une station fort courant pour le test de cables supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Regnaud, S

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%.

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  5. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    Science.gov (United States)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  6. 46 CFR 129.340 - Cable and wiring.

    Science.gov (United States)

    2010-10-01

    ... section, the insulation resistance of the remainder of the cable is measured, and the condition of the insulation is unimpaired. (m) All material in a cable splice must be chemically compatible with other material in the splice and with the materials in the cable. (n) Ampacities for conductors must comply...

  7. 46 CFR 120.340 - Cable and wiring requirements.

    Science.gov (United States)

    2010-10-01

    ... insulation is unimpaired. (n) All material in a cable splice must be chemically compatible with all other material in the splice and with the materials in the cable. (o) Ampacities of wires must meet Section 310... to replace a damaged section of the cable if, before replacing the damaged section, the...

  8. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    Science.gov (United States)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  9. The Effect of CuSn Intermetallics on the Interstrand Contact Resistance in Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Jacob, P; Leroy, D; Oberli, L R; Taborelli, M

    2005-01-01

    The LHC superconducting cables are submitted to a 200°C heat-treatment in air in order to increase the resistance between the crossing strands (RC) within the cable. During this treatment the as-applied Sn-Ag alloy strand coating is transformed into a CuSn intermetallic compound layer. The microstructure, the surface topography and the surface chemistry of the non-reacted and reacted coatings have been characterised by different techniques, notably focused ion beam (FIB), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Based on the results obtained by these techniques the different influences that the intermetallics have on RC are discussed. The desired RC is obtained only when a continuous Cu3Sn layer is formed, i.e. a sufficient wetting of the Cu substrate by the tinning alloy is crucial. Among other effects the formation of the comparatively hard intermetallics roughens the surface and, thus, reduces the true contact area and i...

  10. Ceramic insulation for superconducting Nb{sub 3}Sn cables; Isolation ceramique pour cables supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Puigsegur, A

    2005-01-15

    Nb{sub 3}Sn is the best superconductor candidate for the realization of high field magnets (>11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to the formation of Nb{sub 3}Sn compounds. The conventional insulation for Nb{sub 3}Sn requires to perform, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed an innovating ceramic insulation deposited directly on the unreacted conducting cable. After the heat treatment of the niobium tin, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. After a rheological study, to characterize the impregnated suspension, we have shown that using this insulation in a coil manufacture process does not affect the electrical properties of the Nb{sub 3}Sn wires. A solenoid of small dimensions was tested with success in high external magnetic fields and has produced a magnetic field of 3.8 T under 740 A. (author)

  11. Splice testing for LHC quadrupole magnets

    CERN Document Server

    Barzi, E; Fehér, S; Kashikhin, V V; Kerby, J S; Lamm, M J; Orris, D; Ray, G; Tartaglia, M; Zlobin, A V

    2003-01-01

    Electrical splices between NbTi Rutherford type cables need to be made for the LHC IR inner triplet quadrupoles. Splices between magnets as well as internal to the magnets are necessary. Various splice configurations, solders, and fluxes have been considered. Testing of these splices at cryogenic temperatures and at various currents has been completed. The results were satisfactory; Fermilab is capable of making excellent low resistance (<1n Omega ) solder joints for the LHC project. (4 refs).

  12. AmpaCity. Superconducting prototype cable connects two substations in the inner city of Essen; AmpaCity. Supraleiter-Teststrecke verbindet zwei Umspannanlagen in der Innenstadt von Essen

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, F. [RWE Deutschland AG, Essen (Germany); Noe, M. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Stemmle, M. [Nexans Deutschland GmbH, Hannover (Germany); Hobl, A. [Nexans SuperConductors GmbH, Huerth (Germany)

    2012-07-01

    The German Utility RWE Deutschland is going to show new ways in the area of electric power supply for conurbations in a world-wide unique project: in the year 2013, the present longest high temperature superconducting cable (HTS cable) will be installed and commissioned in the German city of Essen. The project partners apart from RWE Deutschland are Nexans as a manufacturer for cables and cable systems, Nexans SuperConductors and the Karlsruhe Institute of Technology (KIT); the Projekttraeger Juelich (PTJ) attends the project. Due to the innovative character, special advantages, and the perspectives of superconductors in the future energy distribution, the project ''Ampacity'' is funded by the German Federal Ministry of Economics and Technology. In the downtown area of Essen, an HTS system consisting of a concentric three phase cable system and a fault current limiter will connect two substation, replacing conventional 110 kV cables on a length of one kilometre. This will be the world's first application for this use. The project ''AmpaCity'' is based on a comprehensive feasibility study in which was investigated, how and to what extent existing large high voltage installations in inner cities can be replaced. From the current perspective expanding grid using HTS medium voltage cables is the only technically and economically appropriate option for avoiding the expansion of inner city power grids using high voltage cables and reducing the number of high voltage transformer substations in downtown areas. A field test under real load conditions will show the reliability and economy of the HTS system for use in energy distribution grids. (orig.)

  13. Calorimetric measurements of losses in HTS cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Veje, Niels Erling Winsløv; Rasmussen, Carsten

    2001-01-01

    A calorimetric test rig is used to investigate various loss components in a 10 m long superconducting cable model. A calorimetric technique, based on thermocouple measurements, is used to measure the losses of the 10 m long superconducting cable model. The current dependent losses are also measured...

  14. High-Current Bus Splice Resistances and Implications for the Operating Energy of the LHC

    CERN Document Server

    Koratzinos, M; Charifoulline, Z; Dahlerup-Petersen, K; Denz, R; Flora, R H; Pfeffer, H; Scheuerlein, C; Schmidt, R; Siemko, A; Strait, J; Verweij, A

    2010-01-01

    At each interconnection between LHC main magnets a low-resistance solder joint must be made between superconducting cables in order to provide a continuous current path through the superconductor and also to the surrounding copper stabilizer in case the cable quenches [1]. About 10,000 such joints exist in the LHC. An extensive campaign has been undertaken to characterize and map the resistances of these joints. All of the superconducting cable splices were measured at 1.9 K and no splices were found with a resistance larger than 3 nW. Non-invasive measurements of the stabilizer joints were made at 300 K in 5 of the 8 sectors, and at 80 K in 3 sectors. More precise local measurements were made on suspect interconnects that were opened up, and poor joints were repaired. However, it is likely that additional imperfect stabilizer joints still exist in the LHC. A statistical analysis is used to place bounds on the remaining worst-case resistances. This sets limits on the maximum operating energy of the LHC, prior...

  15. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, F J; Longsworth, R C

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13/sup 0/K and 3 to 15 atm pressure with compressor power input in the range of 1,300 to 3,500 HP. Future requirements will probably trend toward slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and an average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 years would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates.

  16. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  17. AC Cable: Yokohama Project

    Science.gov (United States)

    Masuda, Takato

    High Temperature Superconducting (HTS) cables can transmit large amounts of electricity in a compact size with minimal losses. Therefore, they are expected to save the construction cost of underground lines in urban areas and decrease transmission losses. Several HTS cables have recently been demonstrated in networks around the world, and full-scale commercialization is expected in the near future. In Japan, the development of compact HTS cables suitable for urban deployment has been underway since the early 1990s. In 2007, a national project was started to verify their operational performance and long-term reliability in the grid. An HTS cable 240 m long was installed at the Asahi substation of the Tokyo Electric Power Company (TEPCO) in Yokohama; then a joint, terminations and cooling system was constructed in 2011. After successful performance tests, the cable was connected to the grid for the first time in Japan, and started to deliver electricity to 70,000 households in October 2012. This trouble-free in-grid service continued for over a year. We can conclude that the HTS cable system performs well and has the stability required for long-term in-grid operations.

  18. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  19. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  20. Superconductors for the medium-voltage grid. A superconducting power cable running through the inner city of Essen passes a two-year field test; Supraleiter fuer das Mittelspannungsnetz. Ein supraleitendes Stromkabel quer durch die Essener Innenstadt besteht zweijaehrigen Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2017-04-01

    Scientists are testing the longest high-temperature superconducting cable in the world under real conditions in Essen. One kilometre long, it connects two substations in the inner city. It replaces a conventional 110 kV line and renders one substation in the inner city obsolete. After two years of testing, it has passed the field test. It could be a blueprint for the future power supply system in urban areas. [German] Wissenschaftler testen in Essen das laengste Hochtemperatur-Supraleiterkabel der Welt unter realen Bedingungen. Mit einer Laenge von einem Kilometer verbindet es zwei Umspannstationen quer durch die Innenstadt. Es ersetzt eine konventionelle 110-kV-Leitung und macht eine Umspannanlage im Stadtzentrum ueberfluessig. In einer zweijaehrigen Erprobung hat es den Praxistest bestanden. Es koennte eine Blaupause fuer die kuenftige Stromversorgung in Ballungsraeumen sein.

  1. Development of a novel method for the exploration of the thermal response of superfluid helium cooled superconducting cables to pulse heat loads

    NARCIS (Netherlands)

    Winkler, T.; Koettig, T.; Weelderen, van R.; Bremer, J.; Brake, ter H.J.M.

    2015-01-01

    Management of transient heat deposition in superconducting magnets and its extraction from the aforementioned is becoming increasingly important to bring high energy particle accelerator performance to higher beam energies and intensities. Precise knowledge of transient heat deposition phenomena in

  2. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  3. 高温超导电缆及其低温绝缘研究现状%Present Research Status of High Temperature Superconducting Cable and Its Cryogenic Insulation

    Institute of Scientific and Technical Information of China (English)

    杜伯学; 邢云琪; 傅明利; 侯帅

    2015-01-01

    The research history and current status of high temperature superconducting (HTS)cable in the world are summarized,and the basic structure and insulation requirements of HTS cable body are introduced. Then,the structure and problem of the main insula-tion for HTS cable are analyzed. For liquid nitrogen (LN2 )and several solid insulation materials under low temperature applied in HTS cables,related researches are put forward separately on their dielectric property under low temperature. It can be concluded that, in LN2 ,the breakdown strength of insulation material is higher in DC field than that in ac field;the breakdown strength of polyimide is higher than that of polypropylene laminated paper (PPLP)in both ac and dc field;low temperature can suppress the growth of the electrical tree in epoxy resin.%概述了世界上高温超导电缆的研究历史和现状,介绍了高温超导电缆本体的基本结构及绝缘要求,分析了高温超导电缆主绝缘的结构及存在的问题。针对高温超导电缆中使用的液氮和几种低温固体绝缘材料,分别介绍了其在低温环境下介电性能的相关研究进展。总结发现:液氮的击穿场强受到气泡和电极材料的影响;液氮下绝缘材料的直流击穿场强高于交流击穿场强;聚酰亚胺在液氮下的交直流击穿场强高于聚丙烯层压纸;低温会抑制环氧树脂中电树枝的生长。

  4. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    Science.gov (United States)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  5. Development of HTS power cable using YBCO coated conductor

    Science.gov (United States)

    Mukoyama, Shinichi; Yagi, Masashi; Hirano, Hironobu; Yamada, Yutaka; Izumi, Teruo; Shiohara, Yuh

    2006-10-01

    Reductions of AC losses and of cost of HTS power cables are important to put it into practical power networks. Since an YBCO-coated-conductor (YBCO tape) has higher Jc and better magnetic property than a Bi2223-Ag-sheathed-tape, an AC power cable using YBCO tapes will obtain higher performance than XLPE-cables and HTS cables using BSCCO tapes in future. Especially, an YBCO HTS cable will be expected to become a higher economical cable than a Bi cable because an YBCO tape reduced its AC losses and its wire cost. We have started developing HTS power cables using YBCO tapes. Mechanical properties, superconducting properties and other electro magnetic properties of YBCO tapes have been measured to estimate the applicability to the HTS cable. Moreover, we have developed some technologies to bring out latent potentials of YBCO tapes.

  6. Cable tensiometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, B.V

    1989-05-30

    This patent describes a weight beam for measuring load on a cable. The weight beam consists of: a beam body; load cell means mounted on the beam body, the load cell means being spaced a predetermined distance from the beam body; clamp means connected to the load cell means and adapted to grip a cable whose tension is to be measured; and adjusting means connected to the load cell to deflect the cable and put the load cell under a tension load, the clamp means and the adjusting means being structurally distinct.

  7. First Russian long length HTS power cable

    Science.gov (United States)

    Volkov, Eduard P.; Vysotsky, Vitaly S.; Firsov, Valery P.

    2012-11-01

    The Russian R&D Program for superconducting power devices is underway, supported both by government and electric power companies. In this program R&D on HTS power cables is considered as most advanced and close to commercialization. In the framework of the program, several, heavily instrumented, 5 m cables have been tested following by the 30 m - 3 phase experimental power cable development and testing in 2008-2009. The latest achievement is development and testing of the first long length 3 × 200 m power cable with rating 1.5/2 kA-20 kV. In parallel with just the cable development the innovative cryogenic system has been developed as well for the cable cooling. The system is using neon as working substance and radial turbo-machines in refrigerator. Cooling power is up to ∼8 kW at 65 K, inter-maintenance time ∼30,000 h. The cryogenic pump with superconducting motor can be used to provide subcooled liquid nitrogen flow ∼0.1-1.5 kg/s at 0.1-2.5 MPa pressure. After extensive tests at special test facility, HTS power cable and cryogenic system are planning to be installed at some substation in Moscow utility grid. In this review some details about Russian HTS power application program, 200 m cable and cryogenic system designs and tests results are presented.

  8. 故障电流冲击下高温超导电缆磁-热耦合特性数值计算与分析%Numerical Analysis on Coupled Magneto-thermal Properties of High Temperature Superconducting Cables Subjected to Fault Currents

    Institute of Scientific and Technical Information of China (English)

    诸嘉慧; 栗会峰; 丘明; 李振明; 刘伟; 来小康; 方进; 袁炜嘉

    2015-01-01

    冷绝缘高温超导(cold dielectric high temperature superconducting,CD HTS)电缆在电力系统输电运行中,不可避免地会受到故障电流的冲击。在故障持续时间内,超导电缆产生大量热量,导致温度升高,从而使超导电缆由超导态向正常态转变,对超导电缆载流性能产生影响。通过建立故障电流下超导电缆等效电路模型与热传导模型,提出了超导电缆在故障电流冲击时的各层电流瞬态分布解析算法,通过耦合电磁计算与传热分析模型,提出了超导电缆故障电流冲击下的温度分布数值计算法。最后,对110 kV/3 kA冷绝缘高温超导电缆在25 kA、持续3 s故障电流冲击时的电流分布和温度分布情况进行了计算分析。结果表明:在故障时间内,伴随导体层温度逐渐上升,各个导体层电流呈下降趋势,各层的温度在92 K前后上升速率不再相同,铜骨架承受近96%的故障电流,分流作用明显。分析结果为设计故障电流冲击下超导电缆的故障保护策略提供了参考依据,对保障超导电缆的稳定运行具有指导意义。%In the power grid, a cold dielectric high temperature superconducting (CD HTS) cable usually subjects to the impact of fault currents in the transmission system. During the fault, a large amount of Joule heat is generated, causing the temperature of HTS cable rise and leading a transformation of HTS elements therein from a superconducting state to a normal state which would deteriorate the current carrying capacity of HTS cables. This paper proposes a new method for calculating transient currents and temperature distributions in CD HTS cables by coupling an equivalent circuit mathematical model with a thermal conduction model of HTS cables considering the impact of fault currents. The proposed method is applied to an 110 kV/3 kA CD HTS cable consisted of YBCO coated conductor with a fault current of 25 kA rms lasting 3 s

  9. Inductive Soldering of the Junctions of the Main Superconducting Busbars of the LHC

    CERN Document Server

    Jacquemod, A; Schauf, F; Skoczen, Blazej; Tock, J P

    2004-01-01

    The Large Hadron Collider (LHC) is the next world-facility for the high energy physics community, presently under construction at CERN, Geneva. The LHC will bring into collisions intense beams of protons and ions. The main components of the LHC are the twin-aperture high-field superconducting cryomagnets that will be installed in the existing 26.7-km long tunnel. They are powered in series by superconducting Nb-Ti cables. Along the machine, about 60 000 joints between superconducting cables must be realised in-situ during the installation. Ten thousands of them, rated at 13 000 A, are involved in the powering scheme of the main dipoles and quadrupoles. To meet the requirements of the cryogenic budget, an electrical resistance at operating temperature (1.9 K) lower than 0.6 nW has to be achieved. The induction soldering technology was selected for this purpose. After a brief introduction to the LHC project, the constraints and requirements are listed. Then, the applied solution is detailed. The splices of the ...

  10. High temperature superconductors as a technological discontinuity in the power cable industry

    Science.gov (United States)

    Beales, T. P.; Mccormack, J. S.

    1995-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibers. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  11. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  12. Bending behavior of lapped plastic ehv cables

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  13. Study of Transient Heat Transport Mechanisms in Superfluid Helium Cooled Rutherford-Cables

    CERN Document Server

    AUTHOR|(CDS)2100615

    The Large Hadron Collider leverages superconducting magnets to focus the particle beam or keep it in its circular track. These superconducting magnets are composed of NbTi-cables with a special insulation that allows superfluid helium to enter and cool the superconducting cable. Loss mechanisms, e.g. continuous random loss of particles escaping the collimation system heating up the magnets. Hence, a local temperature increase can occur and lead to a quench of the magnets when the superconductor warms up above the critical temperature. A detailed knowledge about the temperature increases in the superconducting cable (Rutherford type) ensures a secure operation of the LHC. A sample of the Rutherford cable has been instrumented with temperature sensors. Experiments with this sample have been performed within this study to investigate the cooling performance of the helium in the cable due to heat deposition. The experiment uses a superconducting coil, placed in a cryostat, to couple with the magnetic field loss m...

  14. Superconducting generators and motors and methods for employing same

    Energy Technology Data Exchange (ETDEWEB)

    Tomsic, Michael J.; Long, Larry

    2017-08-29

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.

  15. Feasibility Study of a 270V DC Flat Cable Aircraft Electrical Power Distribution System.

    Science.gov (United States)

    1982-01-01

    POWER CABLE (27&A) 62 SPLICE ENVIRGNIMENT FIREWALL PENETRATION SPLICE I CU/2 C Fi gure 3.5.9.9 High, AmpacitY F/at Cable Replacemnt Harness InstallatiOn...NADC-82023-60 FEASIBILITY STUDY OF A.270V 0C FLAT CABLE AIRCRAFT ELECTRICAL POWER DISTRIBUTION SYSTEM SM.J. Musga R. J. Rinehart Boeing Aerospace Co...PERIOD COVEIRED FEASIBILITY STUDY OF A 270V DC FLAT CABLE Final Report AIRCRAFT ELECTRICAL POWER DISTRIBUTION SYSTEM 30 Dec. 1980 to Jan. 19824

  16. Testing of 3-meter Prototype Fault Current Limiting Cables

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Rey, Christopher M [ORNL; Thompson, James R [ORNL; Lindsay, David T [ORNL; Tolbert, Jerry Carlton [ORNL; Willen, Dag [Ultera; Lentge, Heidi [Ultera; Thidemann, Carsten [Ultera; Carter, Bill [AMSC

    2009-01-01

    Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

  17. Proceedings of the 34th Wire and Cable Symposium held at Cherry Hill, New Jersey on 19-21 November 1985

    Science.gov (United States)

    1985-11-01

    Contents: The Teleco Explosion: How Far and How Fast; Fiber Optic Cable Design I; Materials; Fiber Optic Cable Design II; Design/Testing I; Design/Testing II: Fire, Smoke, and Toxicity Technology; Splicing/Enclosures/Connectors I; Fiber Optic Application/Installation; Fiber Optic Systems/Networks; Splicing/Enclosures/Connectors II.

  18. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  19. Current distribution among layers of single phase HTS cable conductor

    Science.gov (United States)

    Zheng, Y. B.; Wang, Y. S.; Pi, W.; Ju, P.; Wang, Y. S.

    2014-12-01

    High temperature superconducting (HTS) power cable shows high application prospect in modern power transmission, as it is superior over conventional transmission lines in high engineering current density and environmental friendliness. Its configuration is generally composed of several HTS layers designed with the principle of uniform current distribution, but there are few experimental results to verify the distribution. In this paper, a HTS cable model was designed based on the principle of uniform current, and the current distributions among layers in an HTS cable model were measured by Rogowski coils. The results provide an important basis for design of multi-layer HTS cable.

  20. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    CERN Document Server

    Grether, A; Ballarino, A.; Bottura, L.

    2016-01-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (Ic) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and Ic of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  1. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  2. Cable Sliding at Supports in Cable Structures

    Institute of Scientific and Technical Information of China (English)

    魏建东

    2004-01-01

    To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.

  3. VT Cable Systems 2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable dataset (CABLE2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013 in addition to...

  4. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  5. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  6. A nontrivial factor in determining current distribution in an ac HTS cable-proximity effect

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A superconductor has zero resistance at the superconducting state. This unique property creates many exceptional phenomena, of which some are known and the others are not. Our experiments with multilayer high temperature superconductor (HTS) cable samples revealed a new phenomenon that alternating current had a tendency to flow in the inner and outer layers of the cables. We attribute the cause of this phenomenon to the electromagnetic interaction in an infinite electrical conductivity medium and term it "super-proximity-effect". This effect will greatly affect the performance of a multilayer superconducting cable and other superconducting devices which are involved with alternating current transportation.

  7. Design, processing, and properties of Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R; Sokolowski, R S; Aoki, Y; Hasegawa, T

    1999-01-01

    In a program intended to explore the use of high temperature superconducting (HTSC) cables in high field synchrotron dipole magnets model Bi:2212/Ag Rutherford cables were designed bearing in mind the needs for mechanical integrity, relatively high tensile strength, and low coupling losses. To satisfy these needs a core-type cable design was selected and a readily available heat-resistant core material acquired. Cables were wound for critical current- and AC loss measurement. Both winding-induced (mechanical) and core-induced (chemical) critical current degradation was examined. Interstrand coupling loss was measured calorimetrically on model cable samples with bare- and oxide-coated cores. From the results it was predicted that the losses of full-scale Bi:2212/Ag-wound LHC-type Rutherford cables would fall close to the acceptability range for the windings of high-field accelerator dipoles. (10 refs).

  8. Cable Television Service; Cable Television Relay Service.

    Science.gov (United States)

    Federal Register, 1972

    1972-01-01

    The rules and regulations of the Federal Communications Commission (FCC) concerning cable television service and cable relay service are presented along with the comments of the National Cable Television Association, the National Association of Broadcasters, the Association of Maximum Service Telecasters, and a major group of program suppliers.…

  9. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  10. Modeling and simulation of HTS cables for scattering parameter analysis

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Chang, Seung Jin; Lee, Chun-Kwon; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2016-11-01

    Most of modeling and simulation of high temperature superconducting (HTS) cables are inadequate for high frequency analysis since focus of the simulation's frequency is fundamental frequency of the power grid, which does not reflect transient characteristic. However, high frequency analysis is essential process to research the HTS cables transient for protection and diagnosis of the HTS cables. Thus, this paper proposes a new approach for modeling and simulation of HTS cables to derive the scattering parameter (S-parameter), an effective high frequency analysis, for transient wave propagation characteristics in high frequency range. The parameters sweeping method is used to validate the simulation results to the measured data given by a network analyzer (NA). This paper also presents the effects of the cable-to-NA connector in order to minimize the error between the simulated and the measured data under ambient and superconductive conditions. Based on the proposed modeling and simulation technique, S-parameters of long-distance HTS cables can be accurately derived in wide range of frequency. The results of proposed modeling and simulation can yield the characteristics of the HTS cables and will contribute to analyze the HTS cables.

  11. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  12. Interaction between Current Imbalance and Magnetization in LHC Cables

    CERN Document Server

    Bottura, L; Kuijper, A; den Ouden, A; ten Haken, B; ten Kate, H H J

    2001-01-01

    The quality of the magnetic field in superconducting accelerator magnets is associated with the properties of the superconducting cable. Current imbalances due to coupling currents DI, as large as 100 A, are induced by spatial variations of the field sweep rate and contact resistances. During injection at a constant field all magnetic field components show a decay behavior. The decay is caused by a diffusion of coupling currents into the whole magnet. This results in a redistribution of the transport current among the strands and causes a demagnetization of the superconducting cable. As soon as the field is ramped up again after the end of injection, the magnetization rapidly recovers from the decay and follows the course of the original hysteresis curve. In order to clarify the interactions between the changes in current and magnetization during injection we performed a number of experiments. A magnetic field with a spatially periodic pattern was applied to a superconducting wire in order to simulate the cou...

  13. Safer cables; Des cables plus surs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    Sixteen years after its adoption, the European construction products directive (CPD) will have soon a strong impact on the characteristics of electrical and communication cables used in European buildings and facilities. Among the six main requirements of this directive, the fire protection safety is a growing up concern and the electric cables have to be tested with respect to their fire resistance to become conformable with the directive. The cable industry has taken up the challenge. (J.S.)

  14. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  15. UtilityTelecom_CABLE2005

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT Cable System dataset (CABLE2005) includes lines depicting the extent of Vermont's cable system as of 12/31/2005. Numerous cable companies provide service in...

  16. Thin semi-rigid coaxial cables for cryogenics applications

    Science.gov (United States)

    Kushino, Akihiro; Kasai, Soichi

    2013-03-01

    We have developed cryogenic coaxial cables for low temperature signal readout from sensitive devices, such as transition edge sensors, superconducting tunnel junctions, and kinetic inductance detectors. In order to reduce heat penetration into cryogenic stages, low thermal conductivity metals were chosen for both center and outer electrical conductors. Various types of coaxial cables, employing stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium, and niobium-titanium, were manufactured using drawing dies. Thermal and electrical properties were investigated between 1 and 8 K. Coaxial cables made of copper alloys showed thermal conductance roughly consistent with literature, meanwhile Nb coaxial cable must be affected by the drawing process and thermal conductance was lowered. Attenuation of superconducting Nb and NbTi coaxial cables were observed to be adequately small up to above 10 GHz compared to those of normal conducting coaxial cables, which are subject to the Wiedemann-Franz law. We also measured normal conducting coaxial cables with silver-plated center conductors to improve high frequency performance.

  17. Bab Eshtar Substation 11 kV Feeder Cable. Mosul, Iraq

    Science.gov (United States)

    2006-10-17

    Item Unit QTY U price Total in US$ 3x150mm2 , 11kv , XLPE insulated cable M 10,000 43 430000 Straight outdoor heat shrinkable splice kit for 3x150mm2...11kv, XLPE cable Ea 15 325 4875 Indoor Heat shrinkable termination kit for 3x150mm2, 11kv XLPE cable Ea 9 250 2250 Outdoor Heat shrinkable...termination kit for 3x150mm2, 11kv XLPE cable Ea 5 275 1375 2 Ring-main feeders with cabinet Ea 2 18000 36000 Excavated sand m3 550 30 16500 Fine soil m3 350

  18. Test results for a subscale (100 kA) SMES splice

    Science.gov (United States)

    Peck, Scott D.; Zeigler, John C.

    1994-07-01

    The design for the 20 MW-hr SMES-ETM for the Bechtel concept calls for two splices per turn of conductor, and over 100 turns. The design value of resistance for the splices is on the order of 10(exp -11) ohms (0.4 W/splice at 200 kA), which is an order of magnitude less than the state of the art for high current devices. The splice design utilizes a superconducting braid wrapped around lapped subcables for an extremely low resistance joint. A history of the manufacturing development for the splice is presented. The performance of a sub-scale version of the splice joint has been measured at Texas Accelerator Center. Values of splice resistance at 1.8 K and background fields up to 5 T are reported. Performance of a 100 kA conductor is also reported.

  19. Cable Television: Franchising Considerations.

    Science.gov (United States)

    Baer, Walter S.; And Others

    This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…

  20. Cable Television: Franchising Considerations.

    Science.gov (United States)

    Baer, Walter S.; And Others

    This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…

  1. Colleges and Cable Franchising.

    Science.gov (United States)

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  2. Cable Supported Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    Cable supported bridges in the form of suspension bridges and cable-stayed bridges are distinguished by their ability to overcome large spans.The book concentrates on the synthesis of cable supported bridges, covering both design and construction aspects. The analytical part covers simple methods...

  3. Time Transient Effects in Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2051280; Russenschuck, Stephan; Palumbo, Luigi

    2004-01-01

    The subject of this thesis is the study of time transient effects in super- conducting cables, with applications to accelerator magnets, and the development of a simulation code. The superconducting cables are modeled at the strand level as a lumped resistor, inductor generator circuit. The analysis in time domain of the circuit currents discloses the transient effects. The code developed can solve Rutherford type cable of any size, shape geometry under any exciting external field. The code has been implemented in Roxie where it is used to compute ramp dependent field error and heat losses.

  4. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  5. Development of (RE)BCO cables for HTS power transmission lines

    Science.gov (United States)

    Mukoyama, S.; Yagi, M.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Kashima, N.; Nagaya, S.; Aoki, Y.; Yoshizumi, M.; Yamada, Y.; Izumi, T.; Shiohara, Y.

    2009-10-01

    High-temperature superconducting (HTS) power cables transmit bulk power with lower loss than conventional cables. Moreover, HTS cables are expected to be constructed as a new underground cable in urban areas at lower cost compared to a high voltage XLPE cable. To put promising HTS cables to practical use, we need (RE)BCO tapes with long length, high critical current, and low cost. Recently many organizations have improved the performance of the (RE)BCO tapes, such as YBCO tapes, or other coated conductor tapes that are made with a variety of different processes. We have fabricated the conductors for the HTS power cable that was constructed of different kinds of (RE)BCO tapes and measured the I c and AC losses. We achieved significantly low AC loss of 0.1 W/m at 1 kA in the HTS conductor using narrow slit tapes that were cut by laser. Moreover, a 20 m long HTS power cable model and a cable intermediate joint were developed. Short circuit current tests were conducted on the cable system that consisted of two 10 m cables, a cable joint, and two terminations. The cables and the joint withstood the short circuit current of 31.5 kA for 2 s without damage.

  6. Development of (RE)BCO cables for HTS power transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Mukoyama, S., E-mail: mukoyama@ch.furukawa.co.j [Furukawa Electric Co. Ltd., Ichihara 290-8555 (Japan); Yagi, M. [Furukawa Electric Co. Ltd., Ichihara 290-8555 (Japan); Masuda, T. [Sumitomo Electric Industries, Ltd., Osaka 554-0024 (Japan); Amemiya, N. [Kyoto University, Kyoto 615-8510 (Japan); Ishiyama, A. [Waseda University, Tokyo 169-8555 (Japan); Kashima, N.; Nagaya, S. [Chubu Electric Power Co. Inc., Nagoya 459-8522 (Japan); Aoki, Y. [Showa Cable System Co. Ltd., Sagamihara 229-1133 (Japan); Yoshizumi, M.; Yamada, Y.; Izumi, T.; Shiohara, Y. [Superconductivity Research Laboratory, Tokyo 135-0062 (Japan)

    2009-10-15

    High-temperature superconducting (HTS) power cables transmit bulk power with lower loss than conventional cables. Moreover, HTS cables are expected to be constructed as a new underground cable in urban areas at lower cost compared to a high voltage XLPE cable. To put promising HTS cables to practical use, we need (RE)BCO tapes with long length, high critical current, and low cost. Recently many organizations have improved the performance of the (RE)BCO tapes, such as YBCO tapes, or other coated conductor tapes that are made with a variety of different processes. We have fabricated the conductors for the HTS power cable that was constructed of different kinds of (RE)BCO tapes and measured the I{sub c} and AC losses. We achieved significantly low AC loss of 0.1 W/m at 1 kA in the HTS conductor using narrow slit tapes that were cut by laser. Moreover, a 20 m long HTS power cable model and a cable intermediate joint were developed. Short circuit current tests were conducted on the cable system that consisted of two 10 m cables, a cable joint, and two terminations. The cables and the joint withstood the short circuit current of 31.5 kA for 2 s without damage.

  7. Insulation design of the 110kV cold dielectric high temperature superconducting cable%110kV冷绝缘高温超导电缆本体绝缘设计

    Institute of Scientific and Technical Information of China (English)

    夏占军; 郭立杰; 诸嘉慧

    2011-01-01

    In this paper, we designed the insulation of the first 110kV cold dielectric (CD) cable using YBCO coated conductor in China. According to the structure of the CD HTS cable, dielectric properties of different insulation materials were analyzed , electric - field distribution of the HTS cable was calculated by the finite element numerical analysis method, the quantitative relationships, between insulation thickness and the partial discharge inception stress were studied based on the theoretical model. Finally, a design proposal about the insulation materials and its thickness for of the 110kV CD HTS cable was given.%对国内第一根基于YBCO涂层导体的110kV冷绝缘高温超导(CD HTS)电缆本体绝缘进行了设计.根据冷绝缘HTS电缆的结构特点,通过分析不同绝缘材料的介电特性,应用电场有限元数值分析模型和理论模型,计算了超导电缆本体电场分布,研究了超导电缆主绝缘厚度与局部放电起始场强的定量化关系,最后给出了110kV冷绝缘HTS电缆主绝缘材料与厚度的设计方案.

  8. Testing of an HTS Power Cable Made from YBCO Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Rey, Christopher M [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

    2007-01-01

    Oak Ridge National Laboratory (ORNL) has designed, built, and tested a 1.25-m-long, prototype high temperature superconducting (HTS) power cable made from second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in liquid nitrogen at 77 K. DC testing of the HTS cable included determination of the V-I curve with a critical current of about 2100 A, which was consistent with the critical currents of the two layers of 4.4-mm wide YBCO tapes. AC testing of the cable was conducted at currents up to about 1500 Arms. The ac losses were determined calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. Over-current testing was conducted at peak current values up to 4.9 kA for pulse lengths of 0.3-0.5 s. Test results are compared to earlier data from a 1.25-m-long power cable made from 1-cm-wide YBCO tapes and also comparable BSCCO cables. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  9. The RRR of the Cu components of the LHC main bus bar splices

    CERN Document Server

    Heck, S; Fessia, P; Principe, R; CERN. Geneva. TE Department

    2010-01-01

    The different LHC main bus bar splice components (bus bar cable, splice U-piece and wedge and bus bar stabilizer) are subjected to different heat treatments (HTs) during bus bar assembly and splice soldering. The influence of soldering HTs on the RRR of the LHC main bus bar cable strands has been determined. The RRR of several splice U-pieces and wedges dismounted from the LHC has been measured. A correlation between the Vickers hardness and the RRR of the high purity Cu profiles has been established. All U-pieces tested that were produced before 2009 have a RRR>200, while the RRR of all wedges and of U-pieces of 2009 production have a much lower RRR. All tests of LHC main bus bar samples performed so far in the laboratory indicate a RRR of approximately 200 or higher.

  10. Cable Television for Librarians. Cable Television Primer

    Science.gov (United States)

    Briscoe, Wallace C.

    1973-01-01

    The development of cable television, its present state, and future prospects, including a possible role for libraries, are discussed. (Other conference materials are LI 503071 and 503073 through 503084.) (SJ)

  11. Vacuum-Insulated, Flexible Cryostats for Long HTS Cables: Requirements, Status, and Prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Roden, Mark L [ORNL; Maguire, J. F. [American Superconductor Corporation, Westborough, MA; Weber, C. S. [SuperPower Incorporated, Schenectady, New York

    2008-01-01

    Several high temperature superconducting (HTS) cable demonstration projects have begun operation on the electric grid in the last few years with the liquid nitrogen-cooled cable contained in one or more vacuum-insulated, flexible cryostats with lengths up to 600 meters. These grid demonstration projects are prototypes of the anticipated commercial market which will require superconducting cable lengths in the multiple kilometer range with the vacuum-jacketed cryostats in underground ducts providing acceptable thermal insulation for decades. The current state-of-the art for flexible cryostats (installation constraints, heat loads with a good and degraded vacuum, impact of cable bends, getter lifetime and reliability) is discussed. Further development needed to meet the challenging commercial HTS cable application is outlined.

  12. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  13. Sample of superconducting wiring  (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix.  Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resis...

  14. Development of superconducting power devices in Europe

    Science.gov (United States)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  15. Low resistance splices for HTS devices and applications

    Science.gov (United States)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  16. Introduction to cotranscriptional RNA splicing.

    Science.gov (United States)

    Merkhofer, Evan C; Hu, Peter; Johnson, Tracy L

    2014-01-01

    The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.

  17. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  18. Cable Tester Box

    Science.gov (United States)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  19. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  20. UtilityTelecom_CABLE2013

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT Cable dataset (CABLE2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013 in addition to those companies who do...

  1. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  2. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  3. Cable Diagnostic Focused Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  4. Electrical Model of Balanced AC HTS Power Cable

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Willén, D.; Melnik, I.; Geschiere, A.

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and more underground transmission and distribution will be put up. Use of high temperature superconducting (HTS) power cables provides solutions to many of the future grid problems caused by these trends. In this paper we present an electrical model of a balanced 6 km-long three phase triaxial HTS power cable for the Dutch project being developed by a consortium of Alliander, Ultera™ and TUD. The cable currents in all three phases are balanced by selecting proper twist pitches and insulation thickness. The paper focuses on determining inductances, capacitances and AC losses of the balanced cable. Using the developed model, we also determine the voltage drop as function of the cable length, the neutral current and the effect of the imbalanced capacitances on the current distribution of the Dutch distribution cable. The model is validated and it can be used for accurate simulation of the electrical behaviour of triaxial HTS cables in electrical grids.

  5. HEAT TRANSFER EXPERIMENTS AND ANALYSIS OF A SIMULATED HTS CABLE

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J. A. [Oak Ridge National Laboratory (ORNL); Duckworth, R. C. [Oak Ridge National Laboratory (ORNL); Gouge, M. J. [Oak Ridge National Laboratory (ORNL); Knoll, D. [Oak Ridge National Laboratory (ORNL)

    2010-01-01

    Long-length high temperature superconducting (HIS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HIS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HIS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HIS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall can be made and compared to analysis. These data can be used to benchmark different HIS cable heat transfer and fluid flow analysis approaches.

  6. FEM Analysis of Nb-Sn Rutherford-type Cables

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela; Gallo, Giuseppe; Neri, Paolo; /Fermilab

    2011-01-01

    An important part of superconducting accelerator magnet work is the conductor. To produce magnetic fields larger than 10 T, brittle conductors are typically used. For instance, for Nb{sub 3}Sn the original round wire, in the form of a composite of Copper, Niobium and Tin, is assembled into a so-called Rutherford-type cable, which is used to wind the magnet. The magnet is then subjected to a high temperature heat treatment to produce the chemical reactions that make the material superconducting. At this stage the superconductor is brittle and its superconducting properties sensitive to strain. This work is based on the development of a 2D finite element model, which simulates the mechanical behavior of Rutherford-type cable before heat treatment. The model was applied to a number of different cable architectures. To validate a critical criterion adopted into the single Nb-Sn wire analysis, the results of the model were compared with those measured experimentally on cable cross sections.

  7. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Christopher M [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Ellis, Alvin R [ORNL; Gouge, Michael J [ORNL; James, David Randy [ORNL; Tuncer, Enis [ORNL

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  8. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  9. Proceedings of the International Wire and Cable Symposium (32nd) Held at Cherry Hill, New Jersey on November 15, 16 and 17, 1983.

    Science.gov (United States)

    1983-11-17

    PERROS LINK on the overall link losses. Despite recent publications mentioning excellent 4 - CABLE DESIGN laboratory results in splicing monomode fibers...sections were installed in ducts on the aluminum strip lengths available on the between Lannion and Perros -Guirec, two cities which market (standard length...Fig. 5 - MDNOMJDE LINK LANNION- PERROS The new ’micro-ball" technique was used for laying these cables and in particular, for the 5000-meter cable

  10. Superconducting fault-current limiter and inductor design

    Science.gov (United States)

    Rogers, J. D.; Boenig, H. J.; Chowdhuri, P.; Schermer, R. I.; Wollan, J. J.; Weldon, D. M.

    1982-11-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components, superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator, included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  11. Superconducting fault-current limiter and inductor design

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Chowdhuri, P.; Schermer, R.I.; Wollan, J.J.; Weldon, D.M.

    1982-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components - superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator - included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  12. Frequency domain reflectometry NDE for aging cables in nuclear power plants

    Science.gov (United States)

    Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.

    2017-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that

  13. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  14. Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska Final Technical and Construction Report

    Energy Technology Data Exchange (ETDEWEB)

    See, Alan; Rinehart, Bennie N; Marin, Glen

    1998-11-01

    The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities are now on 100% hydroelectric power. The Haines to Skagway submarine cable is the result of AP&T's goal of an alternative, economic, and environmentally friendly energy source for the communities served and to eliminate the use of diesel fuel as the primary source of energy. Diesel units will continue to be used as a backup system.

  15. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  16. Cable Television; A Bibliographic Review.

    Science.gov (United States)

    Schoenung, James

    This bibliographic review of publications in the field of cable television begins with an introduction to cable television and an outline of the history and development of cable television. Particular attention is given to the regulatory activities of the Federal Communications Commission and the unfulfilled potential of cable television. The…

  17. submitter Geometrical Behavior of $Nb_{3}Sn$ Rutherford Cables During Heat Treatment

    CERN Document Server

    Durante, Maria; Ferracin, Paolo; Manil, Pierre; Perez, Juan Carlos; Rifflet, Jean-Michel; Rondeaux, Francoise

    2016-01-01

    In $Nb_{3}Sn$ accelerator magnets, non-superconducting precursor cables are wound into their final coil shape and then heat treated at a high temperature to form the A15 superconducting phase. The growth of cable strands during reaction and the differential thermal dilatation in the coil components lead to both stress in the cable and geometrical deformations of the winding, with possible consequences on magnet performances. An experimental campaign on different types of Rutherford cables has been carried out at CEA Saclay, in collaboration with CERN, in order to measure cable dimension changes in all directions, with respect to cable configuration and winding geometry. A 700-mm-long versatile test bench has been designed for several cable topologies up to 22 mm in width. This paper describes the tooling and presents the results of the experimental campaign led on the cables, made of powder-in-tube and restacked-rod-process strands, of FRESCA2, a 13-T dipole magnet

  18. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  19. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  20. Effect of corrugated characteristics on the liquid nitrogen temperature field of HTS cable

    Science.gov (United States)

    Li, Z. M.; Li, Y. X.; Zhao, Y. Q.; Gao, C.; Qiu, M.; Chen, G. F.; Gong, M. Q.; Wu, J. F.

    2014-01-01

    In the high temperature superconducting (HTS) cable system, liquid nitrogen is usually chosen to be the coolant because of its low saturation temperature and large latent heat of vaporization. Thus, it is very important for superconducting cables that the liquid nitrogen temperature field keeps stable. However, the cryostat is usually made of flexible corrugated pipes and multi-layer insulation materials. The characteristics (e.g. wave pitch and wave depth) of corrugated pipes may have an effect on the heat exchange between cable and liquid nitrogen, even the whole temperature field of liquid nitrogen. In this paper, a two-dimensional model for 30 m long HTS cable has been modified to analyze the effect of corrugated characteristics on the temperature field of liquid nitrogen. The liquid nitrogen temperature difference between the outlet and the inlet of passage gradually increases as the wave pitch of the corrugated tube decreases and the wave depth increases.

  1. End moldings for cable dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Roose, L.D.

    1993-12-31

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble- free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  2. Scientific Presentations on Superconductivity from 2002-2005

    Science.gov (United States)

    2006-01-01

    homopolar and synchronous superconducting motors to drive the US Navy’s future all-electric ship. HTS wire technology can be used in many of the system...components for these military applications such as motors , power generators, transformers, power converters/inductors, primary power cabling, and high...capability for the YBCO conductor leads to commercialization in electric power applications such as transformers, transmission cables, motors , fault

  3. Robotic Arm Biobarrier Cable

    Science.gov (United States)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing. To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Robotic Arm Biobarrier Cable

    Science.gov (United States)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing. To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Triaxial HTS Cable for the AEP Bixby Project

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Gouge, Michael J [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

    2007-01-01

    Ultera has installed a single 200-meter long high temperature superconducting (HTS) 3-phase triaxial design cable at the American Electric Power (AEP) Bixby substation in Columbus, Ohio. The cable connects a 132/13.8 kV transformer to the distribution switchgear serving seven outgoing circuits. It was designed to carry 3000 Arms. Testing of 3- to 5-meter length prototype cables, including a 5-meter prototype with full scale terminations tested at ORNL was conducted prior to the manufacture and installation of the AEP triaxial cable. These prototypes were used to demonstrate the crucial operating conditions including steady state operation at the 3000 Arms design current, high voltage operation, high voltage withstand and 110 kV impulse, and overcurrent fault capability. A summary of the results from the thermal analysis and testing conducted by Ultera and ORNL will be presented. Some analysis of the cable thermal-hydraulic response based on the testing that were used to determine some of the cable cryogenic system requirements are also presented.

  6. Buoyant Cable Antenna System

    Science.gov (United States)

    2008-07-02

    comprise a mechanical jacket surrounding a hollow core enclosing the seismic sensor and signal transfer means. Elongated axial stress elements for...to S. H. Bittleston, discloses a semi-dry marine seismic streamer cable that consists of a number of connected streamer cable sections which each...transmitting axial loads and a radial reinforcement member for relieving radial loads are provided in the jacket . The core is filled with a fluid or fluid

  7. Modeling of cable vibration effects of cable-stayed bridges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generallyconsiders only the motions of the bridge deck and pylons. The influence of the stay cable vibration on the responses of the bridgeis either ignored or considered by approximate procedures. The transverse vibration of the stay cables, which can be significant insome cases, are usually neglected in previous research. In the present study, a new three-node cable element has been developed tomodel the transverse motions of the cables. The interactions between the cable behavior and the other parts of the bridgesuperstructure are considered by the concept of dynamic stiffness. The nonlinear effect of the cable caused by its self-weight isincluded in the formulation. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model.The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.

  8. Analysis of Cable-in-Conduit Conductors' DC Performance in Light of Strand's Experimental Properties

    Institute of Scientific and Technical Information of China (English)

    TAN Yunfei; WENG Peide; LIU Fang; LI Shaolei

    2007-01-01

    Conductor qualification will be carried out with four Cable-in-Conduit Conductor (CICC) samples made of superconducting strands. The direct current (DC) performance of these samples will be tested in the SULTAN facility. The critical current densities of the strands can be well simulated by empirical equations. In this paper, a model is illustrated to predict the DC behaviour of the cable in light of the single strand's experimental properties. The simulation results were compared with experimental results.

  9. Aerodynamic stability of cable-supported bridges using CFRP cables

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; YING Lei-dong

    2007-01-01

    To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness.Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge,its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

  10. Alternative splicing interference by xenobiotics.

    Science.gov (United States)

    Zaharieva, Emanuela; Chipman, J Kevin; Soller, Matthias

    2012-06-14

    The protein coding sequence of most eukaryotic genes (exons) is interrupted by non-coding parts (introns), which are excised in a process termed splicing. To generate a mature messenger RNA (mRNA) hundreds of combinatorial protein-protein and RNA-protein interactions are required to splice out often very large introns with high fidelity and accuracy. Inherent to splicing is the use of alternative splice sites generating immense proteomic diversity from a limited number of genes. In humans, alternative splicing is a major mode of regulating gene expression, occurs in over 90% of genes and is particularly abundant in the brain. Only recently, it has been recognized that the complexity of the splicing process makes it susceptible to interference by various xenobiotics. These compounds include antineoplastic substances, commonly used drugs and food supplements and cause a spectrum of effects ranging from deleterious inhibition of general splicing to highly specific modifications of alternative splicing affecting only certain genes. Alterations in splicing have been implicated in numerous diseases such as cancer and neurodegeneration. Splicing regulation plays an important role in the execution of programmed cell death. The switch between anti- and pro-apoptotic isoforms by alternative splice site selection and misregulation of a number of splicing factors impacts on cell survival and disease. Here, our current knowledge is summarized on compounds interfering with general and alternative splicing and of the current methodology to study changes in these processes relevant to the field of toxicology and future risk assessments.

  11. AC Losses of Prototype HTS Transmission Cables

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  12. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be...

  13. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Science.gov (United States)

    2010-07-01

    ... 3 feet in length, by removing 5 inches of jacket material and 21/2 inches of conductor insulation... material and 21/2 inches of conductor insulation. The type, amperage, voltage rating, and construction of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric...

  14. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  15. Ultrafast response of superconducting transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Chwalek, J.M.; Dykaar, D.R.; Whitaker, J.F.; Sobolewski, R.; Grupta, S.; Hsiang, T.Y.; Mourou, G.A.

    1989-03-01

    The authors report investigations of picosecond transient propagation on normal and superconducting transmission lines and new results for a variety of lines that include YBa/sub 2/Cu/sub 3/O/sub 7-x/ (YBCO) coplanar lines, a superconducting coaxial cable, and a dielectric-matched gold-line structure. A previously developed algorithm for analyzing transient propagation was used to identify the dominant mechanisms for signal distortion in most of these cases, and the essential properties of all lines tested to date are summarized for a direct comparison.

  16. SpliceDisease database: linking RNA splicing and disease.

    Science.gov (United States)

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  17. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  18. Cable-Dispensing Cart

    Science.gov (United States)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  19. AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a 3.15-m-Long Single-Phase Cable

    DEFF Research Database (Denmark)

    Juul, Jeppe; Mølgaard, Ebsen T.; Jensen, Jens;

    2011-01-01

    The alternating-current losses in superconducting multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test cable were measured at 77 K using an electrical transport method. The cable had an inner diameter of 42 mm; it was composed of a single layer of 31 multifilament tapes and had a critic...

  20. AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a 3.15-m-Long Single-Phase Cable

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard; Mølgaard, Esben Tore; Jensen, Jens

    2011-01-01

    The alternating-current losses in superconducting multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test cable were measured at 77 K using an electrical transport method. The cable had an inner diameter of 42 mm; it was composed of a single layer of 31 multifilament tapes and had a critic...

  1. The surface discharge and breakdown characteristics of HTS DC cable and stop joint box

    Science.gov (United States)

    Kim, W. J.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2014-09-01

    A high temperature superconducting (HTS) DC cable system consists of a HTS cable and cable joint. The HTS DC cable should be electrically connected in joint boxes because of the unit length of HTS cable is limited to several-hundred meters. In particular, the stop joint box (SJB) must be developed for a compact cooling system. Polypropylene laminated paper (PPLP) and epoxy maybe used as insulating materials for HTS DC cable and SJB. To develop a HTS DC cable, it is necessary to develop the cryogenic insulation technology, materials and the joint methods. In this paper, we will mainly discuss on the DC and impulse characteristics of epoxy and PPLP in liquid nitrogen (LN2). The surface discharge characteristics of epoxy included fillers, PPLP and epoxy with PPLP composite (epoxy + PPLP) were measured under 0.4 MPa. Also, the PPLP-insulated mini-model cable was fabricated and then DC, impulse and DC polarity reversal breakdown strength of mini-model cable under 0.4 MPa were investigated.

  2. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin Gustav;

    2014-01-01

    BACKGROUND: RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternat...

  3. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sanyue [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Qu, Xiuhua [General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037 (China); Li, Ping; Ma, Qingjun [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Liu, Xuan, E-mail: liux931932@163.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Cao, Cheng, E-mail: cao_c@sohu.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China)

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  4. VT Cable Modem Systems 2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable Modem dataset (CABLEMOD2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013. This data...

  5. VT Cable Modem Systems 2005

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable Modem dataset (CABLEMOD2005) includes lines depicting the extent of Vermont's cable modem broadband system as of 12/31/2005. This...

  6. Cable historical operating temperature estimator

    Energy Technology Data Exchange (ETDEWEB)

    Leon de, F.; St-Roch, P.; Beauregard, C. [Cyme International, St-Bruno, PQ (Canada)

    2006-07-01

    A tool designed to accurately determine the thermal age of underground cables was described. The cable historical operating temperature estimate (CHOTE) is a software application designed to identify which cables have exceeded their normal and emergency operating temperatures. CHOTE is also capable of predicting when cables are likely to reach their maximum design temperature in the future. The system operates by processing archived loading information from data acquisition systems in order to automatically analyze all the thermal sections of a system. Cables that exceed their emergency and normal temperatures for the longest amount of time are ranked first, and outputs display when and where the hot spots have occurred. CHOTE is also able to study the impact of the addition of new cables and to determine the remaining ampacity of cables installed in a given duct bank. It was concluded that the CHOTE system can help in the efficient management of cable repairs and installations. 28 refs., 7 figs.

  7. Space Flight Cable Model Development

    Science.gov (United States)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  8. Current distribution among layers of single phase HTS cable conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.B., E-mail: yeaber@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Wang, Y.S., E-mail: yswang@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Pi, W., E-mail: ppiiwei@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Ju, P., E-mail: jupeng-cool@153.com [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Wang, Y.S., E-mail: wangyixuan@epri.sgcc.com.cn [Power System Department, China Electric Power Research Institute, No. 15 Qinghexiaoying East Road, Haidian District, Beijing 100198 (China)

    2014-12-15

    Highlights: • A 1.5 m long HTS model cable with 4 layers designed by the uniform current principle has been built. • It is testified that the current distribution is influenced by the proximity effect. • The magnetic flux density and current density have been analyzed. • AC losses of tested current are larger than those of uniform current. - Abstract: High temperature superconducting (HTS) power cable shows high application prospect in modern power transmission, as it is superior over conventional transmission lines in high engineering current density and environmental friendliness. Its configuration is generally composed of several HTS layers designed with the principle of uniform current distribution, but there are few experimental results to verify the distribution. In this paper, a HTS cable model was designed based on the principle of uniform current, and the current distributions among layers in an HTS cable model were measured by Rogowski coils. The results provide an important basis for design of multi-layer HTS cable.

  9. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections...

  10. Pediatrics and Cable Television.

    Science.gov (United States)

    Wallerstein, Edward; And Others

    The Department of Community Medicine of the Mount Sinai School of Medicine (New York City), in cooperation with the TelePrompTer Corporation and with funding from the Health Services and Mental Health Administration of the Department of Health, Education, and Welfare, has developed a bidirectional television system using coaxial cable which links…

  11. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...

  12. Comparison of cable ageing

    Science.gov (United States)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  13. Lightweight Electric Power Cable.

    Science.gov (United States)

    1982-09-01

    8I~ .4 111 162 MICROCi Pi RL’ LUHION TESI CHARI "LIGHTWEIGHT ELECTRIC POWER CABLE" FINAL TECHNICAL REPORT SEPTEMBER 30, 1981 to SEPTEMBER 30, 1982... Vulcanized by heat to crosslink. TPE (Thermoplastic Elastomer) - Polymers having elastomeric proper- ties. Used as thermoplastics - melt formed by

  14. Handbook for photovoltaic cabling

    Energy Technology Data Exchange (ETDEWEB)

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  15. Flat conductor cable commercialization project

    Science.gov (United States)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  16. Tapping the television cable.

    Science.gov (United States)

    Clarke, M; Findlay, A; Canac, J F; Vergez, A

    1996-01-01

    Immediate access to patient data is essential to support good clinical decision making and support. However, away from the surgery, the doctor is currently unable to have any access to the clinical database. Solutions exist to support remote access, such as modems or radio data networks, but these are slow, with typical speeds in the 2-10 kbaud region. We propose a novel solution, to use the TV cable already installed in many homes. Using this technology, a suitably equipped computer (RF modern) is capable of connecting at speeds in excess of 500 kbaud and will run applications in exactly the same way as if connected to a surgery network: the cable TV becomes a LAN, but on a metropolitan scale. Brunel University, in collaboration with the Cable Corporation, has been piloting such a network. Issues include not only levels of service, but also security on the network and access, since the data are being effectively received in every home. However, close scrutiny of channel use can create closed networks reserved for specific users. The technology involves use of an RF modem to transmit data on a reverse channel (based at 16 MHz) on each subnet to a router at the head end of the cable network. This frequency translates the packet and retransmits it to all the subnets on a forward channel (based at 178 MHz). Each channel occupies the bandwidth normally allocated to one TV channel. Access is based on a modified CSMA/CD protocol, so treating the cable network as single multiple access network. The modem comes as a standard card installed in a PC and appears much as an ethernet card, but at reduced speed. With an NDIS driver it is quite able to support almost any network software, and has successfully demonstrated Novell and TCP/IP. We describe the HomeWorker network and the results from a pilot study being undertaken to determine the performance of the system and its impact on working practice.

  17. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  18. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    Science.gov (United States)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  19. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  20. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  1. Design and Evaluation of 275 kV-3 kA HTS Power Cable

    Science.gov (United States)

    Yagi, M.; Mukoyama, S.; Mitsuhashi, T.; Jun, T.; Liu, J.; Nakayama, R.; Hayakawa, N.; Wang, X.; Ishiyama, A.; Amemiya, N.; Hasegawa, T.; Saitoh, T.; Ohkuma, T.; Maruyama, O.

    A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.

  2. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  3. Experimental results of current distribution in Rutherford-type LHC cables

    CERN Document Server

    Verweij, A P

    2000-01-01

    Current distribution among the wires of multi-strand superconducting cables is an important item for accelerator magnets. A non-uniform distribution could cause additional field distortions in the magnet bore and can as well be one of the reasons of premature quenching. Since two years electrical measurements on superconducting Rutherford-type cables are performed at CERN as part of the reception tests for the Large Hadron Collider (LHC). Cable samples of 2.4 m length are tested at currents up to 32 kA, temperatures around 1.9 and 4.3 K, and fields up to 10 T, applied perpendicularly as well as parallel to the broad face of the cable. Last year, an array of 24 Hall probes was installed in the test set-up in order to measure the self-field of the cable samples along one cable pitch. Each of the probes measures the local field generated by the current in the strands close by, and the results of the all probes reflect therefore the distribution of the strand currents. Experiments are done varying the applied fie...

  4. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    Science.gov (United States)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  5. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  6. SAGE2Splice: unmapped SAGE tags reveal novel splice junctions.

    Directory of Open Access Journals (Sweden)

    Byron Yu-Lin Kuo

    2006-04-01

    Full Text Available Serial analysis of gene expression (SAGE not only is a method for profiling the global expression of genes, but also offers the opportunity for the discovery of novel transcripts. SAGE tags are mapped to known transcripts to determine the gene of origin. Tags that map neither to a known transcript nor to the genome were hypothesized to span a splice junction, for which the exon combination or exon(s are unknown. To test this hypothesis, we have developed an algorithm, SAGE2Splice, to efficiently map SAGE tags to potential splice junctions in a genome. The algorithm consists of three search levels. A scoring scheme was designed based on position weight matrices to assess the quality of candidates. Using optimized parameters for SAGE2Splice analysis and two sets of SAGE data, candidate junctions were discovered for 5%-6% of unmapped tags. Candidates were classified into three categories, reflecting the previous annotations of the putative splice junctions. Analysis of predicted tags extracted from EST sequences demonstrated that candidate junctions having the splice junction located closer to the center of the tags are more reliable. Nine of these 12 candidates were validated by RT-PCR and sequencing, and among these, four revealed previously uncharacterized exons. Thus, SAGE2Splice provides a new functionality for the identification of novel transcripts and exons. SAGE2Splice is available online at http://www.cisreg.ca.

  7. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  8. Methods for Characterization of Alternative RNA Splicing.

    Science.gov (United States)

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  9. EIGENFREQUENCY ANALYSIS OF CABLE STRUCTURES WITH INCLINED CABLES

    Institute of Scientific and Technical Information of China (English)

    William Paulsen; Greg Slayton

    2006-01-01

    The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfer matrix method was inadequate for this task, and hence the larger exterior matrices were used to determine the eigenfrequency equation. Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.

  10. The Investigation on Welding Processes for SUS316LN Tubes Used in Superconducting Magnetic System of EAST

    Institute of Scientific and Technical Information of China (English)

    Wu Jiefeng; Chen Siyue; Weng Peide; Gao Daming

    2005-01-01

    The force flow cooled superconducting cable-in-conduit conductor (CICC) is used in both of EAST toroidal field (TF) and poloidal field (PF) coils. The conductor consists of multi-stage NbTi superconducting cable and 1.5 mm thick square jacket. The cable is pulled through in a thin wall circular jacket and then compacted to square cross-section conductor. The jacket material is SUS316LN austenitic stainless steel seamless tubes (about 10 m each), which is assembled by butt-welding up to 600 m. The results of the welding procedure investigation and quality assurance procedures carrying out are described in this paper.

  11. Cable networks, services, and management

    CERN Document Server

    2015-01-01

    Cable Networks, Services, and Management is the first book to cover cable networks, services, and their management, in-depth, for network operators, engineers, researchers, and students. Thirteen experts in various fields have contributed their knowledge of network architectures and services, Operations, Administration, Maintenance, Provisioning, Troubleshooting (OAMPT) for residential and business services, cloud, Software Defined Networks (SDN), as well as virtualization concepts and their applications as part of the future directions of cable networks. The book begins by introducing architecture and services for Data Over Cable Service Interface Specification (DOCSIS) 3.0/ 3.1, Converged Cable Access Platform (CCAP), Content Distribution Networks (CDN, IP TV, and Packet Cable and Wi-Fi for Residential Services. Topics that are discussed in proceeding chapters include: operational systems and management architectures, service orders, provisioning, fault manageme t, performance management, billing systems a...

  12. Technology for long cable erection of a thousand-meter scale cable-stayed bridge

    Institute of Scientific and Technical Information of China (English)

    Rao Huarong; Deng Huibin

    2009-01-01

    In the background of the construction of Sutong Yangtze River Bridge (short as Sutong Bridge), the cable construction method and techniques of a thousand-meter scale cable-stayed bridge are introduced. Some key construction techniques, such as outspreading cable on deck, installing cable at pylon, pulling and fixing cable at the attachment with decks and cable PE sheath protection are discussed.

  13. The first cable for the HL-LHC producted at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb3Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb3Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  14. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  15. Cable Bacteria in Freshwater Sediments

    OpenAIRE

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the fre...

  16. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  17. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  18. STATIC ANALYSIS OF CABLE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; LAN Wei-ren

    2006-01-01

    Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displacement and tension distribution defined in Eulerian coordinate system was accurately obtained. The nonlinear algebraic equations caused by cable structure were solved directly using the modified Powell hybrid algorithm with high precision routine DNEQNE of Fortran. For example, a cable structure consisting of three cables jointly supported by a vertical spring and all the other ends fixed was calculated and compared with various methods by other scholars.

  19. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  20. Stability Analysis of the LHC Cables for Transient Heat Depositions

    CERN Document Server

    Granieri, P P; Xydi, P; Baudouy, B; Bocian, D; Bottura, L; Breschi, M; Siemko, A

    2008-01-01

    The commissioning and the exploitation of the LHC require a good knowledge of the stability margins of the superconducting magnets with respect to beam induced heat depositions. Previous studies showed that simple numerical models are suitable to carry out stability calculations of multi-strands cables, and highlighted the relevance of the heat transfer model with the surrounding helium. In this paper we present a systematic scan of the stability margin of all types of LHC cables working at 1.9 Kagainst transient heat depositions. We specifically discuss the dependence of the stability margin on the parameters of the model, which provide an estimate of the uncertainty of the values quoted. The stability margin calculations have been performed using a zero-dimensional (0-D) numerical model, and a cooling model taking into account the relevant helium phases which may appear during a stability experiment: it includes Kapitza thermal resistance in superfluid He, boundary layer formation and heat transfer in He I,...

  1. Structural Parameter Optimization of Multilayer Conductors in HTS Cable

    Institute of Scientific and Technical Information of China (English)

    Yan Mao; Jie Qiu; Xin-Ying Liu; Zhi-Xuan Wang; Shu-Hong Wang; Jian-Guo Zhu; You-Guang Guo; Zhi-Wei Lin; Jian-Xun Jin

    2008-01-01

    In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multi- layer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.

  2. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  3. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    Science.gov (United States)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  4. Low AC Loss in a 3 kA HTS Cable of the Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan

    2012-01-01

    in the cable, potentially affecting public acceptance of the project. A way out would be to substantially reduce AC losses from 1 down to about 0.1W/m per phase at rated current of 3 kArms, frequency of 50Hz and temperature of 77K. In this paper we discuss a strategy towards this ambitious goal, a concept......Requirements for a 6km long high temperature superconducting (HTS) AC power cable of the Amsterdam project are: a cable has to fit in an annulus of 160mm, with two cooling stations at the cable ends only. Existing solutions for HTS cables would lead to excessively high coolant pressure drop...... design of the single phase cable 3 kA conductor made of YBCO tapes and present corresponding experimental and simulation data supporting the developed approach leading directly to this goal. HTS cable model was made that show a drastically reduced AC loss. The low loss was achieved by using appropriate...

  5. Intronic Alus influence alternative splicing.

    Directory of Open Access Journals (Sweden)

    Galit Lev-Maor

    Full Text Available Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.

  6. 2008 LHC Open Days: Super(-conducting) events and activities

    CERN Multimedia

    2008-01-01

    Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets.   Programme:   BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...

  7. The Basic Properties of PPLP for HTS DC Cable

    Science.gov (United States)

    Kim, W. J.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    In order to develop high temperature superconducting (HTS) DC cable, it is important to understand the cooling system, high voltage insulation and materials at cryogenic temperature. Especially, the basic properties of insulating materials must be solved for the long life, reliability and compact of system. In this paper, we will discuss mainly on the electrical and the mechanical properties of polypropylene laminated paper (PPLP) in liquid nitrogen (LN2). The polarity effect of DC and impulse voltage, the volume resistivity and the space charge distribution and frost were studied. Furthermore, the mechanical properties such as tensile strength of PPLP at LN2 (77 K) and room temperature (300 K) were studied.

  8. Calculation of minimum quench energies in Rutherford cables

    CERN Document Server

    Wilson, M N

    1996-01-01

    The Minimum Quench Energy MQE of a conductor may give some indication about the likelihood of training in magnets. We have used a numerical solution of the heat flow equation to calculate the MQE of a single superconducting wire and have found the results to be in good agreement with experiment. This model was then extended to an approximate representation of Rutherford cable by including current and heat transfer between strands. Reasonable agreement with experiment has been found, although in some cases it appears that the effective thermal contact between strands is greater than expected from electrical resistance measurements.

  9. Conceptual study of superconducting urban area power systems

    Science.gov (United States)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  10. Exfoliated YBCO filaments for second-generation superconducting cable

    Science.gov (United States)

    Solovyov, Vyacheslav; Farrell, Paul

    2017-01-01

    The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.

  11. Developments of electrical joints for aluminum-stabilized superconducting cables

    CERN Document Server

    Curé, B

    1999-01-01

    Electrical joints for the aluminum-stabilized conductors of the LHC experiment magnets have been studied. Two techniques have been tested: electron beam welding and MIG welding. The joint resistance was measured as a function of the magnetic field on ring shaped samples using the MA.RI.S.A. test facility, wherein current is induced in the test conductor by a varying magnetic field. The resistance is obtained by measuring either the voltage drop or the decay time. Calculation and finite-element simulation have been performed in order to separate the effect of both the copper-aluminum contact resistivity and the aluminum resistivity from the effect due to the joint technique (joint configuration, resistivity of the filler material, increasing of aluminum resistivity in the welding zone). The copper-aluminum contact resistivity and the current transfer length were obtained by measurements of the joint resistance of butt welded samples. (2 refs).

  12. Cable ampacity. A Finnish perspective

    Energy Technology Data Exchange (ETDEWEB)

    Millar, R.J.; Lehtonen, M.

    2006-07-01

    This report is primarily the practical application of a new method to calculate cable conductor temperatures in real time. A brief summary of various thermal parameter measurements in southern Finland is provided, an algorithm to compute cable temperatures in real time when both moisture migration and overall moisture content change are occurring is outlined, potential outcomes of extended loading are demonstrated, installation configurations are compared, steady-state and cyclic ratings are given for HV and MV installations, and emergency loading scenarios are evaluated. A more rational approach to cable rating in Finnish conditions is established. Conservative transient-based rating tends to give back the ampacity that might be lost due to worst possible environmental conditions for installed cables. Nevertheless, it is suggested that MV cables be derated by 20 % from their nominal catalogue ratings. orig.)

  13. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  14. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...

  15. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  16. 13 kA Superconducting Busbars Manufacturing Process

    CERN Document Server

    Principe, R; Fornasiere, E

    2012-01-01

    In the LHC, the superconducting Main Bending magnets and Quadrupole magnets are series-connected electrically in different excitation circuits by means of superconducting busbars, carrying a maximum current of 13 kA. These superconducting busbars consist of a superconducting Rutherford cable thermally and electrically coupled to a copper section all along the length. The function of the copper section is essentially to provide an alternative path for the magnet current in case of resistive transition. The production of these components was originally outsourced. The decision to import the technology at CERN led to a global re-engineering of the standard process. Although based on the procedures adopted during the LHC construction, a few modifications and improvements have been implemented, profiting of the experience gained in the last few years. This document details the manufacturing process of the 13 kA busbars as it is actually performed at CERN, emphasizing the new solutions adopted during the first mon...

  17. Handbook of knotting and splicing

    CERN Document Server

    Hasluck, Paul N

    2005-01-01

    Clearly written and amply illustrated with 208 figures, this classic guide ranges from simple and useful knots to complex varieties. Additional topics include rope splicing, working cordage, hammock making, more.

  18. Strand and Cable R\\&D for Fast Cycled Magnets at CERN

    CERN Document Server

    Bottura, L; Borgnolutti, F; Richter, D; Gaertner, W; Sikler, G; Willering, G; Peiro, G; Bonasia, A; Oberli, L; Salmi, T

    2011-01-01

    Fast cycled superconducting magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. In the past two years we have conducted an R\\&D targeted at investigating the feasibility, operational issues and economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 1 Hz. In this paper we report the main results on the development of strands and cables suitable for this application, providing details on the strands tested and the cable manufacturing and performance.

  19. Strand and Cable R&D for Fast Cycled Magnets at CERN

    CERN Document Server

    Bottura, L; Borgnolutti, F; Gaertner, W; Le Naour, S; Oberli, L; Peiro, G; Richter, D; Salmi, T; Sikler, G; Willering, G

    2011-01-01

    Fast cycled superconducting magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. In the past two years we have conducted an R&D targeted at investigating the feasibility, operational issues and economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 1 Hz. In this paper we report the main results on the development of strands and cables suitable for this application, providing details on the strands tested and the cable manufacturing and performance.

  20. ParSplice, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-05

    The ParSplice code implements the Parallel Trajectory Splicing algorithm described in [1]. This method is part of the Accelerated Molecular Dynamics family of techniques developed in Los Alamos National Laboratory over the last 16 years. These methods aim at generating high-quality trajectories of ensembles of atoms in materials. ParSplice uses multiple independent replicas of the system in order to parallelize the generation of such trajectories in the time domain, enabling simulations of systems of modest size over very long timescales. ParSplice includes capabilities to store configurations of the system, to generate and distribute tasks across a large number of processors, and to harvest the results of these tasks to generate long trajectories. ParSplice is a management layer that orchestrate large number of calculations, but it does not perform the actual molecular dynamics itself; this is done by external molecular dynamics engines. [1] Danny Perez, Ekin D Cubuk, Amos Waterland, Efthimios Kaxiras, Arthur F Voter, Long-time dynamics through parallel trajectory splicing, Journal of chemical theory and computation 12, 18 (2015)

  1. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.

  2. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  3. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  4. Cable-in-conduit superconductors for fusion magnets: electro-magnetic modelling for understanding and optimizing their transport properties

    NARCIS (Netherlands)

    Rolando, Gabriella

    2013-01-01

    Cable-In-Conduit conductors feature large current-carrying capacity and stability against local and transient heat deposition. As such they are suitable for application in superconducting magnets for nuclear fusion, as the ones of the International Thermonuclear Experimental Reactor (ITER). Due to

  5. Intra wire resistance and strain affecting the transport properties of Nb3Sn strands in cable-in-conduit conductors

    NARCIS (Netherlands)

    Zhou, C.

    2014-01-01

    The aim of this thesis work is to arrive at a deeper understanding of the effects of strain and filament fracture on the electric properties of superconducting strands and cable-in-conduit conductors that are subjected to various mechanical loads. Since inter-filamentary current redistribution plays

  6. Cable-in-conduit superconductors for fusion magnets: electro-magnetic modelling for understanding and optimizing their transport properties

    NARCIS (Netherlands)

    Rolando, G.

    2013-01-01

    Cable-In-Conduit conductors feature large current-carrying capacity and stability against local and transient heat deposition. As such they are suitable for application in superconducting magnets for nuclear fusion, as the ones of the International Thermonuclear Experimental Reactor (ITER). Due to t

  7. 10BASE5 Ethernet Cable & Vampire Tap

    CERN Multimedia

    1983-01-01

    10BASE5 Thick Ethernet Cable, 10Mbit/sec. In the 1980s and early 1990's, Ethernet became more popular and provided a much faster data transmission rate. This cable is one of the first ethernet cables from 1983, a thick, bulky affair. Computers were attached via "Vampire Taps" which were connectors screwed straight through the shielding of the cable.

  8. 14 CFR 27.1365 - Electric cables.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  9. Cable Television, Market Power and Regulation.

    Science.gov (United States)

    Thorpe, Kenneth E.

    The goals of this dissertation are to provide an empirical examination of the impact of competing technologies on cable television firms and to document existing pricing behavior in the cable and pay programming industry. The introduction provides a brief overview of the cable television industry, including the impact of cable on federal policy…

  10. Cable Television: Citizen Participation in Planning.

    Science.gov (United States)

    Yin, Robert K.

    The historical background of citizen participation in local affairs and its relevance at the onset of community concern about cable television are briefly discussed in this report. The participation of citizens, municipal officials, and cable operators in laying the groundwork for a cable system as well as the pros and cons of cable television as…

  11. RNA splicing and splicing regulator changes in prostate cancer pathology.

    Science.gov (United States)

    Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J

    2017-04-05

    Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.

  12. Study of quench propagation velocity in superconducting magnets for UNK

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.V.; Sheherbakov, P.A.; Snitko, V.P.; Tkachenko, N.P.; Vasiliev, L.M.; Vybornov, M.G.; Ziobin, A.V.

    1989-03-01

    Two superconducting magnet models, warm-iron and cold-iron designs are studied within the frames of work on UNK. The present note describes the method and results on measuring quench propagation velocity in the superconducting cables with a transport current in external field under the cooling conditions typical for those of the magnet winding. The results on measuring quench propagation velocities in warm-iron and cold-iron designs are presented. The results obtained for short samples and model coils are compared.

  13. Thermal analysis of underground power cable system

    Science.gov (United States)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  14. Targeting RNA splicing for disease therapy.

    Science.gov (United States)

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  15. A success story LHC cable production at ALSTOM-MSA

    CERN Document Server

    Mocaer, P; Köhler, C; Verwaerde, C

    2005-01-01

    ITER, when constructed, will be the equipment using the largest amount of superconductor strands ever built (Nb3Sn and NbTi). ALSTOM- MSA Magnets and Superconductors SA, "ALSTOM-MSA" received in 1998 the largest orders to date for the delivery of superconducting strands and cables (3100 km of cables for dipole and quadrupole magnets and various strands) for the Large Hadron Collider (LHC) being built at CERN Geneva. These orders to ALSTOM-MSA correspond to more than 600 metric tons of superconducting strands, an amount to be compared to around 600 metric tons of Nb3Sn strands and 250 metric tons of NbTi strands necessary for ITER. Starting from small and short R&D programs in the early nineties, ALSTOM-MSA has reached its industrial targets and has, as of September 2004, delivered around 74% of the whole orders with products meeting high quality standards. Production is going on at contractual delivery rate and with satisfactory financial results to finish deliveries around end 2005, taking into account a...

  16. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  17. Methods for Characterization of Alternative RNA Splicing

    Science.gov (United States)

    Harvey, Samuel E.; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing “minigene” in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest. PMID:26721495

  18. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables

    Directory of Open Access Journals (Sweden)

    Xu Xie

    2014-06-01

    Full Text Available In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.

  19. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    of the method. The chapter continues by analysing the frequency-spectrums of cable-based networks which have lower resonance frequencies than usual because of the larger capacitance of the cables. At the same time, a technique that may help save time when plotting the frequency spectrum of a network is proposed...... typically used for the screens of cables (both-ends bonding and cross-boding) and also presents methods that can be used to estimate the maximum current of a cable for different types of soils, i.e. thermal calculations. The end of the chapter introduces the shunt reactor, which is an important element....... It is true that in many cases, software is used to run simulations, and the reader may be tempted to think that only those designing the software need to know how to use modal theory. However, several phenomena require at least a minimum knowledge of the topic and for that reason, the book provides...

  1. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  2. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  3. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  4. Progress of 275 kV-3 kA YBCO HTS cable

    Science.gov (United States)

    Yagi, M.; Mukoyama, S.; Amemiya, N.; Ishiyama, A.; Wang, X.; Aoki, Y.; Saito, T.; Ohkuma, T.; Maruyama, O.

    2011-11-01

    A 275 kV-3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. AC loss reduction of a two-layer HTS conductor was undertaken by removing the edges of YBCO tapes with low critical current density. The HTS conductor using these tapes was fabricated, and low loss of 0.235 W/m at 3 kA rms was achieved. The 275 kV-3 kA cable was designed, and the 2 m model cables were fabricated. This cable had 325 mm 2 copper stranded former inside the HTS conductor and a 310 mm 2 copper shield layer on the HTS shield layer for over-current protection. These cables withstood an over-current of 63.0 kA for 0.6 s, which is the worst situation for 275 kV systems. The partial discharge (PD) and V- t characteristics of a liquid nitrogen (LN 2)/polypropylene (PP) laminated paper composite insulation system have been integrated into the design of the insulation for the 275 kV cable. The results revealed that the PD inception stress (PDIE) did not depend on the insulation thickness, and that lifetime indices of V- t characteristics at PD inception were as high as about 80-100.

  5. Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

  6. Nuclear instrumentation cable end seal

    Science.gov (United States)

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  7. ELECTROSTATIC PROCESSES IN POWER CABLES

    Directory of Open Access Journals (Sweden)

    G.V. Bezprozvannych

    2013-09-01

    Full Text Available Observation of contact electrification of power cable samples is made. It is revealed that the contact potential difference and the capacity formed under separation of free charges on the surfaces of the contacting materials depend on cable design, applied materials, and inspection schemes. Time series of capacity drift and dielectric loss tangent caused by instability of triboelectric charging of the contacting surfaces are presented.

  8. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    Science.gov (United States)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  9. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  10. Parametric Vibration and Vibration Reduction of Cables in Cable-stayed Space Latticed Structure

    Institute of Scientific and Technical Information of China (English)

    BAO Yan; ZHOU Dai; LIU Jie

    2008-01-01

    Mechanical model and vibration equation of a cable in cable-stayed sparse latticed structure (CSLS) under external axial excitation were founded. Determination of the mass lumps and natural frequencies supplied by the space latticed structure (SLS) was analyzed. Multiple scales method (MSM) was introduced to analyze the characteristics of cable's parametric vibration, and the precise time-integration method (PTIM) was used to solve vibration equation. The vibration behavior of a cable is closely relative to the frequency ratio of the cable and SLS. The cable's parametric vibration caused by the external axial excitation easily occurs if the frequency ratio of the cable and SLS is in a certain range, and the cable's vibration amplitude varies greatly even if the initial disturbance supplied by SLS changes a little. Furthermore, the mechanical model and vibration equation of the composite cable system consisting of main cables and assistant cables were studied. The parametric analysis such as the pre-tension level and arrangement of the assistant cables was carried out. Due to the assistant cables, the single-cable vibration mode can be transferred to the global vibration mode, and the stiffness and damping of the cable system are enhanced. The natural frequencies of the composite cable system with the curve line arrangement of assistant cables are higher than those with the straight-line arrangement and the former is more effective than the latter on the cable's vibration suppression.

  11. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39.

    Science.gov (United States)

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39.

  12. HTS Transmission Cable System for installation in the Long Island Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [American Superconductor Corporation, Devens, MA (United States); Durand, Fabien [American Superconductor Corporation, Devens, MA (United States); Maguire, James [American Superconductor Corporation, Devens, MA (United States)

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2 and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.

  13. Long-term operating characteristics of Japan’s first in-grid HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Tetsutaro, E-mail: nakano.tetsutaro@tepco.co.jp [Tokyo Electric Power Company, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan); Maruyama, Osamu; Honjo, Shoichi [Tokyo Electric Power Company, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan); Watanabe, Michihiko; Masuda, Takato; Hirose, Masayuki [Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka 554-004 (Japan); Shimoda, Masahiro; Nakamura, Naoko; Yaguchi, Hiroharu; Machida, Akito [Mayekawa Mfg. Co., Ltd., 2000 Tatsuzawa, Moriya-shi, Ibaraki 302-0018 (Japan)

    2015-11-15

    Highlights: • The in-grid operation had continued for more than one year without serious troubles. • The LN{sub 2} temperature and pressure were controlled stably within the preset range. • No degradation of I{sub c} occurred against the designed value after in-grid operation. • The degradation rate of cooling power differed among the refrigerators. - Abstract: Tokyo Electric Power Company, Sumitomo Electric Industries, Ltd and Mayekawa Mfg. Co., Ltd have jointly conducted the first in-grid demonstration test of a high-temperature superconducting (HTS) cable in Japan, from FY2007 to FY2013. The objective of this project is to evaluate the reliability, stability and other characteristics of the system. The cable structure used in this project is the type of three-in-one cable. As a coolant, sub-cooled liquid nitrogen flows through the gap between the corrugated cryostat and the three cable cores. This structure can realize compactness and reduce heat invasion compared with three single-core HTS cables housed in separate cryostats. The cooling system consists of six refrigerators, two circulation pumps and a reservoir tank. Each refrigerator has a cooling power of 1.0 kW at 77 K, 0.8 kW at 67 K. The number of operating refrigerators is controlled so that the coolant temperature at the cable inlet is kept to preset value. The HTS cable was connected to the live electricity grid from October 29, 2012 to December 25, 2013. In-grid operation continued for more than one year without any accidental interruption of operation or other operating issues. During this time, we studied the operating performance of the HTS cable in dependence on the sub-cooled LN{sub 2} temperature.

  14. Stochastic noise in splicing machinery

    OpenAIRE

    Melamud, Eugene; Moult, John

    2009-01-01

    The number of known alternative human isoforms has been increasing steadily with the amount of available transcription data. To date, over 100 000 isoforms have been detected in EST libraries, and at least 75% of human genes have at least one alternative isoform. In this paper, we propose that most alternative splicing events are the result of noise in the splicing process. We show that the number of isoforms and their abundance can be predicted by a simple stochastic noise model that takes i...

  15. Improvement of superconducting cylindrical linear induction motor; Chodendo entokeitan ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    1999-11-10

    For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)

  16. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  17. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    Science.gov (United States)

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  18. Nexan receives two CMS Awards of the Year 2002 for its work in superconductivity

    CERN Multimedia

    2002-01-01

    Nexans has received one Crystal and one Gold CMS award for its contribution to the Compact Muon Solenoid Detector project. The CMS detector is designed to study the fundamental constituents of matter. The prizes recompense the excellent quality of Nexans' service in the supply of the necessary low-temperature superconducting cables sheathed in extruded aluminium.

  19. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  20. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  1. AC losses in circular arrangements of parallel superconducting tapes

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Däumling, Manfred

    1998-01-01

    The DC and AC properties of superconducting tapes connected in parellel and arranged in a single closed layer on two tubes (correspondig to power cable models with infinite pitch) with different diameters are compared. We find that the DC properties, i.e. the critical currents of the two arrangem......The DC and AC properties of superconducting tapes connected in parellel and arranged in a single closed layer on two tubes (correspondig to power cable models with infinite pitch) with different diameters are compared. We find that the DC properties, i.e. the critical currents of the two...... arrangements, scale with the number of tapes and hence appear to be independent of the diameter.However, the AC loss per tape (for a given current per tape) appears to decrease with increasing diameter of the circular arrangement. Compared to a model for the AC loss in a continuous superconducting layer...... (Monoblock model) the measured values are about half an order of magnitude higher than expected for the small diameter arrangement. When compared to the AC loss calculated for N individual superconducting tapes using a well known model ( Norris elliptical) the difference is slightly smaller....

  2. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  3. Stochastic noise in splicing machinery.

    Science.gov (United States)

    Melamud, Eugene; Moult, John

    2009-08-01

    The number of known alternative human isoforms has been increasing steadily with the amount of available transcription data. To date, over 100 000 isoforms have been detected in EST libraries, and at least 75% of human genes have at least one alternative isoform. In this paper, we propose that most alternative splicing events are the result of noise in the splicing process. We show that the number of isoforms and their abundance can be predicted by a simple stochastic noise model that takes into account two factors: the number of introns in a gene and the expression level of a gene. The results strongly support the hypothesis that most alternative splicing is a consequence of stochastic noise in the splicing machinery, and has no functional significance. The results are also consistent with error rates tuned to ensure that an adequate level of functional product is produced and to reduce the toxic effect of accumulation of misfolding proteins. Based on simulation of sampling of virtual cDNA libraries, we estimate that error rates range from 1 to 10% depending on the number of introns and the expression level of a gene.

  4. Alcoholism and alternative splicing of candidate genes.

    Science.gov (United States)

    Sasabe, Toshikazu; Ishiura, Shoichi

    2010-04-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  5. Evolutionary conservation of alternative splicing in chicken

    Science.gov (United States)

    Katyal, S.; Gao, Z.; Liu, R.-Z.; Godbout, R.

    2013-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals. PMID:17675855

  6. COMMUNICATION: Alternative splicing and genomic stability

    Science.gov (United States)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  7. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  8. Superconducting Materials and Conductors : Fabrication and Limiting Parameters

    CERN Document Server

    Bottura, Luca

    2012-01-01

    Superconductivity is the technology that enabled the construction of the most recent generation of high-energy particle accelerators, the largest scientific instruments ever built. In this review we trace the evolution of superconducting materials for particle accelerator magnets, from the first steps in the late 1960s, through the rise and glory of Nb–Ti in the 1970s, till the 2010s, and the promises of Nb3Sn for the 2020s. We conclude with a perspective on the opportunities for high-temperature superconductors (HTSs). Many such reviews have been written in the past, as witnessed by the long list of references provided. In this review we put particular emphasis on the practical aspects of wire and tape manufacturing, cabling, engineering performance, and potential for use in accelerator magnets, while leaving in the background matters such as the physics of superconductivity and fundamental material issues.

  9. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  10. Powering and Machine Protection of the Superconducting LHC Accelerator

    CERN Document Server

    Zerlauth, M

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demanding requirements on the quality of the magnetic fields require a large number of circuits for corrector magnets distributed around the circumference. In total, more than 10000 magnets will need to be connected to the power converters via a large inventory of electrical components such as normal conducting cables and tubes, energy extraction systems, current feedthroughs and superconducting busbars. Depending on the complexity and importance of these electrical circuits and their components, various systems will interact for...

  11. Umbilical Cable Recovery Load Analysis

    Institute of Scientific and Technical Information of China (English)

    YAN Shu-wang; JIA Zhao-lin; FENG Xiao-wei; LI Shi-tao

    2013-01-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field.The severe ocean environment makes great challenges to umbilical maintenance and repair work.Damaged umbilical is usually recovered for the regular operation of the offshore production system.Analysis on cables in essence is a two-point boundary problem.The tension load at the mudline must be known first,and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation.The recovery analysis also involves umbilicalsoil interaction and becomes more complicated.Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed.The analysis results provide a theoretical reference for offshore on-deck operation.

  12. Umbilical cable recovery load analysis

    Science.gov (United States)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  13. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  14. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  15. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  16. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  17. Cable Television: From Here to Where?

    Science.gov (United States)

    Canadian Cable Television Association, Ottawa (Ontario).

    A brief description is presented of the present uses, regulatory structure, and future potentials of cable television for Canada. Some 30% of Canada is already wired for cable, as opposed to 9% in the United States. (RH)

  18. Repairing Damaged Power-Cable Insulation

    Science.gov (United States)

    Baker, G. E.

    1984-01-01

    Simple method saves time, money, and material. In new method cable remains in place while new insulation is applied to damaged portion. Method results in new terminations with safety factor equal to that of any portion of cable.

  19. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  20. A cable position sorting method for the balance of current distribution of parallel connected cables

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y. [Northern Taiwan Inst. of Science and Technology, Taipei, Taiwan (China); Yu, C.S. [National Defence Univ., Taoyuan, Taiwan (China); Wang, S.C. [Lung Hwa Univ. of Science and Technology, Taoyuan, Taiwan (China); Chen, Y.L. [MingChi Univ. of Technology, Taipei, Taiwan (China)

    2006-07-01

    In order to meet the high ampacity requirement of a low voltage main feeder, single-core power cables are usually connected in parallel in Taiwan's industrial and commercial power distribution systems. However, parallel connected cables can be problematic due to unequal current distributions among cables of the same phase, causing excessive temperature rise in the heavier loading cables, thus reducing the life expectancy of cable insulation. One of the most effective and economical methods of balancing current distributions is a properly designed cable position arrangement. This paper proposed a cable position sorting method for the balance of current distribution of parallel connected cables. A current distribution calculation method was developed based on mutual inductance theorem and the numerical iteration technique. In order to implement the sorting algorithm, two current distribution indices were proposed for the power loss of all cables and for the largest cable current value. The index values of different cable arrangement patterns generated by a novel permutation reduction method were determined and sorted and 3 cable configurations were studied. Recommendations for the arrangement of cable positions, aiming for more balanced current distributions, were also presented. It was concluded that dividing the cables into subgroups, including only one cable per phase in a subgroup, and arranging the cables in symmetric form can achieve a very balanced current distribution. 5 refs., 14 tabs., 7 figs.

  1. 47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.

    Science.gov (United States)

    2010-10-01

    ... products on digital cable systems. 76.640 Section 76.640 Telecommunication FEDERAL COMMUNICATIONS... Standards § 76.640 Support for unidirectional digital cable products on digital cable systems. (a) The requirements of this section shall apply to digital cable systems. For purposes of this section, digital...

  2. The RNA Splicing Response to DNA Damage.

    Science.gov (United States)

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  3. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  4. Online Cable Tester and Rerouter

    Science.gov (United States)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  5. IntelliCable Interface Specification

    Science.gov (United States)

    2016-07-14

    manager on how to use this. Some will factor the priority into account and always consume the highest priority while others...Battlefield Air Operations power manager uses a 10 pin Glenair Mighty Mouse connector with default keying . Pin 9 is specified as the IntelliCable pin. A BAO...standard Soldier Power Manager uses a 7 pin Glenair Mighty Mouse Connector, using alternative keying distinct from the Land Warrior battery specification, and the Li-145 battery. Pin 3 is defined as the IntelliCable pin.

  6. Motility of Electric Cable Bacteria

    OpenAIRE

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed ...

  7. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  8. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-04-01

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  9. Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela [Fermilab; Zlobin, Alexander V. [Fermilab

    2016-02-18

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future pp colliders.

  10. North American Submarine Cable Association (NASCA) Submarine Cables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data show the locations of in-service and out-of-service submarine cables that are owned by members of NASCA and located in U.S. territorial waters. More...

  11. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  12. Aspen Notebook: Cable and Continuing Education.

    Science.gov (United States)

    Adler, Richard; Baer, Walter S.

    This is the first of a planned series of Aspen Notebooks on cable television (CATV). Part I reports on research conducted by the Aspen Workshop on Uses of the Cable. It describes the status of continuing education and the history of educational television and explores the prospects created by cable's development for extending access to continuing…

  13. 47 CFR 32.2422 - Underground cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable. (a) This account shall include the original cost of underground cable installed in conduit and of...

  14. Cable Television Report and Suggested Ordinance.

    Science.gov (United States)

    League of California Cities, Sacramento.

    Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…

  15. Strain relief for power-cable connectors

    Science.gov (United States)

    Dean, W. T., III

    1980-01-01

    Easily fabricated grommet composed of polytetrafluoroethylene cylinder, containing U-shaped channels equally spaced around periphery, is used in power cable connectors to relieve strain on cables. Utilization of grommets provides more ease in cable insertion and removal. Potential applications include wiring in large residential and commercial buildings.

  16. Reducing Magnetic Fields Around Power Cables

    Science.gov (United States)

    Sargent, Noel B.; Gitelman, Florida; Pongracz-Bartha, Edward; Spalding, John

    1993-01-01

    Four power conductors arranged symmetrically about fifth grounded conductor. Four current-carrying wires arranged symmetrically around central grounded wire that nominally carries no current. In comparison with other cable configurations, this one results in smaller magnetic fields around cable. Technique for use when size of wires in cable makes twisting impractical.

  17. 30 CFR 18.45 - Cable reels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable reels. 18.45 Section 18.45 Mineral... § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable cable and is designed to travel at speeds exceeding 2.5 miles per hour, shall have a...

  18. 47 CFR 32.2421 - Aerial cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable. 32.2421 Section 32.2421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2421 Aerial cable. (a) This account shall include the original cost of aerial cable and of drop and block wires served by...

  19. 47 CFR 32.2423 - Buried cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  20. 21 CFR 890.1175 - Electrode cable.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode cable. 890.1175 Section 890.1175 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable. (a) Identification. An electrode cable is a device composed of strands of insulated electrical conductors...

  1. First Electrical Characterization of Prototype 600 A HTS Twisted-pair Cables at Different Temperatures

    CERN Document Server

    Yang, Y; Bailey, W; Beduza, C; Ballarino, A

    2012-01-01

    Following the development of twisted-pair cables prepared with High Temperature Superconducting (HTS) tapes and their initial tests at 4.2 K in liquid helium at CERN, the cable samples of 2 m lengths were subsequently tested in flowing helium gas at temperatures between 10 K and 77 K at University of Southampton. A cryostat with optimized hybrid HTS current leads was purposely built for the tests up to 2.5 kA. The cryostat has two separate helium flow conduits, each accommodating a twisted pair and allowing independent temperature control. With the completion of the tests on the twisted-pair cables, a 5 m long semi-flexible Nexans cryostat was also set up for the testing of prototype HTS links assembled at CERN. The link, which is optimized for application to the remote powering of LHC 600 A electrical circuits, consists of a compact multi-cable assembly with up to 25 twisted-pair 600 A HTS tapes. The cables are cooled by a forced-flow of helium gas the inlet temperature of which can be changed in order to co...

  2. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  3. Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts

    Science.gov (United States)

    Bajda, Mirosław; Błażej, Ryszard; Hardygóra, Monika

    2016-10-01

    Splices are the weakest points in the conveyor belt loop. The strength of these joints, and thus their design as well as the method and quality of splicing, determine the strength of the whole conveyor belt loop. A special zone in a splice exists, where the stresses in the adjacent plies or cables differ considerably from each other. This results in differences in the elongation of these elements and in additional shearing stresses in the rubber layer. The strength of the joints depends on several factors, among others on the parameters of the joined belt, on the connecting layer and the technology of joining, as well as on the materials used to make the joint. The strength of the joint constitutes a criterion for the selection of a belt suitable for the operating conditions, and therefore methods of testing such joints are of great importance. This paper presents the method of testing fatigue strength of splices made on multi-ply textile conveyor belts and the results of these studies.

  4. Spliced leader RNA trans-splicing discovered in copepods

    Science.gov (United States)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  5. A Novel Electrical Insulating Material for 275 kV High-Voltage HTS Cable with Low Dielectric Loss

    Science.gov (United States)

    Hayakawa, N.; Nishimachi, S.; Maruyama, O.; Ohkuma, T.; Liu, J.; Yagi, M.

    2014-05-01

    In the case of high temperature superconducting (HTS) power transmission cables at high voltage operation, the electrical insulation technique in consideration of the dielectric loss reduction becomes crucial. In this paper, we focused on a Tyvek/polyethylene (PE) sheet, instead of the conventional polypropylene laminated paper (PPLP). We obtained the dielectric characteristics (epsilonr, tanδ) and partial discharge inception strength (PDIE) of PPLP, Tyvek and Tyvek/PE. We pointed out that the dielectric loss of 275 kV HTS cable with Tyvek/PE insulation will be reduced to 21 % of that with PPLP, and the total electrical loss including the AC loss will be reduced to 41 %.

  6. Educational Uses of Cable Television.

    Science.gov (United States)

    Cable Television Information Center, Washington, DC.

    The different educational uses of cable television as well as the methods and problems of that use are described in a state of the art review. The Federal Communications Commission regulations and related franchise activity are described, and the methods of using the educational channel as open or closed circuit TV or pay TV are indicated for…

  7. Cable Television: Developing Community Services.

    Science.gov (United States)

    Carpenter-Huffman, Polly; And Others

    The final volume of a four-volume study focuses on community use of cable television systems. Four separate aspects are discussed extensively: the possibilities of public access, use in municipal service applications, uses in education, and a guide for education planners. Each section contains several appendixes and the education sections include…

  8. Improving Energy Efficiency Cable Production

    Directory of Open Access Journals (Sweden)

    Iashutina Olga

    2016-01-01

    Full Text Available During the energy calculation is made at different temperatures of the heating surface. The influence of the speed of pulling on the cost of the finished products of cable products. The interrelation of speed broaching and temperature of the heating surface.

  9. Electrical Resistance of Nb3Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb3Sn/Cu strands is a key issue for the construction of Nb3Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb3Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of the strand matr...

  10. temperature distribution in underground cable system

    Directory of Open Access Journals (Sweden)

    Rerak Monika

    2017-01-01

    Full Text Available The paper presents a mathematical model of heat transfer in the underground cable system. The computations were performed for flat formation of power cables buried in the ground at a depth of 2 meters. The model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil thermal conductivity on the maximum temperature of the cable conductor. Furthermore, the effect of thermal backfill soil conductivity on the cable conductor temperature was studied. Numerical analyses were performed based on a program written in MATLAB.

  11. Alternative Splicing in Plant Immunity

    Directory of Open Access Journals (Sweden)

    Shengming Yang

    2014-06-01

    Full Text Available Alternative splicing (AS occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  12. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    Science.gov (United States)

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  13. Offshore Cable Installation - Lillgrund. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Unosson, Oscar (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2009-01-15

    This report describes the installation method and the experiences gained during the installation of the submarine cables for the offshore wind farm at Lillgrund. The wind farm consists of 48 wind turbines and is expected to produce 0.33 TWh annually. Different aspects of the installation, such as techniques, co-operation between the installation teams, weather conditions and regulatory and environmental issues are described in this report. In addition, recommendations and guidelines are provided, which hopefully can be utilised in future offshore wind projects. The trenches, in which the submarine cables were laid, were excavated weeks before the cable laying. This installation technique proved to be successful for the laying of the inter array cables. The export cable, however, was laid into position with difficulty. The main reason why the laying of the export cable proved more challenging was due to practical difficulties connected with the barge entrusted with the cable laying, Nautilus Maxi. The barge ran aground a number of times and it had difficulties with the thrusters, which made it impossible to manoeuvre. When laying the inter array cables, the method specification was closely followed, and the laying of the cables was executed successfully. The knowledge and experience gained from the offshore cable installation in Lillgrund is essential when writing technical specifications for new wind plant projects. It is recommended to avoid offshore cable installation work in winter seasons. That will lower the chances of dealing with bad weather and, in turn, will reduce the risks

  14. Cable Harness Assembly Planning in Virtual Environment

    Institute of Scientific and Technical Information of China (English)

    LIU Jianhua; NING Ruxin; BAI Shuqing; WANG Bile

    2006-01-01

    Based on the analysis of characteristic of cable harness planning in virtual environment, a discrete control node modeling (DCNM) method of cable harness in virtual environment and the cable harness assembly routing technique based on it are proposed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and the design can realize cable harness planning through controlling those control nodes. This method of cable harness routing in the virtual environment breaks the status that virtual assembly process planning is just suitable for the rigid components at present, and impulse the virtual assembly process planning to be more practical. Relation algorithms have been verified in a self-developed system named virtual cable harness assembly planning (VCHAP) system, and this VCHAP system has been applied in assembly process planning of aerospace-related products.

  15. Self-healing cable apparatus and methods

    Science.gov (United States)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  16. Gjoea power cable; a green solution

    Energy Technology Data Exchange (ETDEWEB)

    Dretvik, Svein-Egil

    2010-07-01

    An alternative to today's power generation offshore using either gas or diesel, is alternating current (AC) electric power cable from shore. The power from shore through the AC cable gives high savings for the environment. The cable replaces 4 gas turbines with a total CO2 disposal of 240 00 tonnes each year which represents the disposal of 100 000 cars. ABB was awarded the contract which includes engineering, fabrication and installation of the power cable from Mongstad to the Gjoea platform which will be the longest AC cable in the world with a total length of 100 km. The presentation will include system design, qualification of dynamic power cable, cable fabrication experiences, testing at fabrication yard and installation aspects. (Author)

  17. Consolidation of the LHC Superconducting Circuits: A Major Step towards 14 TeV Collisions

    CERN Document Server

    Tock, J Ph; Bordry, F; Fessia, P; Ostojic, R; Perin, A; Prin, H; Savary, F; Scheuerlein, C; Ten Kate, H H J; Verweij, A; Willering, G P

    2012-01-01

    Following the incident in one of the main dipole circuits of the Large Hadron Collider (LHC) in September 2008, a detailed analysis of all magnet circuits has been performed by a dedicated task force. This analysis has revealed critical issues in the design of the 13 kA splices between the superconducting dipole and quadrupole magnets. These splices have to be consolidated before increasing the beam energy above 4 TeV and operating the LHC at 6.5-7 TeV per beam. The design of the consolidated 13 kA splices is complete and has been reviewed by an international committee of experts. Also, all other types of superconducting circuits have been thoroughly screened for potential safety issues and several important recommendations were established. They were critically assessed and the resulting actions are presented. In addition to the work on the 13 kA splices, other interventions will be performed during the first long shut-down of the LHC to consolidate globally all superconducting circuits. The associated quali...

  18. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  19. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  20. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  1. Design and Manufacture of the Superconducting Bus-bars for the LHC Main Magnets

    CERN Document Server

    Belova, L M; Perinet-Marquet, J L; Ivanov, P; Urpin, C

    2002-01-01

    The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighbouring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100°C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns th...

  2. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  3. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  4. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  5. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  6. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    OpenAIRE

    Kun Lin; Dujian Zou; Minghai Wei

    2014-01-01

    The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system) model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs) model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The res...

  7. Alternative Spliced Transcripts as Cancer Markers

    Directory of Open Access Journals (Sweden)

    Otavia L. Caballero

    2001-01-01

    Full Text Available Eukaryotic mRNAs are transcribed as precursors containing their intronic sequences. These are subsequently excised and the exons are spliced together to form mature mRNAs. This process can lead to transcript diversification through the phenomenon of alternative splicing. Alternative splicing can take the form of one or more skipped exons, variable position of intron splicing or intron retention. The effect of alternative splicing in expanding protein repertoire might partially underlie the apparent discrepancy between gene number and the complexity of higher eukaryotes. It is likely that more than 50% form. Many cancer-associated genes, such as CD44 and WT1 are alternatively spliced. Variation of the splicing process occurs during tumor progression and may play a major role in tumorigenesis. Furthermore, alternatively spliced transcripts may be extremely useful as cancer markers, since it appears likely that there may be striking contrasts in usage of alternatively spliced transcript variants between normal and tumor tissue than in alterations in the general levels of gene expression.

  8. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible.

    Science.gov (United States)

    Lareau, Liana F; Brenner, Steven E

    2015-04-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end.

  9. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    Science.gov (United States)

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.

  10. Heat Transfer Study for HTS Power Transfer Cables

    Science.gov (United States)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  11. Electromagnetic, stress and thermal analysis of the Superconducting Magnet

    CERN Document Server

    Ren, Yong

    2015-01-01

    Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...

  12. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    of electromagnetic phenomena associated to their operation, among them electromagnetic transients, increased as well. Transient phenomena have been studied since the beginning of power systems, at first using only analytical approaches, which limited studies to more basic phenomena; but as computational tools became...... concerning HVAC cables. An important topic that is not covered in this book is measurements protocols/ methods. The protocols used when performing measurements on a cable depend on what is to be measured, the available equipment and accessibility. Readers interested in the topic are referred to search....... The chapter ends by proposing a systematic method that can be used when doing the insulation co-ordination study for a line, as well as the modelling requirements, both modelling depth and modelling detail of the equipment, for the study of the different types of transients followed by a step-by-step generic...

  13. Condition Monitoring of Power Cables

    OpenAIRE

    Lewin, P L; L. Hao; Swaffield, D J; Swingler, S.G.

    2007-01-01

    A National Grid funded research project at Southampton has investigated possible methodologies for data acquisition, transmission and processing that will facilitate on-line continuous monitoring of partial discharges in high voltage polymeric cable systems. A method that only uses passive components at the measuring points has been developed and is outlined in this paper. More recent work, funded through the EPSRC Supergen V, UK Energy Infrastructure (AMPerES) grant in collaboration with UK ...

  14. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  15. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    Science.gov (United States)

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

  16. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  17. Design and fabrication of indigenous 30 kA Nb3Sn CICC for fusion relevant superconducting magnet

    Science.gov (United States)

    Raj, P.; Ghate, M.; Pradhan, S.; Singh, A.; Hussain, M. M.

    2017-02-01

    “Magnet Technology Development Group” is engaged in focused research and development of indigenous fusion relevant superconducting magnet at Institute for Plasma Research in association with various R&D organizations. The fusion relevant superconducting magnet is under development using a cable in conduit conductor (CICC) with operating current of 30 kA at 12 T and 4.22 K. The 30 kA CICC has been designed in square cross-section (30 mm × 30 mm) consisting twisted Nb3Sn strands and copper strands as superconducting cable, SS316LN tubes as jacket material and SS304L foil as wrapping around the cabled strands. It has been designed on the basis of required critical design parameters, operation requirements and mechanical consideration during its fabrication. Cabling technology required for twisting of Nb3Sn and Copper strand in required configuration of cable is discussed in this paper. The effect of heat treatment on SS316LN jacket material as well as on Nb3Sn strands is mentioned in paper. 100 m long Nb3Sn based CICC is manufactured by pulled through technology on dedicated jacketing line. The manufacturing parameters and quality procedures for development of CICCs is successfully established and have been demonstrated with fabrication of 100 m Nb3Sn based CICC without any technical difficulties.

  18. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly affe

  19. Broadband description of the copper cable transfer function

    NARCIS (Netherlands)

    Waal, D.C.H.

    2007-01-01

    This report is describes the characteristics of two different copper cables, namely the coax cable and the twisted pair cable. By using the Maxwell equations we can describe the coax cable and the twisted pair cable with the Bessel functions. By these Bessel functions we can simulate the two seconda

  20. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  1. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  2. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  3. Aircraft optical cable plant program plan: the approach for the physical layer for fly-by-light control networks

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. Over the past two decades, considerable effort has been expended on applying photonic technologies to aircraft. Great successes have occurred in optoelectronic components development. In the development of these systems to link those components, known as the cable plant, progress has also been made, but only recently has it been organized in a coordinated, systems-oriented fashion. The FLASH program will expand on the nascent cable plant systems efforts by building upon recent work in individual components, and integrating that work into a cohesive aircraft cable plant. Therefore, the FLASH program will develop the low cost, reliable cables, connectors, splices, backplanes, manufacturing and installation methods, test methods, support equipment, and training systems needed to form a true optical cable plant for transport aircraft, tactical aircraft, and helicopters.

  4. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Eun Chan [Korea Maintance Co., Ltd., Seoul (Korea, Republic of)

    2014-02-15

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  5. Research on Construction Monitoring Techniques for Cable Replacement of the Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Dai Pu

    2013-09-01

    Full Text Available Due to various reasons, some cable-stayed bridges require the replacement of part or all stay cables after operating for a period of time. In this study, based on some engineering practices of stay cable replacement, the condition of bridge structure before replacement is analyzed with Finite Element Analysis method for plane member system. The theoretical calculations, cable force measurement, replacement methods and process monitoring for cable replacement are introduced to find out the key technical problems. From the specified bridge monitoring practices, we suggest monitoring cable tension and the main beam alignment during the process of cable replacement, to make sure the cable-stayed bridge reaches its design conditions.

  6. Measurement and Numerical Evaluation of AC-Losses in a ReBCO Roebel Cable at 4.5 K

    CERN Document Server

    van Nugteren, J.; Gao, P.; Bottura, L,; Dhallé, M.; Goldacker, W.; Kario, A.; ten Kate, H.; Kirby, G.; Krooshoop, E.; de Rijk, G.; Rossi, L.; Senatore, C.; Wessel, S.; Yagotintsev, K.; Yang, Y.

    2016-01-01

    EUCARD2 aims to research ReBCO superconducting magnets for future accelerator applications. The properties of ReBCO conductors are very different from low temperature superconductors. To investigate dynamic field quality, stability and normal zone propagation an electrical network model for coated conductor cables was developed. To validate the model two identical samples were prepared at CERN after which measurements were taken at the University of Twente and Southampton University. The model predicts that for Roebel cable, in a changing magnetic field applied in the perpendicular direction, the hysteresis loss is much larger than the coupling loss. In the case of a changing magnetic field applied parallel to the cable coupling loss is dominant. In the first case the experiment is in good agreement with the model. In the second case the data can only be compared qualitatively because the calibration for the inductive measurement is not available.

  7. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    Science.gov (United States)

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  8. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  9. Analytical and numerical construction of equivalent cables.

    Science.gov (United States)

    Lindsay, K A; Rosenberg, J R; Tucker, G

    2003-08-01

    The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.

  10. How do you like them cables?

    CERN Multimedia

    Sergei Malyukov

    Cabling work is not for clautrophobic people! Cables are like the blood vessels and nervous system of ATLAS. With the help of all these cables, we can power ATLAS, control the detector and read out the data. Like the human blood vessels, they penetrate inside the ATLAS volume, reaching each of its elements. The ATLAS developers started to think about design of services, cables and pipes at the very first stages of the project. The cabling project has been developing most intensively during the last five years, passing through the projection and CAD design phases, then the installation of cable trays and finally the cables. The cable installation itself took two and a half years and was done by teams of technicians from several institutes from Russia, the Czech Republic and Poland. Here are some numbers to illustrate the scale of the ATLAS cabling system. More than 25000 optical fiber channels are used for reading the information from the sub-detectors and delivering the timing signals. The total numbe...

  11. Nonlinear Finite Element Analysis of Ocean Cables

    Institute of Scientific and Technical Information of China (English)

    Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM

    2004-01-01

    This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.

  12. Alcoholism and Alternative Splicing of Candidate Genes

    Directory of Open Access Journals (Sweden)

    Toshikazu Sasabe

    2010-03-01

    Full Text Available Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  13. Flexible Aerogel as a Superior Thermal Insulation for High Temperature Superconductor Cable Applications

    Science.gov (United States)

    White, S.; Demko, J.; Tomich, A.

    2010-04-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  14. Solder-Filling of a Cicc Cable for the Efda Dipole Magnet

    Science.gov (United States)

    Bauer, P.; Bruzzone, P.; Cau, F.; Weiss, K.; Portone, A.; Salpietro, E.; Vogel, M.; Vostner, A.

    2008-03-01

    Several prototype Cable-In-Conduit-Conductors (CICC) for the superconducting EDIPO (Efda DIPOle) revealed a degradation of their critical current (Ic) increasing with each loading cycle. The strong Lorentz-forces during operation in combination with the limited support of the single strands against these forces are thought to be the cause of the permanent degradation of the brittle Nb3Sn superconductor from which the multi-stranded CICC are made. In summer 2006 EFDA started to explore the possibility to remedy the Ic degradation by solder-filling the conductor in order to mechanically stabilize the twisted-strand cable inside the conduit. This solution was not considered as the main one, but as an emergency solution to be applied to the completed magnet, should every other option fail. The solder-filling approach was previously applied with success in some cases. Some issues, however, needed to be clarified before this solution could be proposed for the EDIPO project. The most important among them are the choice of solder material, details of the solder filling process, and the thermo-mechanical implications of a solder-filled, high-field, high-current cable. This work, being reported here, made use not only of simulation but also of experiments, such as the mechanical testing of solder filled cables at cryogenic temperatures.

  15. Low coupling loss core-strengthened Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R

    1999-01-01

    In a comprehensive "vertically integrated" program multifilamentary (MF) high temperature superconducting (HTSC) Bi:2212/Ag strand was fabricated using the powder-in-tube process and heat treated in oxygen by a modified standard $9 procedure. The reaction-heat-treatment (HT) was adjusted to maximize critical current (density), I/sub c/ (J /sub c/), as measured in various magnetic fields, B. A series of Rutherford cables was designed, each of which included a $9 metallic (Nichrome-80) core for strengthening and reduction of coupling loss. Prior to cable winding a series of tests examined the possibility of strand "poisoning" by the core during HT. Small model Rutherford cables were wound, $9 and after HT were prepared for I/sub c/(B) measurement and calorimetric measurement of AC loss and hence interstrand contact resistance I/sub c/(B). It was deduced that, if in direct contact with the strand during HT, the core $9 material can degrade the I/sub c/ of the cable; but steps can be taken to eliminate this probl...

  16. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  17. Tumor microenvironment–associated modifications of alternative splicing

    Science.gov (United States)

    Brosseau, Jean-Philippe; Lucier, Jean-François; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

    2014-01-01

    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors. PMID:24335142

  18. Heat transfer through the electrical insulation of Nb3Sn cables

    CERN Document Server

    Granieri, P; van Weelderen, R

    2014-01-01

    For the LHC upgrade projects, CERN will rely on the Nb3Sn technology to build high field dipole and quadrupole superconducting magnets. In the frame of this R&D program, cooling studies are carried out to determine the heat extraction from this new type of accelerator magnets and the relevant quench limits. In this paper we present and discuss experimental results of heat transfer through the electrical insulation of Nb3Sn cables. A cable-stack was prepared using fiberglass sleeves and CTD-101K impregnation resin. Two different measurement methods were compared, consisting of instrumenting the sample before or after the vacuum impregnation. The tests were performed both in 1.9 K superfluid and 4.2 K liquid helium baths, using different heating configurations. We also present results of the numerical model developed to reproduce the experimental results.

  19. Spliced

    DEFF Research Database (Denmark)

    Addison, Courtney Page

    2017-01-01

    Human gene therapy (HGT) aims to cure disease by inserting or editing the DNA of patients with genetic conditions. Since foundational genetic techniques came into use in the 1970s, the field has developed to the point that now three therapies have market approval, and over 1800 clinical trials have...

  20. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  1. Po Superconducting Magnet:detail of the windings

    CERN Multimedia

    1982-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam Po. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8307552X.

  2. SAW: a method to identify splicing events from RNA-Seq data based on splicing fingerprints.

    Directory of Open Access Journals (Sweden)

    Kang Ning

    Full Text Available Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, a novel method, SAW, was proposed for the identification of all splicing events based on short reads from RNA-Seq. It was observed that short reads not in known gene models are actually absent words from known gene sequences. An efficient method to filter and cluster these short reads by fingerprint fragments of splicing events without aligning short reads to genome sequences was developed. Additionally, the possible splicing sites were also determined without alignment against genome sequences. A consensus sequence was then generated for each short read cluster, which was then aligned to the genome sequences. Results demonstrated that this method could identify more than 90% of the known splicing events with a very low false discovery rate, as well as accurately identify, a number of novel splicing events between distant exons.

  3. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns

    Directory of Open Access Journals (Sweden)

    Rogozin Igor B

    2006-12-01

    Full Text Available Abstract Background The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. Among other factors, the relative contributions of different mechanisms appear to depend on intron size inasmuch as long introns might hinder the activity of the spliceosome through interference with the proper positioning of the intron-exon junctions. Indeed, it has been shown that the information content of splice sites positively correlates with intron length in the nematode, Drosophila, and fungi. We explored the connections between the length of vertebrate introns, the strength of splice sites, exonic splicing signals, and evolution of flanking exons. Results A compensatory relationship is shown to exist between different types of signals, namely, the splice sites and the exonic splicing enhancers (ESEs. In the range of relatively short introns (approximately, Conclusion Several weak but statistically significant correlations were observed between vertebrate intron length, splice site strength, and potential exonic splicing signals. Taken together, these findings attest to a compensatory relationship between splice sites and exonic splicing signals, depending on intron length.

  4. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site.

    Science.gov (United States)

    Aroian, R V; Levy, A D; Koga, M; Ohshima, Y; Kramer, J M; Sternberg, P W

    1993-01-01

    The dinucleotide AG, found at the 3' end of virtually all eukaryotic pre-mRNA introns, is thought to be essential for splicing. Reduction-of-function mutations in two Caenorhabditis elegans genes, the receptor tyrosine kinase gene let-23 and the collagen gene dpy-10, both alter the AG at the end of a short (ca. 50-nucleotide) intron to AA. The in vivo effects of these mutations were studied by sequencing polymerase chain reaction-amplified reverse-transcribed RNA isolated from the two mutants. As expected, we find transcripts that splice to a cryptic AG, skip an exon, and retain an unspliced intron. However, we also find significant levels of splicing at the mutated 3' splice site (AA) and at nearby non-AG dinucleotides. Our results indicate that for short C. elegans introns an AG is not required for splicing at either the correct 3' splice site or incorrect sites. Analysis of a splice site mutant involving a longer, 316-nucleotide C. elegans intron indicates that an AG is also not required there for splicing. We hypothesize that elements besides the invariant AG, e.g., an A-U-rich region, a UUUC motif, and/or a potential branch point sequence, are directing the selection of the 3' splice site and that in wild-type genes these elements cooperate so that proper splicing occurs. Images PMID:8417357

  5. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift.

    Science.gov (United States)

    Luz, Felipe Andrés Cordero; Brígido, Paula Cristina; Moraes, Alberto Silva; Silva, Marcelo José Barbosa

    2017-01-01

    Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program. © 2016 S. Karger AG, Basel.

  6. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  7. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  8. Once upon a time, there was a brittle but superconducting niobium-tin…

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The production of the new niobium-tin cables for the high-performance superconducting magnets of the HL-LHC is now in full swing at CERN.   The Rutherford cabling machine is operating in the superconducting laboratory, in Building 163. (Photo: Max Brice/CERN) Extraordinary research needs extraordinary machines: the upgrade project of the LHC, the High-Luminosity LHC (HL-LHC), has the goal of achieving instantaneous luminosities a factor of five larger than the LHC nominal value, and it relies on magnetic fields reaching the level of 12 Tesla. The superconducting niobium-titanium (Nb-Ti) used in the LHC magnets can only bear magnetic fields of up to 9-10 Tesla. Therefore, an alternative solution for the superconducting magnets materials was needed. The key innovative technology to develop superconducting magnets beyond 10 Tesla has been found in the niobium-tin (Nb3Sn)  compound. This compound was actually discovered in 1954, eight years before Nb-Ti, but when the LHC was built, ...

  9. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  10. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  11. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  12. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  13. Field Measurement for Superconducting Magnets of ADS Injector I

    CERN Document Server

    Yang, Xiangchen

    2013-01-01

    The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.

  14. Braided tubular superelastic cables provide improved spinal stability compared to multifilament sublaminar cables.

    Science.gov (United States)

    Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan

    2015-09-01

    This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading.

  15. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2014-01-01

    Full Text Available The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable.

  16. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2014-01-01

    Full Text Available Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM. The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  17. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    Science.gov (United States)

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  18. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  19. Pay Cable: A Viable Advertising Medium?

    Science.gov (United States)

    Krugman, Dean M.; Barban, Arnold M.

    Cable television, which cannot only clarify local signals to weak signal areas but can also bring in distant signals to areas which have been receiving few signals, has the capacity to present special television programs to customers for extra fees. The number of pay cable subscribers is growing and industry projections are that it will reach 20…

  20. Cable Television in the Classroom. ERIC Digest.

    Science.gov (United States)

    Holmes, Glen A.; Branch, Robert C.

    Using cable television in the classroom allows teachers to include the latest news and current events in class discussions. However, many educational practitioners are uninformed about the concept and lack the knowledge to implement the technology in the classroom. This digest describes how cable television can be integrated into elementary and…

  1. Crossed Wires; Cable Television in New Jersey.

    Science.gov (United States)

    Center for Analysis of Public Issues, Princeton, NJ.

    Cable television (CATV) in New Jersey has been almost nonexistent: Because of the state's proximity to the major cities of New York and Philadelphia, there has been a scarcity of New Jersey-oriented news and public affairs programing. Cable television access, it is suggested, could fill this information gap in New Jersey if the state government…

  2. Cable Television: Its Urban Context and Programming.

    Science.gov (United States)

    Warthman, Forrest

    Cable television's future in urban settings is discussed in the context of alternative media capable of serving similar markets with similar programing. In addition to cable television, other transmission networks such as the telephone network, radio and television broadcasting, microwave networks, domestic satellites, and recording media are…

  3. Cable Television: The Process of Franchising.

    Science.gov (United States)

    Johnson, Leland L.; Botein, Michael

    In an effort to insure that cable television franchising procedures at the local level are based on a competitive and well-conceived selection process, this report discusses some of the most important steps of the franchising process. Not only does it show how the community should assess its needs and appraise the merits of the cable operator, but…

  4. Assessment of sodium conductor distribution cable

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)

  5. Community Cable Television--Hungarian Perspectives.

    Science.gov (United States)

    Szekfu, Andras

    This paper argues that, although community cable television is one of the most dynamic (although experimental) elements of the Hungarian media structure, it is well on its way toward institutionalization. It is suggested that whether community cable television is able to retain the spontaneity, innovativeness, and elasticity of its early days may…

  6. 76 FR 32866 - Cable Landing Licenses; Correction

    Science.gov (United States)

    2011-06-07

    ... Systems Agency in the regulations that we published in the Federal Register of January 14, 2002, 67 FR... COMMISSION 47 CFR Part 1 Cable Landing Licenses; Correction AGENCY: Federal Communications Commission. ACTION... streamlined processing of cable landing license applications. Need for Correction As published, the...

  7. The Selling of Cable Television 1972.

    Science.gov (United States)

    National Cable Television Association, Inc., Washington, DC.

    The 1972 Cable Television Marketing Workshop reviewed in depth a wide variety of marketing and public relations techniques as they pertain to cable television. The workshop was attended by representatives of commercial television systems throughout the United States; it was intended to disseminate the sales and marketing experience of those…

  8. Joystick With Cable Springs Offers Better Feel

    Science.gov (United States)

    Kerley, James; Ecklund, Wayne

    1992-01-01

    Improved joystick allows motion in 6 degrees of freedom, biased toward central position and orientation by 16 segments of cable serving as springs. Improvement in feel and control results from nonlinear compliance of cable-spring assembly. Nonlinear variations accommodate natural reactions of hand and brain. Operator functions as part of feedback control loop. More comfortable, increases ability to exert control and reduces fatigue.

  9. Assisted transcriptome reconstruction and splicing orthology

    Directory of Open Access Journals (Sweden)

    Samuel Blanquart

    2016-11-01

    Full Text Available Abstract Background Transcriptome reconstruction, defined as the identification of all protein isoforms that may be expressed by a gene, is a notably difficult computational task. With real data, the best methods based on RNA-seq data identify barely 21 % of the expressed transcripts. While waiting for algorithms and sequencing techniques to improve — as has been strongly suggested in the literature — it is important to evaluate assisted transcriptome prediction; this is the question of how alternative transcription in one species performs as a predictor of protein isoforms in another relatively close species. Most evidence-based gene predictors use transcripts from other species to annotate a genome, but the predictive power of procedures that use exclusively transcripts from external species has never been quantified. The cornerstone of such an evaluation is the correct identification of pairs of transcripts with the same splicing patterns, called splicing orthologs. Results We propose a rigorous procedural definition of splicing orthologs, based on the identification of all ortholog pairs of splicing sites in the nucleotide sequences, and alignments at the protein level. Using our definition, we compared 24 382 human transcripts and 17 909 mouse transcripts from the highly curated CCDS database, and identified 11 122 splicing orthologs. In prediction mode, we show that human transcripts can be used to infer over 62 % of mouse protein isoforms. When restricting the predictions to transcripts known eight years ago, the percentage grows to 74 %. Using CCDS timestamped releases, we also analyze the evolution of the number of splicing orthologs over the last decade. Conclusions Alternative splicing is now recognized to play a major role in the protein diversity of eukaryotic organisms, but definitions of spliced isoform orthologs are still approximate. Here we propose a definition adapted to the subtle variations of conserved alternative

  10. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  11. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  12. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  13. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified......This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...

  14. Splicing pattern - ASTRA | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us ASTRA Splicing pattern Data detail Data name Splicing pattern DOI 10.18908/lsdba.nbdc00371-0...04 Description of data contents The patterns of alternative splicing/transcriptional initiation Data file Fi...le name: astra_splicing_pattern.zip File URL: ftp://ftp.biosciencedbc.jp/archive/astra/LATEST/astra_splicing_pat...ogodb/view/astra_splicing_pattern#en Data acquisition method For the five organisms (H. sapiens, M. musculus...apping data into bit arrays, detection of splicing patterns and distribution to t

  15. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    Science.gov (United States)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  16. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  17. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  18. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  19. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  20. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on