WorldWideScience

Sample records for supercomputing advanced methods

  1. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  2. Advanced parallel processing with supercomputer architectures

    International Nuclear Information System (INIS)

    Hwang, K.

    1987-01-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers

  3. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  4. Advanced Architectures for Astrophysical Supercomputing

    Science.gov (United States)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  5. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  6. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  7. Supercomputing - Use Cases, Advances, The Future (2/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the second day, we will focus on software and software paradigms driving supercomputers, workloads that need supercomputing treatment, advances in technology and possible future developments. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and i...

  8. Supercomputing - Use Cases, Advances, The Future (1/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the first day, we will focus on the history and theory of supercomputing, the top500 list and the hardware that makes supercomputers tick. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and initiated projects with the private sector (e.g. HP an...

  9. What is supercomputing ?

    International Nuclear Information System (INIS)

    Asai, Kiyoshi

    1992-01-01

    Supercomputing means the high speed computation using a supercomputer. Supercomputers and the technical term ''supercomputing'' have spread since ten years ago. The performances of the main computers installed so far in Japan Atomic Energy Research Institute are compared. There are two methods to increase computing speed by using existing circuit elements, parallel processor system and vector processor system. CRAY-1 is the first successful vector computer. Supercomputing technology was first applied to meteorological organizations in foreign countries, and to aviation and atomic energy research institutes in Japan. The supercomputing for atomic energy depends on the trend of technical development in atomic energy, and the contents are divided into the increase of computing speed in existing simulation calculation and the acceleration of the new technical development of atomic energy. The examples of supercomputing in Japan Atomic Energy Research Institute are reported. (K.I.)

  10. Supercomputational science

    CERN Document Server

    Wilson, S

    1990-01-01

    In contemporary research, the supercomputer now ranks, along with radio telescopes, particle accelerators and the other apparatus of "big science", as an expensive resource, which is nevertheless essential for state of the art research. Supercomputers are usually provided as shar.ed central facilities. However, unlike, telescopes and accelerators, they are find a wide range of applications which extends across a broad spectrum of research activity. The difference in performance between a "good" and a "bad" computer program on a traditional serial computer may be a factor of two or three, but on a contemporary supercomputer it can easily be a factor of one hundred or even more! Furthermore, this factor is likely to increase with future generations of machines. In keeping with the large capital and recurrent costs of these machines, it is appropriate to devote effort to training and familiarization so that supercomputers are employed to best effect. This volume records the lectures delivered at a Summer School ...

  11. Japanese supercomputer technology

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Ewald, R.H.; Worlton, W.J.

    1982-01-01

    In February 1982, computer scientists from the Los Alamos National Laboratory and Lawrence Livermore National Laboratory visited several Japanese computer manufacturers. The purpose of these visits was to assess the state of the art of Japanese supercomputer technology and to advise Japanese computer vendors of the needs of the US Department of Energy (DOE) for more powerful supercomputers. The Japanese foresee a domestic need for large-scale computing capabilities for nuclear fusion, image analysis for the Earth Resources Satellite, meteorological forecast, electrical power system analysis (power flow, stability, optimization), structural and thermal analysis of satellites, and very large scale integrated circuit design and simulation. To meet this need, Japan has launched an ambitious program to advance supercomputer technology. This program is described

  12. An assessment of worldwide supercomputer usage

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  13. Supercomputer methods for the solution of fundamental problems of particle physics

    International Nuclear Information System (INIS)

    Moriarty, K.J.M.; Rebbi, C.

    1990-01-01

    The authors present motivation and methods for computer investigations in particle theory. They illustrate the computational formulation of quantum chromodynamics and selected application to the calculation of hadronic properties. They discuss possible extensions of the methods developed for particle theory to different areas of applications, such as cosmology and solid-state physics, that share common methods. Because of the commonality of methodology, advances in one area stimulate advances in other ares. They also outline future plans of research

  14. Supercomputers Of The Future

    Science.gov (United States)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1992-01-01

    Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.

  15. Advances in Supercomputing for the Modeling of Atomic Processes in Plasmas

    International Nuclear Information System (INIS)

    Ludlow, J. A.; Ballance, C. P.; Loch, S. D.; Lee, T. G.; Pindzola, M. S.; Griffin, D. C.; McLaughlin, B. M.; Colgan, J.

    2009-01-01

    An overview will be given of recent atomic and molecular collision methods developed to take advantage of modern massively parallel computers. The focus will be on direct solutions of the time-dependent Schroedinger equation for simple systems using large numerical lattices, as found in the time-dependent close-coupling method, and for configuration interaction solutions of the time-independent Schroedinger equation for more complex systems using large numbers of basis functions, as found in the R-matrix with pseudo-states method. Results from these large scale calculations are extremely useful in benchmarking less accurate theoretical methods and experimental data. To take full advantage of future petascale and exascale computing resources, it appears that even finer grain parallelism will be needed.

  16. Simulation of x-rays in refractive structure by the Monte Carlo method using the supercomputer SKIF

    International Nuclear Information System (INIS)

    Yaskevich, Yu.R.; Kravchenko, O.I.; Soroka, I.I.; Chembrovskij, A.G.; Kolesnik, A.S.; Serikova, N.V.; Petrov, P.V.; Kol'chevskij, N.N.

    2013-01-01

    Software 'Xray-SKIF' for the simulation of the X-rays in refractive structures by the Monte-Carlo method using the supercomputer SKIF BSU are developed. The program generates a large number of rays propagated from a source to the refractive structure. The ray trajectory under assumption of geometrical optics is calculated. Absorption is calculated for each ray inside of refractive structure. Dynamic arrays are used for results of calculation rays parameters, its restore the X-ray field distributions very fast at different position of detector. It was found that increasing the number of processors leads to proportional decreasing of calculation time: simulation of 10 8 X-rays using supercomputer with the number of processors from 1 to 30 run-times equal 3 hours and 6 minutes, respectively. 10 9 X-rays are calculated by software 'Xray-SKIF' which allows to reconstruct the X-ray field after refractive structure with a special resolution of 1 micron. (authors)

  17. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  18. The ETA10 supercomputer system

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, Inc. ETA 10 is a next-generation supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamics MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed. (orig.)

  19. Advances in Numerical Methods

    CERN Document Server

    Mastorakis, Nikos E

    2009-01-01

    Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.

  20. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (Conference Presentation)

    Science.gov (United States)

    Jain, Anubhav

    2017-04-01

    Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.

  1. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee; Kaushik, Dinesh; Winfer, Andrew

    2011-01-01

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  2. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee

    2011-11-15

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  3. Installation of a new Fortran compiler and effective programming method on the vector supercomputer

    International Nuclear Information System (INIS)

    Nemoto, Toshiyuki; Suzuki, Koichiro; Watanabe, Kenji; Machida, Masahiko; Osanai, Seiji; Isobe, Nobuo; Harada, Hiroo; Yokokawa, Mitsuo

    1992-07-01

    The Fortran compiler, version 10 has been replaced with the new one, version 12 (V12) on the Fujitsu Computer system at JAERI since May, 1992. The benchmark test for the performance of the V12 compiler is carried out with 16 representative nuclear codes in advance of the installation of the compiler. The performance of the compiler is achieved by the factor of 1.13 in average. The effect of the enhanced functions of the compiler and the compatibility to the nuclear codes are also examined. The assistant tool for vectorization TOP10EX is developed. In this report, the results of the evaluation of the V12 compiler and the usage of the tools for vectorization are presented. (author)

  4. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer

    Directory of Open Access Journals (Sweden)

    Michael eHines

    2011-11-01

    Full Text Available The performance of several spike exchange methods using a Blue Gene/P supercomputerhas been tested with 8K to 128K cores using randomly connected networks of up to 32M cells with 1k connections per cell and 4M cells with 10k connections per cell. The spike exchange methods used are the standard Message Passing Interface collective, MPI_Allgather, and several variants of the non-blocking multisend method either implemented via non-blocking MPI_Isend, or exploiting the possibility of very low overhead direct memory access communication available on the Blue Gene/P. In all cases the worst performing method was that using MPI_Isend due to the high overhead of initiating a spike communication. The two best performing methods --- the persistent multisend method using the Record-Replay feature of the Deep Computing Messaging Framework DCMF_Multicast;and a two phase multisend in which a DCMF_Multicast is used to first send to a subset of phase 1 destination cores which then pass it on to their subset of phase 2 destination cores --- had similar performance with very low overhead for the initiation of spike communication. Departure from ideal scaling for the multisend methods is almost completely due to load imbalance caused by the largevariation in number of cells that fire on each processor in the interval between synchronization. Spike exchange time itself is negligible since transmission overlaps with computation and is handled by a direct memory access controller. We conclude that ideal performance scaling will be ultimately limited by imbalance between incoming processor spikes between synchronization intervals. Thus, counterintuitively, maximization of load balance requires that the distribution of cells on processors should not reflect neural net architecture but be randomly distributed so that sets of cells which are burst firing together should be on different processors with their targets on as large a set of processors as possible.

  6. Advanced differential quadrature methods

    CERN Document Server

    Zong, Zhi

    2009-01-01

    Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...

  7. Quantum Hamiltonian Physics with Supercomputers

    International Nuclear Information System (INIS)

    Vary, James P.

    2014-01-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed

  8. Quantum Hamiltonian Physics with Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P.

    2014-06-15

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  9. The ETA systems plans for supercomputers

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, is a class VII supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamic MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed

  10. Advances in iterative methods

    International Nuclear Information System (INIS)

    Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

    1981-01-01

    Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

  11. A training program for scientific supercomputing users

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  12. A criticality safety analysis code using a vectorized Monte Carlo method on the HITAC S-810 supercomputer

    International Nuclear Information System (INIS)

    Morimoto, Y.; Maruyama, H.

    1987-01-01

    A vectorized Monte Carlo criticality safety analysis code has been developed on the vector supercomputer HITAC S-810. In this code, a multi-particle tracking algorithm was adopted for effective utilization of the vector processor. A flight analysis with pseudo-scattering was developed to reduce the computational time needed for flight analysis, which represents the bulk of computational time. This new algorithm realized a speed-up of factor 1.5 over the conventional flight analysis. The code also adopted the multigroup cross section constants library of the Bodarenko type with 190 groups, with 132 groups being for fast and epithermal regions and 58 groups being for the thermal region. Evaluation work showed that this code reproduce the experimental results to an accuracy of about 1 % for the effective neutron multiplication factor. (author)

  13. Supercomputers to transform Science

    CERN Multimedia

    2006-01-01

    "New insights into the structure of space and time, climate modeling, and the design of novel drugs, are but a few of the many research areas that will be transforned by the installation of three supercomputers at the Unversity of Bristol." (1/2 page)

  14. Introduction to Reconfigurable Supercomputing

    CERN Document Server

    Lanzagorta, Marco; Rosenberg, Robert

    2010-01-01

    This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPe who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigur

  15. Supercomputers and the mathematical modeling of high complexity problems

    International Nuclear Information System (INIS)

    Belotserkovskii, Oleg M

    2010-01-01

    This paper is a review of many works carried out by members of our scientific school in past years. The general principles of constructing numerical algorithms for high-performance computers are described. Several techniques are highlighted and these are based on the method of splitting with respect to physical processes and are widely used in computing nonlinear multidimensional processes in fluid dynamics, in studies of turbulence and hydrodynamic instabilities and in medicine and other natural sciences. The advances and developments related to the new generation of high-performance supercomputing in Russia are presented.

  16. Advances in Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Reema Taneja

    2007-02-01

    Full Text Available A fractal analysis is presented for the binding and dissociation (if applicable kinetics of analyte-receptor reactions occurring on biosensor surfaces. The applications of the biosensors have appeared in the recent literature. The examples provided together provide the reader with a perspective of the advances in biosensors that are being used to detect analytes of interest. This should also stimulate interest in applying biosensors to other areas of application. The fractal analysis limits the evaluation of the rate constants for binding and dissociation (if applicable for the analyte-receptor reactions occurring in biosensor surfaces. The fractal dimension provides a quantitative measure of the degree of heterogeneity on the biosensor surface. Predictive relations are presented that relate the binding co-efficient with the degree of heterogeneity or the fractal dimension on the biosensor surface

  17. Desktop supercomputer: what can it do?

    Science.gov (United States)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  18. Desktop supercomputer: what can it do?

    International Nuclear Information System (INIS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-01-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  19. Enabling department-scale supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, D.S.; Hart, W.E.; Phillips, C.A.

    1997-11-01

    The Department of Energy (DOE) national laboratories have one of the longest and most consistent histories of supercomputer use. The authors summarize the architecture of DOE`s new supercomputers that are being built for the Accelerated Strategic Computing Initiative (ASCI). The authors then argue that in the near future scaled-down versions of these supercomputers with petaflop-per-weekend capabilities could become widely available to hundreds of research and engineering departments. The availability of such computational resources will allow simulation of physical phenomena to become a full-fledged third branch of scientific exploration, along with theory and experimentation. They describe the ASCI and other supercomputer applications at Sandia National Laboratories, and discuss which lessons learned from Sandia`s long history of supercomputing can be applied in this new setting.

  20. Ultrascalable petaflop parallel supercomputer

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  1. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-01-01

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  2. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-12-31

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  3. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay; Law, Kody; Suciu, Carina

    2017-01-01

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  4. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay

    2017-04-24

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  5. Computational Dimensionalities of Global Supercomputing

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2013-12-01

    Full Text Available This Invited Paper pertains to subject of my Plenary Keynote Speech at the 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2013 held in Orlando, Florida on July 9-12, 2013. The title of my Plenary Keynote Speech was: "Dimensionalities of Computation: from Global Supercomputing to Data, Text and Web Mining" but this Invited Paper will focus only on the "Computational Dimensionalities of Global Supercomputing" and is based upon a summary of the contents of several individual articles that have been previously written with myself as lead author and published in [75], [76], [77], [78], [79], [80] and [11]. The topics of these of the Plenary Speech included Overview of Current Research in Global Supercomputing [75], Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing [76], Data Mining Supercomputing with SAS™ JMP® Genomics ([77], [79], [80], and Visualization by Supercomputing Data Mining [81]. ______________________ [11.] Committee on the Future of Supercomputing, National Research Council (2003, The Future of Supercomputing: An Interim Report, ISBN-13: 978-0-309-09016- 2, http://www.nap.edu/catalog/10784.html [75.] Segall, Richard S.; Zhang, Qingyu and Cook, Jeffrey S.(2013, "Overview of Current Research in Global Supercomputing", Proceedings of Forty- Fourth Meeting of Southwest Decision Sciences Institute (SWDSI, Albuquerque, NM, March 12-16, 2013. [76.] Segall, Richard S. and Zhang, Qingyu (2010, "Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing", Proceedings of 5th INFORMS Workshop on Data Mining and Health Informatics, Austin, TX, November 6, 2010. [77.] Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010, "Data Mining Supercomputing with SAS™ JMP®; Genomics: Research-in-Progress, Proceedings of 2010 Conference on Applied Research in Information Technology, sponsored by

  6. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  7. Advanced methods of fatigue assessment

    CERN Document Server

    Radaj, Dieter

    2013-01-01

    The book in hand presents advanced methods of brittle fracture and fatigue assessment. The Neuber concept of fictitious notch rounding is enhanced with regard to theory and application. The stress intensity factor concept for cracks is extended to pointed and rounded corner notches as well as to locally elastic-plastic material behaviour. The averaged strain energy density within a circular sector volume around the notch tip is shown to be suitable for strength-assessments. Finally, the various implications of cyclic plasticity on fatigue crack growth are explained with emphasis being laid on the DJ-integral approach.   This book continues the expositions of the authors’ well known reference work in German language ‘Ermüdungsfestigkeit – Grundlagen für Ingenieure’ (Fatigue strength – fundamentals for engineers).

  8. Advanced construction methods in ACR

    International Nuclear Information System (INIS)

    Elgohary, M.; Choy, E.; Yu, S.K.W.

    2002-01-01

    The ACR - Advanced CANDU Reactor, developed by Atomic Energy of Canada Limited (AECL), is designed with constructability considerations as a major requirement during all project phases from the concept design stage to the detail design stage. This necessitated a much more comprehensive approach in including constructability considerations in the design to ensure that the construction duration is met. For the ACR-700, a project schedule of 48 months has been developed for the nth replicated unit with a 36 month construction period duration from First Concrete to Fuel Load. An overall construction strategy that builds on the success of the construction methods that are proven in the construction of the Qinshan CANDU 6 project has been developed for the ACR. The overall construction strategy comprises the 'Open Top' construction technique using a Very Heavy Lift crane, parallel construction activities, with extensive modularization and prefabrication. In addition, significant applications of up to date construction technology will be implemented, e.g. large volume concrete pours, prefabricated rebar, use of climbing forms, composite structures, prefabricated permanent formwork, automatic welding, and utilization of the latest electronic technology tools such as 3D CADDs modelling yields a very high quality, clash free product to allow construction to be completed 'right the first time' and eliminates rework. Integration of 3D CADDs models and scheduling tools such as Primavera has allowed development of actual construction sequences and an iterative approach to schedule verification and improvement. Modularization and prefabrication are major features of the ACR design in order to achieve the project schedule. For the reactor building approximately 80% of the volume will be installed as modules or prefabricated assembles. This ensures critical path activities are achieved. This paper examines the advanced construction methods implemented in the design in order to

  9. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  10. World's fastest supercomputer opens up to users

    Science.gov (United States)

    Xin, Ling

    2016-08-01

    China's latest supercomputer - Sunway TaihuLight - has claimed the crown as the world's fastest computer according to the latest TOP500 list, released at the International Supercomputer Conference in Frankfurt in late June.

  11. Supercomputing and related national projects in Japan

    International Nuclear Information System (INIS)

    Miura, Kenichi

    1985-01-01

    Japanese supercomputer development activities in the industry and research projects are outlined. Architecture, technology, software, and applications of Fujitsu's Vector Processor Systems are described as an example of Japanese supercomputers. Applications of supercomputers to high energy physics are also discussed. (orig.)

  12. Mistral Supercomputer Job History Analysis

    OpenAIRE

    Zasadziński, Michał; Muntés-Mulero, Victor; Solé, Marc; Ludwig, Thomas

    2018-01-01

    In this technical report, we show insights and results of operational data analysis from petascale supercomputer Mistral, which is ranked as 42nd most powerful in the world as of January 2018. Data sources include hardware monitoring data, job scheduler history, topology, and hardware information. We explore job state sequences, spatial distribution, and electric power patterns.

  13. Supercomputers and quantum field theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1985-01-01

    A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs

  14. Computational plasma physics and supercomputers

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1984-09-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular codes, but parallel processing poses new coding difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematics

  15. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  16. ATLAS Software Installation on Supercomputers

    CERN Document Server

    Undrus, Alexander; The ATLAS collaboration

    2018-01-01

    PowerPC and high performance computers (HPC) are important resources for computing in the ATLAS experiment. The future LHC data processing will require more resources than Grid computing, currently using approximately 100,000 cores at well over 100 sites, can provide. Supercomputers are extremely powerful as they use resources of hundreds of thousands CPUs joined together. However their architectures have different instruction sets. ATLAS binary software distributions for x86 chipsets do not fit these architectures, as emulation of these chipsets results in huge performance loss. This presentation describes the methodology of ATLAS software installation from source code on supercomputers. The installation procedure includes downloading the ATLAS code base as well as the source of about 50 external packages, such as ROOT and Geant4, followed by compilation, and rigorous unit and integration testing. The presentation reports the application of this procedure at Titan HPC and Summit PowerPC at Oak Ridge Computin...

  17. Status of supercomputers in the US

    International Nuclear Information System (INIS)

    Fernbach, S.

    1985-01-01

    Current Supercomputers; that is, the Class VI machines which first became available in 1976 are being delivered in greater quantity than ever before. In addition, manufacturers are busily working on Class VII machines to be ready for delivery in CY 1987. Mainframes are being modified or designed to take on some features of the supercomputers and new companies with the intent of either competing directly in the supercomputer arena or in providing entry-level systems from which to graduate to supercomputers are springing up everywhere. Even well founded organizations like IBM and CDC are adding machines with vector instructions in their repertoires. Japanese - manufactured supercomputers are also being introduced into the U.S. Will these begin to compete with those of U.S. manufacture. Are they truly competitive. It turns out that both from the hardware and software points of view they may be superior. We may be facing the same problems in supercomputers that we faced in videosystems

  18. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer

    Science.gov (United States)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  19. TOP500 Supercomputers for June 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-06-23

    23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.

  20. Advanced accelerator methods: The cyclotrino

    International Nuclear Information System (INIS)

    Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.

    1987-04-01

    Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the 14 C are used. The resolution is sufficient for 14 C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty

  1. INTEL: Intel based systems move up in supercomputing ranks

    CERN Multimedia

    2002-01-01

    "The TOP500 supercomputer rankings released today at the Supercomputing 2002 conference show a dramatic increase in the number of Intel-based systems being deployed in high-performance computing (HPC) or supercomputing areas" (1/2 page).

  2. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  3. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  4. Development of advanced MCR task analysis methods

    International Nuclear Information System (INIS)

    Na, J. C.; Park, J. H.; Lee, S. K.; Kim, J. K.; Kim, E. S.; Cho, S. B.; Kang, J. S.

    2008-07-01

    This report describes task analysis methodology for advanced HSI designs. Task analyses was performed by using procedure-based hierarchical task analysis and task decomposition methods. The results from the task analysis were recorded in a database. Using the TA results, we developed static prototype of advanced HSI and human factors engineering verification and validation methods for an evaluation of the prototype. In addition to the procedure-based task analysis methods, workload estimation based on the analysis of task performance time and analyses for the design of information structure and interaction structures will be necessary

  5. Advanced Computational Methods for Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-12

    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.

  6. TOP500 Supercomputers for June 2005

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2005-06-22

    25th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/L LNL BlueGene/L and IBM gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 25th edition of the TOP500 list of the world's fastest supercomputers was released today (June 22, 2005) at the 20th International Supercomputing Conference (ISC2005) in Heidelberg Germany.

  7. TOP500 Supercomputers for November 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-11-16

    22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.

  8. Visualizing quantum scattering on the CM-2 supercomputer

    International Nuclear Information System (INIS)

    Richardson, J.L.

    1991-01-01

    We implement parallel algorithms for solving the time-dependent Schroedinger equation on the CM-2 supercomputer. These methods are unconditionally stable as well as unitary at each time step and have the advantage of being spatially local and explicit. We show how to visualize the dynamics of quantum scattering using techniques for visualizing complex wave functions. Several scattering problems are solved to demonstrate the use of these methods. (orig.)

  9. SUPERCOMPUTERS FOR AIDING ECONOMIC PROCESSES WITH REFERENCE TO THE FINANCIAL SECTOR

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2014-12-01

    Full Text Available The article discusses the use of supercomputers to support business processes with particular emphasis on the financial sector. A reference was made to the selected projects that support economic development. In particular, we propose the use of supercomputers to perform artificial intel-ligence methods in banking. The proposed methods combined with modern technology enables a significant increase in the competitiveness of enterprises and banks by adding new functionality.

  10. Porting Ordinary Applications to Blue Gene/Q Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, Ketan C.; Wozniak, Justin M.; Armstrong, Timothy; Katz, Daniel S.; Binkowski, T. Andrew; Zhong, Xiaoliang; Heinonen, Olle; Karpeyev, Dmitry; Wilde, Michael

    2015-08-31

    Efficiently porting ordinary applications to Blue Gene/Q supercomputers is a significant challenge. Codes are often originally developed without considering advanced architectures and related tool chains. Science needs frequently lead users to want to run large numbers of relatively small jobs (often called many-task computing, an ensemble, or a workflow), which can conflict with supercomputer configurations. In this paper, we discuss techniques developed to execute ordinary applications over leadership class supercomputers. We use the high-performance Swift parallel scripting framework and build two workflow execution techniques-sub-jobs and main-wrap. The sub-jobs technique, built on top of the IBM Blue Gene/Q resource manager Cobalt's sub-block jobs, lets users submit multiple, independent, repeated smaller jobs within a single larger resource block. The main-wrap technique is a scheme that enables C/C++ programs to be defined as functions that are wrapped by a high-performance Swift wrapper and that are invoked as a Swift script. We discuss the needs, benefits, technicalities, and current limitations of these techniques. We further discuss the real-world science enabled by these techniques and the results obtained.

  11. Proceedings of the first energy research power supercomputer users symposium

    International Nuclear Information System (INIS)

    1991-01-01

    The Energy Research Power Supercomputer Users Symposium was arranged to showcase the richness of science that has been pursued and accomplished in this program through the use of supercomputers and now high performance parallel computers over the last year: this report is the collection of the presentations given at the Symposium. ''Power users'' were invited by the ER Supercomputer Access Committee to show that the use of these computational tools and the associated data communications network, ESNet, go beyond merely speeding up computations. Today the work often directly contributes to the advancement of the conceptual developments in their fields and the computational and network resources form the very infrastructure of today's science. The Symposium also provided an opportunity, which is rare in this day of network access to computing resources, for the invited users to compare and discuss their techniques and approaches with those used in other ER disciplines. The significance of new parallel architectures was highlighted by the interesting evening talk given by Dr. Stephen Orszag of Princeton University

  12. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  13. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  14. TOP500 Supercomputers for November 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-11-08

    24th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/IBM BlueGene/L and NASA/SGI's Columbia gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 24th edition of the TOP500 list of the worlds fastest supercomputers was released today (November 8, 2004) at the SC2004 Conference in Pittsburgh, Pa.

  15. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  16. Advanced methods in diagnosis and therapy

    International Nuclear Information System (INIS)

    1987-01-01

    This important meeting covers the following topics: use and optimization of monoclonal antibobies in oncology: - Tumor markers: Clinical follow-up of patients through tumor marker serum determinations. - Cancer and medical imaging: The use of monoclonal antibodies in immunoscintigraphy. - Immunoradiotherapy: Monoclonal antibodies as therapeutic vectors. Advanced methods in diagnosis: - Contribution of monoclonal antibodies in modern immunochemistry (RIA, EIA). - Interest of monoclonal antibody in immunohistochemical pathology diagnosis. - In vitro diagnosis future prospects: with receptors and oncogenes. - Immunofluoroassay: a new sensitive immunoanalytical procedure with broad applications. Recent advances in brachitherapy: - Interest of computer processing. Blood products irradiation: - Interest in transfusion and bone marrow transplantations [fr

  17. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  18. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  19. Extracting the Textual and Temporal Structure of Supercomputing Logs

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S; Singh, I; Chandra, A; Zhang, Z; Bronevetsky, G

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an online clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.

  20. Advanced statistical methods in data science

    CERN Document Server

    Chen, Jiahua; Lu, Xuewen; Yi, Grace; Yu, Hao

    2016-01-01

    This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a fu...

  1. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  3. TOP500 Supercomputers for June 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-06-23

    21st Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 21st edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2003). The Earth Simulator supercomputer built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan, with its Linpack benchmark performance of 35.86 Tflop/s (teraflops or trillions of calculations per second), retains the number one position. The number 2 position is held by the re-measured ASCI Q system at Los Alamos National Laboratory. With 13.88 Tflop/s, it is the second system ever to exceed the 10 Tflop/smark. ASCIQ was built by Hewlett-Packard and is based on the AlphaServerSC computer system.

  4. TOP500 Supercomputers for June 2002

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2002-06-20

    19th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 19th edition of the TOP500 list of the worlds fastest supercomputers was released today (June 20, 2002). The recently installed Earth Simulator supercomputer at the Earth Simulator Center in Yokohama, Japan, is as expected the clear new number 1. Its performance of 35.86 Tflop/s (trillions of calculations per second) running the Linpack benchmark is almost five times higher than the performance of the now No.2 IBM ASCI White system at Lawrence Livermore National Laboratory (7.2 Tflop/s). This powerful leap frogging to the top by a system so much faster than the previous top system is unparalleled in the history of the TOP500.

  5. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nagasawa, Mikio

    1990-01-01

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  6. Wavelet transform-vector quantization compression of supercomputer ocean model simulation output

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J N; Brislawn, C M

    1992-11-12

    We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.

  7. Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations

    International Nuclear Information System (INIS)

    Shankar, V.

    1991-01-01

    The progression of supercomputing is reviewed from the point of view of computational fluid dynamics (CFD), and multidisciplinary problems impacting the design of advanced aerospace configurations are addressed. The application of full potential and Euler equations to transonic and supersonic problems in the 70s and early 80s is outlined, along with Navier-Stokes computations widespread during the late 80s and early 90s. Multidisciplinary computations currently in progress are discussed, including CFD and aeroelastic coupling for both static and dynamic flexible computations, CFD, aeroelastic, and controls coupling for flutter suppression and active control, and the development of a computational electromagnetics technology based on CFD methods. Attention is given to computational challenges standing in a way of the concept of establishing a computational environment including many technologies. 40 refs

  8. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  9. Storage-Intensive Supercomputing Benchmark Study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J; Dossa, D; Gokhale, M; Hysom, D; May, J; Pearce, R; Yoo, A

    2007-10-30

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe: (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows

  10. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  11. Adaptability of supercomputers to nuclear computations

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Ishiguro, Misako; Matsuura, Toshihiko.

    1983-01-01

    Recently in the field of scientific and technical calculation, the usefulness of supercomputers represented by CRAY-1 has been recognized, and they are utilized in various countries. The rapid computation of supercomputers is based on the function of vector computation. The authors investigated the adaptability to vector computation of about 40 typical atomic energy codes for the past six years. Based on the results of investigation, the adaptability of the function of vector computation that supercomputers have to atomic energy codes, the problem regarding the utilization and the future prospect are explained. The adaptability of individual calculation codes to vector computation is largely dependent on the algorithm and program structure used for the codes. The change to high speed by pipeline vector system, the investigation in the Japan Atomic Energy Research Institute and the results, and the examples of expressing the codes for atomic energy, environmental safety and nuclear fusion by vector are reported. The magnification of speed up for 40 examples was from 1.5 to 9.0. It can be said that the adaptability of supercomputers to atomic energy codes is fairly good. (Kako, I.)

  12. Computational plasma physics and supercomputers. Revision 1

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1985-01-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular models, but parallel processing poses new programming difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematical models

  13. ASCI's Vision for supercomputing future

    International Nuclear Information System (INIS)

    Nowak, N.D.

    2003-01-01

    The full text of publication follows. Advanced Simulation and Computing (ASC, formerly Accelerated Strategic Computing Initiative [ASCI]) was established in 1995 to help Defense Programs shift from test-based confidence to simulation-based confidence. Specifically, ASC is a focused and balanced program that is accelerating the development of simulation capabilities needed to analyze and predict the performance, safety, and reliability of nuclear weapons and certify their functionality - far exceeding what might have been achieved in the absence of a focused initiative. To realize its vision, ASC is creating simulation and proto-typing capabilities, based on advanced weapon codes and high-performance computing

  14. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  15. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  16. Graphics supercomputer for computational fluid dynamics research

    Science.gov (United States)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  17. FPS scientific and supercomputers computers in chemistry

    International Nuclear Information System (INIS)

    Curington, I.J.

    1987-01-01

    FPS Array Processors, scientific computers, and highly parallel supercomputers are used in nearly all aspects of compute-intensive computational chemistry. A survey is made of work utilizing this equipment, both published and current research. The relationship of the computer architecture to computational chemistry is discussed, with specific reference to Molecular Dynamics, Quantum Monte Carlo simulations, and Molecular Graphics applications. Recent installations of the FPS T-Series are highlighted, and examples of Molecular Graphics programs running on the FPS-5000 are shown

  18. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.

    1987-01-01

    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  19. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  20. Efficient development of memory bounded geo-applications to scale on modern supercomputers

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Licul, Aleksandar; Podladchikov, Yuri; Herman, Frédéric

    2016-04-01

    Numerical modeling is an actual key tool in the area of geosciences. The current challenge is to solve problems that are multi-physics and for which the length scale and the place of occurrence might not be known in advance. Also, the spatial extend of the investigated domain might strongly vary in size, ranging from millimeters for reactive transport to kilometers for glacier erosion dynamics. An efficient way to proceed is to develop simple but robust algorithms that perform well and scale on modern supercomputers and permit therefore very high-resolution simulations. We propose an efficient approach to solve memory bounded real-world applications on modern supercomputers architectures. We optimize the software to run on our newly acquired state-of-the-art GPU cluster "octopus". Our approach shows promising preliminary results on important geodynamical and geomechanical problematics: we have developed a Stokes solver for glacier flow and a poromechanical solver including complex rheologies for nonlinear waves in stressed rocks porous rocks. We solve the system of partial differential equations on a regular Cartesian grid and use an iterative finite difference scheme with preconditioning of the residuals. The MPI communication happens only locally (point-to-point); this method is known to scale linearly by construction. The "octopus" GPU cluster, which we use for the computations, has been designed to achieve maximal data transfer throughput at minimal hardware cost. It is composed of twenty compute nodes, each hosting four Nvidia Titan X GPU accelerators. These high-density nodes are interconnected with a parallel (dual-rail) FDR InfiniBand network. Our efforts show promising preliminary results for the different physics investigated. The glacier flow solver achieves good accuracy in the relevant benchmarks and the coupled poromechanical solver permits to explain previously unresolvable focused fluid flow as a natural outcome of the porosity setup. In both cases

  1. Advancing UAS methods for monitoring coastal environments

    Science.gov (United States)

    Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.

    2017-12-01

    Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition

  2. Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules

    International Nuclear Information System (INIS)

    Lagana, A.

    1989-01-01

    Even for small systems, the accurate characterization of reactive processes is so demanding of computer resources as to suggest the use of supercomputers having vector and parallel facilities. The full advantages of vector and parallel architectures can sometimes be obtained by simply modifying existing programs, vectorizing the manipulation of vectors and matrices, and requiring the parallel execution of independent tasks. More often, however, a significant time saving can be obtained only when the computer code undergoes a deeper restructuring, requiring a change in the computational strategy or, more radically, the adoption of a different theoretical treatment. This book discusses supercomputer strategies based upon act and approximate methods aimed at calculating the electronic structure and the reactive properties of small systems. The book shows how, in recent years, intense design activity has led to the ability to calculate accurate electronic structures for reactive systems, exact and high-level approximations to three-dimensional reactive dynamics, and to efficient directive and declaratory software for the modelling of complex systems

  3. The TeraGyroid Experiment – Supercomputing 2003

    Directory of Open Access Journals (Sweden)

    R.J. Blake

    2005-01-01

    Full Text Available Amphiphiles are molecules with hydrophobic tails and hydrophilic heads. When dispersed in solvents, they self assemble into complex mesophases including the beautiful cubic gyroid phase. The goal of the TeraGyroid experiment was to study defect pathways and dynamics in these gyroids. The UK's supercomputing and USA's TeraGrid facilities were coupled together, through a dedicated high-speed network, into a single computational Grid for research work that peaked around the Supercomputing 2003 conference. The gyroids were modeled using lattice Boltzmann methods with parameter spaces explored using many 1283 and 3grid point simulations, this data being used to inform the world's largest three-dimensional time dependent simulation with 10243-grid points. The experiment generated some 2 TBytes of useful data. In terms of Grid technology the project demonstrated the migration of simulations (using Globus middleware to and fro across the Atlantic exploiting the availability of resources. Integration of the systems accelerated the time to insight. Distributed visualisation of the output datasets enabled the parameter space of the interactions within the complex fluid to be explored from a number of sites, informed by discourse over the Access Grid. The project was sponsored by EPSRC (UK and NSF (USA with trans-Atlantic optical bandwidth provided by British Telecommunications.

  4. Damped time advance methods for particles and EM fields

    International Nuclear Information System (INIS)

    Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.

    1990-01-01

    Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method

  5. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  6. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  7. Design and performance characterization of electronic structure calculations on massively parallel supercomputers

    DEFF Research Database (Denmark)

    Romero, N. A.; Glinsvad, Christian; Larsen, Ask Hjorth

    2013-01-01

    Density function theory (DFT) is the most widely employed electronic structure method because of its favorable scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The advent of massively parallel supercomputers has enhanced the scientific community...

  8. Development of a Cloud Resolving Model for Heterogeneous Supercomputers

    Science.gov (United States)

    Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.

    2017-12-01

    A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.

  9. A workbench for tera-flop supercomputing

    International Nuclear Information System (INIS)

    Resch, M.M.; Kuester, U.; Mueller, M.S.; Lang, U.

    2003-01-01

    Supercomputers currently reach a peak performance in the range of TFlop/s. With but one exception - the Japanese Earth Simulator - none of these systems has so far been able to also show a level of sustained performance for a variety of applications that comes close to the peak performance. Sustained TFlop/s are therefore rarely seen. The reasons are manifold and are well known: Bandwidth and latency both for main memory and for the internal network are the key internal technical problems. Cache hierarchies with large caches can bring relief but are no remedy to the problem. However, there are not only technical problems that inhibit the full exploitation by scientists of the potential of modern supercomputers. More and more organizational issues come to the forefront. This paper shows the approach of the High Performance Computing Center Stuttgart (HLRS) to deliver a sustained performance of TFlop/s for a wide range of applications from a large group of users spread over Germany. The core of the concept is the role of the data. Around this we design a simulation workbench that hides the complexity of interacting computers, networks and file systems from the user. (authors)

  10. Cooperative visualization and simulation in a supercomputer environment

    International Nuclear Information System (INIS)

    Ruehle, R.; Lang, U.; Wierse, A.

    1993-01-01

    The article takes a closer look on the requirements being imposed by the idea to integrate all the components into a homogeneous software environment. To this end several methods for the distribtuion of applications in dependence of certain problem types are discussed. The currently available methods at the University of Stuttgart Computer Center for the distribution of applications are further explained. Finally the aims and characteristics of a European sponsored project, called PAGEIN, are explained, which fits perfectly into the line of developments at RUS. The aim of the project is to experiment with future cooperative working modes of aerospace scientists in a high speed distributed supercomputing environment. Project results will have an impact on the development of real future scientific application environments. (orig./DG)

  11. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  12. Advanced Method of the Elastomagnetic Sensors Calibration

    Directory of Open Access Journals (Sweden)

    Mikulas Prascak

    2004-01-01

    Full Text Available Elastomagnetic method (EM method is a highly sensitive non-contact evaluation method for measuring tensile and compressive stress in steel. The latest development of measuring devices and EM sensors has shown that the thermomagnetic phenomenon has a stron influence on th accuracy during the EM sensor calibration. To eliminate the influence of this effect a two dimensional regression method is presented.

  13. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  14. PNNL supercomputer to become largest computing resource on the Grid

    CERN Multimedia

    2002-01-01

    Hewlett Packard announced that the US DOE Pacific Northwest National Laboratory will connect a 9.3-teraflop HP supercomputer to the DOE Science Grid. This will be the largest supercomputer attached to a computer grid anywhere in the world (1 page).

  15. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz

    2011-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  16. Advanced methods in teaching reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  17. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  18. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  19. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  20. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel's MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  1. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  2. Advanced repair methods for enhanced reactor safety

    International Nuclear Information System (INIS)

    Kornfeldt, H.

    1993-01-01

    A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs

  3. Advanced verification methods for OVI security ink

    Science.gov (United States)

    Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom

    2006-02-01

    OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.

  4. Advanced Computational Methods in Bio-Mechanics.

    Science.gov (United States)

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  5. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  6. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-01-01

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  7. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-03-13

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  8. Supercomputing Centers and Electricity Service Providers

    DEFF Research Database (Denmark)

    Patki, Tapasya; Bates, Natalie; Ghatikar, Girish

    2016-01-01

    from a detailed, quantitative survey-based analysis and compare the perspectives of the European grid and SCs to the ones of the United States (US). We then show that contrary to the expectation, SCs in the US are more open toward cooperating and developing demand-management strategies with their ESPs......Supercomputing Centers (SCs) have high and variable power demands, which increase the challenges of the Electricity Service Providers (ESPs) with regards to efficient electricity distribution and reliable grid operation. High penetration of renewable energy generation further exacerbates...... this problem. In order to develop a symbiotic relationship between the SCs and their ESPs and to support effective power management at all levels, it is critical to understand and analyze how the existing relationships were formed and how these are expected to evolve. In this paper, we first present results...

  9. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  10. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  11. Advanced method for making vitreous waste forms

    International Nuclear Information System (INIS)

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed

  12. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  13. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  14. Advance of core design method for ATR

    International Nuclear Information System (INIS)

    Maeda, Seiichirou; Ihara, Toshiteru; Iijima, Takashi; Seino, Hideaki; Kobayashi, Tetsurou; Takeuchi, Michio; Sugawara, Satoru; Matsumoto, Mitsuo.

    1995-01-01

    Core characteristics of ATR demonstration plant has been revised such as increasing the fuel burnup and the channel power, which is achieved by changing the number of fuel rod per fuel assembly from 28 to 36. The research and development concerning the core design method for ATR have been continued. The calculational errors of core analysis code have been evaluated using the operational data of FUGEN and the full scale simulated test results in DCA (Deuterium Critical Assembly) and HTL (Heat Transfer Loop) at O-arai engineering center. It is confirmed that the calculational error of power distribution is smaller than the design value of ATR demonstration plant. Critical heat flux correlation curve for 36 fuel rod cluster has been developed and the probability evaluation method based on its curve, which is more rational to evaluate the fuel dryout, has been adopted. (author)

  15. An advanced method of heterogeneous reactor theory

    International Nuclear Information System (INIS)

    Kochurov, B.P.

    1994-08-01

    Recent approaches to heterogeneous reactor theory for numerical applications were presented in the course of 8 lectures given in JAERI. The limitations of initial theory known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in 1955 as Galanine-Feinberg heterogeneous theory:-matrix from of equations, -lack of consistent theory for heterogeneous parameters for reactor cell, -were overcome by a transformation of heterogeneous reactor equations to a difference form and by a development of a consistent theory for the characteristics of a reactor cell based on detailed space-energy calculations. General few group (G-number of groups) heterogeneous reactor equations in dipole approximation are formulated with the extension of two-dimensional problem to three-dimensions by finite Furie expansion of axial dependence of neutron fluxes. A transformation of initial matrix reactor equations to a difference form is presented. The methods for calculation of heterogeneous reactor cell characteristics giving the relation between vector-flux and vector-current on a cell boundary are based on a set of detailed space-energy neutron flux distribution calculations with zero current across cell boundary and G calculations with linearly independent currents across the cell boundary. The equations for reaction rate matrices are formulated. Specific methods were developed for description of neutron migration in axial and radial directions. The methods for resonance level's approach for numerous high-energy resonances. On the basis of these approaches the theory, methods and computer codes were developed for 3D space-time react or problems including simulation of slow processes with fuel burn-up, control rod movements, Xe poisoning and fast transients depending on prompt and delayed neutrons. As a result reactors with several thousands of channels having non-uniform axial structure can be feasibly treated. (author)

  16. Advances on geometric flux optical design method

    Science.gov (United States)

    García-Botella, Ángel; Fernández-Balbuena, Antonio Álvarez; Vázquez, Daniel

    2017-09-01

    Nonimaging optics is focused on the study of methods to design concentrators or illuminators systems. It can be included in the area of photometry and radiometry and it is governed by the laws of geometrical optics. The field vector method, which starts with the definition of the irradiance vector E, is one of the techniques used in nonimaging optics. Called "Geometrical flux vector" it has provide ideal designs. The main property of this model is, its ability to estimate how radiant energy is transferred by the optical system, from the concepts of field line, flux tube and pseudopotential surface, overcoming traditional raytrace methods. Nevertheless this model has been developed only at an academic level, where characteristic optical parameters are ideal not real and the studied geometries are simple. The main objective of the present paper is the application of the vector field method to the analysis and design of real concentration and illumination systems. We propose the development of a calculation tool for optical simulations by vector field, using algorithms based on Fermat`s principle, as an alternative to traditional tools for optical simulations by raytrace, based on reflection and refraction law. This new tool provides, first, traditional simulations results: efficiency, illuminance/irradiance calculations, angular distribution of light- with lower computation time, photometrical information needs about a few tens of field lines, in comparison with million rays needed nowadays. On the other hand the tool will provides new information as vector field maps produced by the system, composed by field lines and quasipotential surfaces. We show our first results with the vector field simulation tool.

  17. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  18. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  19. OpenMP Performance on the Columbia Supercomputer

    Science.gov (United States)

    Haoqiang, Jin; Hood, Robert

    2005-01-01

    This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.

  20. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  1. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  2. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  3. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    Energy Technology Data Exchange (ETDEWEB)

    Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brightwell, Ron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.

  4. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  5. Strategy to Promote Active Learning of an Advanced Research Method

    Science.gov (United States)

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  6. Heat dissipation computations of a HVDC ground electrode using a supercomputer

    International Nuclear Information System (INIS)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1990-01-01

    This paper reports on the temperature, of soil surrounding a High Voltage Direct Current (HVDC) toroidal ground electrode of practical dimensions, in both homogeneous and non-homogeneous soils that was computed at incremental points in time using finite difference methods on a supercomputer. Curves of the response were computed and plotted at several locations within the soil in the vicinity of the ground electrode for various values of the soil parameters

  7. Methods for studying fuel management in advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.; Griggs, C.F.; Tyror, J.G.

    1971-07-01

    The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)

  8. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    Science.gov (United States)

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  9. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington

    2004-06-01

    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  10. Method and Tools for Development of Advanced Instructional Systems

    NARCIS (Netherlands)

    Arend, J. van der; Riemersma, J.B.J.

    1994-01-01

    The application of advanced instructional systems (AISs), like computer-based training systems, intelligent tutoring systems and training simulators, is widely spread within the Royal Netherlands Army. As a consequence there is a growing interest in methods and tools to develop effective and

  11. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    Science.gov (United States)

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  12. Advances in the Analytical Methods for Determining the Antioxidant ...

    African Journals Online (AJOL)

    Advances in the Analytical Methods for Determining the Antioxidant Properties of Honey: A Review. M Moniruzzaman, MI Khalil, SA Sulaiman, SH Gan. Abstract. Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical ...

  13. Visualization on supercomputing platform level II ASC milestone (3537-1B) results from Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk (Kitware, Inc., Clifton Park, NY); Fabian, Nathan; Marion, Patrick (Kitware, Inc., Clifton Park, NY); Moreland, Kenneth D.

    2010-09-01

    This report provides documentation for the completion of the Sandia portion of the ASC Level II Visualization on the platform milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratories and Los Alamos National Laboratories. This milestone contains functionality required for performing visualization directly on a supercomputing platform, which is necessary for peta-scale visualization. Sandia's contribution concerns in-situ visualization, running a visualization in tandem with a solver. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is most computationally intensive portion of the visualization process. For terascale platforms, commodity clusters with graphics processors(GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the performance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. Scientific simulation on parallel supercomputers is traditionally performed in four

  14. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  15. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  16. An advanced probabilistic structural analysis method for implicit performance functions

    Science.gov (United States)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  17. Application of Supercomputer Technologies for Simulation Of Socio-Economic Systems

    Directory of Open Access Journals (Sweden)

    Vladimir Valentinovich Okrepilov

    2015-06-01

    Full Text Available To date, an extensive experience has been accumulated in investigation of problems related to quality, assessment of management systems, modeling of economic system sustainability. The performed studies have created a basis for development of a new research area — Economics of Quality. Its tools allow to use opportunities of model simulation for construction of the mathematical models adequately reflecting the role of quality in natural, technical, social regularities of functioning of the complex socio-economic systems. Extensive application and development of models, and also system modeling with use of supercomputer technologies, on our deep belief, will bring the conducted research of socio-economic systems to essentially new level. Moreover, the current scientific research makes a significant contribution to model simulation of multi-agent social systems and that is not less important, it belongs to the priority areas in development of science and technology in our country. This article is devoted to the questions of supercomputer technologies application in public sciences, first of all, — regarding technical realization of the large-scale agent-focused models (AFM. The essence of this tool is that owing to the power computer increase it has become possible to describe the behavior of many separate fragments of a difficult system, as socio-economic systems are. The article also deals with the experience of foreign scientists and practicians in launching the AFM on supercomputers, and also the example of AFM developed in CEMI RAS, stages and methods of effective calculating kernel display of multi-agent system on architecture of a modern supercomputer will be analyzed. The experiments on the basis of model simulation on forecasting the population of St. Petersburg according to three scenarios as one of the major factors influencing the development of socio-economic system and quality of life of the population are presented in the

  18. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  19. Advanced airflow distribution methods for reducing exposure of indoor pollution

    DEFF Research Database (Denmark)

    Cao, Guangyu; Nielsen, Peter Vilhelm; Melikov, Arsen

    2017-01-01

    The adverse effect of various indoor pollutants on occupants’ health have been recognized. In public spaces flu viruses may spread from person to person by airflow generated by various traditional ventilation methods, like natural ventilation and mixing ventilation (MV Personalized ventilation (PV......) supplies clean air close to the occupant and directly into the breathing zone. Studies show that it improves the inhaled air quality and reduces the risk of airborne cross-infection in comparison with total volume (TV) ventilation. However, it is still challenging for PV and other advanced air distribution...... methods to reduce the exposure to gaseous and particulate pollutants under disturbed conditions and to ensure thermal comfort at the same time. The objective of this study is to analyse the performance of different advanced airflow distribution methods for protection of occupants from exposure to indoor...

  20. Advanced airflow distribution methods for reducing exposure of indoor pollution

    DEFF Research Database (Denmark)

    Cao, Guangyu; Nielsen, Peter Vilhelm; Melikov, Arsen Krikor

    methods to reduce the exposure to gaseous and particulate pollutants under disturbed conditions and to ensure thermal comfort at the same time. The objective of this study is to analyse the performance of different advanced airflow distribution methods for protection of occupants from exposure to indoor......The adverse effect of various indoor pollutants on occupants’ health have been recognized. In public spaces flu viruses may spread from person to person by airflow generated by various traditional ventilation methods, like natural ventilation and mixing ventilation (MV Personalized ventilation (PV......) supplies clean air close to the occupant and directly into the breathing zone. Studies show that it improves the inhaled air quality and reduces the risk of airborne cross-infection in comparison with total volume (TV) ventilation. However, it is still challenging for PV and other advanced air distribution...

  1. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  2. Advances in software science and technology

    CERN Document Server

    Hikita, Teruo; Kakuda, Hiroyasu

    1993-01-01

    Advances in Software Science and Technology, Volume 4 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 10 chapters, this volume begins with an overview of the historical survey of programming languages for vector/parallel computers in Japan and describes compiling methods for supercomputers in Japan. This text then explains the model of a Japanese software factory, which is presented by the logical configuration that has been satisfied by

  3. JINR supercomputer of the module type for event parallel analysis

    International Nuclear Information System (INIS)

    Kolpakov, I.F.; Senner, A.E.; Smirnov, V.A.

    1987-01-01

    A model of a supercomputer with 50 million of operations per second is suggested. Its realization allows one to solve JINR data analysis problems for large spectrometers (in particular DELPHY collaboration). The suggested module supercomputer is based on 32-bit commercial available microprocessor with a processing rate of about 1 MFLOPS. The processors are combined by means of VME standard busbars. MicroVAX-11 is a host computer organizing the operation of the system. Data input and output is realized via microVAX-11 computer periphery. Users' software is based on the FORTRAN-77. The supercomputer is connected with a JINR net port and all JINR users get an access to the suggested system

  4. Advanced Markov chain Monte Carlo methods learning from past samples

    CERN Document Server

    Liang, Faming; Carrol, Raymond J

    2010-01-01

    This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically weight

  5. New or improved computational methods and advanced reactor design

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi

    1997-01-01

    Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)

  6. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jacobsen, Douglas W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  7. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  8. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  9. International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics

    CERN Document Server

    Tseng, Kadin

    1990-01-01

    The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary­ wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto­ dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas­ sive parallelism. This Symposium was sponsored by United ...

  10. Advanced soft computing diagnosis method for tumour grading.

    Science.gov (United States)

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  11. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  12. Advanced method of double contrast examination of the stomach

    International Nuclear Information System (INIS)

    Vlasov, P.V.; Yakimenko, V.F.

    1981-01-01

    An advanced method of double contrast examination of the stomach with the use of high concentrated barium suspension is described. It is shown that concentration of barium suspension must be not less than 200 mass/volume per cent to obtain the sharp image of the mucosal microrelief 6 standard position are recommended for the double contrast examination of all stomach walls. 200 patients with different digestive system diseases are examined with the help of developed methods. The sharp image of the mucosal microrelief is obtained in 70% cases [ru

  13. Comments on the parallelization efficiency of the Sunway TaihuLight supercomputer

    OpenAIRE

    Végh, János

    2016-01-01

    In the world of supercomputers, the large number of processors requires to minimize the inefficiencies of parallelization, which appear as a sequential part of the program from the point of view of Amdahl's law. The recently suggested new figure of merit is applied to the recently presented supercomputer, and the timeline of "Top 500" supercomputers is scrutinized using the metric. It is demonstrated, that in addition to the computing performance and power consumption, the new supercomputer i...

  14. Advances in Statistical Methods for Substance Abuse Prevention Research

    Science.gov (United States)

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  15. Convex unwraps its first grown-up supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, T.

    1988-03-03

    Convex Computer Corp.'s new supercomputer family is even more of an industry blockbuster than its first system. At a tenfold jump in performance, it's far from just an incremental upgrade over its first minisupercomputer, the C-1. The heart of the new family, the new C-2 processor, churning at 50 million floating-point operations/s, spawns a group of systems whose performance could pass for some fancy supercomputers-namely those of the Cray Research Inc. family. When added to the C-1, Convex's five new supercomputers create the C series, a six-member product group offering a performance range from 20 to 200 Mflops. They mark an important transition for Convex from a one-product high-tech startup to a multinational company with a wide-ranging product line. It's a tough transition but the Richardson, Texas, company seems to be doing it. The extended product line propels Convex into the upper end of the minisupercomputer class and nudges it into the low end of the big supercomputers. It positions Convex in an uncrowded segment of the market in the $500,000 to $1 million range offering 50 to 200 Mflops of performance. The company is making this move because the minisuper area, which it pioneered, quickly became crowded with new vendors, causing prices and gross margins to drop drastically.

  16. QCD on the BlueGene/L Supercomputer

    International Nuclear Information System (INIS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-01-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented

  17. QCD on the BlueGene/L Supercomputer

    Science.gov (United States)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  18. Supercomputers and the future of computational atomic scattering physics

    International Nuclear Information System (INIS)

    Younger, S.M.

    1989-01-01

    The advent of the supercomputer has opened new vistas for the computational atomic physicist. Problems of hitherto unparalleled complexity are now being examined using these new machines, and important connections with other fields of physics are being established. This talk briefly reviews some of the most important trends in computational scattering physics and suggests some exciting possibilities for the future. 7 refs., 2 figs

  19. Integration of Panda Workload Management System with supercomputers

    Science.gov (United States)

    De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.

    2016-09-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads

  20. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  1. Advanced codes and methods supporting improved fuel cycle economics - 5493

    International Nuclear Information System (INIS)

    Curca-Tivig, F.; Maupin, K.; Thareau, S.

    2015-01-01

    AREVA's code development program was practically completed in 2014. The basic codes supporting a new generation of advanced methods are the followings. GALILEO is a state-of-the-art fuel rod performance code for PWR and BWR applications. Development is completed, implementation started in France and the U.S.A. ARCADIA-1 is a state-of-the-art neutronics/ thermal-hydraulics/ thermal-mechanics code system for PWR applications. Development is completed, implementation started in Europe and in the U.S.A. The system thermal-hydraulic codes S-RELAP5 and CATHARE-2 are not really new but still state-of-the-art in the domain. S-RELAP5 was completely restructured and re-coded such that its life cycle increases by further decades. CATHARE-2 will be replaced in the future by the new CATHARE-3. The new AREVA codes and methods are largely based on first principles modeling with an extremely broad international verification and validation data base. This enables AREVA and its customers to access more predictable licensing processes in a fast evolving regulatory environment (new safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation...). In this context, the advanced codes and methods and the associated verification and validation represent the key to avoiding penalties on products, on operational limits, or on methodologies themselves

  2. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  3. Combinatorial methods for advanced materials research and development

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, R.; Dondorf, S.; Hauck, M.; Horbach, D.; Kaiser, M.; Krysta, S.; Kyrylov, O.; Muenstermann, E.; Philipps, M.; Reichert, K.; Strauch, G. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Lehrstuhl fuer Theoretische Huettenkunde

    2001-10-01

    The applicability of combinatorial methods in developing advanced materials is illustrated presenting four examples for the deposition and characterization of one- and two-dimensionally laterally graded coatings, which were deposited by means of (reactive) magnetron sputtering and plasma-enhanced chemical vapor deposition. To emphasize the advantages of combinatorial approaches, metastable hard coatings like (Ti,Al)N and (Ti,Al,Hf)N respectively, as well as Ge-Sb-Te based films for rewritable optical data storage were investigated with respect to the relations between structure, composition, and the desired materials properties. (orig.)

  4. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  5. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Ganguly, C.

    1988-01-01

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO 2 pellet-pins. The advanced PHWR fuels are UO 2 -PuO 2 (≤ 2 per cent), ThO 2 -PuO 2 (≤ 4 per cent) and ThO 2 -U 233 O 2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O 2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO 2 , PuO 2 and ThO 2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  6. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  7. Methods and Systems for Advanced Spaceport Information Management

    Science.gov (United States)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  8. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  9. Feynman diagrams sampling for quantum field theories on the QPACE 2 supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Rappl, Florian

    2016-08-01

    This work discusses the application of Feynman diagram sampling in quantum field theories. The method uses a computer simulation to sample the diagrammatic space obtained in a series expansion. For running large physical simulations powerful computers are obligatory, effectively splitting the thesis in two parts. The first part deals with the method of Feynman diagram sampling. Here the theoretical background of the method itself is discussed. Additionally, important statistical concepts and the theory of the strong force, quantum chromodynamics, are introduced. This sets the context of the simulations. We create and evaluate a variety of models to estimate the applicability of diagrammatic methods. The method is then applied to sample the perturbative expansion of the vertex correction. In the end we obtain the value for the anomalous magnetic moment of the electron. The second part looks at the QPACE 2 supercomputer. This includes a short introduction to supercomputers in general, as well as a closer look at the architecture and the cooling system of QPACE 2. Guiding benchmarks of the InfiniBand network are presented. At the core of this part, a collection of best practices and useful programming concepts are outlined, which enables the development of efficient, yet easily portable, applications for the QPACE 2 system.

  10. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  11. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  12. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  13. Integration of Titan supercomputer at OLCF with ATLAS production system

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration

    2016-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this talk we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job...

  14. Integration of Titan supercomputer at OLCF with ATLAS Production System

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for jo...

  15. Extending ATLAS Computing to Commercial Clouds and Supercomputers

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Filipcic, A; Klimentov, A; Maeno, T; Oleynik, D; Panitkin, S; Wenaus, T; Wu, W

    2014-01-01

    The Large Hadron Collider will resume data collection in 2015 with substantially increased computing requirements relative to its first 2009-2013 run. A near doubling of the energy and the data rate, high level of event pile-up, and detector upgrades will mean the number and complexity of events to be analyzed will increase dramatically. A naive extrapolation of the Run 1 experience would suggest that a 5-6 fold increase in computing resources are needed - impossible within the anticipated flat computing budgets in the near future. Consequently ATLAS is engaged in an ambitious program to expand its computing to all available resources, notably including opportunistic use of commercial clouds and supercomputers. Such resources present new challenges in managing heterogeneity, supporting data flows, parallelizing workflows, provisioning software, and other aspects of distributed computing, all while minimizing operational load. We will present the ATLAS experience to date with clouds and supercomputers, and des...

  16. Tryton Supercomputer Capabilities for Analysis of Massive Data Streams

    Directory of Open Access Journals (Sweden)

    Krawczyk Henryk

    2015-09-01

    Full Text Available The recently deployed supercomputer Tryton, located in the Academic Computer Center of Gdansk University of Technology, provides great means for massive parallel processing. Moreover, the status of the Center as one of the main network nodes in the PIONIER network enables the fast and reliable transfer of data produced by miscellaneous devices scattered in the area of the whole country. The typical examples of such data are streams containing radio-telescope and satellite observations. Their analysis, especially with real-time constraints, can be challenging and requires the usage of dedicated software components. We propose a solution for such parallel analysis using the supercomputer, supervised by the KASKADA platform, which with the conjunction with immerse 3D visualization techniques can be used to solve problems such as pulsar detection and chronometric or oil-spill simulation on the sea surface.

  17. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  18. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  19. Intelligent Personal Supercomputer for Solving Scientific and Technical Problems

    Directory of Open Access Journals (Sweden)

    Khimich, O.M.

    2016-09-01

    Full Text Available New domestic intellіgent personal supercomputer of hybrid architecture Inparkom_pg for the mathematical modeling of processes in the defense industry, engineering, construction, etc. was developed. Intelligent software for the automatic research and tasks of computational mathematics with approximate data of different structures was designed. Applied software to provide mathematical modeling problems in construction, welding and filtration processes was implemented.

  20. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  1. Advanced methods for the study of PWR cores

    International Nuclear Information System (INIS)

    Lambert, M.; Salvatores, St.; Ferrier, A.; Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F.; Chauliac, C.; Johner, J.; Cohen, Ch.

    2003-01-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  2. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  3. Applications of supercomputing and the utility industry: Calculation of power transfer capabilities

    International Nuclear Information System (INIS)

    Jensen, D.D.; Behling, S.R.; Betancourt, R.

    1990-01-01

    Numerical models and iterative simulation using supercomputers can furnish cost-effective answers to utility industry problems that are all but intractable using conventional computing equipment. An example of the use of supercomputers by the utility industry is the determination of power transfer capability limits for power transmission systems. This work has the goal of markedly reducing the run time of transient stability codes used to determine power distributions following major system disturbances. To date, run times of several hours on a conventional computer have been reduced to several minutes on state-of-the-art supercomputers, with further improvements anticipated to reduce run times to less than a minute. In spite of the potential advantages of supercomputers, few utilities have sufficient need for a dedicated in-house supercomputing capability. This problem is resolved using a supercomputer center serving a geographically distributed user base coupled via high speed communication networks

  4. Fast methods for long-range interactions in complex systems. Lecture notes

    International Nuclear Information System (INIS)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas

    2011-01-01

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  5. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  6. Advances in Time Estimation Methods for Molecular Data.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  7. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration

    International Nuclear Information System (INIS)

    2013-01-01

    through the use of effective exploration techniques. Geophysical methods with the capability of mapping surface and subsurface parameters in relation to uranium deposition and accumulation are proving to be vital components of current exploration efforts around the world. There is continuous development and improvement of technical and scientific disciplines using measuring instruments and spatially referenced data processing techniques. Newly designed geophysical instruments and their applications in uranium exploration are contributing to an increased probability of successful discoveries. Dissemination of information on advances in geophysical techniques encourages new strategies and promotes new approaches toward uranium exploration. Meetings and conferences organized by the IAEA, collecting the experience of participating countries, as well as its publications and the International Nuclear Information System, play an important role in the dissemination of knowledge of all aspects of the nuclear fuel cycle. The purpose of this report is to highlight advances in airborne and ground geophysical techniques, succinctly describing modern geophysical methods and demonstrating the application of techniques through examples. The report also provides some basic concepts of radioactivity, nuclear radiation and interaction with matter.

  8. Frequently updated noise threat maps created with use of supercomputing grid

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2014-09-01

    Full Text Available An innovative supercomputing grid services devoted to noise threat evaluation were presented. The services described in this paper concern two issues, first is related to the noise mapping, while the second one focuses on assessment of the noise dose and its influence on the human hearing system. The discussed serviceswere developed within the PL-Grid Plus Infrastructure which accumulates Polish academic supercomputer centers. Selected experimental results achieved by the usage of the services proposed were presented. The assessment of the environmental noise threats includes creation of the noise maps using either ofline or online data, acquired through a grid of the monitoring stations. A concept of estimation of the source model parameters based on the measured sound level for the purpose of creating frequently updated noise maps was presented. Connecting the noise mapping grid service with a distributed sensor network enables to automatically update noise maps for a specified time period. Moreover, a unique attribute of the developed software is the estimation of the auditory effects evoked by the exposure to noise. The estimation method uses a modified psychoacoustic model of hearing and is based on the calculated noise level values and on the given exposure period. Potential use scenarios of the grid services for research or educational purpose were introduced. Presentation of the results of predicted hearing threshold shift caused by exposure to excessive noise can raise the public awareness of the noise threats.

  9. Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; D' Azevedo, Eduardo [ORNL; Philip, Bobby [ORNL; Worley, Patrick H [ORNL

    2016-01-01

    On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phase of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.

  10. Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes; Leinweber, David; Ruebel, Oliver; Wu, Kesheng

    2011-09-16

    This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports to slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.

  11. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  12. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  13. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Onoufriev, Vladimir

    2004-01-01

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  14. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  15. Striking against bioterrorism with advanced proteomics and reference methods.

    Science.gov (United States)

    Armengaud, Jean

    2017-01-01

    The intentional use by terrorists of biological toxins as weapons has been of great concern for many years. Among the numerous toxins produced by plants, animals, algae, fungi, and bacteria, ricin is one of the most scrutinized by the media because it has already been used in biocrimes and acts of bioterrorism. Improving the analytical toolbox of national authorities to monitor these potential bioweapons all at once is of the utmost interest. MS/MS allows their absolute quantitation and exhibits advantageous sensitivity, discriminative power, multiplexing possibilities, and speed. In this issue of Proteomics, Gilquin et al. (Proteomics 2017, 17, 1600357) present a robust multiplex assay to quantify a set of eight toxins in the presence of a complex food matrix. This MS/MS reference method is based on scheduled SRM and high-quality standards consisting of isotopically labeled versions of these toxins. Their results demonstrate robust reliability based on rather loose scheduling of SRM transitions and good sensitivity for the eight toxins, lower than their oral median lethal doses. In the face of an increased threat from terrorism, relevant reference assays based on advanced proteomics and high-quality companion toxin standards are reliable and firm answers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  17. Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

    Science.gov (United States)

    Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias; hide

    2006-01-01

    The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.

  18. A fast random number generator for the Intel Paragon supercomputer

    Science.gov (United States)

    Gutbrod, F.

    1995-06-01

    A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.

  19. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  20. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  1. Advanced Methods for Direct Ink Write Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Compel, W. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Lawrence Livermore National Laboratory is one of the world’s premier labs for research and development of additive manufacturing processes. Out of these many processes, direct ink write (DIW) is arguably one of the most relevant for the manufacture of architected polymeric materials, components and hardware. However, a bottleneck in this pipeline that has largely been ignored to date is the lack of advanced software implementation with respect to toolpath execution. There remains to be a convenient, automated method to design and produce complex parts that is user-friendly and enabling for the realization of next generation designs and structures. For a material to be suitable as a DIW ink it must possess the appropriate rheological properties for this process. Most importantly, the material must exhibit shear-thinning in order to extrude through a print head and have a rapid recovery of its static shear modulus. This makes it possible for the extrudate to be self-supporting upon exiting the print head. While this and other prerequisites narrow the scope of ‘offthe- shelf’ printable materials directly amenable to DIW, the process still tolerates a wide range of potential feedstock materials. These include metallic alloys, inorganic solvent borne dispersions, polymeric melts, filler stabilized monomer compositions, pre-elastomeric feedstocks and thermoset resins each of which requires custom print conditions tailored to the individual ink. As such, an ink perfectly suited for DIW may be prematurely determined to be undesirable for the process if printed under the wrong conditions. Defining appropriate print conditions such as extrusion rate, layer height, and maximum bridge length is a vital first step in validating an ink’s DIW capability.

  2. Development of a high performance eigensolver on the peta-scale next generation supercomputer system

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Yamada, Susumu; Machida, Masahiko

    2010-01-01

    For the present supercomputer systems, a multicore and multisocket processors are necessary to build a system, and choice of interconnection is essential. In addition, for effective development of a new code, high performance, scalable, and reliable numerical software is one of the key items. ScaLAPACK and PETSc are well-known software on distributed memory parallel computer systems. It is needless to say that highly tuned software towards new architecture like many-core processors must be chosen for real computation. In this study, we present a high-performance and high-scalable eigenvalue solver towards the next-generation supercomputer system, so called 'K-computer' system. We have developed two versions, the standard version (eigen s) and enhanced performance version (eigen sx), which are developed on the T2K cluster system housed at University of Tokyo. Eigen s employs the conventional algorithms; Householder tridiagonalization, divide and conquer (DC) algorithm, and Householder back-transformation. They are carefully implemented with blocking technique and flexible two-dimensional data-distribution to reduce the overhead of memory traffic and data transfer, respectively. Eigen s performs excellently on the T2K system with 4096 cores (theoretical peak is 37.6 TFLOPS), and it shows fine performance 3.0 TFLOPS with a two hundred thousand dimensional matrix. The enhanced version, eigen sx, uses more advanced algorithms; the narrow-band reduction algorithm, DC for band matrices, and the block Householder back-transformation with WY-representation. Even though this version is still on a test stage, it shows 4.7 TFLOPS with the same dimensional matrix on eigen s. (author)

  3. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  4. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation.

  5. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation

  6. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    Science.gov (United States)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  7. Preliminary study of clinical staging of moderately advanced and advanced thoracic esophageal carcinoma treated by non-surgical methods

    International Nuclear Information System (INIS)

    Zhu Shuchai; Li Ren; Li Juan; Qiu Rong; Han Chun; Wan Jun

    2004-01-01

    Objective: To explore the clinical staging of moderately advanced and advanced thoracic esophageal carcinoma by evaluating the prognosis and provide criteria for individual treatment. Methods: The authors retrospectively analyzed 500 patients with moderately advanced and advanced thoracic esophageal carcinoma treated by radiotherapy alone. According to the primary lesion length by barium meal X-ray film, the invasion range and the relation between location and the surrounding organs by CT scans the disease category was classified by a 6 stage method and a 4 stage method. With the primary lesion divide into T1, T2a, T2b, T3a, T3b and T4 incorporating the locregional lymph node metastasis, a 6 stage system was obtained, I, IIa , IIb, IIIa, IIIb and IV. The results of this as compared with those of 4 stage system, the following data were finally arrived at. Results: Among the 500 cases, there were T1 23, T2a 111, T2b 157, T3a 84, T3b 82 and T4 43. The survival rates of these six categories showed significant differences (χ 2 =63.32, P 2 =56.29, P 2 =94.29, P 2 =83.48, P<0.05). Conclusions: Both the 6 stage and 4 stage systems are adaptable to predict prognosis of moderately advanced and advanced esophageal carcinoma treated by radiotherapy alone. For simplicity and convenience, the 4 stage classification is recommended. (authors)

  8. KfK-seminar series on supercomputing und visualization from May till September 1992

    International Nuclear Information System (INIS)

    Hohenhinnebusch, W.

    1993-05-01

    During the period of may 1992 to september 1992 a series of seminars was held at KfK on several topics of supercomputing in different fields of application. The aim was to demonstrate the importance of supercomputing and visualization in numerical simulations of complex physical and technical phenomena. This report contains the collection of all submitted seminar papers. (orig./HP) [de

  9. Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data

    Science.gov (United States)

    Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.

    2018-03-01

    One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.

  10. Advancing multilevel thinking and methods in HRM research

    NARCIS (Netherlands)

    Renkema, Maarten; Meijerink, Jeroen Gerard; Bondarouk, Tatiana

    2016-01-01

    Purpose Despite the growing belief that multilevel research is necessary to advance HRM understanding, there remains a lack of multilevel thinking – the application of principles for multilevel theory building. The purpose of this paper is to propose a systematic approach for multilevel HRM

  11. Combination of retrograde superselective intra-arterial chemotherapy and Seldinger method in locally advanced oral cancer

    Directory of Open Access Journals (Sweden)

    Masataka Uehara

    2015-01-01

    Full Text Available The nonsurgical strategies for locally advanced oral cancer are desirable. Superselective intra-arterial infusion with radiotherapy was utilized for this purpose, and there are two types of superselective intra-arterial infusion methods: The Seldinger method and the retrograde superselective intra-arterial chemotherapy (HFT method. In one case, the HFT method was applied to locally advanced tongue cancer, and the Seldinger method was used for additional administration of cisplatin (CDDP to compensate for a lack of drug flow in the HFT method. In another case, the HFT method was applied to locally advanced lower gingival cancer. The Seldinger method was applied to metastatic lymph nodes. In both cases, additional administration of CDDP using the Seldinger method resulted in a complete response. The combination of the HFT and Seldinger methods was useful to eradicate locally advanced oral cancer because each method compensated for the defects of the other.

  12. Automatic discovery of the communication network topology for building a supercomputer model

    Science.gov (United States)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  13. An Optimized Parallel FDTD Topology for Challenging Electromagnetic Simulations on Supercomputers

    Directory of Open Access Journals (Sweden)

    Shugang Jiang

    2015-01-01

    Full Text Available It may not be a challenge to run a Finite-Difference Time-Domain (FDTD code for electromagnetic simulations on a supercomputer with more than 10 thousands of CPU cores; however, to make FDTD code work with the highest efficiency is a challenge. In this paper, the performance of parallel FDTD is optimized through MPI (message passing interface virtual topology, based on which a communication model is established. The general rules of optimal topology are presented according to the model. The performance of the method is tested and analyzed on three high performance computing platforms with different architectures in China. Simulations including an airplane with a 700-wavelength wingspan, and a complex microstrip antenna array with nearly 2000 elements are performed very efficiently using a maximum of 10240 CPU cores.

  14. Exploring biomolecular dynamics and interactions using advanced sampling methods

    International Nuclear Information System (INIS)

    Luitz, Manuel; Bomblies, Rainer; Ostermeir, Katja; Zacharias, Martin

    2015-01-01

    Molecular dynamics (MD) and Monte Carlo (MC) simulations have emerged as a valuable tool to investigate statistical mechanics and kinetics of biomolecules and synthetic soft matter materials. However, major limitations for routine applications are due to the accuracy of the molecular mechanics force field and due to the maximum simulation time that can be achieved in current simulations studies. For improving the sampling a number of advanced sampling approaches have been designed in recent years. In particular, variants of the parallel tempering replica-exchange methodology are widely used in many simulation studies. Recent methodological advancements and a discussion of specific aims and advantages are given. This includes improved free energy simulation approaches and conformational search applications. (topical review)

  15. Lectures in Supercomputational Neurosciences Dynamics in Complex Brain Networks

    CERN Document Server

    Graben, Peter beim; Thiel, Marco; Kurths, Jürgen

    2008-01-01

    Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical co...

  16. Experiences from introduction of peer-to-peer teaching methods in Advanced Biochemistry E2010

    DEFF Research Database (Denmark)

    Brodersen, Ditlev; Etzerodt, Michael; Rasmussen, Jan Trige

    2012-01-01

    During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics.......During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics....

  17. Advanced methods of analysis variance on scenarios of nuclear prospective

    International Nuclear Information System (INIS)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-01-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  18. Advanced construction methods for new nuclear power plants

    International Nuclear Information System (INIS)

    Bilbao y Leon, Sama; Cleveland, John; Moon, Seong-Gyun; Tyobeka, Bismark

    2009-01-01

    The length of the construction and commissioning phases of nuclear power plants have historically been longer than for conventional fossil fuelled plants, often having a record of delays and cost overruns as a result from several factors including legal interventions and revisions of safety regulations. Recent nuclear construction projects however, have shown that long construction periods for nuclear power plants are no longer the norm. While there are several inter-related factors that influence the construction time, the use of advanced construction techniques has contributed significantly to reducing the construction length of recent nuclear projects. (author)

  19. Advanced 3D inverse method for designing turbomachine blades

    Energy Technology Data Exchange (ETDEWEB)

    Dang, T. [Syracuse Univ., NY (United States)

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  20. Advances in beam position monitoring methods at GSI synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul; Reiter, Andreas; Forck, Peter; Kowina, Piotr; Lang, Kevin; Miedzik, Piotr [GSI, Darmstadt (Germany)

    2016-07-01

    At the GSI synchrotron facilities, capacitive beam pick-up signals for position evaluation are immediately digitized within the acquisition electronics due to availability of reliable, fast and high resolution ADCs. The signal processing aspects are therefore fully dealt with in the digital domain. Novel digital techniques for asynchronous and synchronous (bunch-by-bunch) beam position estimation have been developed at GSI SIS-18 and CRYRING as part of FAIR development program. This contribution will highlight the advancements and its impact on the operational ease and high availability of the BPM systems.

  1. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  2. Advances in Probes and Methods for Clinical EPR Oximetry

    Science.gov (United States)

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  3. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  4. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    International Nuclear Information System (INIS)

    Powell, Jade; Heng, Ik Siong; Torres-Forné, Alejandro; Font, José A; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco

    2017-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers. (paper)

  5. Advanced methods of microscope control using μManager software.

    Science.gov (United States)

    Edelstein, Arthur D; Tsuchida, Mark A; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D; Stuurman, Nico

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  6. Proceedings of national workshop on advanced methods for materials characterization

    International Nuclear Information System (INIS)

    2004-10-01

    During the past two decades there had been tremendous growth in the field of material science and a variety of new materials with user specific properties have been developed such as smart shape memory alloys, hybrid materials like glass-ceramics, cermets, met-glasses, inorganic- organic composite layered structures, mixed oxides with negative thermal expansion, functional polymer materials etc. Study of nano-particles and the materials assembled from such particles is another area of active research being pursued all over the world. Preparation and characterization of nano-sized materials is a challenge because of their dimensions and size dependent properties. This has led to the emergence of a variety of advanced techniques, which need to be brought to the attention of the researchers working in the field of material science which requires the expertise of physics, chemistry and process engineering. This volume deals with above aspects and papers relevant to INIS are indexed separately

  7. Recent advances in neutral particle transport methods and codes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    An overview of ORNL's three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned

  8. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  9. Advances in surface wave methods: Cascaded MASW-SASW

    NARCIS (Netherlands)

    Westerhoff, R.S.; Brouwer, J.H.; Meekes, J.A.C.

    2005-01-01

    The application of the MASW method in areas that show strong lateral variations in subsurface properties is limited. Traditional SASW may yield a better lateral resolution but the dispersion curves (and thus the subsurface models) obtained with the method may be poor. The joint application of MASW

  10. Adherence to Scientific Method while Advancing Exposure Science

    Science.gov (United States)

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  11. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  12. Advanced RF-KO slow-extraction method for the reduction of spill ripple

    CERN Document Server

    Noda, K; Shibuya, S; Uesugi, T; Muramatsu, M; Kanazawa, M; Takada, E; Yamada, S

    2002-01-01

    Two advanced RF-knockout (RF-KO) slow-extraction methods have been developed at HIMAC in order to reduce the spill ripple for accurate heavy-ion cancer therapy: the dual frequency modulation (FM) method and the separated function method. As a result of simulations and experiments, it was verified that the spill ripple could be considerably reduced using these advanced methods, compared with the ordinary RF-KO method. The dual FM method and the separated function method bring about a low spill ripple within standard deviations of around 25% and of 15% during beam extraction within around 2 s, respectively, which are in good agreement with the simulation results.

  13. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  14. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A; Wehle, F; Opel, S; Velten, R [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  15. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R.

    2008-01-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  16. Advanced Steel Microstructural Classification by Deep Learning Methods.

    Science.gov (United States)

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  17. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  18. Development and application of advanced methods for electronic structure calculations

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt

    . For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...

  19. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    Science.gov (United States)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  20. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  1. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    Liu Keyang; Li Jingsong

    2011-01-01

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  2. Advanced evaluation method of SG TSP BEC hole blockage rate

    International Nuclear Information System (INIS)

    Izumida, Hiroyuki; Nagata, Yasuyuki; Harada, Yutaka; Murakami, Ryuji

    2003-01-01

    In spite of the control of the water chemistry of SG secondary feed-water in PWR-SG, SG TSP BEC holes, which are the flow path of secondary water, are often clogged. In the past, the trending of BEC hole blockage rate has conducted by evaluating ECT original signals and visual inspections. However, the ECT original signals of deposits are diversified, it becomes difficult to analyze them with the existing evaluation method using the ECT original signals. In this regard, we have developed the secondary side visual inspection system, which enables the high-accuracy evaluation of BEC hole blockage rate, and new ECT signal evaluation method. (author)

  3. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  4. Advances in computational methods for Quantum Field Theory calculations

    NARCIS (Netherlands)

    Ruijl, B.J.G.

    2017-01-01

    In this work we describe three methods to improve the performance of Quantum Field Theory calculations. First, we simplify large expressions to speed up numerical integrations. Second, we design Forcer, a program for the reduction of four-loop massless propagator integrals. Third, we extend the R*

  5. A CTSA Agenda to Advance Methods for Comparative Effectiveness Research

    Science.gov (United States)

    Helfand, Mark; Tunis, Sean; Whitlock, Evelyn P.; Pauker, Stephen G.; Basu, Anirban; Chilingerian, Jon; Harrell Jr., Frank E.; Meltzer, David O.; Montori, Victor M.; Shepard, Donald S.; Kent, David M.

    2011-01-01

    Abstract Clinical research needs to be more useful to patients, clinicians, and other decision makers. To meet this need, more research should focus on patient‐centered outcomes, compare viable alternatives, and be responsive to individual patients’ preferences, needs, pathobiology, settings, and values. These features, which make comparative effectiveness research (CER) fundamentally patient‐centered, challenge researchers to adopt or develop methods that improve the timeliness, relevance, and practical application of clinical studies. In this paper, we describe 10 priority areas that address 3 critical needs for research on patient‐centered outcomes (PCOR): (1) developing and testing trustworthy methods to identify and prioritize important questions for research; (2) improving the design, conduct, and analysis of clinical research studies; and (3) linking the process and outcomes of actual practice to priorities for research on patient‐centered outcomes. We argue that the National Institutes of Health, through its clinical and translational research program, should accelerate the development and refinement of methods for CER by linking a program of methods research to the broader portfolio of large, prospective clinical and health system studies it supports. Insights generated by this work should be of enormous value to PCORI and to the broad range of organizations that will be funding and implementing CER. Clin Trans Sci 2011; Volume 4: 188–198 PMID:21707950

  6. Origins, Methods and Advances in Qualitative Meta-Synthesis

    Science.gov (United States)

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  7. Method of public support evaluation for advanced NPP deployment

    International Nuclear Information System (INIS)

    Zezula, L.; Hermansky, B.

    2005-01-01

    Public support of nuclear power could be fully recovered only if the public would, from the very beginning of the new power source selection process, receive transparent information and was made a part of interactive dialogue. The presented method was developed with the objective to facilitate the complex process of the utilities - public interaction. Our method of the public support evaluation allows to classify designs of new nuclear power plants taking into consideration the public attitude to continued nuclear power deployment in the Czech Republic as well as the preference of a certain plant design. The method is based on the model with a set of probabilistic input metrics, which permits to compare the offered concepts with the reference one, with a high degree of objectivity. This method is a part of the more complex evaluation procedure applicable for the new designs assessment that uses the computer code ''Potencial'' developed at the NRI Rez plc. The metrics of the established public support criteria are discussed. (author)

  8. New advanced in alpha spectrometry by liquid scintillation methods

    International Nuclear Information System (INIS)

    McDowell, W.J.; Case, G.N.

    1979-01-01

    Although the ability to count alpha particles by liquid scintillation methods has been long recognized, limited use has been made of the method because of problems of high background and alpha energy identification. In recent years some new developments in methods of introducing the alpha-emitting nuclide to the scintillator, in detector construction, and in electronics for processing the energy analog and time analog signals from the detector have allowed significant alleviation of the problems of alpha spectrometry by liquid scintillation. Energy resolutions of 200 to 300 keV full peak width at half maximum and background counts of 99% of all beta plus gamma interference is now possible. Alpha liquid scintillation spectrometry is now suitable for a wide range of applications, from the accurate quantitative determination of relatively large amounts of known nuclides in laboratory-generated samples to the detection and identification of very small, subpicocurie amounts of alpha emitters in environmental-type samples. Suitable nuclide separation procedures, sample preparation methods, and instrument configurations are available for a variety of analyses

  9. Advanced methods in evaluation of thermal power systems effectiveness

    International Nuclear Information System (INIS)

    Barnak, N.; Jakubcek, P.; Zadrazil, J.

    1993-01-01

    The universal method for thermodynamic systems process irreversibility evaluation based on exergetic approach is elaborated in this article. The method uses the basic property of exergy as extensive state parameter -additivity. Division of the system onto some hierarchic levels is considered and relation between exergetic system characteristics and its parts is defined. There are system structure coefficients in common form expressed article they are analysed. The criteria for technical and economical optimization of the system using expressed structure coefficients are defined. In the article, there are common approaches defined for the method application in the area of nuclear power plant secondary circuits and the method is used for nuclear power plant WWER-1000 secondary circuit analysis. For this, individual exergetic characteristics of secondary circuit and its parts are expressed and some of secondary circuit parameters are optimized. Proposals for practical realisation of the results are stated in the conclusions of the article, mainly in the area of computerized evaluation of technical and economical parameters of nuclear power plant and effectiveness of its operation

  10. Integration of Titan supercomputer at OLCF with ATLAS Production System

    Science.gov (United States)

    Barreiro Megino, F.; De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wells, J.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job submission to Titan’s batch queues and local data management, with lightweight MPI wrappers to run single node workloads in parallel on Titan’s multi-core worker nodes. It provides for running of standard ATLAS production jobs on unused resources (backfill) on Titan. The system already allowed ATLAS to collect on Titan millions of core-hours per month, execute hundreds of thousands jobs, while simultaneously improving Titans utilization efficiency. We will discuss the details of the implementation, current experience with running the system, as well as future plans aimed at improvements in scalability and efficiency. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to

  11. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  12. Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

    Science.gov (United States)

    Felbacq, Didier

    2016-11-01

    This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB® is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.

  13. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  14. Advanced methods for scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Peraro, Tiziano

    2014-01-01

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  15. Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Supercomputing plays a major role in many areas of science and engineering, and it has had tremendous impact for decades in areas such as aerospace, defense, energy,...

  16. Computational fluid dynamics: complex flows requiring supercomputers. January 1975-July 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-July 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets, and missiles, and automobiles; heat-transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid-generation techniques required to apply CFD numerical solutions. Numerical methods for fluid dynamics, not requiring supercomputers, are found in a separate published search. (Contains 83 citations fully indexed and including a title list.)

  17. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  18. New trends and advanced methods in interdisciplinary mathematical sciences

    CERN Document Server

    2017-01-01

    The latest of five multidisciplinary volumes, this book spans the STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health) disciplines with the intent to generate meaningful interdisciplinary interaction and student interest. Emphasis is placed on important methods and applications within and beyond each field. Topics include geometric triple systems, image segmentation, pattern recognition in medicine, pricing barrier options, p-adic numbers distribution in geophysics data pattern, adelic physics, and evolutionary game theory. Contributions were by invitation only and peer-reviewed. Each chapter is reasonably self-contained and pedagogically presented for a multidisciplinary readership.

  19. Analysis advanced methods of data bases of industrial experience return

    International Nuclear Information System (INIS)

    Lannoy, A.; Procaccia, H.

    1994-05-01

    This is a presentation, through different conceptions of data bases on industrial experience return, of the principal methods for treatments and analyses of the collected data, going from the frequency statistic and factorial analysis, to the the Bayesian statistical decision theory, which is a real decision assistance tool for responsibles, conceivers and operators. Examples in various fields are given (OREDA: Offshore REliability DAta bank for marine drilling platforms, CEDB: Component Event Data Bank for european electric power industry, RDF 93: reliability of electronic components of ''France Telecom'', EVT: failure EVenTs data bank in the french nuclear power plants by ''EDF''). (A.B.). refs., figs., tabs

  20. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...... in the overall welding process; one of these factors are the ability of the welding machine to control the process. The internal control algorithms in GMAW machines are the topic of this PhD project. Basically, the internal control includes an algorithm which is able to keep the electrode at a given distance...

  1. Recent Advances in Conotoxin Classification by Using Machine Learning Methods.

    Science.gov (United States)

    Dao, Fu-Ying; Yang, Hui; Su, Zhen-Dong; Yang, Wuritu; Wu, Yun; Hui, Ding; Chen, Wei; Tang, Hua; Lin, Hao

    2017-06-25

    Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.

  2. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-01

    research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing

  3. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  4. Adventures in supercomputing: An innovative program for high school teachers

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C.E.; Hicks, H.R.; Summers, B.G. [Oak Ridge National Lab., TN (United States); Staten, D.G. [Wartburg Central High School, TN (United States)

    1994-12-31

    Within the realm of education, seldom does an innovative program become available with the potential to change an educator`s teaching methodology. Adventures in Supercomputing (AiS), sponsored by the U.S. Department of Energy (DOE), is such a program. It is a program for high school teachers that changes the teacher paradigm from a teacher-directed approach of teaching to a student-centered approach. {open_quotes}A student-centered classroom offers better opportunities for development of internal motivation, planning skills, goal setting and perseverance than does the traditional teacher-directed mode{close_quotes}. Not only is the process of teaching changed, but the cross-curricula integration within the AiS materials is remarkable. Written from a teacher`s perspective, this paper will describe the AiS program and its effects on teachers and students, primarily at Wartburg Central High School, in Wartburg, Tennessee. The AiS program in Tennessee is sponsored by Oak Ridge National Laboratory (ORNL).

  5. Accelerating Science Impact through Big Data Workflow Management and Supercomputing

    Directory of Open Access Journals (Sweden)

    De K.

    2016-01-01

    Full Text Available The Large Hadron Collider (LHC, operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed AnalysisWorkload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF, is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF’s Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing.

  6. Symbolic simulation of engineering systems on a supercomputer

    International Nuclear Information System (INIS)

    Ragheb, M.; Gvillo, D.; Makowitz, H.

    1986-01-01

    Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed

  7. Advances in Modal Analysis Using a Robust and Multiscale Method

    Science.gov (United States)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  8. Advanced methods and algorithm for high precision astronomical imaging

    International Nuclear Information System (INIS)

    Ngole-Mboula, Fred-Maurice

    2016-01-01

    One of the biggest challenges of modern cosmology is to gain a more precise knowledge of the dark energy and the dark matter nature. Fortunately, the dark matter can be traced directly through its gravitational effect on galaxies shapes. The European Spatial Agency Euclid mission will precisely provide data for such a purpose. A critical step is analyzing these data will be to accurately model the instrument Point Spread Function (PSF), which the focus of this thesis.We developed non parametric methods to reliably estimate the PSFs across an instrument field-of-view, based on unresolved stars images and accounting for noise, under sampling and PSFs spatial variability. At the core of these contributions, modern mathematical tools and concepts such as sparsity. An important extension of this work will be to account for the PSFs wavelength dependency. (author) [fr

  9. Advances in Modal Analysis Using a Robust and Multiscale Method

    Directory of Open Access Journals (Sweden)

    Frisson Christian

    2010-01-01

    Full Text Available Abstract This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  10. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  11. NATO Advanced Study Institute on Evolving Methods for Macromolecular Gystallography

    CERN Document Server

    Read, Randy J

    2007-01-01

    X-ray crystallography is the pre-eminent technique for visualizing the structures of macromolecules at atomic resolution. These structures are central to understanding the detailed mechanisms of biological processes, and to discovering novel therapeutics using a structure-based approach. As yet, structures are known for only a small fraction of the proteins encoded by human and pathogenic genomes. To counter the myriad modern threats of disease, there is an urgent need to determine the structures of the thousands of proteins whose structure and function remain unknown. This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis, and show how modern high-throughput methods are contributing to a deeper understanding of medical problems.

  12. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.; Siegrist, B.; Vesper, S.

    1997-01-01

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months

  13. Steam leak detection in advance reactors via acoustics method

    International Nuclear Information System (INIS)

    Singh, Raj Kumar; Rao, A. Rama

    2011-01-01

    Highlights: → Steam leak detection system is developed to detect any leak inside the reactor vault. → The technique uses leak noise frequency spectrum for leak detection. → Testing of system and method to locate the leak is also developed and discussed in present paper. - Abstract: Prediction of LOCA (loss of coolant activity) plays very important role in safety of nuclear reactor. Coolant is responsible for heat transfer from fuel bundles. Loss of coolant is an accidental situation which requires immediate shut down of reactor. Fall in system pressure during LOCA is the trip parameter used for initiating automatic reactor shut down. However, in primary heat transport system operating in two phase regimes, detection of small break LOCA is not simple. Due to very slow leak rates, time for the fall of pressure is significantly slow. From reactor safety point of view, it is extremely important to find reliable and effective alternative for detecting slow pressure drop in case of small break LOCA. One such technique is the acoustic signal caused by LOCA in small breaks. In boiling water reactors whose primary heat transport is to be driven by natural circulation, small break LOCA detection is important. For prompt action on post small break LOCA, steam leak detection system is developed to detect any leak inside the reactor vault. The detection technique is reliable and plays a very important role in ensuring safety of the reactor. Methodology developed for steam leak detection is discussed in present paper. The methods to locate the leak is also developed and discussed in present paper which is based on analysis of the signal.

  14. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh

    2004-01-01

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  15. Statistical methods of discrimination and classification advances in theory and applications

    CERN Document Server

    Choi, Sung C

    1986-01-01

    Statistical Methods of Discrimination and Classification: Advances in Theory and Applications is a collection of papers that tackles the multivariate problems of discriminating and classifying subjects into exclusive population. The book presents 13 papers that cover that advancement in the statistical procedure of discriminating and classifying. The studies in the text primarily focus on various methods of discriminating and classifying variables, such as multiple discriminant analysis in the presence of mixed continuous and categorical data; choice of the smoothing parameter and efficiency o

  16. MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology

    Science.gov (United States)

    Barthe, Jean; Hugon, Régis; Nicolai, Jean Philippe

    2007-12-01

    The integrated project MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) under contract with the European Commission in life sciences FP6 (LSHC-CT-2004-503564), concerns innovative research to develop and validate in clinical conditions, advanced methods and equipment needed in cancer treatment for new modalities in high-conformal external radiotherapy using electrons, photons and protons beams of high energy.

  17. Advanced cluster methods for correlated-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andre

    2015-04-27

    In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult

  18. An evolutionary method for synthesizing technological planning and architectural advance

    Science.gov (United States)

    Cole, Bjorn Forstrom

    In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that the appropriate technological antecedents are accounted for in developing the projection. The third chapter of the thesis compiles a series of observations and philosophical considerations into a series of research questions. Some research questions are then answered with further thought, observation, and reading, leading to conjectures on the problem. The remainder require some form of experimentation, and so are used to formulate hypotheses. Falsifiability conditions are then generated from those hypotheses, and used to get the development of experiments to be performed, in this case on a computer upon various conditions of use of a genetic algorithm. The fourth chapter of the thesis walks through the formulation of a method to attack the problem of strategically choosing an architecture. This method is designed to find the optimum architecture under multiple conditions, which is required for the ability to play the "what if" games typically undertaken in strategic situations. The chapter walks through

  19. Advanced Monte Carlo methods for thermal radiation transport

    Science.gov (United States)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more

  20. Advanced methods in NDE using machine learning approaches

    Science.gov (United States)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability

  1. Assessment techniques for a learning-centered curriculum: evaluation design for adventures in supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Helland, B. [Ames Lab., IA (United States); Summers, B.G. [Oak Ridge National Lab., TN (United States)

    1996-09-01

    As the classroom paradigm shifts from being teacher-centered to being learner-centered, student assessments are evolving from typical paper and pencil testing to other methods of evaluation. Students should be probed for understanding, reasoning, and critical thinking abilities rather than their ability to return memorized facts. The assessment of the Department of Energy`s pilot program, Adventures in Supercomputing (AiS), offers one example of assessment techniques developed for learner-centered curricula. This assessment has employed a variety of methods to collect student data. Methods of assessment used were traditional testing, performance testing, interviews, short questionnaires via email, and student presentations of projects. The data obtained from these sources have been analyzed by a professional assessment team at the Center for Children and Technology. The results have been used to improve the AiS curriculum and establish the quality of the overall AiS program. This paper will discuss the various methods of assessment used and the results.

  2. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-01-01

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method

  3. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  4. Development of a HRA method based on Human Factor Issues for advanced NPP

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Seong, Poong Hyun; Ha, Jun Su; Park, Jae Hyuk; Kim, Ja Kyung

    2010-01-01

    A design of instrumentation and control (I and C) systems for various plant systems including nuclear power plants (NPPs) is rapidly moving toward fully digital I and C and modern computer techniques have been gradually introduced into the design of advanced main control room (MCR). In advanced MCR, computer based Human-System Interfaces (HSIs) such as CRT based displays, large display panels (LDP), advanced information system, soft control and computerized procedure system (CPS) are applied in advanced MCR. Human operators in an advanced MCR still play an important role. However, various research and experiences from NPPs with an advanced MCR show that characteristics of human operators' task would be changed due to the use of inexperienced HSIs. This gives implications to the PSFs (Performance Shaping Factors) in HRA (Human Reliability Analysis). PSF in HRA is an aspect of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance resulting in increasing or decreasing the likelihood of human error. These PSFs have been suggested in various ways depending on the HRA methods used. In most HRA methods, however, there is a lack of inconsistency for the derivation of the PSFs and a lack of considerations of how the changes implemented in advanced MCR give impact on the operators' task. In this study, a framework for the derivation of and evaluation in the PSFs to be used in HRA for advanced NPPs is suggested

  5. Using the LANSCE irradiation facility to predict the number of fatal soft errors in one of the world's fastest supercomputers

    International Nuclear Information System (INIS)

    Michalak, S.E.; Harris, K.W.; Hengartner, N.W.; Takala, B.E.; Wender, S.A.

    2005-01-01

    Los Alamos National Laboratory (LANL) is home to the Los Alamos Neutron Science Center (LANSCE). LANSCE is a unique facility because its neutron spectrum closely mimics the neutron spectrum at terrestrial and aircraft altitudes, but is many times more intense. Thus, LANSCE provides an ideal setting for accelerated testing of semiconductor and other devices that are susceptible to cosmic ray induced neutrons. Many industrial companies use LANSCE to estimate device susceptibility to cosmic ray induced neutrons, and it has also been used to test parts from one of LANL's supercomputers, the ASC (Advanced Simulation and Computing Program) Q. This paper discusses our use of the LANSCE facility to study components in Q including a comparison with failure data from Q

  6. Advanced Extraction Methods for Actinide/Lanthanide Separations

    International Nuclear Information System (INIS)

    Scott, M.J.

    2005-01-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  7. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  8. A modified captive bubble method for determining advancing and receding contact angles

    International Nuclear Information System (INIS)

    Xue, Jian; Shi, Pan; Zhu, Lin; Ding, Jianfu; Chen, Qingmin; Wang, Qingjun

    2014-01-01

    Graphical abstract: - Highlights: • A modified captive bubble method for determining advancing and receding contact angle is proposed. • We have designed a pressure chamber with a pressure control system to the original experimental. • The modified method overcomes the deviation of the bubble in the traditional captive bubble method. • The modified captive bubble method allows a smaller error from the test. - Abstract: In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°

  9. A modified captive bubble method for determining advancing and receding contact angles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Jian; Shi, Pan; Zhu, Lin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Ding, Jianfu [Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, K1A 0R6, Ontario (Canada); Chen, Qingmin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Wang, Qingjun, E-mail: njuwqj@nju.edu.cn [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China)

    2014-03-01

    Graphical abstract: - Highlights: • A modified captive bubble method for determining advancing and receding contact angle is proposed. • We have designed a pressure chamber with a pressure control system to the original experimental. • The modified method overcomes the deviation of the bubble in the traditional captive bubble method. • The modified captive bubble method allows a smaller error from the test. - Abstract: In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°.

  10. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    Science.gov (United States)

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  11. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone; Manzano Franco, Joseph B.

    2012-12-31

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, we introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.

  12. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  13. Advanced airflow distribution methods for reduction of personal exposure to indoor pollutants

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kosonen, Risto; Melikov, Arsen

    2016-01-01

    The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow ...... distribution methods to reduce indoor exposure to various indoor pollutants. This article presents some of the latest development of advanced airflow distribution methods to reduce indoor exposure in various types of buildings.......The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow...

  14. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  15. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    Jang, Inseok; Jung, Wondea; Seong, Poong Hyun

    2015-01-01

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  16. 78 FR 16513 - Application of Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex...

    Science.gov (United States)

    2013-03-15

    ... Methods to Multiplex Detection of Transfusion- Transmissible Agents and Blood Cell Antigens in Blood... Transfusion-Transmissible Agents and Blood Cell Antigens in Blood Donations; Public Workshop AGENCY: Food and... technological advances in gene based and protein based pathogen and blood cell antigen detection methods and to...

  17. Iterative Method of Regularization with Application of Advanced Technique for Detection of Contours

    International Nuclear Information System (INIS)

    Niedziela, T.; Stankiewicz, A.

    2000-01-01

    This paper proposes a novel iterative method of regularization with application of an advanced technique for detection of contours. To eliminate noises, the properties of convolution of functions are utilized. The method can be accomplished in a simple neural cellular network, which creates the possibility of extraction of contours by automatic image recognition equipment. (author)

  18. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...

  19. Advanced microscopic methods for the detection of adhesion barriers in immunology in medical imaging

    Science.gov (United States)

    Lawrence, Shane

    2017-07-01

    Advanced methods of microscopy and advanced techniques of analysis stemming therefrom have developed greatly in the past few years.The use of single discrete methods has given way to the combination of methods which means an increase in data for processing to progress to the analysis and diagnosis of ailments and diseases which can be viewed by each and any method.This presentation shows the combination of such methods and gives example of the data which arises from each individual method and the combined methodology and suggests how such data can be streamlined to enable conclusions to be drawn about the particular biological and biochemical considerations that arise.In this particular project the subject of the methodology was human lactoferrin and the relation of the adhesion properties of hlf in the overcoming of barriers to adhesion mainly on the perimeter of the cellular unit and how this affects the process of immunity in any particular case.

  20. The BlueGene/L Supercomputer and Quantum ChromoDynamics

    International Nuclear Information System (INIS)

    Vranas, P; Soltz, R

    2006-01-01

    In summary our update contains: (1) Perfect speedup sustaining 19.3% of peak for the Wilson D D-slash Dirac operator. (2) Measurements of the full Conjugate Gradient (CG) inverter that inverts the Dirac operator. The CG inverter contains two global sums over the entire machine. Nevertheless, our measurements retain perfect speedup scaling demonstrating the robustness of our methods. (3) We ran on the largest BG/L system, the LLNL 64 rack BG/L supercomputer, and obtained a sustained speed of 59.1 TFlops. Furthermore, the speedup scaling of the Dirac operator and of the CG inverter are perfect all the way up to the full size of the machine, 131,072 cores (please see Figure II). The local lattice is rather small (4 x 4 x 4 x 16) while the total lattice has been a lattice QCD vision for thermodynamic studies (a total of 128 x 128 x 256 x 32 lattice sites). This speed is about five times larger compared to the speed we quoted in our submission. As we have pointed out in our paper QCD is notoriously sensitive to network and memory latencies, has a relatively high communication to computation ratio which can not be overlapped in BGL in virtual node mode, and as an application is in a class of its own. The above results are thrilling to us and a 30 year long dream for lattice QCD

  1. Setting health research priorities using the CHNRI method: IV. Key conceptual advances

    Directory of Open Access Journals (Sweden)

    Igor Rudan

    2016-06-01

    Full Text Available Child Health and Nutrition Research Initiative (CHNRI started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007–2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances.

  2. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  3. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  4. Human-system safety methods for development of advanced air traffic management systems

    International Nuclear Information System (INIS)

    Nelson, William R.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems (author) (ml)

  5. Thermodynamic and economic evaluations of a geothermal district heating system using advanced exergy-based methods

    International Nuclear Information System (INIS)

    Tan, Mehmet; Keçebaş, Ali

    2014-01-01

    Highlights: • Evaluation of a GDHS using advanced exergy-based methods. • Comparison of the results of the conventional and advanced exergy-based methods. • The modified exergetic efficiency and exergoeconomic factor are found as 45% and 13%. • Improvement and total cost-savings potentials are found to be 3% and 14%. • All the pumps have the highest improvement potential and total cost-savings potential. - Abstract: In this paper, a geothermal district heating system (GDHS) is comparatively evaluated in terms of thermodynamic and economic aspects using advanced exergy-based methods to identify the potential for improvement, the interactions among system components, and the direction and potential for energy savings. The actual operational data are taken from the Sarayköy GDHS, Turkey. In the advanced exergetic and exergoeconomic analyses, the exergy destruction and the total operating cost within each component of the system are split into endogenous/exogenous and unavoidable/avoidable parts. The advantages of these analyses over conventional ones are demonstrated. The results indicate that the advanced exergy-based method is a more meaningful and effective tool than the conventional one for system performance evaluation. The exergetic efficiency and the exergoeconomic factor of the overall system for the Sarayköy GDHS were determined to be 43.72% and 5.25% according to the conventional tools and 45.06% and 12.98% according to the advanced tools. The improvement potential and the total cost-savings potential of the overall system were also determined to be 2.98% and 14.05%, respectively. All of the pumps have the highest improvement potential and total cost-savings potential because the pumps were selected to have high power during installation at the Sarayköy GDHS

  6. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    De, K [University of Texas at Arlington; Jha, S [Rutgers University; Klimentov, A [Brookhaven National Laboratory (BNL); Maeno, T [Brookhaven National Laboratory (BNL); Nilsson, P [Brookhaven National Laboratory (BNL); Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Wells, Jack C [ORNL; Wenaus, T [Brookhaven National Laboratory (BNL)

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation

  7. Guide to dataflow supercomputing basic concepts, case studies, and a detailed example

    CERN Document Server

    Milutinovic, Veljko; Trifunovic, Nemanja; Giorgi, Roberto

    2015-01-01

    This unique text/reference describes an exciting and novel approach to supercomputing in the DataFlow paradigm. The major advantages and applications of this approach are clearly described, and a detailed explanation of the programming model is provided using simple yet effective examples. The work is developed from a series of lecture courses taught by the authors in more than 40 universities across more than 20 countries, and from research carried out by Maxeler Technologies, Inc. Topics and features: presents a thorough introduction to DataFlow supercomputing for big data problems; revie

  8. Functional efficiency comparison between split- and parallel-hybrid using advanced energy flow analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, Philipp; Lin, Mengyan [Romax Technology, Nottingham (United Kingdom)

    2009-07-01

    The following paper presents a comparative efficiency analysis of the Toyota Prius versus the Honda Insight using advanced Energy Flow Analysis methods. The sample study shows that even very different hybrid concepts like a split- and a parallel-hybrid can be compared in a high level of detail and demonstrates the benefit showing exemplary results. (orig.)

  9. Advanced Semi-Implicit Method (ASIM) for hyperbolic two-fluid model

    International Nuclear Information System (INIS)

    Lee, Sung Jae; Chung, Moon Sun

    2003-01-01

    Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This Advanced Semi-Implicit Method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity

  10. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  11. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  12. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu; Duan, Benchun; Taylor, Valerie

    2011-01-01

    , such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular

  13. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  14. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  15. An advanced analysis method of initial orbit determination with too short arc data

    Science.gov (United States)

    Li, Binzhe; Fang, Li

    2018-02-01

    This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.

  16. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  17. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  18. The role of advanced MR methods in the diagnosis of cerebral amyloidoma.

    Science.gov (United States)

    Nossek, Erez; Bashat, Dafna Ben; Artzi, Moran; Rosenberg, Keren; Lichter, Irith; Shtern, Orit; Ami, Haim Ben; Aizenstein, Orna; Vlodavsky, Euvgeni; Constantinescu, Marius; Ram, Zvi

    2009-01-01

    Amyloidoma is a term referring to a tumor-like deposition of extracellular insoluble fibrillar protein. Tumor-like amyloid formation in the brain had been described in isolated cases. However no advanced radiological studies to characterize these lesions have been reported. In the report, we have describe a 59-year-old woman, presented several months prior to diagnosis with memory decline, dizziness, walking instability, and speech difficulties. MRI revealed a left basal ganglia lesion with an intraventricular component. The patient underwent a stereotactic biopsy, which confirmed the diagnosis of amyloidoma, an extensive radiographic characterization of amyloidoma using advanced MR techniques was done, including magnetic resonance spectroscopy, dynamic susceptibility contrast, susceptibility weighted image (SWI), and magnetization transfer (MTR). All advanced MR techniques were able to characterize the amyloidoma as a non-neoplastic process. This is an example where such methods can be used for differential diagnosis of atypical brain lesions.

  19. 2D automatic body-fitted structured mesh generation using advancing extraction method

    Science.gov (United States)

    Zhang, Yaoxin; Jia, Yafei

    2018-01-01

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.

  20. GREY STATISTICS METHOD OF TECHNOLOGY SELECTION FOR ADVANCED PUBLIC TRANSPORTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Chien Hung WEI

    2003-01-01

    Full Text Available Taiwan is involved in intelligent transportation systems planning, and is now selecting its prior focus areas for investment and development. The high social and economic impact associated with which intelligent transportation systems technology are chosen explains the efforts of various electronics and transportation corporations for developing intelligent transportation systems technology to expand their business opportunities. However, there has been no detailed research conducted with regard to selecting technology for advanced public transportation systems in Taiwan. Thus, the present paper demonstrates a grey statistics method integrated with a scenario method for solving the problem of selecting advanced public transportation systems technology for Taiwan. A comprehensive questionnaire survey was conducted to demonstrate the effectiveness of the grey statistics method. The proposed approach indicated that contactless smart card technology is the appropriate technology for Taiwan to develop in the near future. The significance of our research results implies that the grey statistics method is an effective method for selecting advanced public transportation systems technologies. We feel our information will be beneficial to the private sector for developing an appropriate intelligent transportation systems technology strategy.

  1. Balancing of linkages and robot manipulators advanced methods with illustrative examples

    CERN Document Server

    Arakelian, Vigen

    2015-01-01

    In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.

  2. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  3. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    International Nuclear Information System (INIS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-01-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers. (paper)

  4. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia

    2003-01-01

    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  5. An efficient implementation of a backpropagation learning algorithm on quadrics parallel supercomputer

    International Nuclear Information System (INIS)

    Taraglio, S.; Massaioli, F.

    1995-08-01

    A parallel implementation of a library to build and train Multi Layer Perceptrons via the Back Propagation algorithm is presented. The target machine is the SIMD massively parallel supercomputer Quadrics. Performance measures are provided on three different machines with different number of processors, for two network examples. A sample source code is given

  6. Visualization environment of the large-scale data of JAEA's supercomputer system

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kensaku [Japan Atomic Energy Agency, Center for Computational Science and e-Systems, Tokai, Ibaraki (Japan); Hoshi, Yoshiyuki [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2013-11-15

    On research and development of various fields of nuclear energy, visualization of calculated data is especially useful to understand the result of simulation in an intuitive way. Many researchers who run simulations on the supercomputer in Japan Atomic Energy Agency (JAEA) are used to transfer calculated data files from the supercomputer to their local PCs for visualization. In recent years, as the size of calculated data has gotten larger with improvement of supercomputer performance, reduction of visualization processing time as well as efficient use of JAEA network is being required. As a solution, we introduced a remote visualization system which has abilities to utilize parallel processors on the supercomputer and to reduce the usage of network resources by transferring data of intermediate visualization process. This paper reports a study on the performance of image processing with the remote visualization system. The visualization processing time is measured and the influence of network speed is evaluated by varying the drawing mode, the size of visualization data and the number of processors. Based on this study, a guideline for using the remote visualization system is provided to show how the system can be used effectively. An upgrade policy of the next system is also shown. (author)

  7. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration.

    Science.gov (United States)

    Jones, David; Cundell, Tony

    2018-01-01

    The Growth Direct™ System that automates the incubation and reading of membrane filtration microbial counts on soybean-casein digest, Sabouraud dextrose, and R2A agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. LAY ABSTRACT: The Growth Direct™ System that automates the incubation and reading of microbial counts on membranes on solid agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation time. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. © PDA, Inc. 2018.

  8. Study of thermodynamic and structural properties of a flexible homopolymer chain using advanced Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Hammou Amine Bouziane

    2013-03-01

    Full Text Available We study the thermodynamic and structural properties of a flexible homopolymer chain using both multi canonical Monte Carlo method and Wang-Landau method. In this work, we focus on the coil-globule transition. Starting from a completely random chain, we have obtained a globule for different sizes of the chain. The implementation of these advanced Monte Carlo methods allowed us to obtain a flat histogram in energy space and calculate various thermodynamic quantities such as the density of states, the free energy and the specific heat. Structural quantities such as the radius of gyration where also calculated.

  9. Curing Characterisation of Spruce Tannin-based Foams using the Advanced Isoconversional Method

    Directory of Open Access Journals (Sweden)

    Matjaž Čop

    2014-06-01

    Full Text Available The curing kinetics of foam prepared from the tannin of spruce tree bark was investigated using differential scanning calorimetry (DSC and the advanced isoconversional method. An analysis of the formulations with differing amounts of components (furfuryl alcohol, glycerol, tannin, and a catalyst showed that curing was delayed with increasing proportions of glycerol or tannins. An optimum amount of the catalyst constituent was also found during the study. The curing of the foam system was accelerated with increasing temperatures. Finally, the advanced isoconversional method, based on the model-free kinetic algorithm developed by Vyazovkin, appeared to be an appropriate model for the characterisation of the curing kinetics of tannin-based foams.

  10. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    International Nuclear Information System (INIS)

    Ro, Ki Deok

    2014-01-01

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately

  11. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2014-03-15

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

  12. Application of advanced data reduction methods to gas turbine dynamic analysis

    International Nuclear Information System (INIS)

    Juhl, P.B.

    1978-01-01

    This paper discusses the application of advanced data reduction methods to the evaluation of dynamic data from gas turbines and turbine components. The use of the Fast Fourier Transform and of real-time spectrum analyzers is discussed. The use of power spectral density and probability density functions for analyzing random data is discussed. Examples of the application of these modern techniques to gas turbine testing are presented. The use of the computer to automate the data reduction procedures is discussed. (orig.) [de

  13. Turbulence-cascade interaction noise using an advanced digital filter method

    OpenAIRE

    Gea Aguilera, Fernando; Gill, James; Zhang, Xin; Nodé-Langlois, Thomas

    2016-01-01

    Fan wakes interacting with outlet guide vanes is a major source of noise in modern turbofan engines. In order to study this source of noise, the current work presents two-dimensional simulations of turbulence-cascade interaction noise using a computational aeroacoustic methodology. An advanced digital filter method is used for the generation of isotropic synthetic turbulence in a linearised Euler equation solver. A parameter study is presented to assess the influence of airfoil thickness, mea...

  14. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    Science.gov (United States)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  15. Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment

    International Nuclear Information System (INIS)

    Schillo, R. Sandra; Isabelle, Diane A.; Shakiba, Abtin

    2017-01-01

    The field of renewable energy policy is inherently complex due to the long-term impacts of its policies, the broad range of potential stakeholders, the intricacy of scientific, engineering and technological developments, and the interplay of complex policy mixes that may result in unintended consequences. Quality Function Deployment (QFD) provides a systematic consideration of all relevant stakeholders, a rigorous analysis of the needs of stakeholders, and a prioritization of design features based on stakeholders needs. We build on QFD combined with Analytical Hierarchy Process (AHP) to develop a novel method applied to the area of advanced biofuel policies. This Multi-Stakeholder Policy QFD (MSP QFD) provides a systematic approach to capture the voice of the stakeholders and align it with the broad range of potential advanced biofuels policies. To account for the policy environment, the MSP QFD utilizes a novel approach to stakeholder importance weights. This MSP QFD adds to the literature as it permits the analysis of the broad range of relevant national policies with regards to the development of advanced biofuels, as compared to more narrowly focused typical QFD applications. It also allows policy developers to gain additional insights into the perceived impacts of policies, as well as international comparisons. - Highlights: • Advanced biofuels are mostly still in research and early commercialization stages. • Government policies are expected to support biofuels stakeholders in market entry. • A Multi-Stakeholder Policy QFD (MSP QFD) links biofuels policies with stakeholders. • MSP QFD employs novel stakeholder weights method. • The case of advanced biofuels in Canada shows comparative importance of policies.

  16. Development and application of a probabilistic evaluation method for advanced process technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  17. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  18. Benchmarking and tuning the MILC code on clusters and supercomputers

    International Nuclear Information System (INIS)

    Gottlieb, Steven

    2002-01-01

    Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha

  19. Benchmarking and tuning the MILC code on clusters and supercomputers

    International Nuclear Information System (INIS)

    Steven A. Gottlieb

    2001-01-01

    Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha

  20. Benchmarking and tuning the MILC code on clusters and supercomputers

    Science.gov (United States)

    Gottlieb, Steven

    2002-03-01

    Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha.

  1. Parallel simulation of tsunami inundation on a large-scale supercomputer

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the

  2. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Pereslavtsev, P.; Simakov, S.P.; Tsige-Tamirat, H.; Loughlin, M.; Perel, R.L.; Petrizzi, L.; Tautges, T.J.; Wilson, P.P.H.

    2005-01-01

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  3. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  4. An Analysis and Quantification Method of Human Errors of Soft Controls in Advanced MCRs

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jae Whan; Jang, Seung Cheol

    2011-01-01

    In this work, a method was proposed for quantifying human errors that may occur during operation executions using soft control. Soft controls of advanced main control rooms (MCRs) have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to define the human error modes and to quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests a modified K-HRA method for quantifying error probability

  5. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  6. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    Science.gov (United States)

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  8. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2007-01-01

    Full Text Available This study seeks to identify sensitivity tools that will advance our understanding of lumped hydrologic models for the purposes of model improvement, calibration efficiency and improved measurement schemes. Four sensitivity analysis methods were tested: (1 local analysis using parameter estimation software (PEST, (2 regional sensitivity analysis (RSA, (3 analysis of variance (ANOVA, and (4 Sobol's method. The methods' relative efficiencies and effectiveness have been analyzed and compared. These four sensitivity methods were applied to the lumped Sacramento soil moisture accounting model (SAC-SMA coupled with SNOW-17. Results from this study characterize model sensitivities for two medium sized watersheds within the Juniata River Basin in Pennsylvania, USA. Comparative results for the 4 sensitivity methods are presented for a 3-year time series with 1 h, 6 h, and 24 h time intervals. The results of this study show that model parameter sensitivities are heavily impacted by the choice of analysis method as well as the model time interval. Differences between the two adjacent watersheds also suggest strong influences of local physical characteristics on the sensitivity methods' results. This study also contributes a comprehensive assessment of the repeatability, robustness, efficiency, and ease-of-implementation of the four sensitivity methods. Overall ANOVA and Sobol's method were shown to be superior to RSA and PEST. Relative to one another, ANOVA has reduced computational requirements and Sobol's method yielded more robust sensitivity rankings.

  9. Impact of different treatment methods on survival in advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Brasiuniene, B.; Juozaityte, E.; Barauskas, G.

    2005-01-01

    The aim of the study was to evaluate the impact of different treatment methods on survival of patients treated for advanced pancreatic cancer at Kaunas University of Medicine Hospital from 1987 to 2003. Data on 262 patients with advanced pancreatic cancer treated from 1987 to 2003 were analyzed retrospectively. Four groups of patients were analyzed. One hundred eighty patients underwent palliative bypass or endoscopic bile duct stenting or observation alone. Forty three patients in addition to surgery were treated by radiotherapy. Twenty five patients received gemcitabine in standard doses and schedules. Fourteen patients received concomitant chemoradiotherapy (with gemcitabine or 5-fluorouracil). All patients were grouped by treatment method and median survival was analyzed. Median survival of patients treated by palliative surgery only or observation alone was 1.9 month, and for patients treated by palliative surgery and radiotherapy was 6.1 months (p=0.00007). Median survival of patients treated with gemcitabine was 9.5 months (p<0.001), and median survival of patients treated with concomitant chemoradiotherapy was 8.5 months (p=0.00003). Patients diagnosed with advanced pancreatic cancer in addition to surgical treatment should be treated by chemotherapy, concomitant chemoradiotherapy or radiotherapy. (author)

  10. Advanced image based methods for structural integrity monitoring: Review and prospects

    Science.gov (United States)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  11. Advances in mixed-integer programming methods for chemical production scheduling.

    Science.gov (United States)

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  12. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Science.gov (United States)

    Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.

    2016-10-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  13. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    International Nuclear Information System (INIS)

    Klimentov, A; Maeno, T; Nilsson, P; Panitkin, S; Wenaus, T; De, K; Oleynik, D; Jha, S; Wells, J

    2016-01-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  14. Advances in dynamic and mean field games theory, applications, and numerical methods

    CERN Document Server

    Viscolani, Bruno

    2017-01-01

    This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...

  15. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  16. The promise of mixed-methods for advancing latino health research.

    Science.gov (United States)

    Apesoa-Varano, Ester Carolina; Hinton, Ladson

    2013-09-01

    Mixed-methods research in the social sciences has been conducted for quite some time. More recently, mixed-methods have become popular in health research, with the National Institutes of Health leading the impetus to fund studies that implement such an approach. The public health issues facing us today are great and they range from policy and other macro-level issues, to systems level problems to individuals' health behaviors. For Latinos, who are projected to become the largest minority group bearing a great deal of the burden of social inequality in the U.S., it is important to understand the deeply-rooted nature of these health disparities in order to close the gap in health outcomes. Mixed-methodology thus holds promise for advancing research on Latino heath by tackling health disparities from a variety of standpoints and approaches. The aim of this manuscript is to provide two examples of mixed methods research, each of which addresses a health topic of considerable importance to older Latinos and their families. These two examples will illustrate a) the complementary use of qualitative and quantitative methods to advance health of older Latinos in an area that is important from a public health perspective, and b) the "translation" of findings from observational studies (informed by social science and medicine) to the development and testing of interventions.

  17. Locally advanced cancer of the tongue base: new method of surgical treatment

    Directory of Open Access Journals (Sweden)

    I. A. Zaderenko

    2018-01-01

    Full Text Available Introduction. Patients are characterized by locally advanced tumors in 70–80 % of cases at presentation, so possibility of cure and surgical treatment is limited. Total glossectomy, tongue base resection is associated with severe and permanent disability. Such surgical procedures lead to severe dysphagia, alalia and social maladjustment. Enumerated issues motivated us to develop new method of surgical treatment  of locally advanced base of tongue cancer.Objective is to introduce new opportunities of surgical treatment of locally advanced cancer of the tongue base.Materials and methods. Glossectomy is accomplished in 5 patients suffering from tongue cancer and admitted to N.N. Blokhin National Medical Research Center of Oncology. Swallowing and speech is preserved in all 5 cases.Results. The main advantage of the proposed method is that the cut out muscle flap has a different innervation from different cranial nerves involved in the rate of swallowing, so there is not just a mechanical movement of the epiglottis, but also the control of swallowing by the central nervous system. The reduction of injury and operation time in the proposed method is due to the fact that tissues directly contacting with the defect are used to preserve swallowing and speech. The proposed muscle flap has various sources of blood supply, which improves its nutrition and reduces the risk of complications, and healing occurs in a shorter time in comparison with the prototype. All of the above reduces the duration of hospitalization for an average of 7–9 days.Conclusion. The developed surgical technique allows to achieve early rehabilitation; patients are able to breathe effortlessly, swallow and speak. There is no need in permanent tracheostoma and percutaneous endoscopic gastrostomy tube. All patients remains socially active. 

  18. The Water-Energy-Food Nexus: Advancing Innovative, Policy-Relevant Methods

    Science.gov (United States)

    Crootof, A.; Albrecht, T.; Scott, C. A.

    2017-12-01

    The water-energy-food (WEF) nexus is rapidly expanding in scholarly literature and policy settings as a novel way to address complex Anthropocene challenges. The nexus approach aims to identify tradeoffs and synergies of water, energy, and food systems, internalize social and environmental impacts, and guide development of cross-sectoral policies. However, a primary limitation of the nexus approach is the absence - or gaps and inconsistent use - of adequate methods to advance an innovative and policy-relevant nexus approach. This paper presents an analytical framework to identify robust nexus methods that align with nexus thinking and highlights innovative nexus methods at the frontier. The current state of nexus methods was assessed with a systematic review of 245 journal articles and book chapters. This review revealed (a) use of specific and reproducible methods for nexus assessment is uncommon - less than one-third of the reviewed studies present explicit methods; (b) nexus methods frequently fall short of capturing interactions among water, energy, and food - the very concept they purport to address; (c) assessments strongly favor quantitative approaches - 70% use primarily quantitative tools; (d) use of social science methods is limited (26%); and (e) many nexus methods are confined to disciplinary silos - only about one-quarter combine methods from diverse disciplines and less than one-fifth utilize both quantitative and qualitative approaches. Despite some pitfalls of current nexus methods, there are a host of studies that offer innovative approaches to help quantify nexus linkages and interactions among sectors, conceptualize dynamic feedbacks, and support mixed method approaches to better understand WEF systems. Applying our analytical framework to all 245 studies, we identify, and analyze herein, seventeen studies that implement innovative multi-method and cross-scalar tools to demonstrate promising advances toward improved nexus assessment. This paper

  19. An Advanced Actuator Line Method for Wind Energy Applications and Beyond: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew; Schreck, Scott; Martinez-Tossas, Luis A.; Meneveau, Charles; Spalart, Philippe R.

    2017-03-24

    The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications in two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.

  20. An Advanced Actuator Line Method for Wind Energy Applications and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J.; Schreck, Scott; Martinez-Tossas, Luis A.; Meneveau, Charles; Spalart, Philippe R.

    2017-01-09

    The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications in two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.

  1. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  2. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    CERN Document Server

    Bennett, Ed; Del Debbio, Luigi; Jordan, Kirk; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2016-01-01

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  3. Direct exploitation of a top 500 Supercomputer for Analysis of CMS Data

    International Nuclear Information System (INIS)

    Cabrillo, I; Cabellos, L; Marco, J; Fernandez, J; Gonzalez, I

    2014-01-01

    The Altamira Supercomputer hosted at the Instituto de Fisica de Cantatbria (IFCA) entered in operation in summer 2012. Its last generation FDR Infiniband network used (for message passing) in parallel jobs, supports the connection to General Parallel File System (GPFS) servers, enabling an efficient simultaneous processing of multiple data demanding jobs. Sharing a common GPFS system and a single LDAP-based identification with the existing Grid clusters at IFCA allows CMS researchers to exploit the large instantaneous capacity of this supercomputer to execute analysis jobs. The detailed experience describing this opportunistic use for skimming and final analysis of CMS 2012 data for a specific physics channel, resulting in an order of magnitude reduction of the waiting time, is presented.

  4. Explaining the gap between theoretical peak performance and real performance for supercomputer architectures

    International Nuclear Information System (INIS)

    Schoenauer, W.; Haefner, H.

    1993-01-01

    The basic architectures of vector and parallel computers with their properties are presented. Then the memory size and the arithmetic operations in the context of memory bandwidth are discussed. For the exemplary discussion of a single operation micro-measurements of the vector triad for the IBM 3090 VF and the CRAY Y-MP/8 are presented. They reveal the details of the losses for a single operation. Then we analyze the global performance of a whole supercomputer by identifying reduction factors that bring down the theoretical peak performance to the poor real performance. The responsibilities of the manufacturer and of the user for these losses are dicussed. Then the price-performance ratio for different architectures in a snapshot of January 1991 is briefly mentioned. Finally some remarks to a user-friendly architecture for a supercomputer will be made. (orig.)

  5. A complex method of equipment replacement planning. An advanced plan for the replacement of medical equipment.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    This complex method of equipment replacement planning is a methodology; it is a means to an end, a process that focuses on equipment most in need of replacement, rather than the end itself. It uses data available from the maintenance management database, and attempts to quantify those subjective items important [figure: see text] in making equipment replacement decisions. Like the simple method of the last issue, it is a starting point--albeit an advanced starting point--which the user can modify to fit their particular organization, but the complex method leaves room for expansion. It is based on sound logic, documented facts, and is fully defensible during the decision-making process and will serve your organization well as provide a structure for your equipment replacement planning decisions.

  6. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry; Etienne, Vincent; Gashawbeza, Ewenet; Curiel, Emesto Sandoval; Khan, Azizur; Feki, Saber; Kortas, Samuel

    2017-01-01

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey's acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less than

  7. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry

    2017-02-27

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey\\'s acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less

  8. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials

    Science.gov (United States)

    Zhang, Yihui; Zhang, Fan; Yan, Zheng; Ma, Qiang; Li, Xiuling; Huang, Yonggang; Rogers, John A.

    2017-03-01

    A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.

  9. CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method

    International Nuclear Information System (INIS)

    Banner, D.; Aubry, S.

    2004-01-01

    A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)

  10. Systems and methods for advanced ultra-high-performance InP solar cells

    Science.gov (United States)

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  11. Advances in research methods for information systems research data mining, data envelopment analysis, value focused thinking

    CERN Document Server

    Osei-Bryson, Kweku-Muata

    2013-01-01

    Advances in social science research methodologies and data analytic methods are changing the way research in information systems is conducted. New developments in statistical software technologies for data mining (DM) such as regression splines or decision tree induction can be used to assist researchers in systematic post-positivist theory testing and development. Established management science techniques like data envelopment analysis (DEA), and value focused thinking (VFT) can be used in combination with traditional statistical analysis and data mining techniques to more effectively explore

  12. Analyzing the Interplay of Failures and Workload on a Leadership-Class Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Esteban [University of Pittsburgh; Ni, Xiang [University of Illinois at Urbana-Champaign; Jones, Terry R [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of fault tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.

  13. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya

    2016-07-14

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2•xH2O, Zn2(bdc)2•xH2O, HKUST-1 and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Thereby paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  14. Sensitivity analysis of infectious disease models: methods, advances and their application

    Science.gov (United States)

    Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.

    2013-01-01

    Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497

  15. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  16. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  17. Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers

    International Nuclear Information System (INIS)

    Yasar, O.; Moses, G.A.; Tautges, T.J.

    1993-01-01

    A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)

  18. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  19. ATLAS FTK a - very complex - custom parallel supercomputer

    CERN Document Server

    Kimura, Naoki; The ATLAS collaboration

    2016-01-01

    In the ever increasing pile-up LHC environment advanced techniques of analysing the data are implemented in order to increase the rate of relevant physics processes with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at hardware level that is designed to deliver full-scan tracks with $p_{T}$ above 1GeV to the ATLAS trigger system for every L1 accept (at a maximum rate of 100kHz). In order to achieve this performance a highly parallel system was designed and now it is under installation in ATLAS. In the beginning of 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and during the year it's coverage will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against 1 billion patterns stored in specially designed ASICS chips (Associative memory - AM06). In a first stage coarse resolution hits are matched against the patterns and the accepted h...

  20. Advanced display object selection methods for enhancing user-computer productivity

    Science.gov (United States)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  1. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    International Nuclear Information System (INIS)

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab

  2. Efficient multitasking of Choleski matrix factorization on CRAY supercomputers

    Science.gov (United States)

    Overman, Andrea L.; Poole, Eugene L.

    1991-01-01

    A Choleski method is described and used to solve linear systems of equations that arise in large scale structural analysis. The method uses a novel variable-band storage scheme and is structured to exploit fast local memory caches while minimizing data access delays between main memory and vector registers. Several parallel implementations of this method are described for the CRAY-2 and CRAY Y-MP computers demonstrating the use of microtasking and autotasking directives. A portable parallel language, FORCE, is used for comparison with the microtasked and autotasked implementations. Results are presented comparing the matrix factorization times for three representative structural analysis problems from runs made in both dedicated and multi-user modes on both computers. CPU and wall clock timings are given for the parallel implementations and are compared to single processor timings of the same algorithm.

  3. Advanced methods for the study of PWR cores; Les methodes d'etudes avancees pour les coeurs de REP

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M.; Salvatores, St.; Ferrier, A. [Electricite de France (EDF), Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F. [FRAMATOME ANP, 92 - Paris La Defence (France); Chauliac, C. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Johner, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Cohen, Ch

    2003-07-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  4. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    Science.gov (United States)

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A study on the economics enhancement of OPR1000 applied to advanced construction methods

    International Nuclear Information System (INIS)

    Park, Ki Jo; Yoon, Eun Sang

    2007-01-01

    OPR1000 (Optimized Power Reactor 1000MW) is a totally improved design model of Korea nuclear power plants and the latest 1,000MW nuclear power plant in the Republic of Korea. Shin Kori 1 and 2 and Shin Wolsong 1 and 2 and under construction and these are OPR1000 types. Although OPR1000 is up to data 1,000MW nuclear power plant, it is not enough to be much superior to other nuclear power plants. Under the WTO and FTA circumstance of domestic and stiff overseas competition for nuclear power plants, it is necessary to enhance the economics of OPR1000. And then, the enhanced economic alternatives are reviewed and the advanced construction methods are considered. Based on research and a comprehensive review of nuclear power plant construction experiences, an alternative application of advanced construction methods is developed and compared with existing OPR1000 for schedule and economics. In this paper, economic analyses of a construction cost and a levelized electricity generation cost are performed

  6. ARN Training Course on Advance Methods for Internal Dose Assessment: Application of Ideas Guidelines

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.; Puerta Yepes, N.; Gossio, S.

    2010-01-01

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. The IDEAS Guidelines provide a method to harmonize dose evaluations using criteria and flow chart procedures to be followed step by step. The EURADOS Working Group 7 'Internal Dosimetry', in collaboration with IAEA and Czech Technical University (CTU) in Prague, promoted the 'EURADOS/IAEA Regional Training Course on Advanced Methods for Internal Dose Assessment: Application of IDEAS Guidelines' to broaden and encourage the use of IDEAS Guidelines, which took place in Prague (Czech Republic) from 2-6 February 2009. The ARN identified the relevance of this training and asked for a place for participating on this activity. After that, the first training course in Argentina took place from 24-28 August for training local internal dosimetry experts. (authors)

  7. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  8. Research advances in theories and methods of community assembly and succession

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available Community succession refers to the regular and predictable process of species replacement in the environment that all species had been eliminated or that had been disturbed. Community assembly is the process that species growth and interact to establish a community. Community assembly stresses the change of community over a single phase. So far a lot of theories and methods have been proposed for community assembly and succession. In present article I introduced research advances in theories and methods of community assembly and succession. Finally, continuing my past propositions, I further proposed the unified theory and methodology on community assembly and succession. I suggested that community assembly and succession is a process of self-organization. It follows the major principles and mechanisms of self-organization. Agentbased modeling was suggested being used to describe the dynamics of community assembly and succession.

  9. Application of advanced statistical methods in assessment of the late phase of a nuclear accident

    International Nuclear Information System (INIS)

    Hofman, R.

    2008-01-01

    The paper presents a new methodology for improving of estimates of radiological situation on terrain in the late phase of a nuclear accident. Methods of Bayesian filtering are applied to the problem. The estimates are based on combination of modeled and measured data provided by responsible authorities. Exploiting information on uncertainty of both the data sources, we are able to produce improved estimate of the true situation on terrain. We also attempt to account for model error, which is unknown and plays crucial role in accuracy of the estimates. The main contribution of this paper is application of an approach based on advanced statistical methods, which allows for estimating of model error covariance structure upon measurements. Model error is estimated on basis of measured-minus-observed residuals evaluated upon measured and modeled values. The methodology is demonstrated on a sample scenario with simulated measurements. (authors)

  10. Application of advanced statistical methods in assessment of the late phase of a nuclear accident

    International Nuclear Information System (INIS)

    Hofman, R.

    2009-01-01

    The paper presents a new methodology for improving of estimates of radiological situation on terrain in the late phase of a nuclear accident. Methods of Bayesian filtering are applied to the problem. The estimates are based on combination of modeled and measured data provided by responsible authorities. Exploiting information on uncertainty of both the data sources, we are able to produce improved estimate of the true situation on terrain. We also attempt to account for model error, which is unknown and plays crucial role in accuracy of the estimates. The main contribution of this paper is application of an approach based on advanced statistical methods, which allows for estimating of model error covariance structure upon measurements. Model error is estimated on basis of measured-minus-observed residuals evaluated upon measured and modeled values. The methodology is demonstrated on a sample scenario with simulated measurements. (authors)

  11. Recent advances in the identification and authentication methods of edible bird's nest.

    Science.gov (United States)

    Lee, Ting Hun; Wani, Waseem A; Koay, Yin Shin; Kavita, Supparmaniam; Tan, Eddie Ti Tjih; Shreaz, Sheikh

    2017-10-01

    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    Science.gov (United States)

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  13. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  14. Setting health research priorities using the CHNRI method: IV. Key conceptual advances.

    Science.gov (United States)

    Rudan, Igor

    2016-06-01

    Child Health and Nutrition Research Initiative (CHNRI) started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007-2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances. The guiding principle of the CHNRI method is to expose the potential of many competing health research ideas to reduce disease burden and inequities that exist in the population in a feasible and cost-effective way. The CHNRI method introduced three key conceptual advances that led to its increased popularity in comparison to other priority-setting methods and processes. First, it proposed a systematic approach to listing a large number of possible research ideas, using the "4D" framework (description, delivery, development and discovery research) and a well-defined "depth" of proposed research ideas (research instruments, avenues, options and questions). Second, it proposed a systematic approach for discriminating between many proposed research ideas based on a well-defined context and criteria. The five "standard" components of the context are the population of interest, the disease burden of interest, geographic limits, time scale and the preferred style of investing with respect to risk. The five "standard" criteria proposed for prioritization between research ideas are answerability, effectiveness, deliverability, maximum potential for disease burden reduction and the effect on equity. However, both the context and the criteria can be flexibly changed to meet the specific needs of each priority-setting exercise. Third, it facilitated consensus development through measuring collective optimism on each component of each research idea among a larger group of experts using a simple scoring system. This enabled the use of the knowledge of

  15. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2006-02-01

    Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users

  16. Numerical evaluation of fluid mixing phenomena in boiling water reactor using advanced interface tracking method

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    2008-01-01

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low. (author)

  17. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  18. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  19. A study on dynamic evaluation methods for human-machine interfaces in advanced control rooms

    International Nuclear Information System (INIS)

    Park, Jin Kyun

    1998-02-01

    Extensive efforts have been performed to reveal factors that largely affect to the safety of nuclear power plants (NPPs). Among them, human factors were known as a dominant cause of a severe accident, such as Three Mile Island and Chernobyl accidents. Thus a lot of efforts to resolve human factors related problems have been spent, and one of these efforts is an advanced control room (ACR) design to enhance human performance and the safety of NPPs. There are two important trends in the design of ACRs. The first one is increasing automation level, and the second one is the development of computer based compact workstations for control room operations including intelligent operator aid systems. However, several problems have been reported when another factors are not properly incorporated into the design of ACRs. Among them, one of the most important factors that significantly affect to operator performance is the design of human machine interfaces (HMIs). Thus, HMI evaluation should be emphasized to ensure appropriateness of HMI designs and the safety of NPPs. In general, two kinds of evaluations have been frequently used to assess appropriateness of the proposed HMI design. The one is the static evaluation and the other is the dynamic evaluation. Here, the static evaluation is the one based on guidelines that are extracted from various researches on HMI designs. And the dynamic evaluation generally attempts to evaluate and predict human performance through a model that can describe cognitive behaviors of human or interactions between HMIs and human. However, the static evaluation seems to be inappropriate because it can't properly capture context of task environment that strongly affects to human performance. In addition, in case of dynamic evaluations, development of a model that can sufficiently describe interactions or cognitive behaviors of human operators is very arduous and laborious. To overcome these problems, dynamic evaluation methods that can

  20. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    Science.gov (United States)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  1. Advances and Perspectives in Chemical Imaging in Cellular Environments Using Electrochemical Methods

    Directory of Open Access Journals (Sweden)

    Robert A. Lazenby

    2018-05-01

    Full Text Available This review discusses a broad range of recent advances (2013–2017 in chemical imaging using electrochemical methods, with a particular focus on techniques that have been applied to study cellular processes, or techniques that show promise for use in this field in the future. Non-scanning techniques such as microelectrode arrays (MEAs offer high time-resolution (<10 ms imaging; however, at reduced spatial resolution. In contrast, scanning electrochemical probe microscopies (SEPMs offer higher spatial resolution (as low as a few nm per pixel imaging, with images collected typically over many minutes. Recent significant research efforts to improve the spatial resolution of SEPMs using nanoscale probes and to improve the temporal resolution using fast scanning have resulted in movie (multiple frame imaging with frame rates as low as a few seconds per image. Many SEPM techniques lack chemical specificity or have poor selectivity (defined by the choice of applied potential for redox-active species. This can be improved using multifunctional probes, ion-selective electrodes and tip-integrated biosensors, although additional effort may be required to preserve sensor performance after miniaturization of these probes. We discuss advances to the field of electrochemical imaging, and technological developments which are anticipated to extend the range of processes that can be studied. This includes imaging cellular processes with increased sensor selectivity and at much improved spatiotemporal resolution than has been previously customary.

  2. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Deng, Xiaogang; Zhang, Lilun [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Fang, Jianbin [Parallel and Distributed Systems Group, Delft University of Technology, Delft 2628CD (Netherlands); Wang, Guangxue; Jiang, Yi [State Key Laboratory of Aerodynamics, P.O. Box 211, Mianyang 621000 (China); Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua [College of Computer Science, National University of Defense Technology, Changsha 410073 (China)

    2014-12-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  3. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    International Nuclear Information System (INIS)

    Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua

    2014-01-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  4. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  5. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  6. Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Giger, Walter [GRC, Giger Research Consulting, Zurich (Switzerland); Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland)

    2009-01-15

    Organic pollutants are a highly relevant topic in environmental science and technology. This article briefly reviews historic developments, and then focuses on the current state of the art and future perspectives on the qualitative and quantitative trace determination of polar organic contaminants, which are of particular concern in municipal and industrial wastewater effluents, ambient surface waters, run-off waters, atmospheric waters, groundwaters and drinking waters. The pivotal role of advanced analytical methods is emphasized and an overview of some contaminant classes is presented. Some examples of polar water pollutants, which are discussed in a bit more detail here, are chosen from projects tackled by the research group led by the author of this article. (orig.)

  7. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  8. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  9. Technologic advances in aural rehabilitation: applications and innovative methods of service delivery.

    Science.gov (United States)

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2007-06-01

    The level of interest in aural rehabilitation has increased recently, both in clinical use and in research presentations and publications. Advances in aural rehabilitation have seen previous techniques such as speech tracking and analytic auditory training reappear in computerized forms. These new delivery methods allow for a consistent, cost-effective, and convenient training program. Several computerized aural rehabilitation programs for hearing aid wearers and cochlear implant recipients have recently been developed and were reported on at the 2006 State of the Science Conference of the Rehabilitation Engineering Research Center on Hearing Enhancement at Gallaudet University. This article reviews these programs and outlines the similarities and differences in their design. Another promising area of aural rehabilitation research is the use of pharmaceuticals in the rehabilitation process. The results from a study of the effect of d-amphetamine in conjunction with intensive aural rehabilitation with cochlear implant patients are also described.

  10. Application of supercomputers to 3-D mantle convection

    International Nuclear Information System (INIS)

    Baumgardner, J.R.

    1986-01-01

    Current generation vector machines are providing for the first time the computing power needed to treat planetary mantle convection in a fully three-dimensional fashion. A numerical technique known as multigrid has been implemented in spherical geometry using a hierarchy of meshes constructed from the regular icosahedron to yield a highly efficient three-dimensional compressible Eulerian finite element hydrodynamics formulation. The paper describes the numerical method and presents convection solutions for the mantles of both the earth and the Moon. In the case of the Earth, the convection pattern is characterized by upwelling in narrow circular plumes originating at the core-mantle boundary and by downwelling in sheets or slabs derived from the cold upper boundary layer. The preferred number of plumes appears to be on the order of six or seven. For the Moon, the numerical results indicate that development of a predominately L = 2 pattern in later lunar history is a plausible explanation for the present large second-degree non-hydrostatic component in the lunar figure

  11. Identification of advanced human factors engineering analysis, design and evaluation methods

    International Nuclear Information System (INIS)

    Plott, C.; Ronan, A. M.; Laux, L.; Bzostek, J.; Milanski, J.; Scheff, S.

    2006-01-01

    NUREG-0711 Rev.2, 'Human Factors Engineering Program Review Model,' provides comprehensive guidance to the Nuclear Regulatory Commission (NRC) in assessing the human factors practices employed by license applicants for Nuclear Power Plant control room designs. As software based human-system interface (HSI) technologies supplant traditional hardware-based technologies, the NRC may encounter new HSI technologies or seemingly unconventional approaches to human factors design, analysis, and evaluation methods which NUREG-0711 does not anticipate. A comprehensive survey was performed to identify advanced human factors engineering analysis, design and evaluation methods, tools, and technologies that the NRC may encounter in near term future licensee applications. A review was conducted to identify human factors methods, tools, and technologies relevant to each review element of NUREG-0711. Additionally emerging trends in technology which have the potential to impact review elements, such as Augmented Cognition, and various wireless tools and technologies were identified. The purpose of this paper is to provide an overview of the survey results and to highlight issues that could be revised or adapted to meet with emerging trends. (authors)

  12. Advances in complexity of beam halo-chaos and its control methods for beam transport networks

    International Nuclear Information System (INIS)

    Fang Jinqing

    2004-11-01

    The complexity theory of beam halo-chaos in beam transport networks and its control methods for a new subject of high-tech field is discussed. It is pointed that in recent years, there has been growing interest in proton beams of high power linear accelerator due to its attractive features in possible breakthrough applications in national defense and industry. In particular, high-current accelerator driven clean activity nuclear power systems for various applications as energy resources has been one of the most focusing issues in the current research, because it provides a safer, cleaner and cheaper nuclear energy resource. However, halo-chaos in high-current beam transport networks become a key concerned issue because it can generate excessive radioactivity therefore significantly limits its applications. It is very important to study the complexity properties of beam halo-chaos and to understand the basic physical mechanisms for halo chaos formation as well as to develop effective control methods for its suppression. These are very challenging subjects for the current research. The main research advances in the subjects, including experimental investigation and the oretical research, especially some very efficient control methods developed through many years of efforts of authors are reviewed and summarized. Finally, some research outlooks are given. (author)

  13. An Advanced Method to Apply Multiple Rainfall Thresholds for Urban Flood Warnings

    Directory of Open Access Journals (Sweden)

    Jiun-Huei Jang

    2015-11-01

    Full Text Available Issuing warning information to the public when rainfall exceeds given thresholds is a simple and widely-used method to minimize flood risk; however, this method lacks sophistication when compared with hydrodynamic simulation. In this study, an advanced methodology is proposed to improve the warning effectiveness of the rainfall threshold method for urban areas through deterministic-stochastic modeling, without sacrificing simplicity and efficiency. With regards to flooding mechanisms, rainfall thresholds of different durations are divided into two groups accounting for flooding caused by drainage overload and disastrous runoff, which help in grading the warning level in terms of emergency and severity when the two are observed together. A flood warning is then classified into four levels distinguished by green, yellow, orange, and red lights in ascending order of priority that indicate the required measures, from standby, flood defense, evacuation to rescue, respectively. The proposed methodology is tested according to 22 historical events in the last 10 years for 252 urbanized townships in Taiwan. The results show satisfactory accuracy in predicting the occurrence and timing of flooding, with a logical warning time series for taking progressive measures. For systems with multiple rainfall thresholds already in place, the methodology can be used to ensure better application of rainfall thresholds in urban flood warnings.

  14. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    Science.gov (United States)

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.

  15. Introduction to the Special Issue on Advancing Methods for Analyzing Dialect Variation.

    Science.gov (United States)

    Clopper, Cynthia G

    2017-07-01

    Documenting and analyzing dialect variation is traditionally the domain of dialectology and sociolinguistics. However, modern approaches to acoustic analysis of dialect variation have their roots in Peterson and Barney's [(1952). J. Acoust. Soc. Am. 24, 175-184] foundational work on the acoustic analysis of vowels that was published in the Journal of the Acoustical Society of America (JASA) over 6 decades ago. Although Peterson and Barney (1952) were not primarily concerned with dialect variation, their methods laid the groundwork for the acoustic methods that are still used by scholars today to analyze vowel variation within and across languages. In more recent decades, a number of methodological advances in the study of vowel variation have been published in JASA, including work on acoustic vowel overlap and vowel normalization. The goal of this special issue was to honor that tradition by bringing together a set of papers describing the application of emerging acoustic, articulatory, and computational methods to the analysis of dialect variation in vowels and beyond.

  16. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    Science.gov (United States)

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  18. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  19. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization.

    Science.gov (United States)

    Yang, Yan-Pu

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes.

  20. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    Science.gov (United States)

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  1. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  2. Advanced neutron imaging methods with a potential to benefit from pulsed sources

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Penumadu, D.; Manke, I.

    2011-01-01

    During the last decade neutron imaging has seen significant improvements in instrumentation, detection and spatial resolution. Additionally, a variety of new applications and methods have been explored. As a consequence of an outstanding development nowadays various techniques of neutron imaging go far beyond a two- and three-dimensional mapping of the attenuation coefficients for a broad range of samples. Neutron imaging has become sensitive to neutron scattering in the small angle scattering range as well as with respect to Bragg scattering. Corresponding methods potentially provide spatially resolved and volumetric data revealing microstructural inhomogeneities, texture variations, crystalline phase distributions and even strains in bulk samples. Other techniques allow for the detection of refractive index distribution through phase sensitive measurements and the utilization of polarized neutrons enables radiographic and tomographic investigations of magnetic fields and properties as well as electrical currents within massive samples. All these advanced methods utilize or depend on wavelength dependent signals, and are hence suited to profit significantly from pulsed neutron sources as will be discussed.

  3. Advances in Spectral Nodal Methods applied to SN Nuclear Reactor Global calculations in Cartesian Geometry

    International Nuclear Information System (INIS)

    Barros, R.C.; Filho, H.A.; Oliveira, F.B.S.; Silva, F.C. da

    2004-01-01

    Presented here are the advances in spectral nodal methods for discrete ordinates (SN) eigenvalue problems in Cartesian geometry. These coarse-mesh methods are based on three ingredients: (i) the use of the standard discretized spatial balance SN equations; (ii) the use of the non-standard spectral diamond (SD) auxiliary equations in the multiplying regions of the domain, e.g. fuel assemblies; and (iii) the use of the non-standard spectral Green's function (SGF) auxiliary equations in the non-multiplying regions of the domain, e.g., the reflector. In slab-geometry the hybrid SD-SGF method generates numerical results that are completely free of spatial truncation errors. In X,Y-geometry, we obtain a system of two 'slab-geometry' SN equations for the node-edge average angular fluxes by transverse-integrating the X,Y-geometry SN equations separately in the y- and then in the x-directions within an arbitrary node of the spatial grid set up on the domain. In this paper, we approximate the transverse leakage terms by constants. These are the only approximations considered in the SD-SGF-constant nodal method, as the source terms, that include scattering and eventually fission events, are treated exactly. Moreover, we describe in this paper the progress of the approximate SN albedo boundary conditions for substituting the non-multiplying regions around the nuclear reactor core. We show numerical results to typical model problems to illustrate the accuracy of spectral nodal methods for coarse-mesh SN criticality calculations. (Author)

  4. Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    International Nuclear Information System (INIS)

    Katsaounis, T D

    2005-01-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall

  5. PREFACE: Advanced many-body and statistical methods in mesoscopic systems

    Science.gov (United States)

    Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe

    2012-02-01

    It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius

  6. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    Science.gov (United States)

    McCarthy, Matthew James

    along the Gulf of Mexico. Land cover assessments could not be used as an explanatory variable because of the low temporal resolution (i.e. approximately one map per five-year period). Ocean color metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate indices like the North Atlantic Oscillation and El Nino Southern Oscillation index were also examined as possible drivers of long-term changes. Extreme turbidity events were defined by the 90th and 95th percentile observations over each time step. Wind speed, river discharge and El Nino best explained variability in turbidity time-series and extreme events (R2 > 0.2, p Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and National Wetland Inventory, we found that these historical land cover products overestimated by 2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. We could find no study that had utilized more than six of these commercial images for a given project. Part of the problem is cost of the images, but there is also the cost of processing the images, which is typically done one at a time and with substantial human interaction. Chapter four explains an approach to automate the preprocessing and classification of imagery to detect wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and Linux were used to ingest 130 WorldView-2 images and to generate maps that included wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) based on ground validation data. Typical processing methods would have required 4-5 months to complete this work, but this protocol completed the 130 images in under 24 hours. Chapter five of the

  7. Integration of PanDA workload management system with Titan supercomputer at OLCF

    Science.gov (United States)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  8. Future directions in shielding methods and analysis

    International Nuclear Information System (INIS)

    Goldstein, H.

    1987-01-01

    Over the nearly half century history of shielding against reactor radiation, there has been a see-saw battle between theory and measurement. During that period the capability and accuracy of calculational methods have been enormously improved. The microscopic cross sections needed as input to the theoretical computations are now also known to adequate accuracy (with certain exceptions). Nonetheless, there remain substantial classes of shielding problems not yet accessible to satisfactory computational methods, particularly where three-dimensional geometries are involved. This paper discusses promising avenues to approach such problems, especially in the light of recent and expected advances in supercomputers. In particular, it seems that Monte Carlo methods should be much more advantageous in the new computer environment than they have been in the past

  9. Re-inventing electromagnetics - Supercomputing solution of Maxwell's equations via direct time integration on space grids

    International Nuclear Information System (INIS)

    Taflove, A.

    1992-01-01

    This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs

  10. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions.

    Science.gov (United States)

    Doyle-Lindrud, Susan

    2015-02-01

    IBM has collaborated with several cancer care providers to develop and train the IBM supercomputer Watson to help clinicians make informed treatment decisions. When a patient is seen in clinic, the oncologist can input all of the clinical information into the computer system. Watson will then review all of the data and recommend treatment options based on the latest evidence and guidelines. Once the oncologist makes the treatment decision, this information can be sent directly to the insurance company for approval. Watson has the ability to standardize care and accelerate the approval process, a benefit to the healthcare provider and the patient.

  11. Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method

    International Nuclear Information System (INIS)

    Rocco, M.V.; Colombo, E.; Sciubba, E.

    2014-01-01

    additional insight in and more relevant information for every comparative analysis of energy conversion systems, both at a global and a local level. In the paper, traditional and advanced exergy analysis methods are briefly discussed and EEA theoretical foundations and details for its application are described in detail. Methods: The method converts not only material and energy flows, but externalities as well (labour, capital and environmental costs) into flows of equivalent primary exergy, so that all exchanges between the system and the environment can be completely accounted for on a rigorous thermodynamic basis. The current emphasis decision makers and by public opinion alike seem to be placing on sustainability generates the need for continue research in the field of systems analysis, and a preliminary review confirms that exergy may constitute a coherent and rational basis for developing global and local analysis methods. Moreover, extended exergy accounting possesses some specific and peculiar characteristics that make it more suitable for life-cycle and cradle-to-grave (or well-to-wheel) applications. Results: Taxonomy for the classification of exergy-based methods is proposed. A novel assessment of the EEA method is provided, its advantages and drawbacks are discussed and areas in need of further theoretical investigation are identified. Conclusions: Since EEA is a life-cycle method, it is argued that it represents an improvement with regard to other current methods, in that it provides additional insight into the phenomenological aspects of any “energy conversion chain”. The paper demonstrates that the Extended Exergy cost function can be used within the traditional and very well formalized Thermoeconomic framework, replacing the economic cost function in order to evaluate and optimize the consumption of resources of a system in a more complete and rational way. Practical implications: This paper contains some specific proposals as to the further development

  12. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    Science.gov (United States)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  13. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  14. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    Science.gov (United States)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  15. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    Stetter, R; Witczak, P; Spindler, C; Hertel, J; Staiger, B

    2014-01-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  16. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  17. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  18. NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules

    CERN Document Server

    Ens, Werner

    1991-01-01

    A NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules was held at Minaki Lodge, Minaki, Ontario, Canada, from 24 to 28 June 1990. The workshop was hosted by the time-of-flight group of the Department of Physics at the University of Manitoba, and was attended by 64 invited participants from around the world. Twenty-nine invited talks were given and 19 papers were presented as posters. Of the 48 contributions, 38 are included in these proceedings. The conference was organized to study the rapidly changing field of mass spectrometry of biomolecules. Particle-induced desorption (especially with MeV particles) has been the most effective method of producing molecular ions from biomolecules. An important part of the workshop was devoted to recent developments in this field, particularly to progress in understanding the fundamentals of the desorption process. In this respect, the meeting was similar to previous conferences in Marburg, FRG (1978); Paris, F (1980); Uppsala...

  19. ARN Training on Advance Methods for Internal Dose Assessment: Application of Ideas Guidelines

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.; Puerta Yepes, N.; Gossio, S.

    2010-01-01

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. The IDEAS Guidelines provide a method to harmonize dose evaluations using criteria and flow chart procedures to be followed step by step. The EURADOS Working Group 7 'Internal Dosimetry', in collaboration with IAEA and Czech Technical University (CTU) in Prague, promoted the 'EURADOS/IAEA Regional Training Course on Advanced Methods for Internal Dose Assessment: Application of IDEAS Guidelines' to broaden and encourage the use of IDEAS Guidelines, which took place in Prague (Czech Republic) from 2-6 February 2009. The ARN identified the relevance of this training and asked for a place for participating on this activity. After that, the first training course in Argentina took place from 24-28 August for training local internal dosimetry experts. This paper resumes the main characteristics of this activity. (authors) [es

  20. The ASCI Network for SC '99: A Step on the Path to a 100 Gigabit Per Second Supercomputing Network

    Energy Technology Data Exchange (ETDEWEB)

    PRATT,THOMAS J.; TARMAN,THOMAS D.; MARTINEZ,LUIS M.; MILLER,MARC M.; ADAMS,ROGER L.; CHEN,HELEN Y.; BRANDT,JAMES M.; WYCKOFF,PETER S.

    2000-07-24

    This document highlights the Discom{sup 2}'s Distance computing and communication team activities at the 1999 Supercomputing conference in Portland, Oregon. This conference is sponsored by the IEEE and ACM. Sandia, Lawrence Livermore and Los Alamos National laboratories have participated in this conference for eleven years. For the last four years the three laboratories have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives rubric. Communication support for the ASCI exhibit is provided by the ASCI DISCOM{sup 2} project. The DISCOM{sup 2} communication team uses this forum to demonstrate and focus communication and networking developments within the community. At SC 99, DISCOM built a prototype of the next generation ASCI network demonstrated remote clustering techniques, demonstrated the capabilities of the emerging Terabit Routers products, demonstrated the latest technologies for delivering visualization data to the scientific users, and demonstrated the latest in encryption methods including IP VPN technologies and ATM encryption research. The authors also coordinated the other production networking activities within the booth and between their demonstration partners on the exhibit floor. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia's overall strategies in ASCI networking.

  1. Grassroots Supercomputing

    CERN Multimedia

    Buchanan, Mark

    2005-01-01

    What started out as a way for SETI to plow through its piles or radio-signal data from deep space has turned into a powerful research tool as computer users acrosse the globe donate their screen-saver time to projects as diverse as climate-change prediction, gravitational-wave searches, and protein folding (4 pages)

  2. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  3. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    Science.gov (United States)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  4. STEEP STREAMS - Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS

    Science.gov (United States)

    Armanini, Aronne; Cardoso, Antonio H.; Di Baldassarre, Giuliano; Bellin, Alberto; Breinl, Korbinian; Canelas, Ricardo B.; Larcher, Michele; Majone, Bruno; Matos, Jorges; Meninno, Sabrina; Nucci, Elena; Rigon, Riccardo; Rosatti, Giorgio; Zardi, Dino

    2017-04-01

    The STEEP STREAMS (Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS) project consists of a collaboration among the Universities of Trento, Uppsala and Lisbon, who joined in a consortium within the ERANET Water JPI call WaterWorks2014. The aim of the project is to produce new rational criteria for the design of protection works against debris flows, a phenomenon consisting in hyper-concentrated flows of water and sediments, classified as catastrophic events typical of small mountainous basins (area triggered by intense rainstorms. Such events are non-stationary phenomena that arise in a very short time, and their recurrence is rather difficult to determine. Compared to flash floods, they are more difficult to anticipate, mostly since they are triggered by convective precipitation events, posing a higher risk of damage and even loss of human lives. These extreme events occur almost annually across Europe, though the formal return period in an exposed site is much larger. Recently, an increase in intensity and frequency of small-scale storm events, leading to extreme solid transport in steep channels, are recognized as one of the effects of climate change. In this context, one of the key challenges of this project is the use of comparatively coarse RCM projections to the small catchments examined in STEEP STREAMS. Given these changes, conventional protection works and their design criteria may not suffice to provide adequate levels of protection to human life and urban settlements. These structures create a storage area upstream the alluvial fans and the settlements, thereby reducing the need of channelization in areas often constrained by urban regulations. To optimize the lamination, and in particular to reduce the peak of solid mass flux, it is necessary that the deposition basin is controlled by a slit check dam, capable of inducing a controlled sedimentation of the solid mas flux. In

  5. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  6. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  7. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00300320; Klimentov, Alexei; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Vaniachine, Alexandre; Wenaus, Torre; Schovancova, Jaroslava

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modi ed PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real time, information about unused...

  8. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration; Klimentov, Alexei; Oleynik, Danila; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently uses more than 100,000 cores at well over 100 Grid sites with a peak performance of 0.3 petaFLOPS, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real tim...

  9. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  10. Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop Supercomputer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Clyde [Northern Illinois Univ., DeKalb, IL (United States); Karonis, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Lurio, Laurence [Northern Illinois Univ., DeKalb, IL (United States); Piot, Philippe [Northern Illinois Univ., DeKalb, IL (United States); Xiao, Zhili [Northern Illinois Univ., DeKalb, IL (United States); Glatz, Andreas [Northern Illinois Univ., DeKalb, IL (United States); Pohlman, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Hou, Minmei [Northern Illinois Univ., DeKalb, IL (United States); Demir, Veysel [Northern Illinois Univ., DeKalb, IL (United States); Song, Jie [Northern Illinois Univ., DeKalb, IL (United States); Duffin, Kirk [Northern Illinois Univ., DeKalb, IL (United States); Johns, Mitrick [Northern Illinois Univ., DeKalb, IL (United States); Sims, Thomas [Northern Illinois Univ., DeKalb, IL (United States); Yin, Yanbin [Northern Illinois Univ., DeKalb, IL (United States)

    2012-11-21

    This project establishes an initiative in high speed (Teraflop)/large-memory desktop supercomputing for modeling and simulation of dynamic processes important for energy and industrial applications. It provides a training ground for employment of current students in an emerging field with skills necessary to access the large supercomputing systems now present at DOE laboratories. It also provides a foundation for NIU faculty to quantum leap beyond their current small cluster facilities. The funding extends faculty and student capability to a new level of analytic skills with concomitant publication avenues. The components of the Hewlett Packard computer obtained by the DOE funds create a hybrid combination of a Graphics Processing System (12 GPU/Teraflops) and a Beowulf CPU system (144 CPU), the first expandable via the NIU GAEA system to ~60 Teraflops integrated with a 720 CPU Beowulf system. The software is based on access to the NVIDIA/CUDA library and the ability through MATLAB multiple licenses to create additional local programs. A number of existing programs are being transferred to the CPU Beowulf Cluster. Since the expertise necessary to create the parallel processing applications has recently been obtained at NIU, this effort for software development is in an early stage. The educational program has been initiated via formal tutorials and classroom curricula designed for the coming year. Specifically, the cost focus was on hardware acquisitions and appointment of graduate students for a wide range of applications in engineering, physics and computer science.

  11. Computational Science with the Titan Supercomputer: Early Outcomes and Lessons Learned

    Science.gov (United States)

    Wells, Jack

    2014-03-01

    Modeling and simulation with petascale computing has supercharged the process of innovation and understanding, dramatically accelerating time-to-insight and time-to-discovery. This presentation will focus on early outcomes from the Titan supercomputer at the Oak Ridge National Laboratory. Titan has over 18,000 hybrid compute nodes consisting of both CPUs and GPUs. In this presentation, I will discuss the lessons we have learned in deploying Titan and preparing applications to move from conventional CPU architectures to a hybrid machine. I will present early results of materials applications running on Titan and the implications for the research community as we prepare for exascale supercomputer in the next decade. Lastly, I will provide an overview of user programs at the Oak Ridge Leadership Computing Facility with specific information how researchers may apply for allocations of computing resources. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  12. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; Kumar, Jitendra [ORNL; Mills, Richard T. [Argonne National Laboratory; Hoffman, Forrest M. [ORNL; Sripathi, Vamsi [Intel Corporation; Hargrove, William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS)

    2017-09-01

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like the Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.

  13. An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.

    Science.gov (United States)

    Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei

    2017-12-01

    Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.

  14. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    Science.gov (United States)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  15. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA)[1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance

  16. Evaluation of DNBR calculation methods for advanced digital core protection system

    International Nuclear Information System (INIS)

    Ihn, W. K.; Hwang, D. H.; Pak, Y. H.; Yoon, T. Y.

    2003-01-01

    This study evaluated the on-line DNBR calculation methods for an advanced digital core protection system in PWR, i.e., subchannel analysis and group-channel analysis. The subchannel code MATRA and the four-channel codes CETOP-D and CETOP2 were used here. CETOP2 is most simplified DNBR analysis code which is implemented in core protection calculator in Korea standard nuclear power plants. The detailed subchannel code TORC was used as a reference calculation of DNBR. The DNBR uncertainty and margin were compared using allowable operating conditions at Yonggwang nuclear units 3-4. The MATRA code using a nine lumping-channel model resulted in smaller mean and larger standard deviation of the DNBR error distribution. CETOP-D and CETOP2 showed conservatively biased mean and relatively smaller standard deviation of the DNBR error distribution. MATRA and CETOP-D w.r.t CETOP2 showed significant increase of the DNBR available margin at normal operating condition. Taking account for the DNBR uncertainty, MATRA and CETOP-D over CETOP2 were estimated to increase the DNBR net margin by 2.5%-9.8% and 2.5%-3.3%, respectively

  17. REVA Advanced Fuel Design and Codes and Methods - Increasing Reliability, Operating Margin and Efficiency in Operation

    Energy Technology Data Exchange (ETDEWEB)

    Frichet, A.; Mollard, P.; Gentet, G.; Lippert, H. J.; Curva-Tivig, F.; Cole, S.; Garner, N.

    2014-07-01

    Since three decades, AREVA has been incrementally implementing upgrades in the BWR and PWR Fuel design and codes and methods leading to an ever greater fuel efficiency and easier licensing. For PWRs, AREVA is implementing upgraded versions of its HTP{sup T}M and AFA 3G technologies called HTP{sup T}M-I and AFA3G-I. These fuel assemblies feature improved robustness and dimensional stability through the ultimate optimization of their hold down system, the use of Q12, the AREVA advanced quaternary alloy for guide tube, the increase in their wall thickness and the stiffening of the spacer to guide tube connection. But an even bigger step forward has been achieved a s AREVA has successfully developed and introduces to the market the GAIA product which maintains the resistance to grid to rod fretting (GTRF) of the HTP{sup T}M product while providing addition al thermal-hydraulic margin and high resistance to Fuel Assembly bow. (Author)

  18. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  19. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    Science.gov (United States)

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  20. Simulation and design method in advanced nanomaterials fine-tuning for some perovskites type AHE study

    International Nuclear Information System (INIS)

    Mohorianu, S.; Lozovan, M.; Rusu, F.-V.

    2009-01-01

    Nanostructured materials with tailored properties are now essential for future applications in the current industrial manufacturing. Extracting valuable information from data by using the distributed computer processing and storage technologies, as well the Artificial Neural Network (ANN) and the development of advanced algorithms for knowledge discovery are the purpose of our work. We describe how a Simulation and Design Method (SDM) attempt, based on our last results, is applied on two perovskites type materials, La 0.7 Ca 0.3 MnO 3 and La 0.7 Sr 0.3 MnO 3 in order to study the Anomalous Hall Effect (AHE). Our new ANN model, is intended to contribute to the effort to improve some properties of new materials. It implements and uses the basic building blocks of neural computation, such as multi-layer perceptrons. ANN can learn associative patterns and approximate the functional relationship between a set of input and output. Modeling and simulation techniques affect all stages in the development and improvement of new materials, from the initial formation of concepts to synthesis and characterization of properties. A new SDM with ANN for some nanomagnetic materials was given. Neural networks have been applied successfully in the identification and classification of some nanomagnetic characteristics from a large amount of data. (authors)

  1. Advancing Higher Education with Mobile Learning Technologies: Cases, Trends, and Inquiry-Based Methods

    Science.gov (United States)

    Keengwe, Jared, Ed.; Maxfield, Marian B., Ed.

    2015-01-01

    Rapid advancements in technology are creating new opportunities for educators to enhance their classroom techniques with digital learning resources. Once used solely outside of the classroom, smartphones, tablets, and e-readers are becoming common in many school settings. "Advancing Higher Education with Mobile Learning Technologies: Cases,…

  2. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    Science.gov (United States)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and

  3. Advanced numerical methods for uncertainty reduction when predicting heat exchanger dynamic stability limits: Review and perspectives

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.; Hoarau, Y.; Braza, M.; Ruiz, D.; Canteneur, C.

    2013-01-01

    Highlights: ► Proposal of hybrid computational methods for investigating dynamical system stability. ► Modeling turbulence disequilibrium due to interaction with moving solid boundaries. ► Providing computational procedure for large size system solution approximation through model reduction. -- Abstract: This article proposes a review of recent and current developments in the modeling and advanced numerical methods used to simulate large-size systems involving multi-physics in the field of mechanics. It addresses the complex issue of stability analysis of dynamical systems submitted to external turbulent flows and aims to establish accurate stability maps applicable to heat exchanger design. The purpose is to provide dimensionless stability limit modeling that is suitable for a variety of configurations and is as accurate as possible in spite of the large scale of the systems to be considered. The challenge lies in predicting local effects that may impact global systems. A combination of several strategies that are suited concurrently to multi-physics, multi-scale and large-size system computation is therefore required. Based on empirical concepts, the heuristic models currently used in the framework of standard stability analysis suffer from a lack of predictive capabilities. On the other hand, numerical approaches based on fully-coupled fluid–solid dynamics system computation remain expensive due to the multi-physics patterns of physics and the large number of degrees of freedom involved. In this context, since experimentation cannot be achieved and numerical simulation is unavoidable but prohibitive, a hybrid strategy is proposed in order to take advantage of both numerical local solutions and empirical global solutions

  4. Quantifying export flows of used electronics: advanced methods to resolve used goods within trade data.

    Science.gov (United States)

    Duan, Huabo; Miller, T Reed; Gregory, Jeremy; Kirchain, Randolph

    2014-03-18

    There is limited convincing quantitative data on the export of used electronics from the United States (U.S.). Thus, we advance a methodology to quantify the export flows of whole units of used electronics from the U.S. using detailed export trade data, and demonstrate the methodology using laptops. Since used electronics are not explicitly identified in export trade data, we hypothesize that exports with a low unit value below a used-new threshold specific to a destination world region are used. The importance of using the most disaggregated trade data set available when resolving used and new goods is illustrated. Two detailed U.S. export trade data sets were combined to arrive at quantities and unit values for each port, mode of transport, month, trade partner country, and trade code. We add rigor to the determination of the used-new threshold by utilizing both the Neighborhood valley-emphasis method (NVEM) and published sales prices. This analysis found that 748 to 1199 thousand units of used laptops were exported from the U.S. in 2010, of which 78-81% are destined for non-OECD countries. Asia was found to be the largest destination of used laptop exports across all used-new threshold methods. Latin American and the Caribbean was the second largest recipient of these exports. North America and Europe also received used laptops from the U.S. Only a small fraction of used laptops was exported to Africa. However, these quantities are lower bound estimates because not all shipments of used laptops may be shipped using the proper laptop trade code. Still, this approach has the potential to give insight into the quantity and destinations of the exports if applied to all used electronics product types across a series of years.

  5. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  6. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media

    International Nuclear Information System (INIS)

    Coelho, Pedro J.

    2014-01-01

    Many methods are available for the solution of radiative heat transfer problems in participating media. Among these, the discrete ordinates method (DOM) and the finite volume method (FVM) are among the most widely used ones. They provide a good compromise between accuracy and computational requirements, and they are relatively easy to integrate in CFD codes. This paper surveys recent advances on these numerical methods. Developments concerning the grid structure (e.g., new formulations for axisymmetrical geometries, body-fitted structured and unstructured meshes, embedded boundaries, multi-block grids, local grid refinement), the spatial discretization scheme, and the angular discretization scheme are described. Progress related to the solution accuracy, solution algorithm, alternative formulations, such as the modified DOM and FVM, even-parity formulation, discrete-ordinates interpolation method and method of lines, and parallelization strategies is addressed. The application to non-gray media, variable refractive index media, and transient problems is also reviewed. - Highlights: • We survey recent advances in the discrete ordinates and finite volume methods. • Developments in spatial and angular discretization schemes are described. • Progress in solution algorithms and parallelization methods is reviewed. • Advances in the transient solution of the radiative transfer equation are appraised. • Non-gray media and variable refractive index media are briefly addressed

  7. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    Science.gov (United States)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  8. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  9. Analyzing Planck and low redshift data sets with advanced statistical methods

    Science.gov (United States)

    Eifler, Tim

    The recent ESA/NASA Planck mission has provided a key data set to constrain cosmology that is most sensitive to physics of the early Universe, such as inflation and primordial NonGaussianity (Planck 2015 results XIII). In combination with cosmological probes of the LargeScale Structure (LSS), the Planck data set is a powerful source of information to investigate late time phenomena (Planck 2015 results XIV), e.g. the accelerated expansion of the Universe, the impact of baryonic physics on the growth of structure, and the alignment of galaxies in their dark matter halos. It is the main objective of this proposal to re-analyze the archival Planck data, 1) with different, more recently developed statistical methods for cosmological parameter inference, and 2) to combine Planck and ground-based observations in an innovative way. We will make the corresponding analysis framework publicly available and believe that it will set a new standard for future CMB-LSS analyses. Advanced statistical methods, such as the Gibbs sampler (Jewell et al 2004, Wandelt et al 2004) have been critical in the analysis of Planck data. More recently, Approximate Bayesian Computation (ABC, see Weyant et al 2012, Akeret et al 2015, Ishida et al 2015, for cosmological applications) has matured to an interesting tool in cosmological likelihood analyses. It circumvents several assumptions that enter the standard Planck (and most LSS) likelihood analyses, most importantly, the assumption that the functional form of the likelihood of the CMB observables is a multivariate Gaussian. Beyond applying new statistical methods to Planck data in order to cross-check and validate existing constraints, we plan to combine Planck and DES data in a new and innovative way and run multi-probe likelihood analyses of CMB and LSS observables. The complexity of multiprobe likelihood analyses scale (non-linearly) with the level of correlations amongst the individual probes that are included. For the multi

  10. Smart Sensing of the Aux. Feed-water Pump Performance in NPP Severe Accidents Using Advanced GMDH Method

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In order to develop and verify the models, a number of data obtained by simulating station black out (SBO) scenario for the optimized power reactor 1000 (OPR1000) using MARS code were used. Most of monitoring systems for component have been suggested by using the directly measured data. However, it is very difficult to acquire data related to safety-critical component' status. Therefore, it is necessary to develop the new method that combines the data-based equipped with learning system and data miming technique. Many data-based modeling methods have been applied successfully to nuclear engineering area, such as signal validation, plant diagnostics and event identification. Also, the data miming is the process of analyzing data from different perspectives and summarizing it into useful information. In this study, the smart sensing technique was developed using advanced group method of data handing (GMDH) model. The original GMDH is an inductive self organizing algebraic model. The advanced GMDH model is equipped with a fuzzy concept. The proposed advanced GMDH model enhances the original GMDH model by reducing the effect of outliers and noise. The advanced GMDH uses different weightings according to their importance which is specified by the fuzzy membership grade. The developed model was verified using SBO accident simulation data for the OPR1000 nuclear power plant acquired with MARS code. Also, the advanced GMDH model was trained using the simulated development data and verified with simulated test data. The development and test data sets were independent. The simulation results show that the performance of the developed advanced GMDH model was very satisfactory, as shown in Table 1. Therefore, if the developed model can be optimized using diverse and specific data, it will be possible to predict the performance of Aux. feed water pump accurately.

  11. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  12. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  13. Use of QUADRICS supercomputer as embedded simulator in emergency management systems

    International Nuclear Information System (INIS)

    Bove, R.; Di Costanzo, G.; Ziparo, A.

    1996-07-01

    The experience related to the implementation of a MRBT, atmospheric spreading model with a short duration releasing, are reported. This model was implemented on a QUADRICS-Q1 supercomputer. First is reported a description of the MRBT model. It is an analytical model to study the speadings of light gases realised in the atmosphere cause incidental releasing. The solution of diffusion equation is Gaussian like. It yield the concentration of pollutant substance released. The concentration is function of space and time. Thus the QUADRICS architecture is introduced. And the implementation of the model is described. At the end it will be consider the integration of the QUADRICS-based model as simulator in a emergency management system

  14. Reactive flow simulations in complex geometries with high-performance supercomputing

    International Nuclear Information System (INIS)

    Rehm, W.; Gerndt, M.; Jahn, W.; Vogelsang, R.; Binninger, B.; Herrmann, M.; Olivier, H.; Weber, M.

    2000-01-01

    In this paper, we report on a modern field code cluster consisting of state-of-the-art reactive Navier-Stokes- and reactive Euler solvers that has been developed on vector- and parallel supercomputers at the research center Juelich. This field code cluster is used for hydrogen safety analyses of technical systems, for example, in the field of nuclear reactor safety and conventional hydrogen demonstration plants with fuel cells. Emphasis is put on the assessment of combustion loads, which could result from slow, fast or rapid flames, including transition from deflagration to detonation. As a sample of proof tests, the special tools have been tested for specific tasks, based on the comparison of experimental and numerical results, which are in reasonable agreement. (author)

  15. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Science.gov (United States)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  16. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Directory of Open Access Journals (Sweden)

    DeTar Carleton

    2018-01-01

    Full Text Available With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  17. Solving sparse linear least squares problems on some supercomputers by using large dense blocks

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Ostromsky, T; Sameh, A

    1997-01-01

    technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...

  18. Reliability Lessons Learned From GPU Experience With The Titan Supercomputer at Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallarno, George [Christian Brothers University; Rogers, James H [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learned in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.

  19. EDF's experience with supercomputing and challenges ahead - towards multi-physics and multi-scale approaches

    International Nuclear Information System (INIS)

    Delbecq, J.M.; Banner, D.

    2003-01-01

    Nuclear power plants are a major asset of the EDF company. To remain so, in particular in a context of deregulation, competitiveness, safety and public acceptance are three conditions. These stakes apply both to existing plants and to future reactors. The purpose of the presentation is to explain how supercomputing can help EDF to satisfy these requirements. Three examples are described in detail: ensuring optimal use of nuclear fuel under wholly safe conditions, understanding and simulating the material deterioration mechanisms and moving forward with numerical simulation for the performance of EDF's activities. In conclusion, a broader vision of EDF long term R and D in the field of numerical simulation is given and especially of five challenges taken up by EDF together with its industrial and scientific partners. (author)

  20. Harnessing Petaflop-Scale Multi-Core Supercomputing for Problems in Space Science

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Daughton, W.; Bergen, B.; Kwan, T. J.

    2008-12-01

    The particle-in-cell kinetic plasma code VPIC has been migrated successfully to the world's fastest supercomputer, Roadrunner, a hybrid multi-core platform built by IBM for the Los Alamos National Laboratory. How this was achieved will be described and examples of state-of-the-art calculations in space science, in particular, the study of magnetic reconnection, will be presented. With VPIC on Roadrunner, we have performed, for the first time, plasma PIC calculations with over one trillion particles, >100× larger than calculations considered "heroic" by community standards. This allows examination of physics at unprecedented scale and fidelity. Roadrunner is an example of an emerging paradigm in supercomputing: the trend toward multi-core systems with deep hierarchies and where memory bandwidth optimization is vital to achieving high performance. Getting VPIC to perform well on such systems is a formidable challenge: the core algorithm is memory bandwidth limited with low compute-to-data ratio and requires random access to memory in its inner loop. That we were able to get VPIC to perform and scale well, achieving >0.374 Pflop/s and linear weak scaling on real physics problems on up to the full 12240-core Roadrunner machine, bodes well for harnessing these machines for our community's needs in the future. Many of the design considerations encountered commute to other multi-core and accelerated (e.g., via GPU) platforms and we modified VPIC with flexibility in mind. These will be summarized and strategies for how one might adapt a code for such platforms will be shared. Work performed under the auspices of the U.S. DOE by the LANS LLC Los Alamos National Laboratory. Dr. Bowers is a LANL Guest Scientist; he is presently at D. E. Shaw Research LLC, 120 W 45th Street, 39th Floor, New York, NY 10036.